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Outline

» Two different preconditioners are presented

v 1. A spectrally efficient preconditioner for the
Darcy equation

» 2. A preconditioner for iIncompressible

elasticity or the Stokes equation
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Part 1

An efficient preconditioner
for mixed finite element
approximations




Motivation

Mixed finite element simulations are
applicable to reservoir simulation:
they allow using unstructured
meshes with a higher precision when o a1 03 es 04" 07 an o0
compared to FV. .

The goals of this work are:
1 Develop a fast prototype solver;

t Derive low cost and efficient
preconditioners for high order
mixed finite element computations
and reservoir simulations;

1 Obtain local conservation for the
approximate solutions at each
iteration;




Methodology

First step: development of low cost div-free and div-constant H(div) spaces
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Methodology

Application: flow in heterogeneous porous media.
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Methodology

Second step: move forward and solve the reduced problem in a more efficient way.

A Bl [0
_BT 0] |u

Direct solvers

Involves the inversion (or decomposition)
of matrix K;

In practice, its efficiency is limited to the
matrix dimensions and sparsity.

= Ku=F

Iterative solvers

Do not require the inversion of matrix K but
uses projections to correct an initial guess
solution.

Matrix K needs to be properly conditioned;

Suitable for large scale problems.



Model problem - Darcy flow o
Semi-hybrid fForm

Now’rhe formulohon isstated as: find ¢ = 6 + o ¢ V 0o B VD with @ Il\aQN g,
o’ nlooy, =g~ @€Wyp and AeAp such that

fﬂ-ﬁ‘l&-{rdx+/ 0. dx - Z f avV-vdx +
0 0

f Av-nFds = —f upl(v-n)ds,
KeT: KeT, JOK\Q T

f]K o - vdx-i—/K leg? vdx:—f ug(v-n]ds\
M2p Infroduce a constant

. pressure Lagrange
E ? cowdx = | fwdx, multiplier between

elements to enforce

2
KeT, continuity in a weak sense
E f pé -n'ds =0,
iIiaYaLy;

KeTy




Model problem - Darcy flow
Iterative method

Static condensation can be applied to the problem:
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(1)

(Myeve = Mye, M iM,ve ) 8¢ = Gye — Mye, M1 G,. (2)

« Decompose matrix M, ,
corresponds to the constant flux approximations, and is equal to the corresponding FV
problem.

preconditioner;

« Once problem (1)-(2) reaches convergence, the condensed variables can be explicitly
recovered.

e Remark: A conservative solution can be obtained at each iteration;

which has dimension independent of the polynomial degree, as it

« Solve iteratively problem (2) applying the conjugate gradient method and a block diagonal




Numerical Results b
Problem setup

1 A tolerance of € = 10710 (Euclidean norm) in the iterative process was considerd,;
1 The permeability tensor is equal to the identity, namely K =1

f Numerical tests were performed with quadrilateral (in 2D) and hexahedral (in 3D)
meshes for several configurations, with both h and p refinement.

I The following exact solutions were adopted.:

2D problem 3D problem
sin(mz) sin(my) sinh(v/272)
=
sinh (\/iﬂ')

u=e""sin (my)
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2D case - h refinement

? How big is the problem !

_____________________________________________________________

How many iterations do !
g the method need to
® achieve convergence?

size reduction?
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How the method works with Will the method work any
a higher order approximations? § unstructured mesh?

Number of CG iterations Condition number
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? The conclusions of the
s 2D analysis are still valid?

_________________________________

Number of CG iterations Condition number
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3D case - p refinement

? The conclusions of the
m 2D analysis are still valid?

Number of CG iterations Condition number

L
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< 40 //

Nimber of iterations
e
an
H-LH"
Condition nmmber
bl B B
&n o= &
\

a5 / 10
1
0 2 4 i B w12 14 1] 2 4 G 8 112 14
Polynomial degree & Palvnomial degree k
Linear T a— = ”t;;;sl,lnL?L ”‘1!:.';;%5? Theoretical results verified:
Quadratic  5.774  4.435  4.286 2.04349  3.83837 k= O1 + log k)*
Cubic 5.859  3.759 4960 -0.165 209517  3.83047

LaMEC ]



UuNICAMP

Efficient preconditioner obtained, with low number of iterations;

The number of iterations doesn’t increase mesh refinement;

The number of iterations increases in a log scale with polynomial degree;

A conservative solution can be obtained at each iteration;

Conclusions




Part 2
An efficient preconditioner for

mixed finite element
approximations of Stokes equations




Ouvtline

» Challenges in inverting saddle point problems

» Problem statement

» A preconditioner introducing a small
compressibility

» A positive definite preconditioner

» Numerical results

» Conclusions
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Motivation

» A linear system of equations modeling a saddle point
problem has a structure as

5 o

» Depending on the ordering of the equations, its
decomposition will require pivoting equations

» If small numerical perturbations occur during
decomposition, the linear solver may not pivot where
necessary and give wrong results




Applications

» The iterative scheme is tested for two kind of boundary

value problems:
» 1) Darcy equations

» 2) Stokes or incompressible elasticity equations




Darcy problem statement

o=—-KVp, in ()
V-o=f 1n (.
»=1pp, on 0p,

o-n=g¢qg, on 0y,

» The finite element approximation using De Rham

compatible flux/pressure spaces is

find o7 € V¥ and p” € W7 such that forall w) € V? and w; € W7

Z (/ /Clo'“’-wvdﬂ—/ p'V - w’dQ) Z / pp (W1 -n)dos2,
Q

QeeT © Qe€ddp

fV o’ w,) d) = ffuﬂdﬂ
QET QeT
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Darcy formulation properties

» For each element, the flux shape functions can be
partitioned
> Internal fluxes
> Boundary fluxes
» The pressure functions can be partitioned
> Pressures with zero average

o Constant pressure

» The internal fluxes and pressures with zero average value
can be statically condensed at the element level

LABMEC |\
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Stokes problem statement

—V.-oe=f in ,
—V-u=0 in

u=up on Ofp,

on—=—oy on GQN,

« A double-hybrid finite element formulation with
compatible De Rham spaces is developed, resulting in

Find u, p, A", u? ¢ Vp x Qq x AL x L% such that for all v,q,nt, vt € Vo x
Qg x AL x L%, the following equations are satisfied
* 0

ZLQQuE(v)-e(u)dﬂe— Zfﬂep(v-v)dﬂe— Z /E;Q Al vdoQ, = ZLev.fdQe+ Z fO'Rr(V-n)dE?Qe

Q.eT QeeT 0.€0T e Q.eT Ecoqy ' E

> —fg q(V - i)dQe = 0

Qe€T

> —f u-n'doQe + ) f[[nt]]-utdaﬂfo
02 E

00, €0T E€ep

[AF] - vidoQd. = Z f vl (AT = oty) dofd.

EcoQy Y E
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Stokes formulation properties

» For each element, the velocity shape functions can be
partitioned
> Internal velocities
> Boundary normal velocities

» The pressure functions can be partitioned
> Pressures with zero average
- Constant pressure

» The internal velocities pressures with zero average value
and tangential stresses can be statically condensed at the

element level

1= [

Kup | 0
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Global system of equations ™

» Grouping the fluxes first and pressures second

A B a\>_ f
_BT 0| |p, -\ £

» The matrix A is positive definite

» Each element contributes fo one equation in B




Preconditioner

» A preconditioner is proposed adding a small

compressibility to the global system of eqgs
A B

o far o = ofp

» Where C is a positive definite matrix representing an

“artificial” compressibility
» The pressure equations can now be statically condensed

G=A+BC B’
f=f, +BC'f,




Iterative method
G=A+BC'B f =f, +BC'f,

Compute an initial solution for flux and pressure
0.0 — G—lf‘ pO _ C_l (BTO'O o fp)
Compute the residual

The original constraint

» Solve the system to obtain the flux correction

v

v

Ao_k _ C_-}_ll‘k o.k+1 _ o.k + Ao,k
» Update the pressure explicitly
Apk — O 'BTAg* pk—l-l _ pk 4+ Apk

Notice that the flux update does not depend on the pressure!

v







Y
Convergence
~ 0 0 Taylor series expansion
G=G+ [o _C] \
G'l=Gg'-Gg [O 0 ] G '+ 0(C)
B 0 —C

» If C is suficiently small, the method will converge

» QUESTION: How to define matrix C?
C] =ahe|]]

L’ Artificial compressibility parameter

LABMEC |



Where are we different from
Mardal/Winter?

CONSTRUCTION OF PRECONDITIONERS BY MAPPING
PROPERTIES FOR SYSTEMS OF PARTIAL
DIFFERENTIAL EQUATIONS

KENT-ANDRE MARDAL1 AND RAGNAR WIN THER2
A(9)- G2 ©)- () 5=(75 1)
A B | fa- - A B
e oollnp =1 el B

We just found a “clever” way of efficiently inverting é
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Darcy Numerical results

» Given a 3D Darcy problem on a unit cube
K = L.

sin(7z) sin(7y) sinh(v/272)
sinh(v/27) .

p(x,y,2) =
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Convergence behavior

If alpha is too small roundoff error Convergence is very smooth
will limit the convergence Optimum Alpha between 10 and 102
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Acceleration

Compare direct solver with iterative solver

We gain in cpu time
We gain in stability
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Stokes Numerical results

» Poiseuille flow in a rectangular domain
[0,2]x[-1,1]x[-1,1]
uw=1.0
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Conclusion Stokes/Darcy

» An iterative method was presented for solving
saddle point problems using a positive definite
precondifioner

» The system of the preconditioner is smaller than the
global problem

» The iterative method was up to 30% and 40% faster
than the direct method for Darcy and Stokes,

respectively
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