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Section 04. FEM and Algebraic Representations Finite element discretization

Weak Form of Poisson’s Equation
The linear operator A : V →↑ V → (for example, ↓!) is defined by

(Au, v) := a[u, v] =

∫

!
↔u ·↔v dx, ↗v ↘ V

and f ↘ V → is a function or distribution. Suppose that A is bounded, i.e.,

a[u, v] ≃ Ca⇐u⇐V ⇐v⇐V , ↗u, v ↘ V

and coercive, i.e.,
a[v, v] ⇒ ω⇐v⇐2

V , ↗v ↘ V .

We would like to find u ↘ V such that Au = f or in the weak form

a[u, v] = ⇑f, v⇓ , ↗ v ↘ V =⇔ Well-posed (22)

Hence, ε(A) =
∥∥A

∥∥
L (V ;V →)

∥∥A↑1
∥∥

L (V →;V )
≃ Ca/ω =⇔ Well-conditioned

However, the problem here lies in that we are working on two di!erent spaces V and V →.
Question: If we consider ↓! : L2(”) →↑ L2(”) instead, do we lost boundedness?
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Linear Lagrange Finite Element Method
The weak formulation of the model equation can be written as: Find u ↘ H1

0 (”), such that
∫

!
↔u ·↔vdx =

∫

!
fv dx, ↗v ↘ H1

0 (”).

Let Pk(ϑ) be the space of all polynomials of degree less than or equal to k on ϑ . Let

V = Vh :=
{
v ↘ C(”) : v ↘ P1(xi↑1, xi), v(0) = v(1) = 0

}
.

Now we can write the discrete variational problem as: Find uh ↘ Vh, such that

a[uh, vh] = (f, vh), ↗vh ↘ Vh.

Furthermore, we use nodal basis functions ϖi ↘ Vh, i.e. ϖi(xj) = ϱi,j . In this way, we can express a given
function uh ↘ Vh as uh(x) =

∑
N

j=1 ujϖj(x). Hence we arrive at the following equation:
∑

N

j=1 a[ϖj , ϖi]uj = (f, ϖi) or
∑

N

j=1 Ai,juj = fi, i = 1, . . . , N.

This is a system of algebraic linear equations

Aςu = ςf, (23)

with
(
A
)
i,j

= ai,j := a[ϖi, ϖj ], ςu :=
(
ui

)N

i=1
, and ςf =

(
fi

)N

i=1
:=

(
⇑f, ϖi⇓

)N

i=1
.
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Galerkin Approximation

Approximate space: Replaces the underlying function space by appropriate finite dimensional
subspaces. We choose a finite dimensional space V = VN with finite dimension dim(VN ) = N to
approximate V .

Galerkin method: Then we arrive at the Galerkin discretization:

Find uN ↘ V : a[uN , vN ] = ⇑f, vN ⇓ , ↗ vN ↘ V. (24)

Equation (24) yields the so-called Galerkin discretization. If the bilinear form a[·, ·] is symmetric
and coercive, it is called the Ritz–Galerkin discretization.

Conforming discretizations: If the bilinear form a[·, ·] is coercive, then we have

a[vN , vN ] ⇒ ωN ⇐vN ⇐
2
V , ↗ vN ↘ V ↖ V .

Since coercivity is inherited from V to its subspace V , we can see that the constant ωN is bounded
from below, i.e., ωN ⇒ ω, ↗N. The bilinear form a[·, ·] is well-defined on V ↙ V .
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Finite Elements

Definition (Finite element)

A triple (K,P,N ) is called a finite element if and only if
(i) Element domain: K ∝ Rd be a bounded closed set with nonempty interior and piecewise

smooth boundary;
(ii) Shape functions: P be a finite-dimensional space of functions on K;
(iii) Set of nodal variables: N = {N1, . . . ,Nk} be a basis of P →.

Problem (Finite element discretization)
Let Vh ↖ V be the space of continuous piecewise polynomials over a quasi-uniform conforming
mesh Mh, i.e., Vh :=

{
v ↘ C(”) : v|ω ↘ Pω , for all ϑ ↘ Mh

}⋂
V . Find uh ↘ Vh such that

a[uh, vh] = ⇑f, vh⇓, ↗ vh ↘ Vh, (25)

or, equivalently,
Ahuh = fh. (26)
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Properties of Finite Element Space

Proposition (Interpolation error)

Let Mh be a uniform mesh and Vh be a Cε (ω ⇒ 0) finite element space on Mh. The interpolant
Jh : Wm

p (”) →↑ Vh satisfies
∥∥v ↓ Jhv

∥∥
W k

p (!)
↭ hm↑k

∥∥v
∥∥

W m
p (!)

, ↗ v ↘ Wm

p (”), 0 ≃ k ≃ min{m, ω + 1}.

Proposition (Inverse estimate)

Let Mh be a uniform mesh and P ∝ W k
p (K)

⋂
Wm

q (K) and 0 ≃ m ≃ k. If Vh is a finite element
space for (K,P,N ) on Mh, then we have

( ∑

ω↓Mh

∥∥v
∥∥p

W k
p (ω)

) 1
p ↭ hm↑k+min{0,

d
p ↑ d

q }
( ∑

ω↓Mh

∥∥v
∥∥q

W m
q (ω)

) 1
q
, ↗ v ↘ Vh.
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Some Important Inequalities

Proposition (Some useful inverse estimates)

For any v ↘ Vh, we have





⇐v⇐L→(!) ↭ h↑ d
p ⇐v⇐Lp(!), p ↘ [1,′);

⇐v⇐Hs(!) ↭ h↑s
⇐v⇐L2(!), s ↘ [0, 1];

⇐v⇐H1+ω(!) ↭ h↑ε
⇐v⇐H1(!), ω ↘ (0, 1

2).

Proposition (Discrete Sobolev inequality)

The following inequality holds

⇐v⇐L→(!) ↭ Cd(h)⇐v⇐H1(!), ↗ v ↘ Vh,

where C1(h) ∞ 1, C2(h) = | log h|1/2, and C3(h) = h↑ 1
2 .
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Simultaneous Estimate

Proposition (Weighted estimate for L2 projection)

Define Qh : L2(”) →↑ Vh by, for any v ↘ L2(”), it holds that

(Qhv, w) = (v, w), ↗w ↘ Vh.

Then we have the following weighted L2-estimate
∥∥v ↓Qhv

∥∥
0

+ h
∥∥Qhv

∥∥
1
↭ h

∥∥v
∥∥

1
, ↗ v ↘ H1

0 (”).

Remark (Simultaneous estimate)

From the above weighted L2-estimate, we can easily show the so-called simultaneous estimate

inf
w↓Vh

(∥∥v ↓ w
∥∥

0
+ h

∥∥v ↓ w
∥∥

1

)
↭ h⇐v⇐1, ↗ v ↘ H1

0 (”).
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Condition of FE Matrices

Remark (Spectral radius and condition number of Ah)

Suppose that we have a uniform partition with meshsize h. It is clear, from the Poincaré inequality and the
inverse inequality, that

⇐v⇐2
0 ↭ ⇐↔v⇐2

0 = (Ahv, v) ≃ ⇐v⇐2
1 ↭ h↑2

⇐v⇐2
0, ↗v ↘ Vh.

In fact, we have φ(Ah) ∈= h↑2 and ε(Ah) ∈= h↑2.

We lost boundedness! The condition number of the discrete operator is not uniformly bounded.

The key point is the norm used in the above estimates.

This means the discrete finite element problems are di#cult to solve if the mesh size is small.

Other factors, like di!usion coe#cients, will also contribute to ill-condition.

Reminder: We want to construct a SPD matrix Bh such that

µ0

(
Ahv, v

)
≃

(
B
↑1
h

v, v
)
≃ µ1

(
Ahv, v

)
, ↗v ↘ V.
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Vector Representations
Assume that {ϖi}i=1,...,N is a basis of V . Any function v ↘ V can be represented as

v =
N∑

i=1

v
i
ϖi

and the vector representation (coe#cient vector) of v is defined as

primal representation v :=




v1
...

v
N



 ↘ RN . (27)

There is another natural and easier-to-compute vector representation

dual representation ςv :=




(v, ϖ1)

...
(v, ϖN )



 ↘ RN and ςv = Mv, (28)

where M ↘ RN↔N with Mi,j := (ϖi, ϖj) is the mass matrix. Apparently, we have

( u,ςv ) ∞ ( u,ςv )l2 = uT Mv = (u, v)V .
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Matrix Representations
Let W be a linear space with basis {↼i}i=1,...,N → . For any A : V →↑ W , we give its primal representation,
A ↘ RN

→↔N , s.t.
∑

N
→

i=1

(
A
)
i,j

↼i = Aϖj (j = 1, . . . , N ):

(↼1, . . . , ↼N →)A = A(ϖ1, . . . , ϖN ) = (Aϖ1, . . . ,AϖN ). (29)

The dual representation for A : V →↑ V is denoted by
(
Â
)
i,j

:= (Aϖj , ϖi). ∋= the sti!ness matrix

Lemma (Simple relations between matrix representations)

If A,B : V →↑ V and v, u ↘ V , we have the following results:
1 AB = AB;
2 Av = A v;
3 ↽(A) = ↽(A), ε(A) = ε(A);

4 ςv = M v,
↓↑
Av = Â v;

5 Â = M A;
6 (u, v) = (Mu, v).
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Example: Finite Element Matrices
Setting for finite element methods:

V = Vh is the piecewise linear finite element space.

{ϖi}i=1,...,N are the basis functions for FEM.

Let A be the coe#cient matrix (A)i,j = ai,j := a[ϖi, ϖj ].

By definition, A = Â ↘ RN↔N is the sti!ness matrix corresponding to A.

Let u =
(
ui

)N

i=1
↘ RN be the vector of coe#cients of uh, namely uh.

Let ςf =
(
fi

)N

i=1
:=

{
⇑f, ϖi⇓

}N

i=1
.

Linear algebraic system for finite element discretization of Au = f :

Âu = ςf or Au = ςf. (We have been abusing notation!)

Upon solving this linear system, we obtain a discrete approximation

uh =
N∑

i=1

u
i
ϖi.
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Condition of FE Matrices, Revisited
Spectral radius and condition number of Ah: Suppose that mesh is uniform with meshsize h. From the
Poincaré inequality and the inverse inequality, that

⇐v⇐2
0 ↭ ⇐↔v⇐2

0 = (Ahv, v) ≃ ⇐v⇐2
1 ↭ h↑2

⇐v⇐2
0, ↗v ↘ Vh.

Hence, we have φ(Ah) ∈= h↑2 and ε(Ah) ∈= h↑2.

Spectrum of mass matrix: The mass matrix M ↘ RN↔N , Mi,j = (ϖi, ϖj), satisfies

(Mv, v) =
∑

i,j

v
i
v

j
(ϖi, ϖj) = (v, v) =

∫

!
v2(x) dx ∈= hd

∑

i

v2
i
∈= hd(v, v).

It is well-known that the mass matrix is SPD and well-conditioned, i.e.,

hd
⇐⇀⇐2

0 ↭ ⇀ T M ⇀ ↭ hd
⇐⇀⇐2

0, ↗ ⇀ ↘ RN .

Spectrum of sti!ness matrix: The sti!ness matrix A is SPD and

hd
⇐⇀⇐2

0 ↭ ⇀ T A ⇀ ↭ hd↑2
⇐⇀⇐2

0, ↗ ⇀ ↘ RN .

Hence the spectral radius φ(A) ∈= hd↑2 and the condition number ε(A) ∈= h↑2.
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Richardson Method, Revisited
Consider solving the P1-Lagrange finite element system for the Poisson’s equation:

Âu = ςf.

The simplest iterative solver is the well-known Richardson method:

unew = uold + ⇁
(

ςf ↓ Âuold
)
.

It is equivalent to

unew = uold + ⇁
(
Mf ↓ MAuold

)
= uold + ⇁M

(
f ↓Auold

)
.

That is to say, the Richardson method, can be written in the operator form as

unew = uold + Bω

(
f ↓Auold

)

with an iterator Bω , whose matrix representation is Bω = ⇁M .

The operator form of the Richardson method is

Bωv := ⇁
N∑

i=1

(v, ϖi)ϖi, ↗v ↘ V.
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