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Section 08. Algebraic Multigrid Methods Why algebraic multigrid

From GMG To AMG

Q: Anisotropic coe!cients? Jump coe!cients? Heterogenous coe!cients? Non-symmetric problems?

Prolongation and restriction for GMG usually depend only on the topological structure of the grids
without using the grid coordinates.

In GMG, the topologies of the graph for the sti”ness matrices on di”erent levels are explicitly clear
from the geometric refinement procedure.

The key to an e!cient GMG algorithm is to construct e”ective and cheap smoothers for the problem
at hand.

For GMG, smoothness of error is defined geometrically. In more general settings, a geometrically
smooth error can be non-smooth.

AMG algorithms employ simple smoothers and attempt to construct a suitable operator-dependent
interpolation using the algebraic information of A.

AMG algorithms focus on how to pick coarse space and constructing interpolation to approximate the
error components that cannot be e”ectively reduced by smoothing.
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Toward Good AMG Performance

1 Some simple graph theory results and algorithms
Maximum independent set

Ordering and Tarjan’s algorithm

2 Designing algebraic multigrid methods
General setup methods for AMG

Two-level convergence theory

Algebraic smoothness

Prolongation and restriction operators

3 Some examples of AMG methods
Classical AMG

Classical AMG with aggressive coarsening

Smoothed/unsmoothed aggregation AMG

4 Convergence results of AMG methods
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Maximum Independent Set

Set of vertices → {1, . . . , N}. An edge in E is an unordered pair (j, k) with j, k ↑ V.

An undirected graph G := (V,E), where V is a set of vertices and E is a set of edges.

A graph G0 = (V0,E0) is called a subgraph of G = (V,E), if V0 ↓ V and E0 ↓ E.

If (j, k) ↑ E is an edge in an undirected graph G = (V, E), vertices j and k are said to be adjacent.

The set of neighboring vertices Ni → V of i is the set of all vertices that are adjacent to i.

An independent set of G is a set of vertices where no two vertices are adjacent.

A maximal independent set (mIS) is an independent set such that adding any other vertex would
introduce an adjacent pair. A graph can have many mIS’s of varying sizes.

The largest mIS, or several equally large mIS’s, is called a maximum independent set or MIS.

MIS problem: Find an independent set in the graph G = (V, E) of maximum cardinality.

However, finding MIS is NP-hard and it is natural to ask for approximation algorithms.
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Path and Adjacency Graph

A path from a vertex i to another vertex j is a sequence of edges

p(i, j) :=
{
(i, k1), (k1, k2), . . . , (kω→2, kω→1), (kω→1, j)

}
→ E;

the number of edges ω is called the length of this path.

A vertex j is connected to another vertex i if there is a path from j to i.

The distance between j and i is defined as the length of the shortest path between them.

The distance between j and i is equal to 1 if they are adjacent, and is ↔ if they are not connected.

An undirected graph G is connected if any pair of vertices are connected by a path.

The adjacency graph G(A) of matrix A ↑ RN↑N is a graph G = (V, E) with

V := {1, 2, . . . , N} and E :=
{
(i, j) : ai,j ↗= 0

}
.

Sparse matrices do not provide geometric information for the underlying graph except the combi-
natorial/topological properties of G(A) or its subgraphs.
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Coe!cient Matrix and Graph

Di”erent discretizations on di”erent meshes could lead to same coe!cient matrix A and G(A).
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Figure: Finite element grid (left), finite di”erence grid (middle), and graph of sti”ness matrices (right).
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M-Matrix And Its Properties

Definition (M-matrix)
A matrix A is an M-matrix if it is irreducible (i.e., the graph G(A) is connected) and

ai,i > 0, ai,j ↘ 0 (i ↗= j), and aj,j ≃
∑

i ↓=j

∣∣ai,j

∣∣, aj,j >
∑

i ↓=j

∣∣ai,j

∣∣ for at least one j.

Sti”ness matrices of FE discretizations might not be M-matrices in general.

Whether a sti”ness matrix is an M-matrix depends on the underlying mesh M.

We can apply simple filtering schemes to construct an approximate M-matrix AM from A.

Remark (Delaunay triangulation and M-matrix):
The sti”ness matrix for the Poisson’s equation is an M-matrix if the triangulation is Delaunay. This
condition is nearly sharp # The opposite direction is true with a few possible exceptions near the
boundary.
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FE Matrix And M-Matrix

Let εE(ϑ) := 1
d(d→1)

∣∣ϖE(ϑ)
∣∣ cot ϱE(ϑ).

xj

xi

E

Fi

Fj

θE

κE

1

Proposition (Condition for M-matrix)

The sti”ness matrix for the Poisson’s equation is an M-matrix, if and only if
∑

ε↔E

εE(ϑ) ≃ 0, ⇐E.
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Delaunay Triangulation and M-Matrix

Definition (Delaunay triangle)
In the context of a finite point set V, a triangle is Delaunay if its vertices are in V and its open circumdisk is
empty—namely, it contains no point of V.

Any number of points in V can lie on a Delaunay triangle’s circumcircle.

An edge is Delaunay if its vertices are in V and it has at least one empty open circumdisk.

A Delaunay triangulation of V is a triangulation in which every triangle is Delaunay.

Delaunay triangulation is a foundational geometric structure:

In 2D, among all possible triangulations of given points, the Delaunay triangulation maximizes the
minimum angle, thereby reducing the occurrence of narrow and sharp angles.

The Delaunay triangulation improves interpolation accuracy.

Extensive research has been dedicated to Delaunay triangulations, resulting in highly e!cient
algorithms for constructing and updating these meshes.
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Cross-Wind Ordering

Reminder: Relaxation order is very important for the local relaxation methods like GS.

Example: Convection-di”usion problem

flow

=⇒ A =





A11 ⇑ ς ⇑ ς · · · · · ·
A21 A22 ⇑ ς · · · · · ·
A31 A32 A33 · · · · · ·

· · · · · · · · ·
. . . · · ·

AK1 AK2 AK3 · · · AKK





In the above figure, the bold edges represent the cross-wind connections:

If we number the blocks sequentially from left to right, with the degrees of freedom within each block
ordered arbitrarily, the sti”ness matrix will have a lower triangular structure.

Based on this idea, the Cross-Wind-Block method has been proposed for convection-dominated
problems [Wang and Xu 1999]
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Examples of Cross-Wind Ordering

Figure: Flow velocity v = (1, 0) (left), v = (⇓1, 1) (middle), and v = (⇓y, x) (right) [Wang and Xu 1999]
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Coe!cient Matrix and Graph

Strongly connected component:

A maximal subset of vertices such that there is a path between any two vertices in the subset.

Tarjan’s algorithm is used to find strongly connected components in a graph.

Tarjan’s algorithm uses depth-first search on the digraph:
1 Drop some of the non-essential entries from the matrix A # Transform the graph corresponding to A

to a directed graph.
2 Find the strongly connected components in this directed graph # Each one of these components will

correspond to a diagonal block in the sti”ness matrix after permutation.

Remark (Preprocessing to a get directed graph):
Sometimes the graph corresponding to A is undirected (for example, the finite element sti”ness
matrix of the Poisson’s equation). If we consider a non symmetric problem, situation could be very
di”erent. For instance, we can make the graph directed by dropping some of the “insignificant”
entries of A. For example, by setting a threshold ς ↑ (0, 1), we drop all aki if |aki/aik| < ς.
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A Simple Example of Graph Ordering
Consider a 2D flow problem

R

k j 4′′

R k 3′

k

R

k j 4′′

R k 3′

k

Start from vertex 1 and then follow the path

1 ⇔ 2 ⇔ 3 ⇔ 4 ⇔ 5 ⇔ 6 ⇔ 4.

Collapse {4, 5, 6} as a single vertex vmacro = 4↗.

Following the path and continue until

1 ⇔ 2 ⇔ 3 ⇔ 4↗ ⇔ 7 ⇔ 8 ⇔ 4↗.

Collapse the cycle and set 4↗↗ = {4↗, 7, 8}.

Collapse the cycle {4↗↗, 3, 4↗↗} to a vertex 3↗.

What is left now is a simple graph with three vertices.
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Tarjan’s Algorithm

Algorithm (Simplified Tarjan’s algorithm)

Given a directed graph G with N vertices.
1 If all vertices of G have been numbered, stop.

2 Set i = 0.

3 Choose any unnumbered vertex v ↑ G.

4 If v has no edge out, we number it N ⇓ i, set i = i + 1, and return to Step 3.

5 If v has been visited before (encounter a cycle), then

Collapse all the vertices in the cycle as a single vertex vmacro;
Connect vmacro with all vertices which were connected to member(s) of vmacro;
Thus we obtain a new graph G↗. Goto Step 2 and continue with G↗.

There might be a lot of renumbering when collapsing the cycles. The fix is to use a stack and do not
renumber anything until the whole connected component is in the stack.
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Algebraic Setup Methods

Q: How to construct multilevel hierarchy in an algebraic fashion? How to construct AMG to improve
e!ciency (convergence and complexity)?

Algorithm (Setup step for algebraic multigrid methods)

For a given sparse matrix A ↑ RN↑N , we apply the following steps:

Step 1. Selecting a smoother: Choose a smoother S for Au = f .

Step 2. Coarsening: Identify a coarse space Vc ↓ V , which contains smooth vectors.

Step 3. Constructing a prolongation: Construct a prolongation P in two steps:

3a. Decide, for each fine variable, which coarse variables are used for interpolation;

3b. Determine the weights for prolongation P .

Step 4. Multilevel cycling: Apply the same algorithm one or more times for the coarse problem
Acuc = fc, where Ac = PT AP and fc = PT f .
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Standard Setting for AMG

Assumption (Standard AMG setting)
The coe!cient matrix A is SPD, the prolongation P has full column-rank, and the smoother S is given.

Let V = RN and Vc = RNc denote the fine and coarse spaces, respectively.

For simplicity, we only consider the V(0, 1) exact two-grid method.

The CGC operator corresponds to the matrix I ⇓ !c and

!c = PA→1
c

PT A = P (PT AP )→1PT A

is a projection onto range(P ).

The error reduction matrix for the TG method can be written as

ETG := (I ⇓ SA)(I ⇓ !c).

The convergence rate of TG depends on (1) e”ectiveness of the smoother S and (2) approximability of
the coarse space range(P ).
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Convergence Theory for TG

Theorem (Convergence rate of TG algorithm)

If there exists φ > 0 such that
∥∥(I ⇓ SA)e

∥∥2

A
↘ ↖e↖2

A
⇓ φ

∥∥(I ⇓ !c)e
∥∥2

A
, ⇐ e ↑ V, (64)

then the V(0, 1) two-grid method satisfies that

↖ETG↖2
A

= 1 ⇓ φ̂, with φ̂ := inf
(I→!c)e ↓=0

↖e↖2
A
⇓ ↖(I ⇓ SA)e↖2

A

↖(I ⇓ !c)e↖2
A

≃ φ.

Sketch of the proof:
Notice that ↖e↖2

A
= ↖!ce↖2

A
+ ↖(I ⇓ !c)e↖2

A
. (I ⇓ !c)e = 0 yields (I ⇓ SA)(I ⇓ !c)e = 0. Then

↖ETG↖2
A

= sup
e ↓=0

↖(I ⇓ SA)(I ⇓ !c)e↖2
A

↖e↖2
A

= sup
(I→!c)e ↓=0

↖(I ⇓ SA)(I ⇓ !c)e↖2
A

↖(I ⇓ !c)e↖2
A

+ ↖!ce↖2
A

.

If ê achieves the above sup, then (I ⇓ !c)ê also achieves the sup. So the convergence factor achieves the
supremum when !cê = 0. Hence,

∥∥ETG
∥∥2

A
= sup(I→!c)e ↓=0

∥∥(I ⇓ SA)e
∥∥2

A
/
∥∥(I ⇓ !c)e

∥∥2

A
.
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Remarks on TG Convergence
Condition (64) is essential for TG to be e!eicnet

For the error components that cannot be reduced by CGC, the smoother S must be e”ective uniformly.
For the error components that can be reduced by CGC e!ciently, S could be ine”ective.
The components for which S is ine”ective are called smooth and they should be in range(P ).

Modification: Such a φ̂ is di!cult to obtain and we need to find some positive lower bounds of φ̂. Introduce
a nonnegative function g(e) ≃ 0, such that

↼g(e) :=
↖e↖2

A
⇓ ↖(I ⇓ SA)e↖2

A

g(e)
and ↽g(e) :=

↖(I ⇓ !c)e↖2
A

g(e)
.

Remark: Let ↼̂g := infg(e) ↓=0 ↼g(e) and ↽̂g := sup
g(e) ↓=0 ↽g(e). Due to the fact

↖ETGe↖2
A
↘

∥∥(I ⇓ !c)e
∥∥2

A
⇓ ↼̂gg

(
(I ⇓ !c)e

)
↘

∥∥(I ⇓ !c)e
∥∥2

A
⇓ ↼̂g↽̂

→1
g

∥∥(I ⇓ !c)e
∥∥2

A

=
(
1 ⇓ ↼̂g↽̂

→1
g

)∥∥(I ⇓ !c)e
∥∥2

A
↘

(
1 ⇓ ↼̂g↽̂

→1
g

)∥∥e
∥∥2

A
,

we have φ̂ ≃ ↼̂g↽̂→1
g

. =⇒ More practical TG convergence theorem.
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More Practical Assumptions
Smoothing e”ect:

∥∥(I ⇓ SA)e
∥∥2

A
↘ ↖e↖2

A
⇓ ↼̄g g(e), ⇐ e ↑ V, (65)

Approximability of coarse space:

Strong approximation assumption (SAA):

↙ ↽̄g, s, such that
∥∥(I ⇓ !c)e

∥∥2

A
↘ ↽̄g, s g(e), ⇐ e ↑ V. (66)

Weak approximation assumption (WAA):

↙ ↽̄g, w, such that
∥∥(I ⇓ !c)e

∥∥2

A
↘ ↽̄g, w g

(
(I ⇓ !c)e

)
, ⇐ e ↑ V. (67)

Theorem (Convergence estimate of two-level AMG)

If both (65) and (66) (or its weaker version (67)) hold, then V(0, 1) two-grid method satisfies

↖ETG↖2
A
↘ 1 ⇓ ↼̄g ↽̄→1

g
.
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Typical Choices of g

Q: How to choose the function g(e)? How to enforce convergence conditions on the prolongation P ?

A trivial choice g(e) := ↖(I ⇓ !c)e↖2
A

. Then we have ↼̂g = φ̂ and ↽̂g ∝ 1.

Another possibility is g(e) := ↖e↖2
AD→1A

[Ruge and Stüben 1987]. SAA becomes

inf
ec↘Vc

↖e ⇓ Pec↖2
A
↘ ↽̄s ↖e↖2

AD→1A
, ⇐ e ↑ V. (68)

Noticing !c = P (PT AP )→1PT A and let ec ↑ Vc, we have
∥∥(I ⇓ !c)e

∥∥2

A
↘

∥∥(I ⇓ !c)e
∥∥

AD→1A

∥∥(I ⇓ !c)e ⇓ Pec

∥∥
D

.

If we assume, instead of (68), that

inf
ec↘Vc

↖e ⇓ Pec↖2
D

↘ ↽̄w ↖e↖2
A
, ⇐ e ↑ V, (69)

then WAA holds:
∥∥(I ⇓ !c)e

∥∥2

A
↘

∥∥(I ⇓ !c)e
∥∥

AD→1A

∥∥(I ⇓ !c)e ⇓ Pec

∥∥
D

↘ ↽̄
1
2w
∥∥(I ⇓ !c)e

∥∥
AD→1A

∥∥(I ⇓ !c)e
∥∥

A
.
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Defining Coarse Space

Reminder: The desirable coarse space should well approximate the lower end of the spectrum of SA.

However, it is very di!cult, if not impossible, to obtain small eigen-pairs of SA.

The standard local relaxation methods satisfy that

⇀→1
A

(
v, v

)
A
↭

(
SAv, v

)
A
↭

(
v, v

)
A
.

It motivates the following definition of the algebraic smooth vector:

Definition (Algebraic smoothness)
Let ⇁ ↑ (0, 1) be a small parameter. If e ↑ V satisfies

(
SAe, e

)
A
↘ ⇁

(
e, e

)
A
, i.e.

(
SAe, Ae

)
↘ ⇁

∥∥e
∥∥2

A
,

then e is algebraically ⇁-smooth (or the ⇁-algebraic low-frequency) with respect to A.
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Remarks on Algebraic Smoothness
Algebraic smooth error:

For algebraic smooth error component e, we have

((
I ⇓ SA

)
e, e

)

A

≃ (1 ⇓ ⇁)
(
e, e

)
A

=⇒
∥∥(I ⇓ SA)e

∥∥2

A∥∥e
∥∥2

A

≃ 1 ⇓ ⇁.

This suggests that the smoother is not e”ective for e.

An alternative definition:

Since S is SPD, the algebraically smooth vectors satisfy that
∥∥e

∥∥2

A
=

(
S

1
2 Ae, S

→ 1
2 e
)
↘

(
SAe, Ae

)1/2 (
S
→1

e, e
)1/2 ↘ ⇁1/2

∥∥e
∥∥

A

(
S
→1

e, e
)1/2

.

We can derive the following characterisation of algebraically smooth (low-frequency) vectors:
∥∥e

∥∥2

A
↘ ⇁

∥∥e
∥∥2

S
→1 .

Key: Smooth error components in algebraic sense is whatever left after the smoothing steps.
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Where To Find Smooth Error

FE system of the Poisson’s equation with Neumann boundary condition:

1

h





1 ⇓1
⇓1 2 ⇓1

. . . . . . . . .
. . . . . . ⇓1

⇓1 1









u1

u2
...

uN→1

uN




= h





f1

f2
...

fN→1

fN




.

FE discretization of the second-order elliptic equation with mixed boundary condition:

(Au, v) =
∑

(i,j)↘E
i<j

⇓ai,j(ui ⇓ uj)(vi ⇓ vj), if uj = vj = 0, ⇐xj ↑ ”D. (70)

According to (70), the algebraically smooth error e satisfies that
∑

i<j

⇓ai,j(ei ⇓ ej)
2 = (Ae, e) ↘ ⇁

∥∥e
∥∥2

S
→1 ′ 1. (71)

=⇒ Smooth error varies slowly in the direction of relatively “large” (negative) ai,j .
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Strongly Coupled Variables

The above observation motivates strongly n-coupled variables:

Let ϱstr ↑ (0, 1) be a given real number, usually called relative strength parameter.

If a pair of indices (i, j) satisfies that

⇓ai,j ↫ ϱstr
∣∣min

k

ai,k

∣∣,

then we say that the variable i is strongly n-coupled to the variable j.

Remarks on strongly coupled variables:

This definition considers the i-th row of A and (i, j) and (j, i) are two di”erent pairs.

This definition can be generalized to strongly coupled variables by considering all coupling.

Sj denotes the set of indices which a”ects j and ST

j
denotes the ones which are a”ected by j:

Sj :=
{
i ↑ Nj : i strongly coupled to j

}
and ST

j
:=

{
i ↑ V : j ↑ Si

}
.
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Long-Distance Coupled Variables

In many cases, only considering direct neighbors for strong coupling is not enough! In order to
reduce complexity, we can consider longer distance neighbors.

After finding the strongly coupled variables, we can filter the coe!cient matrix to obtain a filtered
matrix AS by removing non-strongly coupled connections.

The above definition of strongly coupled variables applies to the direct connections; sometimes, we
also need to consider indirect (i.e., long-range) connections.

A typical example is the AMG method with aggressive coarsening.

A variable i is said strongly coupled to another variable j along a path of length ω if there exists a
sequence of edges {

(i, k1), (k1, k2), . . . , (kω→2, kω→1), (kω→1, j)
}
→ E

such that kl+1 ↑ Skl for l = 1, 2, . . . , ω ⇓ 2.

If there exist a path of length ω such that i is strongly coupled to j, then we say that i is ω-strongly
coupled to j and denoted by j ↑ Sω

i
.
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A Simple Example: 2D Five-Point Stencil
Consider five-point stencil finite di”erence on the mesh given in the following figure (left). Consider the
vertex at the center (point 13). Then

S13 = {12, 8, 14, 18} and S2
13 = {12, 8, 14, 18, 11, 3, 15, 23, 7, 9, 19, 17}.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

4

-1

-1 -1

-1

20

-8

-8 -8

-8

2

2

2

2

1

1

1

1

1

Figure: Finite di”erence grid (left), strong connections and weights in A of vertex 13 (middle), and 2-strong
connections and weights in A2 of 13 (right).
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Example: Sti”ness Matrix

Figure: The sti”ness matrix A for five-point stencil finite di”erence scheme on the above mesh.
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Example: Sti”ness Matrix2

Figure: The sti”ness matrix A2 for five-point stencil finite di”erence scheme on the above mesh.
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Convergence Estimate on Space Decomposition

Definition (Algebraic high-frequency)
Let ζ ↑ (0, 1]. If e ↑ V satisfies that ∥∥e

∥∥2

A
≃ ζ

∥∥e
∥∥2

S
→1 ,

then e is called the ζ-algebraic high-frequency vector with respect to A.

Theorem (Convergence estimate based on space decomposition)
Let Vc ↓ V be the coarse space and Vhf consist of ζ-algebraic high frequencies. For any v ↑ V , there exist
vc ↑ Vc and vhf ↑ Vhf such that v = Pvc + vhf and ↖vhf↖2

A
↘ ↽↖v↖2

A
. Then the resulting two-level AMG

satisfies
↖ETG↖A ↘ 1 ⇓ ζ↽→1.

Sketch of the proof:
Notice that we have the following estimate

inf
wc↘Vc

∥∥v ⇓ Pwc

∥∥2

S
→1 ↘

∥∥vhf
∥∥2

S
→1 ↘ 1

ζ

∥∥vhf
∥∥2

A
↘ ↽

ζ

∥∥v
∥∥2

A
.
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Constructing Prolongation and Restriction
Iteration matrices for CGC

Coarse-grid correction matrix: u↗ = u + P (RAP )→1R(f ⇓ Au)

Error propagation matrix: e↗ =
(
I ⇓ P (RAP )→1RA

)
e

Residual propagation matrix: r↗ =
(
I ⇓ AP (RAP )→1R

)
r

Remark: If e ↑ range(P ), i.e., e = Pvc for some vc, then we have

e↗ = e ⇓ P (RAP )→1RAe = e ⇓ P (RAP )→1RAPvc = e ⇓ Pvc ∝ 0.

=⇒ Exact CGC is exact on range(P ) =⇒ Find P such that (smooth) error sits in range(P )!

Prolongation and restriction for AMG

A =


Aff Afc

Acf Acc


, P :=


W

I


, and R :=

(
Z I

)
.

Q: How to find good and practical prolongation operator P and restriction operator R accordingly?
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Natural Prolongation and Restriction
Iteration matrices for F -relaxation (keep C-variables)

B =


Sf 0

0 0


=⇒ e↗ =


I ⇓ SfAff ⇓SfAfc

0 I


e =⇒ r↗ =


I ⇓ AffSf 0

⇓AcfSf I


r.

If Aff is well-conditioned, smoother Sf should work well for the fine error, i.e.

rf = Affef + Afcec ⇑ 0 =⇒ ef ⇑ ⇓A→1
ff

Afcec.

Remark: This gives an ideal interpolation [Falgout, Vassilevski 2004]:

If Sf = A→1
ff

, P≃ :=


⇓A→1

ff
Afc

I


represents fine error exactly (e↗ = P≃ec).

How to choose restriction R for prolongation P≃? Since RAP≃ ∝ Acc ⇓ AcfA→1
ff

Afc, CGC results in

r↗
f

= rf , r↗
c

= rc ⇓ (Acc ⇓ AcfA→1
ff

Afc)(RAP≃)
→1(Zrf + rc) ∝ ⇓Zrf .

=⇒ Z should be set to zero! =⇒ R is an injector.
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Motivating Good Interpolations

Let Q ↑ RN↑N be a projection onto range(P ): Q = P T , where T ↑ RNc↑N and TP = Ic.

If Ts := (PT AP )→1PT A, then it is easy to see that Qs = P Ts = !c.

A simplified choice Tw := (PT DP )→1PT D can be used.

For any vector 0 ↗= e ↑ V , we can assume (strong and weak approximability) that

inf
ec↘Vc

∥∥e ⇓ Pec

∥∥2

A

↖e↖2
AD→1A

↘
∥∥e ⇓ Qe

∥∥2

A

↖e↖2
AD→1A

↘ ↽̄s or inf
ec↘Vc

∥∥e ⇓ Pec

∥∥2

D

↖e↖2
A

↘
∥∥e ⇓ Qe

∥∥2

D

↖e↖2
A

↘ ↽̄w.

Assumption (Weak approximability)
∥∥(I ⇓ P T )v

∥∥
D

↘ ↽↖v↖A, ⇐ v ↑ V.

Above inequalities give bounds for constructing P such that the TG method converges well.

The error becomes pretty “smooth” after a few relaxation steps.

An appropriate coarse space should approximate a smooth vector v accurately.
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Ideal Interpolation

According to the above WAA inequality, we want to minimize

µD(Q, e) :=
↖(I ⇓ Q)e↖2

D

↖e↖2
A

, ⇐ e ↗= 0.

D can be generalized to an SPD matrix X and

µX(Q, e) :=
↖(I ⇓ Q)e↖2

X

↖e↖2
A

, ⇐ e ↗= 0.

Assume that µX(Q, e) ↘ ϖ. Then

inf
ec↘Vc

∥∥e ⇓ Pec

∥∥2

X

↖e↖2
A

↘
∥∥e ⇓ Qe

∥∥2

X

↖e↖2
A

= µX(Q, e) ↘ ϖ. (72)

We now minimize
inf
P

sup
e ↓=0

µX(P T, e)

to find the “best possible” prolongation P (ideal interpolation) [Falgout, Vassilevski 2004].
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Properties of Ideal Interpolation

Lemma (Falgout, Vassilevski 2004)

Assume Q = P T and TP = INc . So Q is a projection onto range(P ). Then ↖ETG↖2
A
↘ 1 ⇓ 1

µ
, where

µ := sup
e ↓=0

eT (I ⇓ Q)T S
→1

(I ⇓ Q)e

eT Ae
≃ 1.

The magnitude of µ reflects the approximation property of the AMG method =⇒ Make it small.

Theorem (Falgout, Vassilevski 2004)

Given a matrix G ↑ RN↑(N→Nc) and rank(G) = N ⇓ Nc such that TG = 0. Let X ↑ RN↑N be SPD.
Define

µX(Q, e) :=
eT (I ⇓ Q)T X(I ⇓ Q)e

eT Ae
.

We have
µ≃

X
:= min

P

max
e ↓=0

µX(Q, e) =
1

λmin

(
(GT XG)→1GT AG

)

and the unique minimizer is P≃ that satisfies PT

≃ A G = 0.
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A Simple Counterexample
This theory is misleading in several ways:

The ideal interpolation is unique and not sparse in general.

It is not practical to use ideal interpolation.

Q: What role does G play and where it enters in an algorithm?

Example [Xuefeng Xu, Z. 2018]. Let N = 3, Nc = 1. Assume that

A =





2 ⇓1 1

⇓1 2 ⇓1

1 ⇓1 2



 , Po = RT

o
=





0

0

1



 , G =





1 0

0 1

0 0



 , X = D.

Applying the theory by Falgout and Vassilevski, one can obtain that

µ≃
X

= 2 and P≃ =





⇓ 1
3

1
3

1



 =⇒ PT

≃ AG = 0.

However, we have maxe↓=0 µX(PoRo, e) = 2 = µ≃
X

. =⇒ Po is also ideal, yet sparse!
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Theory of Ideal Interpolation

Definition: The set of ideal interpolations is P≃ :=
{
P : µ≃

X
= minP maxe ↓=0 µX(PR, e)

}

Let B := A ⇓ AP (PT AP )→1PT A, YX := (GT XG)→
1
2 GT Y G(GT XG)→

1
2 . Then

P≃ = {P : λmin(AX) = λmin(BX)}.

Theorem (Ideal Interpolation Set [Xuefeng Xu, Z. 2018; Xuefeng Xu, Thesis 2019])

We have P0 → P≃ = P2 → P1. If P≃ ↑ P0, then P≃ = A→1RT (RA→1RT )→1. Here

P0 := {P ↑ RN↑Nc : PT AG = 0},
P1 := {P ↑ RN↑Nc : null(PT AG) ∞ VA ↗= Ø},
P2 := {P ↑ RN↑Nc : null(PT AG) ∞ VB ↗= Ø},
VA := {v ↑ RN→Nc\{0} : GT AGv = λmin(AX)GT XGv},
VB := {v ↑ RN→Nc\{0} : GT BGv = λmin(BX)GT XGv}.

Unfortunately, the ideal interpolation P≃ is usually expensive to compute! Q: How to simplify it?
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Simplified Assumption on P

Q: How to give the assumption more practical?

By the weak approximation assumption and choosing D := ↖A↖I , we have

↖A↖1/2
∥∥v ⇓ Q v

∥∥ ↘ ↽↖v↖A.

If v is in the near-null space of A, i.e., ↖v↖A ⇑ 0, then Q v ⇑ v. =⇒ We can employ a simplified
assumption # Constant-preserving!

Remark (Cannonical prolongation operator)

Let 1N := (1, 1, . . . , 1)T . Since the basis functions form a partition of unity, it follows that

(▷1, · · · , ▷N ) 1N =


N

i=1 ▷i = 1 =


Nc

l=1 ▷c

l
= (▷c

1, · · · , ▷c

Nc
)1Nc = (▷1, · · · , ▷N )P 1Nc .

Hence we have that the prolongation matrix preserves constant away from the boundary P 1Nc = 1N .

Assumption (Constant preserving)

P 1Nc = 1N .
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Direct Interpolation
It is “reasonable” [Stüben 2000; 2001] to assume, for smooth error components, that

Affef + Afcec ⇑ 0 or


N

j=1 aijej ⇑ 0, i ↑ F

Hence we have
aiiei +

∑

j↘Ni

aijej = 0, i ↑ F.

This is not an interpolation though (j could be in F too)! We modify it as

aiiei + ↼i

∑

j↘Ni⇐C

aijej = 0, ↼i :=


k↘Ni

aik
k↘Ni⇐C aik

, i ↑ F.

If Ai,: has zero row-sum, we have ↼i := ⇓aii∑
k↑Ni↓C aik

. So we obtain

ei =
∑

j↘Ni⇐C

wijej , wij =
aij

k↘Ni⇐C aik

=⇒ W = diag(Afc1c)
→1Afc.
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Ideal Restriction

Now we turn to a general interpolation operator P . Any error can be written as

e =


ef

ec


=


Wec

ec


+


ςf

0


∈ range(P ) + perturbation

Because CGC is exact on range(P ), the new error can be given as

e↗ =
(
I ⇓ P (RAP )→1RA

)
ςf

0


.

Remark: We can construct R≃, for all ςf , such that

0 ∝ R≃A


ςf

0


=

(
Z≃ I

)


Aff Afc

Acf Acc


ςf

0


=⇒ Z≃ = ⇓AcfA→1

ff
.

This yields the so-called ideal restriction R≃ := (Z≃ I).

Apparently, in this case, we can show that

e↗
f

= ςf = ef ⇓ Wec and e↗
c

= 0.
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Approximated Ideal Restriction

Local Approximation of Ideal Restriction: Notice that the ideal restriction satisfies

R≃A =
(

Z≃Aff + Acf Z≃Afc + Acc

)
=

(
0 Sc

)
.

Motivated by this relation, we can construct Z locally: For any i ↑ C, let
∑

k↘Ni⇐F

akjzik = ⇓aij , ⇐ j ↑ Ni ∞ F.

That is to say,
(RA)ij = 0, ⇐ i ↑ C, j ↑ Ni ∞ F.

This is the main motivation of the so-called ωAIR scheme [Manteu”el, Ruge, Southworth 2018].

Remark: With appropriate C/F splitting, Aff is diagonally dominant and the local problems are
usually nonsingular. When they are singular or nearly singular, a minimal norm solution in the
least-square sense can be used.

[Brezina et al. 2010; Manteu”el, Southworth 2019; Notay 2020]
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Classical Coarsening Methods

Strong n-coupling: ⇓ai,j ↫ ϱstr
∣∣mink ai,k

∣∣

– A = (ai,j) → RN→N is an M-matrix
– G = (V,E) is the corresponding graph of A
– Si :=

{
j → Ni : j strongly coupled to i

}

– ST
i :=

{
j → V : i → Sj

}
, set a”ected by i

C/F splitting algorithm
– Split variables into F and C

– Need a measure of importance ωi for variable i
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Example: Classical Coarsening on Anisotropic Problem

Example: Consider an anisotropic di”usion example on a unit square:

⇓ςuxx ⇓ uyy = 0 (ς > 0).

We have ς↖uxx↖ ⇑ ↖uyy↖: The solution is smooth in y-direction; but rough in x-direction.

We consider the five-point stencil. The di”erence equation at the node (xi, yj) is

⇓ς
2ui,j ⇓ ui+1,j ⇓ ui→1,j

h2
x

⇓ 2ui,j ⇓ ui,j→1 ⇓ ui,j+1

h2
y

= 0.

How to solve such an equation e!ciently?

(1) Employ an anisotropic grid

(2) Use GMG with line smoother

(3) Use GMG with semi-coarsening

(4) Use AMG
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Example: Results After Coarsening 
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C/F splitting for the 2D elliptic problem with ς = 1 (left) and ς ′ 1 (right), where the red points are
C-variables and the black points are F-variables.

If ϑ

h2
x
′ 1

h2
y
, then ui,j depends on ui,j+1 and ui,j→1 mainly. If we apply the C/F procedure, the

coarsening will take place indeed in one direction only (semi-coarsening).
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Complexity of AMG Methods

Considering convergence alone is not meaningful in the algebraic multigrid context.

An equally important aspect is the complexity of the coarser level matrices in AMG.

This is because the computational complexity of each AMG cycle could be prohibitively large.

Usually, the coarser matrices Al→1 becomes more dense than Al.

When constructing the prolongation P , we must control the sparsity of the coarse level matrices.

We define a measurement of sparsity, i.e., the operator complexity

CA :=


L

l=0 nnz(Al)

nnz(A)
,

where nnz(·) is the number of nonzeros of a matrix.

Apparently, CA ≃ 1 is always true and CA = 1 corresponds to the one-level case.

We would like to make CA as close to 1 as possible while keeping good convergence performance.

# 210 #



Section 08. Algebraic Multigrid Methods Di”erent Types of AMG

Reducing Complexity of Classical AMG

Reducing cost =⇒ Reducing complexity =⇒ Make the coarse-level problems more sparse!

1 Truncated Prolongation:
Some times (e.g. Jacobi interpolation), many interpolatory variables are used for interpolation. But
weights for variables “far away” are usually relatively small. We can drop relatively small weights and
rescale the remaining weights to keep the sum unchanged. =⇒ Reduce complexity of setup.

2 Aggressive Coarsening:
Some times (e.g. small stencils), standard C/F splitting leads to high complexity. Instead of direct
neighbors, we can consider long-range strong connections. =⇒ Increasing number of “neighbors”,
reduce number of C-points.

3 Approximate Coarse Problem:
We can specify a sparsity pattern for the coarse problem and then construct a method accordingly. =⇒
But this might cause serious convergence problem. =⇒ Requires great caution. Need theory!

[Stüben 2001; Falgout, Schroder 2014; ...]
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Example: Aggressive Coarsening

Coarsening method Standard Aggressive

Operator complexity 2.889 1.606
Setup time (sec) 1.536 1.036
Number of iterations 6 38
Solve time (sec) 0.791 3.293
Time per iteration (sec) 0.132 0.087

Table: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using di”erent coarsening
methods in the classical AMG method (stopping criteria for PCG is the relative residual smaller than 10→6).
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Example: Non-Galerkin AMG

Galerkin operators: not easy to keep sparsity

Truncation directly often results in deteriorated convergence

Non-Galerkin AMG method proposed in [Falgout and Schroder 2014]

Numerical tests on the Poisson’s equation [X. Yue, et al. Tech Report, 2020]
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Aggregation-Based Coarsening Methods
Greedy aggregation algorithms

Constructing prolongation operators:
(
P
)
i,j

=


1, if i ↑ Cj

0, if i /↑ Cj

for 1 ↘ i ↘ N , 1 ↘ j ↘ Nc

– But simple prolongation yields nonuniform convergence!
– Cure 1: Smooth out the piecewise constant basis functions:

εi = (I ↑ ϑD↑1A)1i;

Hence we have the partition of unity
∑

i

εi = (I ↑ ϑD↑1A)
∑

i

1i = (I ↑ ϑD↑1A)1 = 1.

– Cure 2: Apply more complex multilevel iterations.
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Example: Aggregation AMG

After forming aggregates one can apply UA or SA to give prolongation.

Apply aggregation methods to solve the 2D Poisson’s equation using the five-point stencil.

For the SA method, we use the standard V-cycle multigrid in the solve phase.

For the UA methods, we use the AMLI-cycle or K-cycle multigrid for better convergence.

Aggregation method SA UA Pairwise UA

Number of levels 5 5 7
Operator complexity 1.364 1.264 1.332
Setup time (sec) 0.557 0.171 0.277
Number of iterations 16 21 12
Solve time (sec) 1.223 1.696 1.336

Table: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using aggregation-based
AMG methods (stopping criteria for PCG is the relative residual smaller than 10→6).
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Algebraic Convergence Analysis
Assumptions on smoothers:

⇀(I ⇓ SlAl) < 1, l = 1, 2, . . . , L

A-projection on level l:
!l := Pl→1A

→1
l→1P

T

l→1Al

Convergence factor of MG for SPD problems:

For multilevel AMG methods, we have very limited theoretical results.

The asymptotic convergence factor estimate [McCormick 1985]

⇀(EL

MG) ↘ 1 ⇓ min
1⇒l⇒L

min
vl↘Rnl

∥∥vl

∥∥2

Al
⇓
∥∥(I ⇓ SlAl)vl

∥∥2

Al∥∥(I ⇓ !l)vl

∥∥2

Al

.

We still do not have enough theoretical understanding to AMG methods.

Usually two-level convergence results are utilized for constructing new AMG’s in practice.

[Napov, Notay 2010; Maclachlan, Olson 2014; Notay 2015; Xu, Zikatanov 2017]
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Convergence Estimates

Convergence theory for PTG: Assume that

#1 := min


1, min

vc↘Vc\{0}

vT

c
B→1

c
vc

vT
c
A→1

c vc


and #2 := max


1, max

vc↘Vc\{0}

vT

c
B→1

c
vc

vT
c
A→1

c vc


,

where Vc := range
(
PT (I ⇓ AS)

)
.

Theorem (Convergence rate of PTG [Xuefeng Xu, Thesis 2019; Xuefeng Xu, Z. 2022])
The convergence rate of PTG can be estimated by

1 ⇓ #2

KTG
↘ ↖EPTG↖A ↘ max


1 ⇓ #1

KTG
, #2 ⇓ 1



Remark: It is easy to see that

min
{
1, λmin(B→1

c
Ac)

}
↘ #1 ↘ 1 ↘ #2 ↘ max

{
1, λmax(B

→1
c

Ac)
}
.

Hence we can immediately obtain the results [Notay 2007; Falgout, Schroder 2014]:

λmin(B→1
PTGA) ≃ λmin(B→1

TG A) min
{
1, λmin(B→1

c
Ac)

}
,

λmax(B
→1
PTGA) ↘ λmax(B

→1
TG A) max

{
1, λmax(B

→1
c

Ac)
}
.
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Convergence Theory: From TG to MG

Perturbed TG analysis: If TG converges uniformly with factor ◁ < 0.5, then W-cycle convergence
factor ⇀ is bounded by ϖ

1→ϖ
[Notay 2007].

Q: When can optimality carry over to the V-cycle? Optimal TG is not enough! Need uniform
boundedness of the CGC projector !l [Napov, Notay 2010].

Apply the above two-sided bound for the convergence rate of inexact TG method [Xu, Z. 2022]:
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