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Multilevel Iterative Methods
Examples of multilevel algorithms

Quick Sort, FFT, FMM, GMG, AMG, H-Matrix, H2-Matrix, ...

Multigrid V-cycle
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Key ingredients for multilevel iterative methods
! Construct multilevel hierarchy in an e!cient way (setup)
! Find e”ective (yet cheap) smoothers for each level
! Find good coarse-grid correction (CGC) algorithms

Need complementary smoothing and CGC steps to get better convergence.
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Finite Di”erence Methods

In one-dimensional case, we can assume ! = (0, 1) and it is divided into N + 1 equally spaced pieces. So
we get a uniform mesh with meshsize h = 1

N+1 ; see the following figure for illustration.

0 1h

x0 x1 x2 xN
xN+1

1

Figure: Uniform mesh in 1D.

For the right-hand side, we can use an approximation: ωf :=
(
fi

)N

i=1
=

(
f(xi)

)N

i=1
. For the left-hand side,

using the Taylor’s expansion, we can easily obtain that

u→→(xi) =
1

h2

[
u(xi↑1) → 2u(xi) + u(xi+1)

]
+ O(h2)

↑
1

h2

[
ui↑1 → 2ui + ui+1

]
,

where ui ↑ u(xi) is an approximate solution (finite di”erence solution).

# 47 #



Section 03. Basic Ideas of Multigrid Methods Multigrid in 1D

Nested Grids
Solve the 1D Poisson’s equation:

Aωu = ωf with A =
1

h2
tridiag(→1, 2,→1), fi = f(xi).

Suppose there are a hierarchy of L + 1 grids with hl = ( 1
2 )l+1 (l = 0, 1, . . . , L). It is clear that

h0 > h1 > h2 > · · · > hL =: h

and N = 2L+1
→ 1. We call level L the finest level and level 0 the coarsest level.

l = 0 h0 = (1
2 )1

l = 1 h1 = (1
2 )2

l = 2 h2 = (1
2 )3

...

...

1

Figure: Hierarchical grids for 1D multigrid method.
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Transfer Operators

In the 1D case, the transfer operators can be easily given:
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Figure: Transfer operators (Left: restriction operator; right: prolongation operator).
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It is straight-forward to check that: Al↑1 = Rl,l↑1AlPl↑1,l. So Rl,l↑1 = ?PT

l↑1,l
.
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Multigrid Algorithm
Error correction for linear problems: Suppose that ωu (m) is an approximate solution. Then we have

A
(
ωu → ωu (m)

)
= ωr (m) := ωf → Aωu (m)

and the error equation can be written
Aωe (m) = ωr (m).

We then update the iterative solution by ωu (m+1) = ωu (m) + ωe (m) to obtain a new approximation of ωu.

Then we have the following recursively-defined algorithm:

Algorithm (One iteration of multigrid method ωul = MG(l, ωfl, ωul))

1 Pre-smoothing: ωul → ωul + 1
2D

→1
l

(
ωfl ↑Alωul

)
.

2 Restriction: ωrl→1 → Rl,l→1

(
ωfl ↑Alωul

)
.

3 Coarse-grid correction: If l = 1, ωel→1 → A→1
l→1ωrl→1; ωel→1 → MG(l ↑ 1,ωrl→1,ω0l→1), otherwise.

4 Prolongation: ωul → ωul + Pl→1,lωel→1.

5 Post-smoothing: ωul → ωul + 1
2D

→1
l

(
ωfl ↑Alωul

)
.
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A Simple Numerical Experiment
In the following table, we give the numerical results of the above algorithm for the 1D Poisson’s equation
(using three G-S iterations as smoother). From the table, we find that, unlike the classical Jacobi and G-S
methods, this multigrid method converges uniformly with respect to the meshsize h. This is, of course, a
very desirable feature of the multilevel iterative methods, which will be investigated in this course.

#Levels #DOF #Iter Contract factor

5 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table: Convergence behavior of 1D geometric multigrid method.

Textbook multigrid e!ciency: “TME means solving a discrete PDE problem in a computational work
which is only a small (less than 10) multiple of the operation count in the discretized system of equations
itself.”
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Computational Cost
Assumptions:

Denote the work needed by Bl is Wl.
Assume the each smoothing sweep costs O(Nl) operations and Nl ↓ h↑d

l
↓ ε↑ld. Then it requires

2m O(Nl) operations for the pre- and post-smoothing (m-steps) on level l.
The prolongation and restriction also requires O(Nl) operations.

Work of multilevel cycles:

Wk+1 = O
(
Nk+1

)
+ Wk

= · · · · · ·

= O
( k+1∑

j=0

Nj

)
= O

(
Nk+1

) k+1∑

j=0

εjd.

Let N = NL be the number of unknowns on the finest grid. The V-cycle costs O(N) operations in each
cycle. Apparently, this analysis also yields computational complexity of the W-cycle, if we choose an
appropriate µ1 such that µ1εd < 1.

One question remains: How many iterations (cycles) needed to reach certain accuracy?
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General Multilevel Iterative Methods

Generally speaking, multilevel iterations: Setup Phase (fixed) =↔ Solve Phase (variable)

Setup phase
Constructing transfer operators, coarse problems, etc
Using geometric information or algebraic information or both
Needed only once in each solution procedure
Sometimes even shared by multiple solution procedures

Solve phase
Applying relaxation (simple iterative methods) on di”erent levels and putting components together
Needed many times as iteration or precondition step, but hopeful not too many
Main concern: How to approximate coarse solution accurately without costing too much

Two-level method
Simplest case: Two-level method (solve the coarse level exactly or approximately)
Easier to implement and analyze, provide insight for design multilevel methods
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Examples of Multilevel Cycles

Some schematic description of MG-cycle
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Figure 1: A schematic description of the V-cycle.
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Figure 2: A schematic description of the full multigrid algorithm.

V–Cycle W–Cycle

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

1

Some schematic description of MG-cycle

Chunsheng Feng

March 24, 2016

Fine

Coarse

Relaxation

Exact solving

Restriction

Prolongation

Figure 1: A schematic description of the V-cycle.

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

FMG prolongation

Figure 2: A schematic description of the full multigrid algorithm.

V–Cycle W–Cycle

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

1

V, VV, VW, W, AMLI, K, N, H, ... , Nested Iterations
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A General Workflow
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