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Weak Form of Poisson’s Equation

The linear operator A : ¥ — ¥ (for example, —A) is defined by
(Au,v) := alu,v] = / Vu-Vudz, YveV
Q

and f € ¥’ is a function or distribution. Suppose that A is bounded, i.e.,
alu,v] < Collu|lv|v]|ly, Yu,ve¥

and coercive, i.e.,
alv,v] > alv||3, VYwe.

We would like to find u € ¥ such that Au = f or in the weak form

afu,v] = (f,vy, Yve¥ = Well-posed

Hence, k(A) = HAHD%,(%V,) <(C,/a = Well-conditioned

A1 H.Z(“i//;“i/)

NCMIS

(22)

However, the problem here lies in that we are working on two different spaces ¥ and 7.
Question: If we consider —A : L?(Q) +— L?(f) instead, do we lost boundedness?
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Linear Lagrange Finite Element Method 5
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The weak formulation of the model equation can be written as: Find u € H{ (£2), such that

/ Vu - Vudr = / fvodx, Yve H&(Q).
Q Q
Let Py (7) be the space of all polynomials of degree less than or equal to k£ on 7. Let
V=V,:={vel) : vePi(xi_1,z), v(0) =v(l) =0}.
Now we can write the discrete variational problem as: Find u; € V},, such that
alun,va] = (f,vn), VYon € V.

Furthermore, we use nodal basis functions ¢; € V;,, i.e. qﬁi(xj) = 6;,;. In this way, we can express a given
function up, € Vj, as up(z) = Zj\;l u;¢;(x). Hence we arrive at the following equation:

Z;-v:l algj, dilu; = (f, ¢i) or Z;-Vzl Ajjuj = fi i=1,...,N.
This is a system of algebraic linear equations
Ai = f, (23)
. S, N 7
with (A)i,j =a;; = alg;, ¢;], U = (ui)izl’ and f = (
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Galerkin Approximation P
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Approximate space: Replaces the underlying function space by appropriate finite dimensional
subspaces. We choose a finite dimensional space V' = V) with finite dimension dim(Vy) = N to
approximate 7.

Galerkin method: Then we arrive at the Galerkin discretization:
Findu, € V: afuy,vy] = (f,vy), Vv, eV (24)

Equation (24) yields the so-called Galerkin discretization. If the bilinear form a[-, -] is symmetric
and coercive, it is called the Ritz—Galerkin discretization.

Conforming discretizations: If the bilinear form a[-, -] is coercive, then we have
2
a[vavN] > aN||UN’|'V’ vUN evcay.

Since coercivity is inherited from 7 to its subspace V', we can see that the constant «,, is bounded
from below, i.e., &y, > «, VN. The bilinear form a[-, -] is well-defined on V' x V.
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Finite Elements e
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Definition (Finite element)

A triple (K, P, ) is called a finite element if and only if

(i) Element domain: K C R? be a bounded closed set with nonempty interior and piecewise
smooth boundary;

(ii) Shape functions: P be a finite-dimensional space of functions on K;
(iii) Set of nodal variables: N' = {N,..., Ny} be a basis of P’.

Problem (Finite element discretization)

Let V;, C ¥ be the space of continuous piecewise polynomials over a quasi-uniform conforming
mesh My, ie., V}, := {v e C(Q) : v|, € P, forall T € J\/lh} (7. Find uy, € V3, such that

alun,vp] = (f,vn), Y € Wy, (25)

or, equivalently,

Apun = fn. (26)
_ 59 _
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Properties of Finite Element Space 5
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Proposition (Interpolation error)

Let M, be a uniform mesh and V}, be a C* (o > 0) finite element space on M;,. The interpolant
Th : W (82) = V), satisfies

lv — jhUHWIgc(Q) < hm_kHUHWg’L(Q)’ Vo e W'(Q), 0 <k <min{m,a+ 1}.

Proposition (Inverse estimate)

Let My, be a uniform mesh and P C W} (K) W (K) and 0 < m < k. If V, is a finite element
space for (K, P, N') on M}, then we have

l . =
< Z Hv"a/ll)c(T))p Shm—k-i-mln{of }< Z H me(T))q’ Yo eV,

TEMp, TEMYp,

— 60 —
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Some Important Inequalities

Proposition (Some useful inverse estimates)

For any v € V},, we have

NCMIS

Pl SA P olo@, e lL,00)
vl gs) S A °lvllee@)y, s €10,1];
[Vl gray S hvllae), @€ (0,5) )
Proposition (Discrete Sobolev inequality)
The following inequality holds
[0llL(@) S CaP) vl 1), Vv € Va,

where Cy(h) = 1, Ca(h) = |log h|*/2, and C3(h) = he.

— 61 —
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Simultaneous Estimate

Proposition (Weighted estimate for L? projection)

Define Qp, : L?(Q2) ~ V}, by, for any v € L?(12), it holds that
(Qpv,w) = (v,w), Yw € V.

Then we have the following weighted L2-estimate

lo = Quolly + k| Quoll, S hlfell,, Vo € Ho(@).

NCMIS

Remark (Simultaneous estimate)

From the above weighted L2-estimate, we can easily show the so-called simultaneous estimate

nf ([lo=wly+alo—w],) S Aol ¥oe H©.

62 —
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Condition of FE Matrices 5
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Remark (Spectral radius and condition number of .Ay,)

Suppose that we have a uniform partition with meshsize h. It is clear, from the Poincaré inequality and the
inverse inequality, that

loll§ S IVol§ = (Anv,v) < [lollf S B 72(l5, Vo € Vi

In fact, we have p(Ay) =2 h=2 and k(Ap) = h™2.

[ We lost boundedness! The condition number of the discrete operator is not uniformly bounded. J

@ The key point is the norm used in the above estimates.
@ This means the discrete finite element problems are difficult to solve if the mesh size is small.
@ Other factors, like diffusion coefficients, will also contribute to ill-condition.

@ Reminder: We want to construct a SPD matrix 3, such that

,uo(.Ahv,v) < (B;lv,v) < w1 (Ahv,v), Yv e V.



Operator and matrix forms
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Vector Representations
NCMIS
Assume that {¢;},—1 . n is a basis of V. Any function v € V' can be represented as
N
V=) v
i=1
and the vector representation (coefficient vector) of v is defined as
S|
primal representation v := : e RV, 27
Un
There is another natural and easier-to-compute vector representation
(’U7 (bl)
dual representation v := : eRY and ¥= My, (28)
(7), ¢N )

where M € RV*N with M, ; := (¢4, ¢;) is the mass matrix. Apparently, we have
) = (u, ) = ul My = (u,v)y.

64 —
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Matrix Representations 5
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Let W be a linear space with basis {¢; };=1,... n/. Forany A : V — W, we give its primal representation,

AeRV N s 3N (A), i =Ad; (G=1,...,N):

(WY1, YN )A = A1, ..., On) = (Adr,. .., Adn). (29)
The dual representation for A : V' +— V is denoted by (fl)l ;= (A¢j, ¢;). <= the stiffness matrix

Lemma (Simple relations between matrix representations)

If A B:V—Vandwv,u €V, we have the following results:

Q AB=AB;

Q Av=Auy;

Q s(A) =0(A), k(A =r(A);
Q i=Mu, ;@:AQ,

Q@ A=MA4;
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Example: Finite Element Matrices -
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Setting for finite element methods:

@ V =1V}, is the piecewise linear finite element space.

{¢i}i=1,...,n are the basis functions for FEM.

@ Let A be the coefficient matrix (A); ; = a; ; := al¢;, ¢;].

@ By definition, A = A € RVN*Y s the stiffness matrix corresponding to A.
Letu = (ui)il € RY be the vector of coefficients of uy, namely uy,.

Let F= (f)Y, = {{f.60))

Linear algebraic system for finite element discretization of Au = f:

N
i=1"

Au = f or Au= f (We have been abusing notation!)

Upon solving this linear system, we obtain a discrete approximation

N
up = 5 U .
=1
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Condition of FE Matrices, Revisited dia’
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Spectral radius and condition number of A Suppose that mesh is uniform with meshsize h. From the
Poincaré inequality and the inverse inequality, that

[lI3 < IVollg = (Anv,v) < lollf S A72(0l§, Vo € V.
Hence, we have p(Aj) = h=2 and k(Aj) = h™2.
Spectrum of mass matrix: The mass matrix M € RN*N M, ; = (¢, ¢;), satisfies
(Mu,v) =Y v, (¢, 65) = (v,v) = / v(x)de = by 0} = b (v, v).
Y 7
It is well-known that the mass matrix is SPD and well-conditioned, i.e.,
hElls S €TME S Rl Ve € RY.
Spectrum of stiffness matrix: The stiffness matrix A is SPD and
RS < €T AE S RRENE, Ve € RY.

Hence the spectral radius p(A) = h?~2 and the condition number x(A) = h~2.
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Richardson Method, Revisited dia’
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Consider solving the P;-Lagrange finite element system for the Poisson’s equation:
Au=f.

The simplest iterative solver is the well-known Richardson method:

WY = 0 4 w(f— Agold).
It is equivalent to

WY = 0 —|—w(Mi— MAyold) — o1 _’_wM(i_Agold).

That is to say, the Richardson method, can be written in the operator form as

WY = 0 | B (f _ Auold)
with an iterator B,,, whose matrix representation is B,, = wM.

The operator form of the Richardson method is

N

Bov = wZ(v,@)@', Yo e V.

i=1



