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 Two different preconditioners are presented

 1. A spectrally efficient preconditioner for the 

Darcy equation

 2. A preconditioner for incompressible 

elasticity or the Stokes equation





Mixed finite element simulations are 
applicable to reservoir simulation: 
they allow using unstructured 
meshes with a higher precision when 
compared to FV. 

The goals of this work are:

Develop a fast prototype solver;

Derive low cost and efficient 
preconditioners for high order 
mixed finite element computations 
and reservoir simulations;

Obtain local conservation for the 
approximate solutions at each 
iteration;



First step: development of low cost div-free and div-constant H(div) spaces

Reduction of 55%-65% in # DoF 
for the same result.

Reduction of 45%-50% in # DoF for 
the same result.



Application: flow in heterogeneous porous media.

P. R. B. Devloo et al. “An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences”. 

Computer Methods in Applied Mechanics and Engineering (2022).



Second step: move forward and solve the reduced problem in a more efficient way.

Iterative solvers

Do not require the inversion of matrix K but 

uses projections to correct an initial guess 

solution.

Matrix K needs to be properly conditioned;

Suitable for large scale problems.

Direct solvers

Involves the inversion (or decomposition) 

of matrix K;

In practice, its efficiency is limited to the 
matrix dimensions and sparsity.



Now the formulation is stated as: find                    , with        , 

    and               such that

Introduce a constant 
pressure Lagrange 

multiplier between 
elements to enforce 
continuity in a weak sense



● Decompose matrix Mμμ , which has dimension independent of the polynomial degree, as it 

corresponds to the constant flux approximations, and is equal to the corresponding FV 
problem.

● Solve iteratively problem (2) applying the conjugate gradient method and a block diagonal 

preconditioner;

● Once problem (1)-(2) reaches convergence, the condensed variables can be explicitly 

recovered.

● Remark: A conservative solution can be obtained at each iteration;

Static condensation can be applied to the problem:

(1)

(2)

ALGORITHM



 A tolerance of ε = 10−10 (Euclidean norm) in the iterative process was considerd;

 The permeability tensor is equal to the identity, namely K = I

 Numerical tests were performed with quadrilateral (in 2D) and hexahedral (in 3D) 

meshes for several configurations, with both h and p refinement.

 The following exact solutions were adopted:

2D problem 3D problem



? ? ?
How many iterations do 
the method need to 
achieve convergence?

Number of CG iterations Condition number Problem size reduction

How big is the problem 
size reduction?

What about the matrix 
conditioning?

k: polynomial order
blue : size of the constant

           pressure matrix



Number of CG iterations Condition number

Theoretical results verified:

How the method works with 
higher order approximations?? Will the method work any 

unstructured mesh??



Number of CG iterations Condition number Problem size reduction

The conclusions of the 
2D analysis are still valid?? How is the problem size 

reduction in the 3D case??

k: polynomial order
blue : size of the constant

           pressure matrix



Number of CG iterations Condition number

Theoretical results verified:

The conclusions of the 
2D analysis are still valid??



Efficient preconditioner obtained, with low number of iterations;

The number of iterations doesn’t increase mesh refinement;

The number of iterations increases in a log scale with polynomial degree;

Theoretical results for the matrix condition number were obtained with optimal rate;

Good results for both 2D and 3D approaches;

High reduction in the number of equations of the global system.

A conservative solution can be obtained at each iteration;





 Challenges in inverting saddle point problems

 Problem statement

 A preconditioner introducing a small 

compressibility

 A positive definite preconditioner

 Numerical results

 Conclusions



 A linear system of equations modeling a saddle point 

problem has a structure as

 Depending on the ordering of the equations, its 

decomposition will require pivoting equations

 If small numerical perturbations occur during 

decomposition, the linear solver may not pivot where 

necessary and give wrong results



 The iterative scheme is tested for two kind of boundary 

value problems:

 1) Darcy equations

 2) Stokes or incompressible elasticity equations



 The finite element approximation using De Rham 

compatible flux/pressure spaces is



 For each element, the flux shape functions can be 

partitioned

◦ Internal fluxes

◦ Boundary fluxes

 The pressure functions can be partitioned

◦ Pressures with zero average

◦ Constant pressure

 The internal fluxes and pressures with zero average value 

can be statically condensed at the element level



• A double-hybrid finite element formulation with 
compatible De Rham spaces is developed, resulting in



 For each element, the velocity shape functions can be 

partitioned

◦ Internal velocities

◦ Boundary normal velocities

 The pressure functions can be partitioned

◦ Pressures with zero average

◦ Constant pressure

 The internal velocities pressures with zero average value 

and tangential stresses can be statically condensed at the 

element level



 Grouping the fluxes first and pressures second

 The matrix A is positive definite

 Each element contributes to one equation in B



 A preconditioner is proposed adding a small 

compressibility to the global system of eqs

 Where C is a positive definite matrix representing an 

“artificial” compressibility

 The pressure equations can now be statically condensed



 Compute an initial solution for flux and pressure

 Compute the residual

 Solve the system to obtain the flux correction

 Update the pressure explicitly

 Notice that the flux update does not depend on the pressure!

The original constraint





 If C is suficiently small, the method will converge

Artificial compressibility parameter

 QUESTION: How to define matrix C?

Taylor series expansion



We just found a “clever” way of efficiently inverting 



 Given a 3D Darcy problem on a unit cube



Convergence behavior

Convergence is very smooth

Optimum Alpha between 10-3 and 10-2

If alpha is too small roundoff error

 will limit the convergence



Acceleration

Compare direct solver with iterative solver

We gain in cpu time

We gain in stability



 Poiseuille flow in a rectangular domain 

[0,2]x[-1,1]x[-1,1]



Convergence behavior

Convergence is very smooth

Optimum Alpha between 10-4 and 10-3



Acceleration

Compare direct solver with iterative solver

We gain in cpu time

We gain in stability



 An iterative method was presented for solving 

saddle point problems using a positive definite 

preconditioner

 The system of the preconditioner is smaller than the 

global problem

 The iterative method was up to 30% and 40% faster 

than the direct method for Darcy and Stokes, 

respectively
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