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Linear Algebraic Solvers 5

NCMIS

A fundamental problem in scientific computing:

[ Given a large sparse matrix A € RV*Y and f € RY, how to solve A = f ? ]

Why is it so difficult?
@ Large number of unknowns
@ Sometimes ill-conditioned
@ PDE-system with several different physical variables
@ Linear solution is usually the bottleneck in simulation

@ Linear solution is difficult to scale (optimality in terms of cost and parallel scalability)

Goals:

accuracy, convergence, robustness, efficiency, applicability, scalability, optimality, reli-
ability, user-friendliness, cost-effectiveness, ...
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Iterative Solvers 5

NCMIS

Iterative methods
@ A very long history: Newton, Euler, Guass, ...
@ Stationary iterative methods, Krylov subspace methods, domain decomposition, multigrid, ...
@ Steepest descent method, Newton’s method, power method, ...
Preconditioning methods
@ A relatively long history: Turing 1948, Meijerink, van der Vorst 1977 (IC preconditioner) ...
@ ILU, Sparse Approximate Inverse, Diagonal, SGS, SSOR, ...
@ Domain decomposition, RAS, multigrid, nonlinear preconditioning, ...
@ Problem dependent, usually requires at least the coefficient matrix A
Smoothers / local relaxation methods
@ Employed by multigrid, or more generally, subspace correction methods

@ Usually just simple iterative methods, sometimes not even convergent methods

[ KSM’s as iterative methods or accelerators; linear stationary method as preconditioners or smoothers. )
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Linear Stationary Iterative Solvers 5
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Abstract problem setting:
Let V' be a finite-dimensional linear vector space, .4 : V +— V be a non-singular linear operator,
and f € V. Find a u € V, such that

Au = f. (10)

Algorithm (Stationary iterative method u™V = ITE R(u°'%))
@ Form the residual: r = f — Au°

@ Solve or approximate the error equation: Ae = r by é = Br

@ Correct the previous iterative solution: u"" = 4°d 4+ ¢

That is to say, the new iteration is obtained by computing
urev — uold + B(f _ AuOId), (11)

where B is called the iterator. Apparently, B = A~ for nonsingular operator A also defines an
iterator, which yields a direct method. We wish to construct B = A~!, but easier to compute.
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Some Simple Examples 255
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Consider the linear system Au = f Assume the coefficient matrix A € R™V*¥ can be partitioned
as A = L + D + U, where the three matrices L, D,U € RV*N,

Example (Richardson method)

The simplest iterative method for solving Au = f might be the Richardson method
gy — gold + w(f_ A'[_[Old) )

We can choose an optimal weight w to improve performance of this method.

Example (Weighted Jacobi method)

The weighted or damped Jacobi method can be written as
gew — gold + wD—l(JF_ A’L_[O]d).

This method solves one equation for one variable at a time, simultaneously.
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More Simple Examples 255
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Example (Gauss—Seidel method)
The Gauss—Seidel (G-S) method can be written as

@Y = g% (D + L)—l(f’_ AGO9).

Thus we have
gew _ gold + D! (f_ Lamev _ (D + U)ﬁ01d>.

Example (Successive over-relaxation method)

The successive over-relaxation (SOR) method can be written as
(D +wL)@" = wf — (wU + (w— 1)D> @,

old new

The weight w is usually in (1, 2). This is in fact the extrapolation of ¢ °“ and @ "V obtained in the

G-S method. If w = 1, then it reduces to the G-S method.
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Local relaxation methods

Smoothing Effect of Richardson Method
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Error components: Assume that

AE* = \€* k=1,....,N

- < An. {Ek},{jzl forms a basis of R". We can then write

)

where 0 < \; <

- =5 oMk,

Error propagation equation of the Richardson method (w = ,\1N ):

i—a™ = (I —-wA)(@—amV)=...= (I—wA)’"(ﬁ— @),
N N
Olk — W a w
k=1 k=1 k=1
— o™ = (1 —wrp) el = ( ) O k=1,...,N

We observe that the Richardson method converges very fast for high-frequency error components
(large k) but very slow for low-frequency components (small k).
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Smoothing Effect of Jacobi Method 5
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Use the weighted Jacobi method with w = 2/3 to solve the problem Au = 0:

@ If the initial guess just equal to the eigenvector E 2% of Amax, the convergence is fast.

@ If begin with a different initial guess E min the convergence becomes slow.

1

0 2‘0 4‘0 6‘0 8‘0 1 (;0 1 éO
Figure: Error decay in || - ||oo-norm for weighted Jacobi (Richardson) method with initial guess E k.
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Inner Product and Symmetry 4}5:{2’
Inner product:  (u,v) := [uvdr and (u,v):= Zfil u;v;, it V. =RN,
Symmetry: Define the adjoint operator (transpose) of the linear operator A as A7 : V — V, such that
(ATu,v) i= (u, Av), Vau,v € V.
A linear operator A on V' is symmetric if and only if
(Au,v) = (u, Av), VYu,v € domain(A) C V.
If A is densely defined and AT = A, then A is a self-adjoint operator.

Null space and range: Denote the null space and the range of A as

N(A) =null(A) = {veV : Av=0},
R(A) =range(A) = {u=Av :veV}.

The null space is also called the kernel space and the range is called the image space. We have
null(A7)+ = range(A) and null(AT) = range(A)*.
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Spectrum and Condition Number e
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Spectrum: The set of eigenvalues of A is called the spectrum, denoted as o(.A). The spectrum of any
bounded symmetric A is real, i.e., all eigenvalues are real, although a symmetric operator may have no
eigenvalues.

Spectral radius: p(A) :=sup {|A| : A € o(A)}. We have that

Amin(A) = min Av.0) Amax(A) = max (Av,v)
vev\{o} ||v]|? vev\{o} ||v]|2

Symmetric positive definite: A is called an SPD if and only if .4 is symmetric and (Av,v) > 0, for any
v € V\{0}. Since A is SPD, all of its eigenvalues are positive real numbers. This will be the main problem
class for this lecture.

Spectral condition number: £(A) := Apax(A)/Amin (A).
@ For isomorphic mapping A € Z(V; V), k(A) := || Allzvv) A 2vv)-

SUP e (a) Al

@ For indefinite problems, we can define x(.A) := TRINE

@ All these definitions are consistent for symmetric positive definite problems.
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Condition Number Analysis 4}5:{2’
Lemma (Estimation of condition number)
If o and pp are positive constants satisfying

pio (Au,u) < (B u,u) < pa(Au,u), Yu €, (12)

then the condition number
K(BA) < p/po-

Lemma (Some equivalent conditions)

If A and B are SPD operators on V, then we have the inequalities (12) are equivalent to

po(Bu,u) < (A u,u) < py(Bu,u), Yu €V, (13)

or
,ufl(Au, u) < (ABAu,u) < ,ual(Au,u), Yu €V, (14)

or
py t(Bu,u) < (BABu,u) < pgt(Bu,u), Yue V. (15))
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An Alternative Inner Product 4:@.
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A-inner product: If A is an SPD operator, it induces a new inner product (and a norm as well):
(u,v) 4 = (Au,v) Yu,v € V.

Symmetry with respect to A-inner product:
For any bounded linear operator B : V +— V, we can define two transposes with respect to the inner
products (-, ) and (-, -) 4, respectively; namely,

(BTu,v) = (u, Bv), (B*u,v) 4 = (u, Bv) 4.
Relations between these two symmetries: By the above definitions, it is easy to show that
@ Br=A"1BTA
e (BA)*=BTA
o If BT = B, we do not necessarily have (BA)T = BA; but ...
o If BT = B, we have a key identity (BA)* = BT A = BA.

Lemma (Spectral radius of self-adjoint operators)

If BT = B, then p(B) = ||B||. Similarly, if B* = B, then p(B) = || B|| 4.
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Convergence of Iterative Methods 5

NCMIS
For the linear stationary iterative method, it is easy to see that
u—u™ = (T - BA) (u— u(m_l)) = =T -BA™(u- u(o)) =& (u-— u(o)),

where 7 : V + V is the identity operator and the operator £ := Z — BA is called the error propagation
operator (or error reduction operator or iterative operator).

Lemma (Spectral radius and .A-norm)
If A is SPD and B is symmetric, then p(Z — BA) = ||Z — BA|| 4.

Theorem (Convergence of linear stationary method)

The iteration converges for any initial guess if the spectral radius p(Z — BA) < 1, which is equivalent to
lim;;, 400 (Z — BA)™ = 0. = The converse direction is also true.

@ If A and B are both SPD, the eigenvalues of 3.A are real and the spectral radius satisfies that
p(Z — BA) = max (Amax(BA) — 1, 1 — Ayin(BA)). How eigenvalues distribute?

@ It is important to note that the spectral radius of £ only reflects the asymptotic convergence behavior
of the iterative method.
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NCMIS

Suppose we have an iterative method with an error propagation matrix

o 1 --- 0

FE = GRNXN
: o1
0 -+ --- 0

and the initial error is &(®) := 7 — @) = (0,...,0,1)” € RY. Notice that p(E) = 0 in this example.
However, if applying this error propagation matrix to form a sequence of approximations, we will find the
convergence is actually very slow for a large V. In fact,

6@z = e Dl = = [E¥ Dy =1 and )]y =0,

Analyzing the spectral radius of the iterative matrix alone will not provide much useful informa-
tion about the speed of an iterative method.
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Stationary Methods as Preconditioners 5
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Remark (Another equivalent condition)

If A and B are symmetric positive definite operators on a finite-dimensional space V, @ > 0and 0 < § < 1,
then it is easy to verify the following two conditions are equivalent:

a(Au,u) < (AZ — BA)u,u) < 6(Au,u), Yu€eV (16)

and

(1+a) HAu,u) < (B ru,u) < (1—0)"(Au,u), YueV. (17))

Let 5 be a symmetric iterator for the SPD operator .A. An iterative method is convergent if
p:=p(ZT—-BA)=|Z—-BA|a<1.
The method is not only converging but also a contraction, i.e.,
Ju—ul™ |4 < p™lu—u@| 4 =0 asm — +oo.
Furthermore, by definition, we have

<(A —2ABA + AB.ABA)U, u) < p*(u,u)a, Yuev.
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Gradient Descent Method 5
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[ If A is SPD, the linear system (first-order optimality) is equivalent to a quadratic min problem.

\—/

Problem (Quadratic minimization problem)

Let A: V +— V be an SPD operator. Consider the following convex minimization problem:

géi‘r/l}"(u) = %(.Au,u) — (f,u). (18)

Suppose we have an initial approximation «°'¢ and construct a new approximation

new old

Ut =u - +ap

with a given nonzero search direction p € V' and a stepsize «. In order to find the “best possible”
stepsize, we can solve a one-dimensional problem (i.e., the exact line-search method):

min F(a) :=

( old old
a€cR

u™ + ap,u™ + ap) , — (f,u" + ap).

| =
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Gradient Descent and Richardson fm’

NCMIS

By simple calculation, we obtain the following quadratic form
1 1
Fla) = 5o (Ap,p) — o f = Au™,p) + 5 (Au™, ) — (f,u),

and the optimal stepsize is

a — (f - Au()ldap) — (TOld’p)
o (Ap, p) (Ap,p)’

“Best” search direction: p := —VF(ud) = r°d —  Steepest descent direction

with 794 = f — Au®l, (19)

Remark (Steepest descent and Richardson methods)

If A is a SPD matrix, then Au = f is equivalent to the quadratic minimization problem
argmin - | A — foE[.
a€eRN

The search direction in the Richardson method is exactly the same as the steepest decent method.

v
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Convergence of Gradient Descent Method

Theorem (Convergence rate of gradient descent method)
If we apply the exact line-search using the stepsize

(m) p.(m)
T e

(r(m)7 r(m))A

then the convergence rate of the SD method satisfies that

m A) =1\
=< (BTT) =L

r(A) +1

NCMIS

(20)

@ The method is simple, robust, and easy to implement;
o It is cheap to compute at each iteration;
@ But it is too slow in practice;

@ We will discuss a few improvements in this section.
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Symmetrized Iterative Methods 5

NCMIS
Algorithm (Symmetrized iterative method u™¥ = SITER(u°))
Q w3 = u(™ 4 B(f — Aul™)
Q@ umtl — wm+s) 4 BT(f _ Au(m-ﬁ-%))

In turn, we obtain a symmetrized iterative method
u—u") = (T — BY AT — BA)(u — u™) = (T — BA)*(Z — BA)(u — u™).
If this new method satisfies the relation
u—u™) = (T — BA)(u — u™),

then it has a symmetric iteration operator

[ B:=B"+B-B'AB=B" (BT +B7' - A)B=:BTKB. ]

Lemma (Error decay property)

For any v € V, we have HvHi = H(I— B.A)’U”i‘ = (E.Av,v)A.
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Effect of Symmetrization P

NCMIS

We notice that B' = B and (Z — BA)* = T — BA. Furthermore, the above lemma shows that
((I—E.A)U,’U)A = (T — BAw|%, YveV.
Since Z — BA is self-adjoint w.r.t. (-, -) 4, we have ||Z — BA||4 = p(Z — B.A). Hence,
IZ-BAla= swp (Z-BAj,0) = sup [T -BAWld = T~ BAE. @D

[oll.a=1 lolla=1

This immediately gives the following relations:

[ p(Z —BA) =T — BAlla = ||IZ - BAI% > p(Z — BA)*. ]

Hence, if the symmetrized method converges, then the original method also converges; but the
opposite direction might not be true. Furthermore, we have obtained the identity:

((Z — BA)v, v)A.

veV\{0} HUHit

IZ — BA||la = p(Z—BA) =
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An Observation 5

NCMIS
In the Error Decay Lemma, we have already seen that

|@ = BAY[ = oIl — (BAv, Av).

[ Contraction property: HI — B.AH 4 < lifand only if B is SPD. ]

Example (If B is not SPD, B might still converge)

10 1 =2 0 2
A=lo 1] B=]g T3] wa 1oma= |y 0],

then we have

— [1 o - 0 0
II - BA|a=2>1, B_[O _3], and I—BA_[O 4].

Hence p(I — BA) = 0 < 4 = p(I — BA). So the iterator B converges but B does not.
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Convergence of Symmetrized Method

Theorem (Convergence of Symmetrized Algorithm)

The symmetrized iteration SITER is convergent if and only if B is SPD.

NCMIS

Proof.

First of all, we notice that
1

T—BA=(T—B AT -BA) =A2(T— A2BTA2)(I — A2BA2) Az,

which has the same spectrum as (Z — A%BTA%)(I — A2BA: ). So all eigenvalues of T — BA
are non-negative. Hence, we have A < 1 forall A € a(BA). SITER converges if and only if
p(Z — BA) < 1. Because

o(Z-BA)={1-X: Xea(BA)},

SITER converges if and only if o(B.A) C (0, 2). Therefore, the convergence is equivalent to
a(BA) C (0,1],1i.e., BAis SPD w.r.t. (-, ) 4.

Ol

v
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Convergence Rate of Iterative Methods 5
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Bis SPD <= B defines a convergent method == B defines a convergent method

Theorem (Convergence rate)

If B is SPD, the convergence rate of the stationary iterative method (or its symmetrization) is

— 1
IT—BA|4 = |Z —BA|a=1——, with c;:= sup (B 'v,v).
C1

l[v]l.a=1
Sketch of proof:
Since ((Z — BA)v,v)4 = ||v]|} — (BAv,v) 4, we have
_ — 1
|IZ - BA|} =1~ inf (BAv,v)4=1— Apin(BA) =1— —,
llv].a=1 1

where

¢1 = Amax((BA)™") = sup ((BA)~'v,v) ,= sup (E_lv,v).

vlla=1 lvlla=1
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Symmetric Positive Semidefinite Problems 5
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Consider a more general linear system:

e A:V — V isasymmetric and positive semidefinite operator.

e V is a finite dimensional Hilbert space with inner product (-, ).

e Q:V — R(A) is the orthogonal projection under the inner product (-, -).
Consider the general iterative method (ITER)

eV — uold + B(f . Au()ld),

where B is a linear operator from V' to V" and it might be singular.

Let |v|4 := (v, v)i(z for any v € V. Similar to the SPD case, we have

v/ — (T — BA)v|%y = (BAv,v)4 = ((B+ B" — BT AB) Av,v) ,

(B
2BAv,v) 4 — (BAv, BAv)4, Yo € V.
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Convergence Analysis for SPSD Problems 5
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Theorem (Convergence for Semidefinite Problems)

The iterative algorithm ITER converges if @ B Q is SPD on R(A).

The above convergence condition is equivalent to that there exists a positive constant « such that

2(BAv,v) 4 — (BAv, BAv) 4 > a(v,v)a, veEV.

Corollary (Convergence conditions)
Suppose the following two assumptions hold:
(A1) There exists w € (0,2) such that (BAv, BAv) 4 < w(BAv,v)4, Yv eV,

(A2) There exists 3 > 0 such that (BAv, BAv) 4 > B(v,v)4, Yv e V.
Then the iterative method ITER converges.
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Convergence Rate for SPSD Problems 5
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Under the assumptions (A1) and (A2), we find that

[v|% — (Z — BA)v[} = 2(BAv,v) 4 — (BAv, BAv) 4
2 B2 —w
> (; - 1) (BAv, BAv) 4 > (w)\v&

This immediately implies that |Z — BA|% <1 — @ <1.

Theorem (Convergence rate for Semidefinite Problems)

Under the assumptions (A1) and (A2), the iterative method ITER satisfies that

1
|Z — B.A|2 =1——, with ¢ := sup inf (v+¢,v+¢) o500
! 1 v ER(A),|v|a=1 cEN(A) (QBOQ)

The Moore—Penros inverse is denoted by Bf. In case N'(B) = N(A) and R(B) =
R(A), then BT : V + V is a zero extension of B! : R(A) — R(A), i.e. Blc =
0, Ve € N(A) and Blv = B™lw, Yo € R(A).
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GS for SPSD Problems 5

NCMIS

Suppose GS can be applied to the given SPSD problem, i.e. B = (D + L)"'and B = B + BT — BTAB.
It is easy to check that
B '=(D+L)DYD+LT)=5, onR(A).

In the previous theorem, we have

(QBQ)Tv,v) ((QS71Q)Tv,v)
¢ := sup ——~F—> = sup — .
vER(A) (’U,U)A vER(A) (va)A

Letw := (QS~'Q)fv. Then w € R(A) and w = S(v + ¢(v)), with c(v) := S w — v.
By the definition, we can find c(v) € N'(A) and
(S(v -+ c(v), v +c(v))
1 = sup .
vER(A) (U’ U)A

Let ¢ := arginf, cpr(a) (S(v + ¢),v + ¢). Then € uniquely satisfies that (S(v + £), ¢) = 0, for all
c € N(A). Apparently, £ = c(v) also satisfies this equation. So £ = ¢(v) and
(S(v+c(v),v+c(v)) (S(v+¢),v+c)

c1 = sup = sup inf
vER(A) (v,v)a vER(A) € EN(A) (v,v)a
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