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Abstract

Over the last few decades, significant progress has been made in developing efficient

iterative solvers for large-scale linear systems generated from partial differential equations

(PDEs). Of particular interest is the class of multilevel iterative solvers/preconditioners,

which has gained widespread attention for its practical and theoretical effectiveness. In this

lecture note, we focus on the analysis and algorithms of multilevel iterative methods, in-

cluding geometric and algebraic multigrid methods for discrete problems arising from PDEs.

While the primary focus is on the simple Poisson’s equation, we also discuss a few more

complicated applications of multilevel iterative methods.

This lecture note was originally developed for one semester-long course at the Academy

of Mathematics and Systems Science, Beijing. It draws heavily on Prof. Jinchao Xu’s short

courses at Peking University in 2013 and at the Academy of Mathematics and Systems

Science in 2016, as well as Prof. Ludmil Zikatanov’s summer school lectures at the Academy of

Mathematics and Systems Science in 2015. Special thanks go to Dr. Xuefeng Xu, Ms. Huilan

Zeng, Ms. Wenjuan Liu, Mr. Bin Dai, ChatGPT, and Claude for proofreading this note.
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Chapter 1

Introduction

ch:intro

Computer simulations have become an indispensable tool in modern engineering and sci-

ence. Many complex problems in these fields can be formulated as partial differential equa-

tions (PDEs), which require extensive numerical simulations. Solving the discretized systems

underlying these equations can be quite costly, occupying a significant portion of the overall

computational time. Several fast-solution techniques have been developed to address this issue,

such as adaptive mesh refinement (AMR), domain decomposition (DD) methods, and multigrid

(MG) methods – all of which involve multilevel ideas.

A Physical Problem

Mathematical Model

Analysis Computation

Existence, 
uniqueness, 

stability, 
regularity,

conservation, 
…

Linearization,
mesh generation, 

discretization, 
solution, 

parallelization, 
…

Software

User interface,
code optimization, 

input/output, 
customer service, 

…

Computer System

Computer Program

Figure 1.1: Numerical simulation of a physical problem.fig:simulation

The above diagram provides a straightforward representation of how physical problems are

resolved through numerical simulation, necessitating a comprehensive model, mathematical and

9
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numerical analyses, scientific computing, and software engineering. Successfully simulating com-

plex physical phenomena requires expertise in numerous scientific areas, making it difficult for a

single individual to manage all aspects effectively. Therefore, close collaborations among various

experts from different areas are crucial in today’s era.

Effective linear solvers play a key role in many application areas in scientific computing. Var-

ious algorithms for solving linear systems exist, but this lecture concentrates on understanding

the algorithmic and theoretical aspects of multilevel iterative techniques - specifically, the geo-

metric multigrid (GMG) and algebraic multigrid (AMG) methods. The basic problem setting

for our discussion is: Given an invertible matrix A : RNˆN and a vector f⃗ P RN , find u⃗ P RN

such that Au⃗ “ f⃗ . There are many design goals of linear solver that we desire in practice,

including:

• Applicability — The method can be applied to the problem of interest.

• Convergence — The method should converge to the solution for any initial guess.

• Robustness — The method should behave similarly in different scenarios.

• Optimality — The method can give a solution with OpNq computational cost.

• Efficiency — The method can give a solution in “reasonably short” wall time.

• Scalability — The method can scale well on modern parallel architectures.

• Reliability — The method should converge to a solution with limited amount of time.

• User-friendliness — The method can be implemented or used easily.

Here, our intention is not to provide rigorous definitions of these characteristics as they will

be discussed in further detail later on. Sometimes, these features can be conflicting, necessitating

a careful balance in practice. Various solution methods are available, ranging from direct solvers

to iterative solvers. Throughout this lecture, we will examine several popular multilevel iterative

techniques, including overlapping domain decomposition methods with coarse space corrections,

two-grid methods, geometric multigrid methods, and algebraic multigrid methods. Our primary

focus will be on studying the convergence theories of these methods utilizing the subspace

correction framework.
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1.1 The model equation

Let Ω Ă Rd be an open and bounded domain with Lipschitz boundary and f P L2pΩq. We

consider solving the Poisson’s equation with the Dirichlet boundary condition
$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.
(1.1) eqn:Poisson

You will see this equation repeatedly throughout this lecture, as it is the first in a series of model

equations. It will serve as the basis for many of the subsequent model equations in this lecture.

Remark 1.1 (Diffusion equation in various applications). Due to their universal applicability,

the Poisson’s equation, and its extension the diffusion equation, play a fundamental role in

physics, governing phenomena such as Fick’s law for chemical concentration, Fourier’s law for

temperature, Ohm’s law for electrostatic potential, and Darcy’s law for porous media flow.

1.1.1 Derivation and classical solution ‹

The concept of diffusion, a fundamental process underlying the movement of particles, is key

to understanding a wide range of phenomena in physics, chemistry, biology, sociology, economics,

and finance. Diffusion occurs as a result of the random movement of particles, which leads to the

net flow of particles from regions of high concentration (or high chemical potential) to regions

of low concentration (or low chemical potential). This is also referred to as the movement of a

substance down a concentration gradient. By understanding diffusion, we can better understand

how particles move and interact with one another, enabling us to predict and control a broad

range of phenomena in numerous fields of study.

Let upxq be some diffusive quantity, like pressure, temperature, or concentration of a bio-

logical species. We define the operator ∇ :“ pB1, . . . , BdqT . So the gradient of a scalar function

u : Ω ÞÑ R can be denoted by ∇u. The Laplace operator can be written as ∆u “ ∇ ¨ ∇u. A

diffusive flux F⃗ is usually proportional to the gradient of u, i.e.,

F⃗ “ ´κ∇u. (1.2) eqn:flux

where κ is referred to as the diffusivity coefficient (e.g., heat conductivity or permeability). Note

that ´∇u is the so-called steepest descent direction. If a flow is controlled solely by diffusion,

then the mass conservation in any volume ω with unit outer normal vectors ν⃗ can be written,

in the integral form, as
B

Bt

ż

ω
u dx “ ´

ż

Bω
F⃗ ¨ ν⃗ dS

or, in the strong form, as
B

Bt
u “ ´∇ ¨ F⃗ . (1.3) eqn:masscon
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This can be easily seen by applying the Divergence Theorem, i.e.
ż

ω
∇ ¨ F⃗ dx “

ż

Bω
F⃗ ¨ ν⃗dS. (1.4) eqn:divthm

Now, by plugging (1.2) into (1.3), we obtain an equation

B

Bt
u “ ∇ ¨ pκ∇uq. (1.5) eqn:heat1

If we assume κ ” 1 or just a constant and there is a source/sink term f on Ω, then we arrive at

the heat equation
B

Bt
u´ ∆u “ f. (1.6) eqn:heat

The steady-state solution of equation (1.6) satisfies the well-known Poisson’s equation

´∆u “ f. (1.7) eqn:poisson

Remark 1.2 (Laplace equation). In case of the body force or source/sink term is zero, the

equation is usually referred to as the Laplace equation

´∆u “ 0. (1.8) eqn:laplace

If u P C2pΩq and ´∆u “ 0, u is called a harmonic function.

We have the fundamental solution of the Laplace equation

Φpxq :“

$

&

%

´ 1
2π log |x|, d “ 2

1
dpd´2qγd

|x|2´d, d ě 3
(1.9) eqn:fsolu

where γd is the volume of the unit ball in Rd. It is well-known that

upxq “ Φ ˚ f :“

ż

Rd

Φpx´ yqfpyq dy

satisfies ´∆u “ f in Rd and u P C2pRdq; see Evans [86].

Theorem 1.3 (Strong Maximum Principle). If u P C2pΩq
Ş

CpΩq is harmonic in Ω, then

max
xPΩ

upxq “ max
xPBΩ

upxq.

If the domain Ω is connected, then u ” C if there exists x0 P Ω such that

upx0q “ max
xPΩ

upxq.

Using the maximum principle, we can obtain uniqueness of the solution to the Poisson’s

equation:

Theorem 1.4 (Uniqueness of solution). If f P CpΩq, then there exists at most one solution

u P C2pΩq
Ş

CpΩq.
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1.1.2 Sobolev spaces ‹

The standard L8-norm and L2-norm will be denoted by } ¨ }8 and } ¨ }0, respectively. The

symbol L2
0pΩq denotes a subspace of L2pΩq consisting of functions that have a zero average.

The bilinear forms p¨, ¨q and x¨, ¨y denote the classical L2-inner product and the duality pair,

respectively.

Given a natural number k P N and 1 ď p ď 8, we define the Sobolev spaces

W k
p pΩq :“

␣

v : Ω ÞÑ R : ∇αv P LppΩq, for all |α| ď k
(

, (1.10) eqn:W_kp

where α “ rα1, . . . , αds is a multi-index, α1, . . . , αd P N, and |α| :“ α1 ` ¨ ¨ ¨ ` αd.

The notation ∇αv :“ Bα1
x1

¨ ¨ ¨ Bαd
xd
v is the weak derivative of order α. The corresponding norm

and semi-norm are then defined as follows: for 1 ď p ă 8,

}v}Wk
p pΩq :“

´

ÿ

|α|ďk

}∇αv}
p
LppΩq

¯
1
p
, |v|Wk

p pΩq :“
´

ÿ

|α|“k

}∇αv}
p
LppΩq

¯
1
p
, (1.11) eqn:wkp_norm

and, for p “ 8,

}v}Wk
8pΩq :“ sup

|α|ďk
}∇αv}L8pΩq, |v|Wk

8pΩq :“ sup
|α|“k

}∇αv}L8pΩq. (1.12) eqn:wkinf_norm

Definition 1.5 (Sobolev number). Let Ω Ă Rd be Lipschitz and bounded, k P N, and 1 ď p ď 8.

The Sobolev number is defined by

sobpW k
p pΩqq :“ k ´

d

p
. (1.13) eqn:sobnum

Remark 1.6 (Natural scaling). There is a natural scaling for the semi-norm | ¨ |Wk
p pΩq. For

h ą 0, we apply the change of variable x̂ “ x{h : Ω ÞÑ Ω̂. Then the following scaling result holds

ˇ

ˇv̂
ˇ

ˇ

Wk
p pΩ̂q

“ h
k´ d

p
ˇ

ˇv
ˇ

ˇ

Wk
p pΩq

“ hsobpWk
p pΩqq

ˇ

ˇv
ˇ

ˇ

Wk
p pΩq

.

This property is useful in scaling argument (or homogeneity argument) for finite element error

estimates.

If p “ 2, the spaces W k
2 pΩq are Hilbert spaces and we denote them by HkpΩq for short. The

inner product is given by

pu, vqk,Ω :“ pu, vqHkpΩq :“
ÿ

|α|ďk

ż

Ω
∇αu∇αv dx.

The induced norm of this scalar product is the W k
2 pΩq-norm. We denote the completion of

C8
0 pΩq in HkpΩq by Hk

0 pΩq.
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We will also use the fractional Sobolev space Hk`σ
0 pΩq where 0 ă σ ă 1. It is defined as the

completion of C8
0 pΩq in the fraction norm:

}v}Hk`σpΩq :“
´

}v}2HkpΩq
` |v|2Hk`σpΩq

¯
1
2
,

where

|v|Hk`σpΩq :“

ˆ

ÿ

|α|“k

ż

Ω

ż

Ω

|Dαvpxq ´Dαvpyq|2

|x´ y|d`2σ
dx dy

˙
1
2

.

Before we discuss the Poisson’s equation in weak formulation, we introduce a few important

properties of the Sobolev spaces, which will become important in our later analysis for multigrid

methods.

prop:embedding Proposition 1.7 (Sobolev embedding). Let 0 ď k ă m. If sobpWm
p pΩqq ą sobpW k

q pΩqq, then

the embedding Wm
p pΩq ãÑ W k

q pΩq is compact.

prop:embeddingC Proposition 1.8 (Sobolev embedding to Hölder continuous spaces). Let 0 ă m and Ω is Lips-

chitz. If 0 ă µ ď sobpWm
p pΩqq, then Wm

p pΩq Ă C0,µpΩq Ă C0pΩq.

A function f is in C0,µpΩq if and only if there exists a nonnegative constants C, such that

|fpxq ´ fpyq| ď C}x´ y}µ

for all x and y in Ω.

eg:embedding Example 1.9 (Embedding to C0pΩq). An example of particular interests is the relation be-

tween H1pΩq and continuous functions C0pΩq for Ω Ă Rd. From Proposition 1.8, we have

H1pΩq Ă C0pΩq, if d “ 1; and H1pΩq Ć C0pΩq, if d ą 1.

For example, if Ω is the unit disk on R2, then upx, yq “ p´ logpx2 `y2qq1{3 is not continuous but

in H1pΩq.

prop:P-W Proposition 1.10 (Poincaré-Wirtinger inequality). For any v P H1pΩq, we have

›

›

›
v ´ |Ω|´1

ż

Ω
v dx

›

›

›

0,Ω
ď CpΩq

ˇ

ˇv
ˇ

ˇ

1,Ω
.

prop:Poincare Proposition 1.11 (Poincaré inequality). For any v P H1
0 pΩq, we have

›

›v
›

›

0,Ω
ď Cd|Ω|1{d

ˇ

ˇv
ˇ

ˇ

1,Ω
.

The above inequality is a special case of the more general Friedrichs’ inequality on W k
p pΩq with

zero trace and it is sometimes referred to as the Friedrichs–Poincaré inequality.
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prop:trace Proposition 1.12 (Trace theorem). There exists a unique linear operator

trace : H1pΩq ÞÑ L2pBΩq,

such that tracepvq “ v on BΩ, if v P C0pΩq
Ş

H1pΩq, and

›

› tracepvq
›

›

0,BΩ
ď CpΩq}v}1,Ω, @v P H1pΩq.

Moreover, if g P H
1
2 pBΩq, there exists ϕ P H1pΩq such that ϕ|BΩ “ g and

}ϕ}1,Ω ď C}g} 1
2
,BΩ.

1.1.3 Weak formulation

Now we consider the Poisson’s equation in a weaker sense. A simple motivation is to convert

from a point-wise view to an average view:

upxq “ 0, a.e. ðñ

ż

Ω
uv dx “ 0, @v P C8

0 pΩq.

Similarly, we can write the Poisson’s equation in the weak form (i.e., the integral form). In the

one-dimensional case, it is easy to see that

´u2 “ f, a.e. ðñ ´

ż

Ω
pu2 ` fqv dx “ 0, @v P C8

0 pΩq.

Let U be a Hilbert space with an inner product p¨, ¨qU and its induced norm } ¨ }U . Let V

be a Hilbert space with another inner product p¨, ¨qV and its induced norm } ¨ }V . Denote by V 1

the dual space of V equipped with the norm

}f}V 1 :“ sup
vPV

⟨f, v⟩
}v}V

, @f P V 1.

Definition 1.13 (Continuity). A bilinear form ar¨, ¨s : U ˆ V ÞÑ R is called continuous if and

only if there exists a constant Ca such that

aru, vs ď Ca}u}U }v}V , @u P U , v P V . (1.14) eqn:cont_bilinear

Consider a continuous bilinear form ar¨, ¨s : U ˆ V Ñ R and f P V 1. We formulate a model

problem: Find u P U such that Au “ f in V 1. Or in the weak form, find u P U such that

aru, vs “ ⟨f, v⟩ , @v P V . (1.15) prob:model

eg:WeakPoisson Example 1.14 (The Poisson equation). The Poisson problem with homogenous Dirichlet bound-

ary was given in (1.1). In this case, we have Au :“ ´∆u and aru, vs :“ p∇u,∇vq. Ap-

parently, the bilinear form ar¨, ¨s is continuous due to the Cauchy–Schwarz inequality and

U “ V “ H1
0 pΩq.
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1.1.4 Well-posedness of the weak problem ‹
ssc:bt

We denote the space of all linear and continuous operators from U to V as L pU ;V q. Here

we review a few results on the inf-sup condition due to Nečas [144].

thm:banach_necas Theorem 1.15 (Banach–Nečas Theorem). Let ar¨, ¨s : U ˆ V ÞÑ R be a continuous bilinear

form with a norm defined as

›

›ar¨, ¨s
›

› :“ sup
uPU

sup
vPV

aru, vs

}u}U }v}V
.

(i) Then there exists a unique linear operator A P L pU ;V q such that

pAu, vqV “ aru, vs, @u P U , v P V ,

with the operator norm
›

›A
›

›

L pU ;V q
“
›

›ar¨, ¨s
›

›.

(ii) Moreover, the bilinear form ar¨, ¨s satisfies the inf-sup condition:

Dα ą 0, such that α}u}U ď sup
vPV

aru, vs

}v}V
, @u P U , (1.16) cond:infsup

for any 0 ‰ v P V , there exists u P U , such that aru, vs ‰ 0, (1.17) cond:nonsin

if and only if A : U ÞÑ V is an isomorphism and

}A´1}L pV ;U q ď α´1. (1.18) eqn:AinvBound

Proof. (i) For any fixed u P U , the mapping aru, ¨s belongs to the dual space V 1. By the Riesz

representation theorem, there exists Au P V such that

pAu, vqV “ aru, vs, @ v P V .

Since ar¨, ¨s is continuous, we obtain a bounded operator A P L pU ;V q. Furthermore,

}A}L pU ;V q “ sup
uPU

}Au}V

}u}U
“ sup

uPU
sup
vPV

pAu, vqV

}u}U }v}V
“ sup

uPU
sup
vPV

aru, vs

}u}U }v}V
“
›

›ar¨, ¨s
›

›.

(ii) ùñ The inf-sup condition (1.16) guarantees that there exists α ą 0 such that

α}u}U ď sup
vPV

aru, vs

}v}V
“ sup

vPV

pAu, vqV

}v}V
“ }Au}V , @u P U . (1.19) eqn:ALowerBound

This implies that A is injective. Let
␣

uk
(8

k“0
Ă U and vk :“ Auk be a sequence such that

vk Ñ v P V . In order to show the range of A is closed, we need to show v P ApU q. From the

inequality (1.19), we have

α}uk ´ uj}U ď }Apuk ´ ujq}V “ }vk ´ vj}V Ñ 0.
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Hence, tuku8
k“0 is a Cauchy sequence and uk Ñ u P U . Moreover,

v “ lim
kÑ8

vk “ lim
kÑ8

Auk “ Au P ApU q.

Now we assume that ApU q ‰ V . Since ApU q is closed, we can decompose V as

V “ ApU q ‘ ApU qK

and ApU qK is non-trivial. That is to say, there exists 0 ‰ vK P ApU qK, which contradicts the

condition (1.17). Hence the assumption ApU q ‰ V cannot hold, i.e., A is surjective. This, in

turn, shows that A is an isomorphism from U onto V . Moreover, (1.19) shows

α}A´1v}U ď }v}V , @ v P V .

This proves the inequality (1.18).

(ii) ðù We have

inf
uPU

sup
vPV

aru, vs

}u}U }v}V
“ inf

uPU
sup
vPV

pAu, vq

}u}U }v}V
“ inf

uPU

}Au}V

}u}U

“ inf
vPV

}v}V

}A´1v}U
“

´

sup
vPV

}A´1v}U

}v}V

¯´1
“ }A´1}

´1
L pV ;U q

ě α.

This is exactly (1.16). Since A is an isomorphism, for any 0 ‰ v P V , there exists 0 ‰ u P U ,

such that Au “ v and

aru, vs “ pAu, vq “ }v}2V ‰ 0,

which is (1.17).

thm:necas Theorem 1.16 (Nečas Theorem). Let ar¨, ¨s : U ˆV ÞÑ R be a continuous bilinear form. Then

the equation (1.15) admits a unique solution u P U for all f P V 1, if and only if the bilinear

form ar¨, ¨s satisfies one of the equivalent inf-sup conditions:

(1) There exists α ą 0 such that

sup
vPV

arw, vs

}v}V
ě α}w}U , @w P U ; (1.20) eqn:inf_sup_1

and for every 0 ‰ v P V , there exists w P U such that arw, vs ‰ 0.

(2) There holds

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
ą 0 and inf

vPV
sup
wPU

arw, vs

}w}U }v}V
ą 0. (1.21) eqn:inf_sup_2

(3) There exists a positive constant α ą 0 such that

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
“ inf

vPV
sup
wPU

arw, vs

}w}U }v}V
“ α. (1.22) eqn:inf_sup_3
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Furthermore, the solution u satisfies the stability condition

}u}U ď
1

α
}f}V 1 .

Proof. Let J : V ÞÑ V 1 be the isometric Reisz isomorphism. According to Theorem 1.15, we

have A P L pU ;V q, which is the linear operator corresponding to ar¨, ¨s. In this sense, (1.15) is

equivalent to

u P U : Au “ J ´1f in V .

Assume the condition (1) holds. Then, A is invertible by Theorem 1.15. The other direction is

also easy to see.

Now the interesting part is to show the equivalence of the three conditions, (1), (2), and (3).

From the proof of Theorem 1.15, we have seen that

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
“ }A´1}

´1
L pV ;U q

.

Similarly,

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
“ inf

vPV
sup
wPU

pAw, vqV

}w}U }v}V
“ inf

vPV
sup
wPU

pw,A:vqU

}w}U }v}V

“ }A´:}
´1
L pU ;V q

“ }A´1}
´1
L pV ;U q

,

where A: denotes the adjoint operator. Furthermore, if the condition

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
ą 0

holds, then for any v P V , we have

sup
wPU

arw, vs

}w}U }v}V
ą 0.

Hence there exists w P U , such that arw, vs ‰ 0. This completes the equivalence proof.

From the proof of the last two theorems, we have the following observations:

Remark 1.17 (Existence and uniqueness). Suppose that ar¨, ¨s : U ˆ V ÞÑ R is a continuous

bilinear form. Solution of the equation (1.15) exists (i.e., A is surjective or onto) if and only if

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
ą 0. existence or surjective

Solution of (1.15) is unique (i.e., A is injective or one-to-one) if and only if

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
ą 0. uniqueness or injective

That is to say, A is bijective if and only if the inf-sup conditions (1.21) or any of the above

equivalent conditions hold. In finite dimensional spaces, any linear surjective or injective map is

also bijective. So we only need one of the above inf-sup conditions to show well-posedness.
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Remark 1.18 (Optimal constant). The constant α in (1.22) is the largest possible constant

in (1.20). In general, the first condition in Theorem 1.16 is easier to verify than the third

condition.

Corollary 1.19 (Well-posedness and inf-sup condition). If the weak formulation (1.15) has a

unique solution u P U for any f P V 1 so that

}u}U ď C}f}V 1 ,

then the bilinear form ar¨, ¨s satisfies the inf-sup condition (1.22) with α ě C´1.

Proof. Since (1.15) has a unique solution for all f P V 1, the operator A : L pU ;V q is invertible

and A´1 : L pV ;U q is bounded. Due to the fact }u}U ď C}f}V 1 , we have }A´1}L pV ;U q ď C.

From the proof of the Nečas theorem, we can immediately see the optimal inf-sup constant

α “ }A´1}
´1
L pV ;U q

ě C´1.

1.1.5 A simple model problem

Now we consider the simplest case where U “ V and A is coercive.

Definition 1.20 (Coercivity). A bilinear form ar¨, ¨s : V ˆ V ÞÑ R is called coercive if there

exists α ą 0 such that

arv, vs ě α}v}2V , @v P V . (1.23) eqn:coercive

The coercivity implies that supwPV
arv,ws

}w}V
ě

arv,vs

}v}V
ě α}v}V , which is the first inf-sup condition

in Theorem 1.16. Hence, for any f P V 1, the coercive variational problem (1.15) has a unique

solution and the solution u is continuously depends on f , i.e., }u}V ď α´1}f}V 1 . In this case,

Theorem 1.16 is reduced to the well-known Lax–Milgram theorem.

Corollary 1.21 (Lax–Milgram theorem). Let ar¨, ¨s : V ˆV ÞÑ R be a continuous bilinear form

which satisfies the coercivity condition (1.23). Then (1.15) has a unique solution u P V for any

f P V 1 and }u}V ď α´1}f}V 1 .

rem:energynorm Remark 1.22 (Energy norm). If the bilinear form ar¨, ¨s : V ˆ V ÞÑ R is symmetric, then,

apparently, it defines an inner product on V . Its induced norm is also called the energy norm

|||v||| :“ arv, vs1{2.

Coercivity and continuity of the bilinear form ar¨, ¨s imply that

α
›

›v
›

›

2

V
ď |||v|||

2
ď
›

›ar¨, ¨s
›

›

›

›v
›

›

2

V
“
›

›A
›

›

L pV ;V q

›

›v
›

›

2

V
,

namely, the energy norm |||¨||| is equivalent to the } ¨ }V -norm. We will denote the dual energy

norm by |||¨|||˚.
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rem:well-posed Remark 1.23 (Condition of Poisson’s equation). We notice that the Poisson’s equation is well-

posed in the sense that ´∆ : V ÞÑ V 1 is an isomorphism with V “ H1
0 pΩq and V 1 “ H´1pΩq.

There exist constants α (coercivity constant) and Ca (continuity constant), such that

α
›

›v
›

›

2

V
ď arv, vs “ x´∆v, vy ď Ca

›

›v
›

›

2

V
, @v P V .

We define the “condition number” of the Laplace operator

κp´∆q “
›

› ´ ∆
›

›

L pV ;V 1q
¨
›

›p´∆q´1
›

›

L pV 1;V q
ď
Ca

α
,

which is bounded.

Despite the observation (Remark 1.23) that ´∆ is “well-conditioned”, our experience in

numerical solution of the Poisson’s equation may result in ill-conditioned problems, contradicting

it. In practice, numerous challenges can arise while utilizing numerical methods to solve the

equation, including the selection of appropriate numerical algorithms. The problem arises due

to the fact that we are working with two different spaces, V and V 1. If we consider

´∆ : L2pΩq ÞÑ L2pΩq

instead, then we lost boundedness and the condition number will blow up. More general theory

has been developed in the seminar work by Babuška [9].

1.2 Discretization methods
sec:discretizations

The process of discretization involves transforming continuous functions, models or equations

into their discrete equivalents. Such a conversion is typically carried out as a preliminary step

towards achieving computational efficiency, allowing for numerical assessment, and enabling

implementation on modern computer systems.

Let Ω Ă Rd be an open domain and f P L2pΩq. We consider the following model problem

$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.

Many discretization methods have been developed, such as finite difference (FD) and the finite

element (FE) methods, each with specific approaches to discretization. After discretization, we

usually end up with a linear algebraic system of equations

Au⃗ “ f⃗ . (1.24) eqn:linear0
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1.2.1 Finite difference method

In one-dimensional case, without loss of generality, we can assume Ω “ p0, 1q and the domain

is sub-divided intoN`1 equally spaced pieces. So we get a uniform mesh with meshsize h “ 1
N`1 ;

see the following figure for illustration.

0 1h

x0 x1 x2 x
N

x
N+1

1

Figure 1.2: Uniform mesh in 1D.fig:mesh1d

Using the Taylor’s expansion, we can easily obtain that

u2pxiq “
1

h

”

u1pxi` 1
2
q ´ u1pxi´ 1

2
q

ı

`Oph2q

“
1

h2

”

upxi´1q ´ 2upxiq ` upxi`1q

ı

`Oph2q.

Let ui « upxiq be an approximate solution. Then the FD discretization of the Poisson’s equation

is

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1

´1 2 ´1
. . .

. . .
. . .

. . .
. . . ´1

´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

u2
...

uN´1

uN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

fpx1q

fpx2q

...

fpxN´1q

fpxN q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.25) eqn:1DFDA

That is to say,

A :“
1

h2
tridiagp´1, 2,´1q and f⃗ :“

´

fi

¯N

i“1
“

´

fpxiq
¯N

i“1
.

We need to solve the linear system Au⃗ “ f⃗ in order to obtain an approximate solution to the

Poisson’s equation. It is worth noticing that the coefficient matrix A is symmetric positive

definite (SPD), sparse, as well as Toeplitz.

Remark 1.24 (An alternative form of the linear system). Sometimes, it is convenient (for

implementation) to also include the boundary values in u⃗ and write the linear system as

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

´1 2 ´1
. . .

. . .
. . .

´1 2 ´1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

u0

u1
...

uN

uN`1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

f1
...

fN

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Apparently this form is equivalent to the discrete problem above.
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rem:LaplaceEvalue Remark 1.25 (Eigenvalues of Laplace operator). Let us consider the eigenvalue problem for

the one-dimensional Laplace operator with homogeneous Dirichlet boundary conditions, i.e.,

´u2pxq “ λupxq for x P p0, 1q and up0q “ up1q “ 0. It is well-known that the eigenvalues and

the corresponding eigenfunctions of the above equation are

λk “ pkπq2 and ukpxq “ sinpkπxq, k “ 1, 2, ¨ ¨ ¨

We notice that larger eigenvalues (larger k) correspond to eigenfunctions of higher frequency.

Similar results can be expected for discrete problems. In fact, if A is symmetric, then all

eigenvalues of A are real and there exists an orthonormal basis of RN consisting of eigenvectors.

rem:FDevalue Remark 1.26 (Eigenvalues of 1D FD problem). For simplicity we now assume h ” 1. It is

well-known (see HW 1.3) that the eigenvalues of A :“ tridiagp´1, 2,´1q are

λkpAq “ 2 ´ 2 cos

ˆ

kπ

N ` 1

˙

“ 4 sin2
ˆ

kπ

2pN ` 1q

˙

, k “ 1, 2, . . . , N

and the corresponding eigenvectors are

ξ⃗ k “

´

ξki

¯N

i“1
P RN , with ξki :“ sin

´ ikπ

N ` 1

¯

.

We note that the set of eigenvectors of A, ξ⃗ k “
`

ξ ki
˘N

i“1
, forms an orthogonal basis of RN .

Therefore, any ξ⃗ P RN can be expanded in terms of these eigenvectors:

ξ⃗ “

N
ÿ

k“1

αkξ⃗
k.

This type of expansion is often called the discrete Fourier expansion. From Figure 1.3, we can

easily see that the eigenvectors are “smooth” with small k and are “oscillatory” with large k.

Hence the smoothness of ξ⃗ has a lot to do with the relative size of the coefficients αk.

We immediately notice that λN is close to 4 but λ1 is close to 0. That is to say, the discrete

operator could be ill-conditioned for large N .

For two-dimensional problems, we can partition the domain uniformly in both x and y-

directions into n ` 1 pieces (N “ n2). We denote pxi, yjq “
`

i
n`1 ,

j
n`1

˘

and the Poisson’s

equation is discretize using the five-point stencil

1

h2

”

4ui,j ´
`

ui´1,j ` ui`1,j ` ui,j´1 ` ui,j`1

˘

ı

“ fpxi, yjq, i, j “ 1, . . . , n.

Then we need to assign an order to the grid points in order to write the unknowns as a vector.

There are many ways to order the unknowns for practical purposes. For simplicity, we use the
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Figure 1.3: Eigenvectors of 1D finite difference system for the Poisson’s equation.fig:eigenfct1D

Lexicographic ordering, i.e., ppj´1qn`i :“ pxi, yjq. Then we have

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

A1 ´I

´I A2 ´I
. . .

. . .
. . .

´I An´1 ´I

´I An

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

u2
...
...

uN´1

uN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f1

f2
...
...

fN´1

fN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the block diagonal matrices Ai :“ tridiagp´1, 4,´1q, pi “ 1, . . . , nq are tridiagonal. Define

C :“ tridiagp´1, 0,´1q. Then it is clear that

A “
1

h2
tridiagp´I, A1,´Iq “

1

h2
I bA1 `

1

h2
C b I.

rem:FDevalue2D Remark 1.27 (Eigenvalues of the 2D FD problem). Again we assume h ” 1. Similar to the

1D problem, we can get the eigenvalues

λi,jpAq “ 4 ´ 2 cos
iπ

n` 1
´ 2 cos

jπ

n` 1
“ 4 sin2

iπ

2pn` 1q
` 4 sin2

jπ

2pn` 1q
,

with eigenvectors

ξ⃗i,j “

˜

sin
kiπ

n` 1
sin

ljπ

n` 1

¸

k,l“1,...,n

.
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rem:ill Remark 1.28 (Discrete Poisson’s equation is ill-conditioned). Remark 1.23 demonstrates that

Poisson’s equation has a bounded condition number. Nonetheless, in the event that the mesh

size h used in the finite difference (FD) discrete problems is small, the coefficient matrices A

turn out to be ill-conditioned; see Remarks 1.26 and 1.27. Consequently, this can lead to issues

with several iterative methods where the convergence rates rely on the spectrum of A. Similar

behavior also happens in the finite element (FE) setting.

Remark 1.29 (Ordering). The structure of coefficient matrix A depends on how the degrees

of freedom (DOFs) are arranged. The ordering of DOFs not only influences the efficiency

of smoothers and parallelization techniques but also impacts their smoothing properties. In

certain linear solvers, such as LU factorization methods, determining the minimum bandwidth

ordering is imperative. However, this process is NP-hard, making it particularly challenging to

achieve.

1.2.2 Finite element method

The Finite Element Method (FEM) is a type of Galerkin method that leverages piecewise

polynomial spaces for the approximate test and trial function spaces. For more information on

the standard FEM, readers are encouraged to refer to [68, 112, 37, 58]. These sources provide a

detailed discussion of FEM construction and error analysis.

The weak formulation of the model equation can be written as (see Example 1.14): Find

u P H1
0 pΩq, such that

ż

Ω
∇u ¨ ∇vdx “

ż

Ω
fv dx, @v P H1

0 pΩq.

In 1D, it is easy to explain the main idea of finite element method. Let Pkpτq be the space of

all polynomials of degree less than or equal to k on τ . Let

V “ Vh :“
␣

v P CpΩq : v P P1pxi´1, xiq, vp0q “ vp1q “ 0
(

.

Now we can write the discrete variational problem as: Find uh P Vh, such that

aruh, vhs “ pf, vhq, @vh P Vh.

Furthermore, we use nodal basis functions ϕi P Vh, i.e. ϕipxjq “ δi,j . In this way, we can express

a given function uh P Vh as uhpxq “
řN

j“1 ujϕjpxq. Hence we arrive at the following equation:

For any i “ 1, . . . , N ,

N
ÿ

j“1

arϕj , ϕisuj “ pf, ϕiq or
ÿ

j

Ai,juj “ fi.
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This is a system of algebraic linear equations

Au⃗ “ f⃗ , (1.26) eqn:FEM1D

with
`

A
˘

i,j
“ ai,j :“ arϕi, ϕjs, u⃗ :“

`

ui
˘N

i“1
, and f⃗ “

`

fi
˘N

i“1
:“

´

xf, ϕiy
¯N

i“1
.

If we use the uniform mesh in Figure 1.2, then we have (see HW 1.4) that

A :“
1

h
tridiagp´1, 2,´1q and f⃗ :“

`

hfpxiq
˘N

i“1
.

Upon solving this finite-dimensional problem, we obtain a discrete approximation uh. The finite

element method has several appealing properties and it will be the main underlying discretization

used in this lecture; see §3.1 for more details.

1.2.3 High-frequency and locality

Eigenvalues and eigenfunctions, which are fundamental concepts in mathematical analysis,

are typically associated with the fundamental modes of vibration or oscillation. As the frequency

increases, the amplitude of the oscillation decreases asymptotically. Additionally, the smoother

the function, the faster the decay rate. Weyl’s law demonstrates that the asymptotic behavior

of the eigenvalues in relation to the domain is highly dependent on it.

An important observation comes from the analysis to the local problem

´u2
δpxq “ fpxq, x P Bδ :“ px0 ´ δ, x0 ` δq and uδpx0 ´ δq “ uδpx0 ` δq “ 0.

Using Remark 1.25, we can obtain the eigenfunctions of this localized problem:

uδ,kpxq “ sin
`kπ

2δ
px´ x0 ` δq

˘

, k “ 1, 2, ¨ ¨ ¨

Suppose that u is the solution to the corresponding Poisson’s equation on the whole domain Ω.

Define the error e :“ u ´ uδ in Bδ (difference between the solutions to the Poisson problem on

the original domain and the localized ball). Apparently, e is harmonic in Bδ.

A commonly-used trick is to construct a cut-off function θ P C8
0 pBδq, such that it satisfies

the following conditions:

(i) 0 ă θpxq ď 1, @x P Bδ; (ii) θpxq “ 1, @x P Bδ{2; (iii) |θ1pxq| ď C
δ .

Then we have
ż

Bδ{2

ˇ

ˇe1pxq
ˇ

ˇ

2
dx ď

ż

Bδ

θ2pxq
ˇ

ˇe1pxq
ˇ

ˇ

2
dx “ ´

ż

Bδ

´

pθ2q1e1 ` θ2e2
¯

e dx

ď
2C

δ

ż

Bδ

ˇ

ˇθe1e
ˇ

ˇ dx ď
2C

δ

´

ż

Bδ

ˇ

ˇθe1
ˇ

ˇ

2
dx

¯
1
2
´

ż

Bδ

|e|2 dx
¯

1
2
.
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The first and last inequalities immediately imply that

´

ż

Bδ{2

ˇ

ˇe1pxq
ˇ

ˇ

2
dx

¯
1
2

ď

´

ż

Bδ

θ2pxq
ˇ

ˇe1pxq
ˇ

ˇ

2
dx

¯
1
2

ď
2C

δ

´

ż

Bδ

|e|2 dx
¯

1
2
. (1.27) eqn:Harnack

You may compare the above inequality (1.27) with the Poincaré inequality given in Proposi-

tion 1.11.

Now we plug in the eigenfunctions uδ,k (k “ 1, 2, . . .) to the above inequality. We observe

that only some of the error components with

kπ

2δ
ď

2C

δ
or k ď

4C

π
,

can be allowed. This suggests that the error function e primarily consists of low-frequency

elements, with the oscillating components in the distance δ captured precisely.

rem:GeoHighFreq Remark 1.30 (Geometric high-frequencies). This simple observation suggests that the local

solution uδ for the model problems provides an accurate approximation of the high-frequency

part of u. Inspired by this idea and building on (1.27), we can define geometric high-frequency

functions uk as those with a high ratio of }∇uk}0,Ω to }uk}0,Ω. It is important to note that

singularities, which are a special form of high-frequency behavior, can also be resolved using

local mesh refinement techniques. This method is effective precisely because high-frequency

behavior is typically localized, and can be approximated accurately using finer meshes in the

relevant areas. In subsequent chapters, we will delve into this issue in more detail, exploring its

geometric and algebraic implications.

1.2.4 Adaptive approximation ‹

We explain the idea of adaptivity with a simple 1D example. Let u : r0, 1s ÞÑ R be a

continuous function. Assume that 0 “ x0 ă x1 ă ¨ ¨ ¨ ă xN “ 1 and hi :“ xi ´xi´1. Let uN be a

piecewise constant function defined on this partition, i.e., uN pxq “ upxi´1q for all xi´1 ď x ă xi.

Then we have, for x P pxi´1, xiq, that

|u´ uN | “ |upxq ´ upxi´1q| “

ˇ

ˇ

ˇ

ż x

xi´1

u1ptq dt
ˇ

ˇ

ˇ
ď

ż xi

xi´1

|u1ptq| dt ď hi}u
1}L8pxi´1,xiq

. (1.28) eqn:adapprox

If the partition is quasi-uniform, then we have the approximation estimate

}u´ uN}L8p0,1q ď
1

N
}u1}L8p0,1q

if u is in W 1
8p0, 1q.

The question now is what happens if the function u is less regular (rough, nonsmooth, or

singular)? We now assume that u is inW 1
1 p0, 1q. In view of the first inequality in (1.28), we notice
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that we actually need to bound }u1}L1pxi´1,xiq
. This motivates to give a special (non-uniform)

partition such that
ż xi

xi´1

|u1ptq| dt ”
1

N
}u1}L1p0,1q, for i “ 1, 2, . . . , N.

On this partition, we can still obtain a desirable approximation estimate

}u´ uN}L8p0,1q ď
1

N
}u1}L1p0,1q.

rem:EqDistError Remark 1.31 (Equidistribution of error). When solving differential equations, evenly distributed

mesh spacing across the computational domain may not be the most effective method if the so-

lution is not smooth. In such cases, it’s better to pursue a mesh that distributes error evenly.

This adaptive mesh approach is dependent on the solution itself and can dynamically adjust

based on its changes to optimize the accuracy. This idea is called equidistribution of error,

where mesh points are concentrated in areas with large errors and spread out in regions of lesser

error. Developing an equidistributed error mesh is challenging and requires a nonlinear approx-

imation procedure, which involves solving the differential equation numerically and then using

the solution output to improve the mesh. This process of refinement continues until the error is

uniformly distributed across the mesh.

For more comprehensive information on this subject, refer to the work of DeVore [74], which

explores equidistributed error meshes within the context of finite element methods. The paper

provides a broader framework for establishing equidistributed error meshes and suggests multiple

examples that demonstrate their potential effectiveness. In conclusion, equidistribution of error

presents a favorable alternative to the typical mesh spacing approach when dealing with problems

where the solution is not smooth. Though obtaining this mesh requires greater computational

efforts, its benefits are substantial enough to warrant further investigation by researchers and

analysts seeking to improve differential equation solving.

1.3 Simple iterative solvers
sec:simple

Numerous methods exist for tackling the linear algebraic equations derived from finite dif-

ference, finite element, and other discretizations applied to Poisson’s equation, including sparse

direct solvers, fast Fourier transform techniques, and iterative solutions. However, for the pur-

poses of this lecture, we will solely focus on discussing iterative solvers.

1.3.1 Some examples

Now we give a few well-known examples of simple iterative methods. Consider the linear

system Au⃗ “ f⃗ . Assume the coefficient matrix A P RNˆN can be partitioned as A “ L `
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D `U , where the three matrices L,D,U P RNˆN are the lower triangular, diagonal, and upper

triangular parts of A, respectively (the rest is set to be zero).

example:R Example 1.32 (Richardson method). The simplest iterative method for solving Au⃗ “ f⃗ might

be the Richardson method

u⃗new “ u⃗ old ` ω
´

f⃗ ´Au⃗ old
¯

. (1.29) eqn:richardson

We can choose an optimal weight ω to improve performance of this method.

example:J Example 1.33 (Weighted Jacobi method). The weighted or damped Jacobi method can be

written as

u⃗new “ u⃗ old ` ωD´1pf⃗ ´Au⃗ oldq. (1.30) eqn:Jacobi

This method solves one equation for one variable at a time, simultaneously. Apparently, it is a

generalization of the above Richardson method. If ω “ 1, then we arrive at the standard Jacobi

method.

example:GS Example 1.34 (Gauss–Seidel method). The Gauss–Seidel (G-S) method can be written as

u⃗new “ u⃗ old ` pD ` Lq´1pf⃗ ´Au⃗ oldq.

We rewrite this method as

pD ` Lqu⃗new “ pD ` Lqu⃗ old ` pf⃗ ´Au⃗ oldq “ f⃗ ´ Uu⃗ old.

Thus we have

u⃗new “ u⃗ old `D´1
´

f⃗ ´ Lu⃗new ´ pD ` Uqu⃗ old
¯

. (1.31) eqn:GS

Compared with the Jacobi method (1.30) (ω “ 1), the G-S method uses the most updated

solution in each iteration instead of the previous iteration.

Example 1.35 (Successive over-relaxation method). The successive over-relaxation (SOR)

method can be written as

pD ` ωLqu⃗new “ ωf⃗ ´

´

ωU ` pω ´ 1qD
¯

u⃗ old. (1.32) eqn:SOR

The weight ω is usually in p1, 2q. This is in fact the extrapolation of u⃗ old and u⃗new obtained in

the G-S method. If ω “ 1, then it reduces to the G-S method.

These fundamental iterative methods have been addressed in common textbooks on numer-

ical analysis and can be formulated via the classical splitting approach. In the following, we

utilize a modified version to achieve a better perspective.
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Let α ě 0 be a real parameter and

A :“ A1 `A2 “
`

A1 ` αI
˘

`
`

A2 ´ αI
˘

.

This way we can split the original equation Au⃗ “ f⃗ as

`

A1 ` αI
˘

u⃗ “ f⃗ ´
`

A2 ´ αI
˘

u⃗.

This immediately motivates the standard splitting iterative method

u⃗new “
`

A1 ` αI
˘´1

´

f⃗ ´
`

A2 ´ αI
˘

u⃗ old
¯

. (1.33) eqn:split

The method is equivalent to an alternative form, which is the notation we use in this note, as

u⃗new “ u⃗ old `B
`

f⃗ ´Au⃗ old
˘

,

with B :“
`

A1 ` αI
˘´1

. Apparently, we can choose the splitting to obtain the above simple

iterative methods. For example, by setting A1 “ 0, (1.33) yields the Richardson method (1.29);

by setting α “ 0 and A1 “ 1
ωD, (1.33) yields the weighted Jacobi method (1.30).

In this setting, the matrix

E :“ ´
`

A1 ` αI
˘´1`

A2 ´ αI
˘

“ I ´BA (1.34) eqn:iteration-matrix

is oftentimes called an iteration matrix for the iterative method (1.33). It is well-known that

the iterative method converges for any initial guess if and only the spectral radius ρpEq ă 1.

1.3.2 An observation on smoothing effect

Numerous basic iterative methods display diverse convergence rates for short and long wave-

length error components, which suggests that these distinct scales require varying treatment. To

delve deeper into this phenomena, we consider λmax and λmin, which stand for the largest and

smallest eigenvalues of A, and ξ⃗max and ξ⃗min, their corresponding eigenvectors. One intriguing

observation made by several experts is that when we employ the weighted Jacobi method (1.30)

with a weight ω of 2/3 to solve the equation Au⃗ “ 0⃗, initialized with ξ⃗max, the convergence

occurs rapidly. Conversely, if the same equation is solved using the weighted Jacobi iteration,

but with a distinct initial guess of ξ⃗min, the convergence rate is much slower. See Figure 1.4 for

a demonstration.

It’s worth noting that the difference in results between the first problem (with ξ⃗max) and the

second problem (with ξ⃗min) is mainly due to the nature of the errors involved. Specifically, the

error in the first problem is oscillatory and high-frequency, while that in the second problem is
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Figure 1.4: Error decay in } ¨ }8-norm for weighted Jacobi method with initial guess ξ⃗ k.fig:errorJ

smooth and low-frequency. This observation leads one to speculate that the weighted Jacobi

method might be effective at quickly dampening the high-frequency component of the error but

more slowly addressing the low-frequency component. For more details, see Remark 1.30.

In Remark 1.26, we have seen that the eigenvalues of the simple finite difference matrix in

1D are

λkpAq “ 2 ´ 2 cos

ˆ

kπ

N ` 1

˙

.

Then it is easy to obtain the eigenvalues of the iteration matrix for the weighted Jacobi method

λkpEq “ 1 ´ ω ` ω cos

ˆ

kπ

N ` 1

˙

“
1

3
`

2

3
cos

ˆ

kπ

N ` 1

˙

.

By examining the above equation, it becomes apparent that the eigenvalues |λkpEq| are less than

or equal to 1
3 for larger values of k (N2 ď k ď N), implying that the weighted Jacobi method is

likely to converge quickly for these larger values of k.

Now we can make this simple observation more formal by considering the simple iterative

method (1.29), i.e. the Richardson method (it is equivalent to the weighted Jacobi for simple

finite difference equations with a constant diagonal), and assume that

Aξ⃗ k “ λkξ⃗
k, k “ 1, . . . , N,
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where 0 ă λ1 ď ¨ ¨ ¨ ď λN and we choose ω “ 1
λN

for example. Since tξ⃗ kuNk“1 forms a basis of

RN , we can write

u⃗´ u⃗ pmq “

N
ÿ

k“1

α
pmq

k ξ⃗ k

as an expansion. In the Richardson method, we have

u⃗´ u⃗ pmq “ pI ´ ωAqpu⃗´ u⃗ pm´1qq “ ¨ ¨ ¨ “ pI ´ ωAqmpu⃗´ u⃗ p0qq.

Hence it is easy to see that

N
ÿ

k“1

α
pmq

k ξ⃗ k “ pI ´ ωAqm
N
ÿ

k“1

α
p0q

k ξ⃗ k “

N
ÿ

k“1

α
p0q

k p1 ´ ωλkqmξ⃗ k.

That is to say, we have

α
pmq

k “ p1 ´ ωλkqmα
p0q

k “

´

1 ´
λk
λN

¯m
α

p0q

k , k “ 1, . . . , N. (1.35) eqn:Richardson_decay

We can observe from (1.35) that the rate of convergence is fast for high-frequency error compo-

nents, indicated by larger values of k, and sluggish for low-frequency components, represented

by smaller values of k.

1.3.3 Smoothing effect of Jacobi method ‹

In view of Remark 1.26, based on the understanding of the relation between the smoothness

and the size of Fourier coefficients, we can analyze the smoothing property using the discrete

Fourier expansion. Let u⃗ be the exact solution of the 1D FD problem on uniform grids and u⃗ pmq

the result of m-th iteration from the damped Jacobi method (or equivalently in this case, the

Richardson method). Then

u⃗´ u⃗ pmq “ pI ´ ωAqpu⃗´ u⃗ pm´1qq “ ¨ ¨ ¨ “ pI ´ ωAqmpu⃗´ u⃗ p0qq.

It is straightforward to see that

λkpI ´ ωAq “ 1 ´ ωλkpAq “ 1 ´ 4ω sin2
ˆ

kπ

2pN ` 1q

˙

.

Notice that λkpI´ωAq can be viewed as the damping factor for error components corresponding

to Fourier mode k; see Remark 1.26. We would like to choose ω such that λk’s are small.

Consider the Fourier expansion of the initial error:

u⃗´ u⃗ p0q “

N
ÿ

k“1

αkξ⃗
k.
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Then

u⃗´ u⃗ pmq “

N
ÿ

k“1

αkpI ´ ωAqmξ⃗ k.

Note that, for any polynomial p, we have ppAqξ⃗ k “ ppλkqξ⃗ k. By choosing

ω “
1

4
«

1

λmaxpAq
,

we obtain that

u⃗´ u⃗ pmq “

N
ÿ

k“1

αkp1 ´ ωλkqmξ⃗ k “

N
ÿ

k“1

α
pmq

k ξ⃗ k,

where

α
pmq

k “

ˆ

1 ´ sin2
kπ

2pN ` 1q

˙m

αk.

The above equation implies

α
pmq

k “ αk sin
2m

ˆ

N ´ k ` 1

N ` 1

π

2

˙

ď αk

ˆ

N ´ k ` 1

N ` 1

π

2

˙2m

,

which approaches to 0 very rapidly as m Ñ 8, if k is close to N (high-frequencies). This

means that high frequency error can be damped very quickly. This simple analysis justifies the

smoothing property we observed in the beginning of this section.

We can also apply the same analysis to the Jacobi method as well and the Fourier coefficient

in front of the highest frequency becomes:

α
pmq

N “

ˆ

1 ´ 2 sin2
Nπ

2pN ` 1q

˙m

αN “ cosm
ˆ

Nπ

N ` 1

˙

αN „ p´1qm
ˆ

1 ´
π2

2pN ` 1q2

˙m

αN .

This suggests that the regular Jacobi method might not have a smoothing property and should

not be used as a smoother in general.

1.4 Multigrid method in 1D
sec:GMG1D

In this section, we present a straightforward motive and a preview of the widely used multi-

grid method, an example of multilevel iterative methods. The insights obtained herein will be

advantageous for our subsequent discussions. For a brief introduction to the multigrid methods,

the tutorial by Briggs et al. [64] is a well-known resource.

Consider solving the linear system arising from the finite difference scheme (1.25) for the

Poisson’s equation in 1D, namely

Au⃗ “ f⃗ with A “
1

h2
tridiagp´1, 2,´1q, fi “ fpxiq.
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1.4.1 Nested grids

Multigrid (MG) methods are a group of algorithms for solving partial differential equations

using a hierarchy of discretizations. They are very useful in problems exhibiting multiple scales

of behavior. In this section, we introduce the simplest multigrid method in 1D.

Suppose there are a hierarchy of L ` 1 grids with mesh sizes hl “ p12ql`1 (l “ 0, 1, . . . , L);

see Figure 1.5. It is clear that

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h

and N “ 2L`1 ´ 1. We call level L the finest level and level 0 the coarsest level.

l = 0 h0 = (1
2 )1

l = 1 h1 = (1
2 )2

l = 2 h2 = (1
2 )3

...

...

1

Figure 1.5: Hierarchical grids for 1D multigrid method.fig:hiergrid

1.4.2 Smoothers

We consider how to approximate the solution on each level using some local relaxation

method. Assume the 1D Poisson’s equation is discretized using the finite difference scheme

discussed in the previous section. Then, on each level, we have a linear system of equations

Alu⃗l “ f⃗l with Al “ h´2
l tridiagp´1, 2,´1q.

For each of these equations, we can apply the damped Jacobi method (with the damping factor

equals to 1{2)

u⃗
pm`1q

l “ u⃗
pmq

l `
1

2
D´1

l

´

f⃗l ´Alu⃗
pmq

l

¯

(1.36) eqn:djacobi

to obtain an approximate solution. This method is usually referred as a local relaxation or

smoother, which will be discussed later in this lecture note.

1.4.3 Prolongation and restriction

Another important component of a multigrid method is to define the transfer operators

between different levels. In the 1D case, the transfer operators can be easily given; see Figure 1.6.

In another word, we can also write the transfer operators in the matrix form, i.e.,



CHAPTER 1. INTRODUCTION 34

× ×

Pl−1,l 1 1
2

1
2 1 1

2
1
2 1

××

Rl,l−1
1
2

1
4

1
4

1
2

1
4

1
4

1
2

1

Figure 1.6: Transfer operators between two consecutive levels (Left: restriction operator; right:
prolongation operator).fig:transfer1d

Rl,l´1 :“
1

4

¨

˚

˚

˚

˚

˚

˝

. . .

1 2 1

1 2 1
. . .

˛

‹

‹

‹

‹

‹

‚

and Pl´1,l :“
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

. . .

1

2

1 1

2

1
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.37) eqn:RandP

We notice that R “ 1
2P

T . It is straight-forward to check that the coefficient matrices of two

consecutive levels satisfy

Al´1 “ Rl,l´1AlPl´1,l.

1.4.4 Multigrid algorithm

Let f⃗l be the right-hand side vector and u⃗l be an initial guess or previous iteration on level

l. Now we are ready to give one iteration step of the multigrid algorithm (V-cycle).

alg:1DGMG Algorithm 1.1 (One iteration of multigrid method). u⃗l “ MGpl, f⃗l, u⃗lq

(i) Pre-smoothing: u⃗l Ð u⃗l ` 1
2D

´1
l

`

f⃗l ´Alu⃗l
˘

(ii) Restriction: r⃗l´1 Ð Rl,l´1

`

f⃗l ´Alu⃗l
˘

(iii) Coarse-grid correction: If l “ 1, e⃗l´1 Ð A´1
l´1r⃗l´1; otherwise, e⃗l´1 Ð MGpl´1, r⃗l´1, 0⃗l´1q

(iv) Prolongation: u⃗l Ð u⃗l ` Pl´1,le⃗l´1

(v) Post-smoothing: u⃗l Ð u⃗l ` 1
2D

´1
l

`

f⃗l ´Alu⃗l
˘

Remark 1.36 (Coarse-grid correction). Suppose that there is an approximate solution u⃗ pmq.

Then we have

A
`

u⃗´ u⃗ pmq
˘

“ r⃗ pmq :“ f⃗ ´Au⃗ pmq
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and the error equation can be written

Ae⃗ pmq “ r⃗ pmq. (1.38) eqn:error

If we get e⃗ pmq or its approximation, we can just update the iterative solution by u⃗ pm`1q “

u⃗ pmq ` e⃗ pmq to obtain a better approximation of u⃗. This explains the steps (iii) and (iv) in the

above algorithm.

Remark 1.37 (Coarsest-grid solver). It is clear that, in our setting, the solution on level l “ 0

is trivial to obtain. In general, we can apply a direct or iterative solver to solve the coarsest-level

problem, which is relatively cheap. Sometimes, we have singular problems on the coarsest level,

which need to be handled carefully.

#Levels #DOF #Iter Contract factor

5 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table 1.1: Convergence behavior of 1D geometric multigrid method.tab:1DGMG

Algorithm 1.1 represents one iteration of the multigrid method, and we can use it to iterate

until our approximation is deemed ”satisfactory”. We often use the relative residual |r⃗|0{|f⃗ |0 as

a stopping criterion, typically set to be less than 10´6. This algorithm can be easily implemented

(see HW 1.6). Table 1.1 shows the numerical results of Algorithm 1.1 applied to the 1D Poisson’s

equation with three G-S iterations as smoother. Unlike classical Jacobi and G-S methods, this

multigrid method converges uniformly with respect to h. This is a highly desirable feature of

multilevel iterative methods, which we will explore further in this lecture.

Now it is natural to ask a few questions on such multilevel methods:

• How fast the method converges?

• When does the multigrid method converge?

• How to generalize the method to other problems?

• How to find a good smoother when solving more complicate problems?

• Why the matrices R and P are given as (1.37)? Are there other choices?

And we will mainly focus on these questions in this lecture.
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1.5 Tutorial of FASP ‹

All the numerical examples presented in this lecture were computed using the Fast Aux-

iliary Space Preconditioning (FASP) package. This package offers C source files that can be

used to build a library of efficient iterative solvers and preconditioners for solving large-scale

linear systems of equations. The FASP basic library consists of various modern and effective

iterative solvers that are commonly used in a wide range of applications, from simple exam-

ples of discretized scalar partial differential equations (PDEs) to complex numerical simulations

of multicomponent physical systems. The FASP package provides C99 (ISO/IEC 9899:1999)-

compatible code, making it highly versatile and accessible to users across multiple platforms.

The main components of the FASP basic library are:

• Basic linear iterative methods;

• Standard Krylov subspace methods;

• Geometric and algebraic multigrid methods;

• Incomplete factorization methods.

The FASP distribution also includes several examples for solving simple benchmark problems.

The fundamental (kernel) distribution of FASP is open-source and is licensed under the GNU

Lesser General Public License or LGPL. However, other distributions of the software may have

different licensing arrangements (for more information, you can reach out to the development

team). The latest version of FASP can be directly downloaded from:

https://github.com/FaspDevTeam/faspsolver

To compile, you need a C99 compiler (and a F90 compiler if you need to compile Fortran

examples). By default, we use GNU gcc/gfortan, respectively. Configuring and building the

FASP library and test suite requires CMake 2.8.12 or higher http://www.cmake.org/.

The command to configure is:

> mkdir Build; cd Build; cmake ..

After successfully configing the environment, just run:

> make # to compile the FASP lib only; do not install

To install the FASP library and executables, run:

> make install # to compile and install the FASP lib

Note: The default prefix is the FASP source directory.

https://github.com/FaspDevTeam/faspsolver
http://www.cmake.org/
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For further details on the usage and implementation of FASP, we recommend consulting

the user’s guide and reference manual of the package1. However, keep in mind that FASP is

undergoing heavy development, and the code may have changed since the guide’s last update.

As such, we advise users to exercise caution when employing this guide.

1.6 Homework problems

hw:UniqueSolutionPoisson HW 1.1. Prove the uniqueness of the Poisson’s equation. Hint: You can argue by the maximum

principle or the energy method.

hw:Eigenvectors HW 1.2. Let x0 and δ ą 0 are fixed scales. Find eigenvalues and eigenfunctions of the following

local problem

´u2
δpxq “ λδuδ, x P px0 ´ δ, x0 ` δq and uδpx0 ´ δq “ uδpx0 ` δq “ 0.

hw:Evalue1DFD HW 1.3. Prove the eigenvalues and eigenvectors of tridiagpb, a, bq P RNˆN are

λk “ a´ 2b cos
´ kπ

N ` 1

¯

and ξ⃗ k “

´

sin
` kπ

N ` 1

˘

, . . . , sin
` Nkπ

N ` 1

˘

¯T
,

respectively. Apply this result to give eigenvalues of the 1D FD matrix A. What are the

eigenvalues of tridiagpb, a, cq P RNˆN?

hw:StiffnessFE HW 1.4. Derive the finite element stiffness matrix for 1D Poisson’s equation with homogenous

Dirichlet boundary condition using a uniform mesh.

hw:FDFEHeat HW 1.5. Derive 1D FD and FE discretizations for the heat equation (1.6) using the backward

Euler method for time discretization.

hw:GMGcode HW 1.6. Implement the geometric multigrid method for the Poisson’s equation in 1D using

Matlab, C, Fortran, or Python. Try to study the efficiency of your implementation.

hw:JacobiEigen HW 1.7. Suppose we need to solve the finite difference equation with coefficient matrix A :“

tridiagp´1, 2,´1q P RNˆN . Plot the eigenvalues of the weighted Jacobi iteration matrix E for

ω “ 1, 23 , and
1
2 . You can use different problem size N ’s to get a better view.

1The guide is available online at http://www.multigrid.org/fasp and can also be found in the ”faspsolver/-
doc/” directory.

http://www.multigrid.org/fasp


Chapter 2

Iterative Solvers and Preconditioners

ch:iterative

The term iterative method encompasses various numerical techniques that involve successive

approximations, denoted by
␣

upmq
(

, to find the exact solution u to a given problem. This chapter

examines two types of iterative methods: (1) stationary, which involves the same operations for

each iteration, and (2) nonstationary, which includes iteration-dependent operations. Stationary

Figure 2.1: Iterative and preconditioning methods in Chapter 2.fig:Chapter2

methods are generally easy to understand and implement, but they tend to be less effective than

38
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nonstationary methods. Conversely, nonstationary methods are a more recent development and

tend to have more complex analyses associated with them. In Figure 2.1, we give a bird’s eye

view of the methods that will be discussed.

2.1 Stationary linear iterative methods
sec:stationary

This section focuses on stationary iterative methods, two typical examples being the Ja-

cobi and Gauss-Seidel methods. We will explore why these methods are generally considered

inefficient, despite still being widely used. Let V be a finite-dimensional linear vector space,

A : V ÞÑ V be a non-singular linear operator, and f P V . We would like to find a u P V , such

that

Au “ f. (2.1) eqn:linear

For example, in the finite difference context discussed in §1.2, V “ RN and the linear operator

A becomes a matrix A. We just need to solve a system of linear equations: Find u⃗ P RN , such

that

Au⃗ “ f⃗ . (2.2) eqn:linear2

We will discuss the linear systems in both operator and matrix representations.

Remark 2.1 (More general setting). In fact, iterative methods can be approached in a broader

setting. For instance, consider a finite-dimensional Hilbert space, V , its dual, V 1, and a linear

operator A : V ÞÑ V 1, as well as f P V 1. It’s worth noting that a significant portion of this

lecture can be easily extended to such a context.

A linear stationary iterative method (one iteration) to solve (2.1) can be expressed in the

following general form:

Algorithm 2.1 (Stationary iterative method). unew “ ITERpuoldqalg:iter

(i) Form the residual: r “ f ´ Auold

(ii) Solve or approximate the error equation: Ae “ r by ê “ Br

(iii) Correct the previous iterative solution: unew “ uold ` ê

That is to say, the new iteration is obtained by computing

unew “ uold ` Bpf ´ Auoldq, (2.3) eqn:iter

where B is called an iterator. Apparently, B “ A´1 for nonsingular operator A also defines an

iterator, which yields a direct method.
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2.1.1 Preliminaries and notation

The most-used inner product in this lecture is the Euclidian inner product pu, vq :“
ş

Ω uv dx;

and pu, vq :“
řN

i“1 uivi if V “ RN . Once we have the inner product, we can define the concept

of transpose and symmetry on the Hilbert space V . Define the adjoint operator (transpose) of

the linear operator A as AT : V ÞÑ V , such that

pATu, vq :“ pu,Avq, @u, v P V.

A linear operator A on V is symmetric if and only if

pAu, vq “ pu,Avq, @u, v P domainpAq Ď V.

If A is densely defined and AT “ A, then A is called self-adjoint.

Remark 2.2 (Symmetric and self-adjoint operators). A symmetric operator A is self-adjoint

if domainpAq “ V . The difference between symmetric and self-adjoint operators is technical;

see [205] for details.

We denote the null space and the range of A as

nullpAq :“ tv P V : Av “ 0u , (2.4)

rangepAq :“ tu “ Av : v P V u . (2.5)

Very often, the null space is also called the kernel space and the range is called the image space.

The subspaces nullpAq and rangepAT q are fundamental subspaces of V . We have

nullpAT qK “ rangepAq and nullpAT q “ rangepAqK.

rem:nonsingular Remark 2.3 (Non-singularity). If nullpAq “ t0u, then A is injective or one-to-one. Apparently,

A : V ÞÑ rangepAq is surjective or onto. If we consider a symmetric operator A : nullpAqK ÞÑ

rangepAq, then A is always non-singular.

The set of eigenvalues of A is called the spectrum, denoted as σpAq. The spectrum of any

bounded symmetric linear operator is real, i.e., all eigenvalues are real, although a symmetric

operator may have no eigenvalues1. We define the spectral radius ρpAq :“ sup
␣

|λ| : λ P σpAq
(

.

Furthermore,

λminpAq “ min
vPV zt0u

pAv, vq

}v}2
and λmaxpAq “ max

vPV zt0u

pAv, vq

}v}2
.

1A bounded linear operator on an infinite-dimensional Hilbert space might not have any eigenvalues.
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An important class of operators for this lecture is symmetric positive definite (SPD) oper-

ators. An operator A is called SPD if and only if A is symmetric and pAv, vq ą 0, for any

v P V zt0u. Since A is SPD, all of its eigenvalues are positive. We define the spectral condition

number or, simply, condition number κpAq :“ λmaxpAq

λminpAq
, which is more convenient, compared with

spectrum, to characterize convergence rate of iterative methods. For the indefinite case, we can

use

κpAq :“
supλPσpAq |λ|

infλPσpAq |λ|
.

More generally, for an isomorphic mapping A P L pV ;V q, we can define (have been used in

Chapter 1):

κpAq :“ }A}L pV ;V q}A´1}L pV ;V q.

And all these definitions are consistent for symmetric positive definite problems.

If A is an SPD operator, it induces a new inner product, which will be used heavily in our

later discussions

pu, vqA :“ pAu, vq @u, v P V. (2.6) eqn:A-inner

It is easy to check p¨, ¨qA is an inner product on V . For any bounded linear operator B : V ÞÑ V ,

we can define two transposes with respect to the inner products p¨, ¨q and p¨, ¨qA, respectively;

namely,

pBTu, vq “ pu,Bvq,

pB˚u, vqA “ pu,BvqA.

By the above definitions, it is easy to show (see HW 2.1) that

B˚ “ A´1BTA. (2.7) eqn:BtBstar

Symmetry is a concept that is relative to the inner product that underlies it. In this chapter,

we consistently refer to the p¨, ¨q-inner product when discussing symmetry. It is worth noting

that, by definition, pBAq˚ “ BTA; see HW 2.2 for verification of this equation.

If BT “ B, it does not necessarily follow that pBAqT “ BA. However, there is a key identity

that holds:

pBAq˚ “ BTA “ BA. (2.8) eqn:BAstar

Remark 2.4 (Induced norms). The inner products defined above also induce norms on V by

}v} :“ pv, vq
1
2 and }v}A :“ pv, vq

1
2
A. These, in turn, define the operator norms for B : V ÞÑ V ,

i.e.,

}B} :“ sup
vPV zt0u

}Bv}

}v}
and }B}A :“ sup

vPV zt0u

}Bv}A
}v}A

.
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It is well-known that, for any consistent norm } ¨ }, we have ρpBq ď }B}. Furthermore, we

have the following results:

prop:rho Proposition 2.5 (Spectral radius and norm). Suppose V is a Hilbert space with an inner prod-

uct p¨, ¨q and induced norm } ¨ }. If A : V ÞÑ V is a bounded linear operator, then

ρpAq “ lim
mÑ`8

}Am}
1
m .

Moreover, if A is self-adjoint, then ρpAq “ }A}.

From this general functional analysis result, we can immediately obtain the following rela-

tions:

lem:sym Lemma 2.6 (Spectral radius of self-adjoint operators). If BT “ B, then ρpBq “ }B}. Similarly,

if B˚ “ B, then ρpBq “ }B}A.

2.1.2 Convergence of stationary iterative methods

Next, we examine the convergence analysis of the stationary iterative method (2.3). A

method is only considered to be convergent if upmq converges to u for every initial guess up0q.

It is worth emphasizing that each iteration (2.3) depends only on the previous approximation

uold, without utilizing any data from previous iterations. Essentially, each iteration performs

the same operations repeatedly.

It is easy to see that

u´ upmq “ pI ´ BAq
`

u´ upm´1q
˘

“ ¨ ¨ ¨ “ pI ´ BAqm
`

u´ up0q
˘

“ Em
`

u´ up0q
˘

,

where I : V ÞÑ V is the identity operator and the operator E :“ I ´ BA is called the error

propagation operator (or, sometimes, error reduction operator)2. Hence we can get the following

simple convergence theorem.

thm:rho Theorem 2.7 (Convergence of Algorithm 2.1). The Algorithm 2.1 converges for any initial guess

if the spectral radius ρpI ´ BAq ă 1, which is equivalent to limmÑ`8pI ´ BAqm “ 0. The con-

verse direction is also true.

Lemma 2.6 and (2.8) imply the following fact: If A is SPD and B is symmetric, then

ρpI ´ BAq “ }I ´ BA}A. (2.9) eqn:rho-norm

2It coincides with the iteration matrix (1.34) or the iterative reduction matrix appeared in the literature on
iterative linear solvers.
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If both A and B are SPD, the eigenvalues of BA are real and the spectral radius satisfies that

ρpI ´ BAq “ max
´

λmaxpBAq ´ 1, 1 ´ λminpBAq

¯

. (2.10) eqn:rho-condnum

So we can expect that the speed of the stationary linear iterative method is related to the span

of spectrum of BA.

Although the convergence result is straightforward, applying it can be challenging. Furthermore,

it doesn’t provide any direct insight into how quickly the algorithm converges, assuming it does

at all. The subsequent example will further elaborate on this point.

Remark 2.8 (Asymptotic convergence behavior). An iterative method converges for any initial

guess if and only if the spectral radius of the iteration matrix ρpEq is less than one. However, it is

crucial to understand that the spectral radius of E only determines the asymptotic convergence

behavior of the iterative method. That is to say, we have

}e⃗ pk`1q}

}e⃗ pkq}
« ρpEq,

only for very large k. However, it is not clear how quickly the error diminishes during the initial

stages of iteration. For instance, consider the following example where it takes all iterations

up to the last one for the error to finally decrease, highlighting the uncertainty regarding how

swiftly the error diminishes in the early stages of the iteration process.

Example 2.9 (Spectral radius and convergence speed). Suppose we have an iterative method

with an error propagation matrix

E :“

¨

˚

˚

˚

˚

˚

˝

0 1 ¨ ¨ ¨ 0
...

. . .
. . .

...
...

. . . 1

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‚

P RNˆN

and the initial error is e⃗ p0q :“ u⃗´ u⃗ p0q “ p0, . . . , 0, 1qT P RN . Notice that ρpEq ” 0 in this exam-

ple. However, if applying this error propagation matrix to form a sequence of approximations,

we will find the convergence is actually very slow for a large N . In fact,

}e⃗ p0q}2 “ }e⃗ p1q}2 “ ¨ ¨ ¨ “ }e⃗ pN´1q}2 “ 1 and }e⃗ pNq}2 “ 0.

Hence, analyzing the spectral radius of the iterative matrix alone will not provide much useful

information about the speed of an iterative method.
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An alternative measure for convergence speed is to find out whether there is a constant

δ P r0, 1q and a convenient norm } ¨ } on RN , such that }e⃗ pm`1q} ď δ}e⃗ pmq} for any e⃗ p0q P RN .

However, this approach has its own problems because it usually yields pessimistic convergence

bound for iterative methods.

Remark 2.10 (Convergence rate of the Richardson method). The simplest iterative method for

solving Au⃗ “ f⃗ might be B “ ωI, which is the well-known Richardson method in Example 1.32.

In this case, the iteration converges if and only if ρpI ´ωAq ă 1, i.e., all eigenvalues of matrix A

are in p0, 2ω q. Since A is SPD, the iteration converges if ω ă 2λ´1
maxpAq. If we take ω “ λ´1

maxpAq,

then

ρ
`

I ´ λ´1
maxpAqA

˘

“ 1 ´
λminpAq

λmaxpAq
“ 1 ´

1

κpAq
.

In fact, the optimal weight is ωopt “ 2
λmaxpAq ` λminpAq

and

ρ
`

I ´ ωoptA
˘

“ }I ´ ωoptA} “ 1 ´
2λminpAq

λmaxpAq ` λminpAq
“
κpAq ´ 1

κpAq ` 1
.

We can see that the convergence could be very slow if A is ill-conditioned.

2.1.3 Symmetrization

In general, the iterator B might not be symmetric and it is more convenient to work with

symmetric problems. We can apply a simple symmetrization algorithm:

Algorithm 2.2 (Symmetrized iterative method). unew “ SITERpuoldqalg:symiter

upm` 1
2

q “ upmq ` B
´

f ´ Aupmq
¯

, (2.11)

upm`1q “ upm` 1
2

q ` BT
´

f ´ Aupm` 1
2

q
¯

. (2.12)

In turn, we obtain a new iterative method

u´ upm`1q “ pI ´ BTAqpI ´ BAqpu´ upmqq “ pI ´ BAq˚pI ´ BAqpu´ upmqq.

If this new method satisfies the relation

u´ upm`1q “ pI ´ BAqpu´ upmqq,

then it has a symmetric iteration operator

B :“ B ` BT ´ BTAB “ BT pB´T ` B´1 ´ AqB “: BTKB. (2.13) eqn:Bsym
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lem:decay Lemma 2.11 (Error decay property). We have, for any v P V , that

›

›v
›

›

2

A ´
›

›pI ´ BAqv
›

›

2

A “
`

BAv, v
˘

A,

or equivalently,
`

pI ´ BAqv, v
˘

A “
›

›pI ´ BAqv
›

›

2

A.

Proof. Notice that, by the definition of symmetrization,

BA “ BT pB´T ` B´1 ´ AqBA.

This immediately gives

pBAv, vqA “
`

pB´T ` B´1 ´ AqBAv,BAv
˘

“ pBAv,Avq ` pAv,BAvq ´ pABAv,BAvq

“
`

p2I ´ BAqv,BAv
˘

A

and the first equality follows immediately. The second equality is trivial.

Remark 2.12 (Effects of symmetrization). We notice that BT
“ B and pI ´ BAq˚ “ I ´ BA.

Furthermore, Lemma 2.11 shows that
`

pI ´ BAqv, v
˘

A “ }pI ´ BAqv}2A, @v P V . Since I ´ BA
is self-adjoint w.r.t. p¨, ¨qA, we have }I ´ BA}A “ ρpI ´ BAq. And as a consequence,

}I ´ BA}A “ sup
}v}A“1

`

pI ´ BAqv, v
˘

A “ sup
}v}A“1

}pI ´ BAqv}2A “ }I ´ BA}2A. (2.14) eqn:Bsym_B

Furthermore, we have obtained the following identity:

ρpI ´ BAq “ }I ´ BA}A “ sup
vPV zt0u

`

pI ´ BAqv, v
˘

A
}v}2A

. (2.15) eqn:rate1

The above two equations immediately give

ρpI ´ BAq “ }I ´ BA}A “ }I ´ BA}2A ě ρpI ´ BAq2.

Hence, if the symmetrized method (2.11)–(2.12) converges, then the original method (2.3) also

converges; the opposite direction might not be true though (see Example 2.14).

We can also easily obtain a contraction property of the symmetrized iteration. In Lemma 2.11,

we have already seen that

›

›pI ´ BAqv
›

›

2

A “
›

›v
›

›

2

A ´
`

BAv,Av
˘

.

Hence,
›

›I ´ BA
›

›

A ă 1 if and only if B is SPD. Hence we have the following theorem.

thm:symconv Theorem 2.13 (Convergence of Symmetrized Algorithm). The symmetrized iteration in Algo-

rithm 2.2 is convergent if and only if B is SPD.
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Proof. First of all, we notice that

I ´ BA “ pI ´ BTAqpI ´ BAq “ A´ 1
2 pI ´ A 1

2BTA 1
2 qpI ´ A 1

2BA 1
2 qA 1

2 ,

which has the same spectrum as the operator pI´A 1
2BTA 1

2 qpI´A 1
2BA 1

2 q. Hence, all eigenvalues

of I ´ BA are non-negative, i.e., λ ď 1 for all λ P σpBAq.

The convergence of Algorithm 2.2 is equivalent to ρpI´BAq ă 1. Since σpI´BAq “ t1´λ :

λ P σpBAqu, it follows that Algorithm 2.2 converges if and only if σpBAq Ď p0, 2q. Therefore,

the convergence of (2.11)–(2.12) is equivalent to σpBAq Ď p0, 1s, i.e., BA is SPD w.r.t. p¨, ¨qA.

Hence the result.

Ex:ConvBbar Example 2.14 (Convergence of B and B iterators). Note that even if B is not SPD, i.e., B does

not give a convergent method, the method defined by B could still converge. For example, if

A “

«

1 0

0 1

ff

, B “

«

1 ´2

0 1

ff

, and I ´BA “

«

0 2

0 0

ff

,

then we have

B “

«

1 0

0 ´3

ff

and I ´BA “

«

0 0

0 4

ff

.

Hence ρpI ´ BAq “ 0 ă 4 “ ρpI ´ BAq. Apparently, the iterator B converges but B does

not.

2.1.4 Convergence rate of stationary iterative methods

The stationary iterative method defined by B is a contraction if }I ´ BA}A ď δ0 ă 1.

Apparently, it is equivalent to say

›

›e
›

›

2

A ´
›

›pI ´ BAqe
›

›

2

A ě p1 ´ δ20q
›

›e
›

›

2

A ą 0, @e ‰ 0.

Lemma 2.11 indicates that δ :“ }I ´BA}A ă 1 if and only if B is SPD. The constant δ is known

as the contraction factor of the iterative method.

From now on, we will consider only symmetric positive definite (SPD) iterates B. Nevertheless,
even for non-symmetric iterates, one could examine their symmetrized counterpart.

Based on the identity (2.15), we can prove the convergence rate estimate:

thm:rate Theorem 2.15 (Convergence rate). If B is SPD, the convergence rate of the stationary iterative

method (or its symmetrization) is

}I ´ BA}2A “ }I ´ BA}A “ 1 ´
1

c1
, with c1 :“ sup

}v}A“1
pB´1

v, vq.
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Proof. The first equality is directly from (2.14). Since ppI ´BAqv, vqA “ }v}2A ´ pBAv, vqA, the

identity (2.15) yields

}I ´ BA}2A “ 1 ´ inf
}v}A“1

pBAv, vqA “ 1 ´ λminpBAq “ 1 ´
1

c1
,

where

c1 “ λmaxppBAq´1q “ sup
}v}A“1

`

pBAq´1v, v
˘

A “ sup
}v}A“1

`

B´1
v, v

˘

.

Consequently, the second equality of the theorem is proved.

ex:dJacobi Example 2.16 (Convergence of weighted Jacobi methods). If A P RNˆN is SPD and it can be

partitioned as A “ L ` D ` U , where L,D,U P RNˆN are lower triangular, diagonal, upper

triangular parts of A, respectively. We can immediately see that B “ D´1 yields the Jacobi

method. In this case, we have

B “ BT pB´T `B´1 ´AqB “ D´T pD ´ L´ UqD´1.

If KJacobi :“ D´L´U “ 2D´A is SPD, the Jacobi method converges. In general, it might not

converge, but we can apply an appropriate scaling (i.e., the damped Jacobi method) Bω “ ωD´1.

We then derive

B´T
ω `B´1

ω ´A “ 2ω´1D ´A.

The damping factor should satisfy that ω ă 2
ρpD´1Aq

in order to guarantee convergence. For the

1D finite difference problem arising from discretizing the Poisson’s equation, we should use a

damping factor 0 ă ω ă 1.

2.1.5 Gradient descent method ‹

Let A : V ÞÑ V be an SPD operator. Consider the following convex minimization problem:

min
uPV

Fpuq :“
1

2
pAu, uq ´ pf, uq. (2.16) eqn:minform

Suppose we have an initial approximation uold and construct a new approximation

unew “ uold ` αp

with a fixed search direction p P V and a stepsize α. In order to find the “best possible” stepsize,

we can solve an one-dimensional problem (i.e., the exact line-search method):

min
αPR

Fpαq :“
1

2

`

uold ` αp, uold ` αp
˘

A ´ pf, uold ` αpq.

By simple calculation (HW 2.3), we obtain

Fpαq :“
1

2
α2pAp, pq ´ αpf ´ Auold, pq `

1

2

`

Auold, uold
˘

´ pf, uoldq,
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and the optimal stepsize is

αopt “
pf ´ Auold, pq

pAp, pq
“

prold, pq

pAp, pq
, with rold “ f ´ Auold. (2.17) eqn:optimalstep

In the previous chapter, we have discussed the Richardson method. A nonstationary version

of the Richardson method can be given as:

upm`1q “ upmq ` αm

`

f ´ Aupmq
˘

,

which can be viewed as the gradient descent or steepest descent (SD) method with exact line-

search for the above convex minimization problem.

Remark 2.17 (Richardson and steepest descent method). If A is a SPD matrix, then Au⃗ “ f⃗

is equivalent to the unconstrained quadratic minimization problem

argmin
u⃗PRN

1

2
u⃗TAu⃗´ f⃗ T u⃗.

We immediately notice that the search direction in the Richardson method is exactly the same

as the steepest decent method for the above minimization problem.

The SD method is both straightforward to implement and computationally inexpensive, with

each step only necessitating one matrix-vector multiplication and two inner products. Unfortu-

nately, this method typically converges rather slowly. The subsequent algorithm description of

the SD method illustrates this point:

Listing 2.1: Steepest descent method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´ Au;

3 while }r} ą ε

4 α Ð pr, rq{pAr, rq;

5 u Ð u ` α r;

6 r Ð r ´ αAr;

7 end

ex:relax Example 2.18 (Line-search and the G-S method). Let V “ RN , A “ pai,jq P RNˆN . Suppose

we choose the natural basis as the search directions, i.e., p⃗ “ e⃗i :“ p0, . . . , 0, 1, 0, . . . , 0qT P V .

Let u⃗ old “ u⃗ p0q be an initial guess. Then the above method yields the iteration:

u⃗ piq “ u⃗ pi´1q ` αp⃗ “ u⃗ pi´1q `
pr⃗ pi´1q, p⃗q

pAp⃗, p⃗q
p⃗ “ u⃗ pi´1q `

pr⃗ pi´1q, e⃗iq

pAe⃗i, e⃗iq
e⃗i.

So we get

u⃗ piq “ u⃗ pi´1q `
fi ´

řN
j“1 ai,j u

pi´1q

j

ai,i
e⃗i.
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This means that only one entry is updated in each iteration:

u new
i “ u

pi´1q

i `
fi ´

řN
j“1 ai,j u

pi´1q

j

ai,i
“

1

ai,i

´

fi ´
ÿ

jăi

ai,ju
new
j ´

ÿ

jąi

ai,ju
old
j

¯

. (2.18) eqn:GSiter

After N steps (i “ 1, 2, . . . , N), we obtain a new iteration u⃗new, which is exactly the G-S

iteration.

ex:GS-Schwarz Remark 2.19 (The G-S method and Schwarz method). Based on (2.18), we can write the G-S

error propagation matrix in a different form

I ´BA “ pI ´ INa
´1
N,NI

T
NAq ¨ ¨ ¨ pI ´ I1a

´1
1,1I

T
1 Aq “ pI ´ ΠN q ¨ ¨ ¨ pI ´ Π1q, (2.19) eqn:GSoper

where Ii is the natural embedding from spante⃗iu to RN and Πi “ IiA
´1
i ITi A. This form of G-S

will be further discussed later in the framework of Schwarz method and subspace correction

method.

Theorem 2.20 (Convergence rate of steepest descent method). If we apply the exact line-search

with the stepsize

αm :“

`

rpmq, rpmq
˘

`

rpmq, rpmq
˘

A
,

then the convergence rate of the SD method satisfies that

›

›u´ upmq
›

›

A ď

ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›u´ up0q
›

›

A. (2.20) eqn:rateSD

Proof. The exact line-search stepsize is easy to obtain by 1D quadratic programming. At the

m-th iteration, the energy functional satisfies that

Fpupm`1qq “ Fpupmq ` αmr
pmqq “ Fpupmqq ´ αmprpmq, rpmqq `

1

2
α2
mpArpmq, rpmqq.

By plugging the expression of αm into the right-hand side of the above equality, we obtain that

Fpupm`1qq “ Fpupmqq ´
1

2

prpmq, rpmqq2

pArpmq, rpmqq
.

This implies that

Fpupm`1qq ´ Fpuq

Fpupmqq ´ Fpuq
“

Fpupmqq ´
prpmq, rpmqq2

2pArpmq, rpmqq
´ Fpuq

Fpupmqq ´ Fpuq

“ 1 ´
prpmq, rpmqq2

pArpmq, rpmqqpA´1rpmq, rpmqq
“: 1 ´

1

β

By the Kantorovich inequality [146], we know β ď
pλmax`λminq2

4λmaxλmin
. So it follows

Fpupm`1qq ´ Fpuq

Fpupmqq ´ Fpuq
“ 1 ´

1

β
ď 1 ´

4λmaxλmin

pλmax ` λminq2
“

pλmax ´ λminq2

pλmax ` λminq2
“

ˆ

κpAq ´ 1

κpAq ` 1

˙2

.

Hence the result.
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The Kantorovich inequality is a fundamental tool that is used in the study of the convergence

properties of descent methods. It provides an upper bound on the difference between two

functions that are close to each other, in terms of their derivatives. This inequality is often

used in the analysis of gradient descent methods, which are commonly used in optimization to

find the minimum of a function. By providing a bound on the difference between the objective

function and its approximation, the Kantorovich inequality helps to establish the rate at which

the algorithm converges to the optimum.

2.2 Krylov subspace methods
sec:KSM

Nonstationary iterative methods are generally favored as standalone solvers in practical

applications. One prominent class of nonstationary methods is the Krylov subspace method

(KSM) [99]. This section mainly follows the discussions in [197]. Suppose A : V ÞÑ V is an

invertible operator. According to the Cayley–Hamilton theorem (HW 2.4), there exists a PN´1

polynomial qN´1pλq of degree not exceeding N ´ 1 such that A´1 “ qN´1pAq. As a result, the

solution u of the linear system can be expressed as u “ qN´1pAqf . Krylov subspace methods

formulate iterative approximations to u in

Km “ KmpA, fq :“ spantf,Af,A2f, . . . ,Am´1fu, m “ 1, 2, . . .

The Krylov subspace method is particularly useful for solving systems of equations where the

coefficient matrix is too large to be stored explicitly and must be applied to vectors using matrix-

vector multiplication. This method can be used for both nonsymmetric and symmetric matrices.

The most commonly used Krylov subspace method is the Conjugate Gradient (CG) method,

which is particularly effective for symmetric and positive definite matrices.

Finding a suitable approximation for u in KmpA, fq efficiently is essential for practical appli-

cations. However, the definition of a “good” approximation varies depending on the specific

problem and desired properties of the solution. Therefore, various approaches have been pro-

posed to define the optimal approximation. The selection of criterion and method involves a

trade-off between accuracy, efficiency, stability, and so on.

2.2.1 Arnoldi method

We now assume that the linear operator A is applied to a vector v P V over and over again:

vp0q “ v, vp1q “ Avp0q “ Av, . . . vpm´1q “ Avpm´2q “ Am´1v
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and the sequence tvp0q, vp1q, . . . , vpmq, . . .u is the so-called Krylov sequence. As we mentioned

earlier, the Krylov subspace is defined

KmpA, vq :“ spantv,Av,A2v, . . . ,Am´1vu “ spantvp0q, vp1q, vp2q, . . . , vpm´1qu.

Apparently, we have KmpA, vq “ tppAqv : p P Pm´1u; see HW 2.5. The corresponding matrix

form

KmpA, vq :“
“

v,Av,A2v, . . . ,Am´1v
‰

“

”

vp0q, vp1q, vp2q, . . . , vpm´1q
ı

.

is referred to as the Krylov matrix .

Remark 2.21 (Instability of the Krylov matrix). It is easy to see that, if we normalize each vec-

tor vpmq, then the Krylov sequence is just the Power iteration, which converges to the eigenvector

corresponding to the maximal eigenvalue of A. However, this can result in linear dependence

among the vectors in the Krylov sequence, leading to numerical instability during iteration. We

also note that, if pλ, vq is an eigen-pair of A, then

KmpA, vq “ K1pA, vq, m “ 2, 3, . . .

The Krylov subspace will not expand any longer.

Special care must be taken to address numerical instabilities for constructing the Krylov subspace

and ensure the reliability and accuracy of the results.

Remark 2.22 (Characteristic polynomial). The characteristic polynomial of A can be written

as

|λI ´ A| :“ λN ` αN´1λ
N´1 ` ¨ ¨ ¨ ` α1λ` α0.

From the Cayley–Hamilton theorem, we can obtain that

AN ` αN´1AN´1 ` ¨ ¨ ¨ ` α1A ` α0 “ 0

and, hence,

vpNq ` αN´1v
pN´1q ` ¨ ¨ ¨ ` α1v

p1q ` α0v
p0q “ 0.

Suppose that the Krylov matrix has full column-rank. We apply the QR factorization to the

Krylov matrix such that

KmpA, vq “ QmRm,

where Qm P RNˆm and QT
mQm “ I, Rm P Rmˆm is a nonsingular upper triangular matrix. We

notice that

KmpA, vq “ rangepQmq “ spantq1, q2, . . . , qmu.

That is to say, the columns of Qm forms an orthonormal basis of KmpA, vq.
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Theorem 2.23 (Arnoldi decomposition). Given A P RNˆN and 0 ‰ v P RN . If Km`1pA, vq has

full column rank and Qm`1 is the Q-factor of the QR-factorization of Km`1pA, vq, then there

exists an irreducible upper Hessenberg matrix H̄m P Rpm`1qˆm such that

AQm “ Qm`1H̄m. (2.21) eqn:Arnoldi

Proof. Since KmpA, vq “ QmRm, we have

“

Av,A2v, . . . , Amv
‰

“ AKmpA, vq “ AQmRm.

On the other hand,

rv,AKmpA, vqs “ Km`1pA, vq “ Qm`1Rm`1.

By comparing the last m columns of the above two matrices, we obtain that

AQmRm “ Qm`1H̃m,

where H̃m :“ Rm`1p:, 2 : m ` 1q P Rpm`1qˆm is the last m columns of Rm`1. Apparently, H̃m

is irreducible and upper Hessenberg since Rm`1 is nonsingular and upper triangular. Hence we

can obtain (2.21) with H̄m :“ H̃mR
´1
m which is also irreducible and upper Hessenberg.

Remark 2.24 (Practical form of the Arnoldi decomposition). The irreducible upper Hessenberg

matrix H̄m P Rpm`1qˆm can be rewritten as

H̄m “

«

Hm

βme
T
m

ff

.

This gives us a more useful form of the Arnoldi decomposition (2.21), i.e.,

AQm “ QmHm ` βmqm`1e
T
m, (2.22) eqn:Arnoldi1

which provides an iterative scheme to construct Qm`1. By multiplying QT
m on both sides, we

can obtain that

Hm “ QT
mAQm. (2.23) eqn:RayleighQuotient

Using the Arnoldi decomposition (2.22), we find that the last columns on both sides are

Aqm “ Qmhm ` βmqm`1.

And by looking at the right-hand side of (2.23), we get hm “ QT
mAqm. With the help of this

relation, we can obtain the next iteration

βmqm`1 “ Aqm ´Qmhm,
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where

βm :“ }Aqm ´Qmhm}0

and

qm`1 :“ pAqm ´Qmhmq{βm.

This is actually the Gram-Schmidt (GS) orthogonalization. To improve stability, people usually

employ a modified procedure (MGS) in practice, which gives the well-known Arnoldi method3.

Listing 2.2: Arnoldi method with MGS

1 %% Given a normalized vector q1 with }q1}0 “ 1 and the iteration number m;

2 for j “ 1, 2, . . . ,m

3 w Ð Aqj;

4 hij Ð pw, qiq, w Ð w ´ hijqi, i “ 1, 2, . . . , j;

5 hj`1,j “ }w}0;

6 if hj`1,j “ 0

7 m Ð j, break;

8 end

9 qj`1 Ð w{hj`1,j;

10 end

2.2.2 Lanczos method

The Lanczos method is an iterative numerical method for solving large symmetric matrices.

The Lanczos method works by finding an orthonormal basis for the Krylov subspace generated

by successive multiplication of a starting vector with the given matrix. To do this, the method

repeatedly computes the matrix-vector product of the matrix and the current Krylov basis

vector, and then orthogonalizes the resulting vector with respect to the previous vectors in the

Krylov subspace using the Gram-Schmidt process.

If A P RNˆN is symmetric, the left-hand side of (2.23) simplifies to a tridiagonal matrix

Hm “ QT
mAQm “ Tm :“

»

—

—

—

—

—

–

α1 β1

β1 α2
. . .

. . .
. . . βm´1

βm´1 αm

fi

ffi

ffi

ffi

ffi

ffi

fl

Correspondingly, we have the so-called Lanczos decomposition

AQm “ QmTm ` βmqm`1e
T
m. (2.24) eqn:Lanczos1

3Another approach is to use the Householder transformation to further improve stability, but it usually comes
with larger computational cost.
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Hence we have

Aq1 “ α1q1 ` β1q2

Aqj “ βj´1qj´1 ` αjqj ` βjqj`1, j “ 2, 3, . . . ,m

According to the orthogonality of the columns of Qm, this procedure can be written as the

following Lanczos method.

Listing 2.3: Lanczos method

1 %% Given a normalized vector q1 with }q1}0 “ 1 and the iteration number m;

2 β0 Ð 0, q0 Ð 0;

3 for j “ 1, 2, . . . ,m

4 w Ð Aqj;

5 αj Ð pw, qjq;

6 w Ð w ´ αjqj ´ βj´1qj´1;

7 βj “ }w}0;

8 if βj “ 0

9 m Ð j, break;

10 end

11 qj`1 Ð w{βj;

12 end

For non-symmetric matrices, the Lanczos method can provide a pair of biorthogonal bases

for two subspaces:

KmpA, vq :“ spantv,Av, . . . ,Am´1vu

and

KmpAT , wq :“ spantw,Aw, . . . ,Am´1wu.

In this case,

Tm “

»

—

—

—

—

—

–

α1 β1

δ1 α2
. . .

. . .
. . . βm´1

δm´1 αm

fi

ffi

ffi

ffi

ffi

ffi

fl

.

In this procedure, we will have to store two sets of basis instead of one set as in the Arnoldi’s

algorithm. A more serious issue of the Lanczos algorithm for non-symmetric matrices is the

potential risk of breakdown. When pvj , wjq « 0, in which case the algorithm stops without

finding a good affine space that is close to contain the true solution.
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2.2.3 Conjugate gradient method

We first consider an SPD linear operator A. Now we apply a descent direction method with

search direction ppmq, i.e.

upm`1q “ upmq ` αmp
pmq. (2.25) eqn:descent

In this case, the “optimal” stepsize from the exact line-search is

αm :“

`

rpmq, ppmq
˘

`

ppmq, ppmq
˘

A
. (2.26) eqn:alpha

We notice that the residual after one iteration is

rpm`1q “ rpmq ´ αmAppmq.

In order to keep the iteration going, we wish to construct a new search direction which is

orthogonal to the previous search directions. This motives us to define

ppm`1q :“ rpm`1q ` βmp
pmq, such that

`

ppmq, ppm`1q
˘

A “ 0.

By simple calculations, we get the weight

βm :“ ´

`

Arpm`1q, ppmq
˘

`

Appmq, ppmq
˘ . (2.27) eqn:beta

This gives the so-called conjugate gradient (CG) method.

lem:cg1 Lemma 2.25 (Properties of conjugate directions). For any conjugate gradient step i, we have

following identities:

1.
`

rpiq, ppiq
˘

“
`

rpiq, rpiq
˘

;

2.
`

rpjq, ppiq
˘

“ 0, j ą i;

3.
`

ppjq, ppiq
˘

A “ 0, j ‰ i;

4.
`

rpjq, rpiq
˘

“ 0, j ‰ i.

This lemma is very simple but important; see HW 2.7. It guarantees we can apply a short

recurrence iteration procedure while keep all directions are orthogonal to each other.

lem:cg2 Lemma 2.26 (Stepsizes for CG). For the conjugate gradient method, we have the following

identities:

αm “

`

rpmq, rpmq
˘

`

Appmq, ppmq
˘

and βm “

`

rpm`1q, rpm`1q
˘

`

rpmq, rpmq
˘

.
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The previous lemma may look like some trivial transformations, but it is essential for CG

implementation, which is described as follows:

Listing 2.4: Conjugate gradient method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´ Au, p Ð r;

3 while }r} ą ε

4 α Ð pr, rq{pAp, pq;

5 ũ Ð u ` αp;

6 r̃ Ð r ´ αAp;

7 β Ð pr̃, r̃q{pr, rq;

8 p̃ Ð r̃ ` β p;

9 Update: u Ð ũ, r Ð r̃, p Ð p̃;

10 end

We can summarize the above CG iterative procedure as the following equations:

rp0q “ f ´ Aup0q, pp0q “ rp0q, ρ0 “ prp0q, rp0qq;

σm “ pppmq,Appmqq, αm “ ρm{σm;

upm`1q “ upmq ` αmp
pmq;

rpm`1q “ rpmq ´ αmAppmq;

ρm`1 “ prpm`1q, rpm`1qq, βm`1 “ ρm`1{ρm;

ppm`1q “ rpm`1q ` βm`1p
pmq;

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

m “ 0, 1, 2, . . .
(2.28) method:CG

Remark 2.27 (Computational complexity of CG). We find that, in each iteration of the CG

method, the complexity is only 1 matrix-vector multiplication and 2 inner products, with a few

vector additions.

Remark 2.28 (From Lanczos to CG). If we want to find the best approximation of u in the

Krylov subspace KmpA, fq with respect to the A-norm (assuming initial guess up0q “ 0), it is

equivalent to find upmq P KmpA, fq such that

vT pf ´ Aupmqq “ 0, @v P KmpA, fq;

see HW 2.6. The Lanczos method starting from q1 :“ f{}f}0 is associated with the Q-factor

Qm whose columns is an orthonormal basis of KmpA, fq. That is equivalent to find ym P Rm

and upmq “ Qmym such that

QT
mpf ´ Aupmqq “ QT

mpf ´ AQmymq “ 0.

Notice that Tm “ QT
mAQm. It is then equivalent to solve a symmetric tridiagonal linear system

Tm ym “ }f}0e1.
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Since Tm is SPD, there exists a LU decomposition, which can be computed without pivoting.

Then we can write the approximate solution

upmq “ QmU
´1
m L´1

m }f}0e1,

in which Lm has unit diagonal entries. In turn, we need to solve, using substitution, the

equations:

Lm ym “ }f}0e1, Pm Um “ Qm, upmq “ Pm ym.

This will give rise to the conjugate gradient method as well [166].

rem:CG-poly Remark 2.29 (Polynomial form of CG). It is straightforward to check that, for the CGmethod,

Km`1pA, rp0qq “ span
!

rp0q, rp1q, . . . , rpmq
)

“ span
!

pp0q, pp1q, . . . , ppmq
)

and pp0q “ rp0q. By examining the CG method (2.28), we find that there exist two polynomials

ϕm, ψm P Pm, such that

rpmq “ ϕmpAq rp0q, ppmq “ ψmpAq pp0q “ ψmpAq rp0q.

From the above equation, we can see that, to get a convergent method, ϕmpAq must be a

contraction in some sense. By setting ϕ0 “ 1 and ψ´1 “ 0, we have the iterations

ϕm`1 “ ϕm ´ αm t ψm, ψm “ ϕm ` βm ψm´1.

Define a bilinear form rϕ ¨ ψs :“
`

ϕpAqrp0q, ψpAq rp0q
˘

“ rp0qT ϕpAqψpAq rp0q. Using these

notation, we have a polynomial form of the CG method:

ϕ0 “ 1, ψ´1 “ 0, ρ´1 “ 1;

ρm “ rϕm ¨ ϕms, βm “ ρm{ρm´1;

ψm “ ϕm ` βmψm´1;

σm “ rψm ¨ tψms, αm “ ρm{σm;

ϕm`1 “ ϕm ´ αmtψm;

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

m “ 0, 1, 2, . . .
(2.29) method:CG-poly

Based on Lemma 2.25, we notice that rϕi ¨ ϕjs “ ρiδij and rψi ¨ tψjs “ σiδij .

The CG method has been proven to converge significantly faster than the steepest descent

method in practice, as demonstrated by the following theorem.

Theorem 2.30 (Convergence rate of CG). The convergence rate of the CG iteration satisfies

the following estimate:

›

›u´ upmq
›

›

A ď 2

˜

a

κpAq ´ 1
a

κpAq ` 1

¸m
›

›u´ up0q
›

›

A. (2.30) eqn:rateCG
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Proof. We only give a sketch of proof here. From Lemma 2.25, the residual rpmq is orthogonal

to

Km “ spantrp0q,Arp0q, . . . ,Am´1rp0qu,

namely

pApu´ upmqq, vq “ prpmq, vq “ 0, @v P Km.

This implies
`

pu´ up0qq ´ pupmq ´ up0qq, v
˘

A “ 0, @v P Km.

The above A-orthogonality gives

›

›

›
u´ upmq

›

›

›

A
“ min

wPKm

›

›

›
u´ up0q ´ w

›

›

›

A
“ min

qm´1

›

›

›
u´ up0q ´ qm´1pAqrp0q

›

›

›

A

“ min
qm´1

›

›

›

`

I ´ qm´1pAqA
˘

pu´ up0qq

›

›

›

A
“ min

qmp0q“1

›

›

›
qmpAqpu´ up0qq

›

›

›

A
.

The desired estimate can then be obtained by choosing appropriate Chebyshev polynomials; see

HW 2.8 as a guideline to complete the proof.

If the eigenvalues of A are distributed uniformly in the range rλmin, λmaxs, the upper bound

stated in (2.30) is proven to be optimal. Notably, a few isolated poor eigenvalues barely affect

the asymptotic convergence of the CG method. However, in such cases, the bound (2.30) is

no longer sharp, and the rate of asymptotic convergence can instead be approximated by the

effective condition number [7, 8].

rem:EffCondNum Remark 2.31 (Effective condition number). If the spectrum of A can be decomposed into two

parts, σpAq “ σeffpAq
Ť

σisopAq, with m0 isolated eigenvalues in σisopAq. In this case, the above

convergence estimate for CG can be modified as

}u´ upmq}A
}u´ up0q}A

ď 2C

˜

a

b{a´ 1
a

b{a` 1

¸m´m0

, m ě m0 (2.31) eqn:rateCG2

where the constant

C :“ max
λPσeffpAq

ź

µPσisopAq

ˇ

ˇ

ˇ

ˇ

1 ´
λ

µ

ˇ

ˇ

ˇ

ˇ

ď
`

κpAq ´ 1
˘m0 .

In particular, C ď 1 if σiso contains only isolated large eigenvalues. Therefore, we can define the

effective condition number as

κeffpAq :“
b

a
“

maxσeff
minσeff

and use the effective condition number to estimate the rate of convergence of the Krylov subspace

methods instead.
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rem:NCG Remark 2.32 (Nonlinear conjugate gradient). By considering minimization of a more general

functional Fp¨q over a quadratic functional, steepest descent directions based search directions

can still be used. The Flecther-Reeves formula and related methods can be utilized for β

parameters, while a line search algorithm can be applied for α stepsizes.

2.2.4 Some variants of CG method ‹

In large-scale parallel computation, we often need to minimize communication costs asso-

ciated with the inner products needed in the CG method. Here we introduce two variants of

the CG method, namely the pipelined CG method (communication-hiding) and the s-step CG

method (communication-avoiding). The general idea is to reduce cost of communications and

synchronisations by avoiding communications or overlapping communications with computation.

These kinds of techniques are very important for communication-bounded algorithms.

Listing 2.5: Pipelined conjugate gradient method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´ Au, p Ð r;

3 s Ð A p, w Ð A r, z Ð Aw;

4 α Ð pr, rq{pp, sq;

5 while }r} ą ε

6 ũ Ð u ` αp;

7 r̃ Ð r ´ αs;

8 w̃ Ð w ´ αz;

9 z̃ Ð A w̃; %% SpMV, asymc

10 β Ð pr̃, r̃q{pr, rq;

11 α Ð
pr̃,r̃q

pw,rq´pβ{αqpr̃,r̃q
;

12 p̃ Ð r̃ ` β p;

13 s̃ Ð w̃ ` β s;

14 z̃ Ð z̃ ` β z; %% Results of SpMV needed here!

15 Update: u Ð ũ, r Ð r̃, p Ð p̃, w Ð w̃, s Ð s̃, z Ð z̃;

16 end

Listing 2.6: s-Step conjugate gradient method

1 %% Given an initial guess u1 and a tolerance ε;

2 r1 Ð f ´ Au1;

3 for k = 0:MaxIter

4 for j = 1:s

5 wsk`j Ð A rsk`j; %% P2P communication

6 µsk`j Ð prsk`j , rsk`jq; %% Test for convergence; All reduce

7 νsk`j Ð pwsk`j , rsk`jq;

8 γsk`j Ð µsk`j{νsk`j;

9 if sk ` j ““ 1

10 ρsk`j Ð 1;
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11 else

12 ξ1 Ð γsk`j{γsk`j´1;

13 ξ2 Ð µsk`j{µsk`j´1;

14 ρsk`j Ð p1 ´ ξ1ξ2{ρsk`j´1q
´1;

15 end

16 xsk`j`1 Ð ρsk`jpxsk`j ` γsk`jrsk`jq ` p1 ´ ρsk`jqxsk`j´1;

17 rsk`j`1 Ð ρsk`jprsk`j ´ γsk`jwsk`jq ` p1 ´ ρsk`jqrsk`j´1;

18 end

19 end

2.2.5 Minimal residual methods

We first examine the scenario where A : V ÞÑ V is an indefinite symmetric isomorphism. In

this case, a technique akin to the previously discussed Lanczos method can be employed. This

Krylov subspace method is characterized by up0q “ 0 4 and

upmq “ argmin
vPKmpA,fq

}f ´ Av}20.

In this case, the Lanczos decomposition (2.24) reads

AQm “ Qm`1T̄m,

where Qm P RNˆm is the Q-factor of the Krylov matrix and

T̄m :“

»

—

—

—

—

—

—

—

—

—

—

–

α1 β1

β1 α2 β2
. . .

. . .
. . .

βm´2 αm´1 βm´1

βm´1 αm

βm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rpm`1qˆm.

Assume that β0 :“ }f}0
5 and upmq “ Qmym with ym P Rm. We have

}f ´ Aupmq}0 “ }f ´ AQmym}0 “ }β0Qm`1e1 ´Qm`1T̄mym}0 “ }β0e1 ´ T̄mym}0.

Hence we need to find ym P Rm such that

}β0e1 ´ T̄mym}0 “ min
␣

}β0e1 ´ T̄my}0 : y P Rm
(

.

4For simplicity, we assume a zero initial guess, but note that it is not a necessary condition.
5Note that we are using the zero initial guess.
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We can apply the Givens transforms on the upper Hessenberg matrix T̄m to obtain an upper

triangular matrix

GmGm´1 ¨ ¨ ¨G2G1T̄m “

«

Rm

0

ff

, and Rm “

»

—

—

—

—

—

—

—

—

–

γ1 δ1 ε1

γ2 δ2
. . .

. . .
. . . εm´2

γm´1 δm´1

γm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rmˆm.

Here the Givens transform has the following form

Gi :“

»

—

—

—

—

—

–

Ii´1 0 0 0

0 ci si 0

0 ´si ci 0

0 0 0 Im´i

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rpm`1qˆpm`1q (2.32) eqn:Givens

and G :“ GmGm´1 ¨ ¨ ¨G2G1. In the Lanczos method, βi ‰ 0; this implies γi ‰ 0 and hence Rm

is nonsingular.

By the above definition, we have

Gpβ0e1q “

«

ζm

ρm

ff

, ζm “

»

—

—

–

z1
...

zm

fi

ffi

ffi

fl

.

Actually, it is easy to check that

z1 “ β0c1,

zi “ p´1qi´1β0s1s2 ¨ ¨ ¨ si´1ci, i “ 2, 3, . . . ,m (2.33) eqn:tau_rho

ρm “ p´1qmβ0s1s2 ¨ ¨ ¨ sm.

We then have

›

›T̄mym ´ β0e1
›

›

2

0
“
›

›GT̄my ´Gβ0e1
›

›

2

0
“

›

›

›

›

›

«

Rm

0

ff

y ´

«

ζm

ρm

ff›

›

›

›

›

2

0

“
›

›Rmy ´ ζm
›

›

2

0
` ρ2m.

This means that ym “ R´1
m ζm and

upmq “ Qmym “ QmR
´1
m ζm

gives the so-called minimum residual (MINRES) method. Apparently, this form of the MINRES

method is not efficient because it is expensive to store Qm. The practical implement of MINRES

is based on the following observations.
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Suppose that Qm is known. Let Pm :“ QmR
´1
m and hence PmRm “ Qm. Then it is easy to

check

γ1 p1 “ q1,

δ1 p1 ` γ2 p2 “ q2,

εj´2 pj´2 ` δj´1 pj´1 ` γj pj “ qj , j “ 3, 4, . . . ,m

and it can be solved as

p1 “ q1{γ1,

p2 “
`

q2 ´ δ1 p1
˘

{γ2,

pj “
`

qj ´ δj´1 pj´1 ´ εj´2 pj´2

˘

{γj , j “ 3, 4, . . . ,m

We can also easily see that

T̄m`1 “

«

T̄m t̄m`1

0 βm`1

ff

P Rpm`2qˆpm`1q with t̄m`1 :“

»

—

—

—

—

—

—

—

—

–

0
...

0

βm

αm`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rm`1.

And using the Givens transformation, we wish to obtain

Rm`1 “

«

Rm rm`1

0 γm`1

ff

P Rpm`1qˆpm`1q with rm`1 :“

»

—

—

—

—

—

—

—

—

–

0
...

0

εm´1

δm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rm.

By some calculations, we get

εm´1 “ sm´1βm,

β̂m “ cm´1βm,

δm “ cmβ̂m ` smαm`1,

α̂m`1 “ ´smβ̂m ` cmαm`1,
«

γm`1

0

ff

“

«

cm`1 sm`1

´sm`1 cm`1

ff«

α̂m`1

βm`1

ff

.

Furthermore, from (2.33), we have

zm`1 “ ρmcm`1, ρm`1 “ ´ρmsm`1.
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And we have already showed that

pm`1 “
`

qm`1 ´ δm pm ´ εm´1 pm´1

˘

{γm`1

and, in turn,

upm`1q “ Pm`1ζm`1 “

”

Pm pm`1

ı

«

ζm

zm

ff

“ upmq ` zm`1 pm`1.

This is the practical MINRES method which only requires to store five vectors upmq, pm, pm´1,

qm`1, and qm in order to compute the new iteration upm`1q.

Remark 2.33 (Convergence of minimum residual method). We can derive analytically that

(see, for example, [99])
›

›rpmq
›

›

0
ď min

qmp0q“1
max
λPσpAq

|qmpλq|
›

›rp0q
›

›

0

In this case, the following crude convergence estimate holds

›

›rpmq
›

›

0
“
›

›Apu´ upmqq
›

›

0
ď 2

ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›Apu´ up0qq
›

›

0
“ 2

ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›rp0q
›

›

0
. (2.34) eqn:rateMINRES

If all the eigenvalues are positive, we can get sharp convergence estimate using Chebyshev

polynomials. Unfortunately, it is not easy to get a general yet sharp estimate for indefinite

problems.

Now if the linear operator A : V ÞÑ V is not symmetric, then we need to apply the Arnoldi

method (2.21) instead:

AQm “ QmHm ` βmqm`1e
T
m “ Qm`1H̄m.

Here Qm`1 :“ rQm, qm`1s P RNˆpm`1q satisfies QT
m`1Qm`1 “ Im`1. The upper Hessenberg

matrix

H̄m “

«

Hm

βme
T
m

ff

P Rpm`1qˆm.

Like before, we assume that β0 :“ }f}0 and upmq “ Qmym with ym P Rm. We have

}f ´ Aupmq}0 “ }f ´ AQmym}0 “ }β0Qm`1e1 ´Qm`1H̄mym}0 “ }β0e1 ´ H̄mym}0.

Then we apply the Givens transformation to H̄m to solve this least square problem. This gives

rise to the well-known GMRES method.

It is readily seen that the residual norms are monotonically nonincreasing and the GMRES

method terminates with the exact solution in at most N iterations. Unlike the MINRES method,

there is no clever way to avoid saving OpmNq vectors. Hence we cannot allow very large m.
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In practice, we choose to restart the iterative procedure with a relative small m and this is

the so-called GMRES(m) method. Note that the complexity of the GMRES method is about

Opm2Nq. This means the memory and computational costs of this iterative method will become

prohibitively high as iteration numberm increases. In practice, we have to terminate and restart

the iteration process, which is the so-called restarted GMRES method.

Remark 2.34 (Generalized minimum residual method). For general linear system, we can apply

the Krylov subspace method: Find upmq P up0q `Kmprp0qq, such that f ´Aupmq K Lm, where the

m-dimension subspace Lm Ă V is given. In GMRES method [166], for example, Lm “ AKm, in

which Km is the m-th Krylov subspace. In each iteration of GMRES, we minimize the residual

norm over all vectors in up0q ` Km.

Listing 2.7: Generalized minimum residual method

1 %% Given an initial guess u and the maximal iteration number m;

2 r Ð f ´ Au, β Ð }r}, v1 Ð r{β;

3 for j “ 1, 2, . . . ,m

4 wj Ð Avj;

5 hij Ð pwj , viq, wj Ð wj ´ hijvi, i “ 1, 2, . . . , j;

6 hj`1,j “ }wj}0;

7 if hj`1,j “ 0

8 m Ð j, break;

9 end

10 vj`1 Ð wj{hj`1,j;

11 end

12 H̄m Ð thiju1ďiďm`1,1ďjďm;

13 ym Ð argminy }βe1 ´ H̄my}0;

14 Update: u Ð u ` vpmqym;

2.2.6 Biconjugate gradient methods

We have written the CG method in a polynomial iteration form in Remark 2.29. If A is not

symmetric, we can revise the bilinear form as

xϕ ¨ ψy :“
´

ϕpAT qr̃p0q, ψpAq rp0q
¯

,
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where rp0q and r̃p0q are two initial vectors. Similar to the CG method, we can employ an iterative

scheme (the BiConjugate Gradient or BCG method):

ϕ0 “ 1, ψ´1 “ 0, ρ´1 “ 1;

ρm “ xϕm ¨ ϕmy, βm “ ρm{ρm´1;

ψm “ ϕm ` βmψm´1;

σm “ xψm ¨ tψmy, αm “ ρm{σm;

ϕm`1 “ ϕm ´ αmtψm;

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

m “ 0, 1, 2, . . .
(2.35) method:BCG-poly

This will then give

xϕi ¨ ϕjy “ ρiδij , xψi ¨ tψjy “ σiδij .

Furthermore, the BCG method results in

rpmq “ ϕmpAqrp0q, r̃pmq “ ϕmpAT qr̃p0q, qpmq “ ψmpAqrp0q, q̃pmq “ ψmpAT qr̃p0q

and

upm`1q “ upmq ` αmq
pmq, m “ 0, 1, 2, . . .

We notice that

rpmq K KmpAT , r̃p0qq.

We also notice that (see HW 2.9):

r
pmq

BCG “ ϕmpAqrp0q K KmpAT , r̃p0qq, q
pmq

BCG “ ψmpAqrp0q K ATKmpAT , r̃p0qq. (2.36) eqn:BCGorth

In the BCG method, we must compute the adjoint operator AT . To avoid this, the Conjugate

Gradient Square (CGS) method was proposed. It is based on the following observations on the

iterative procedure (2.35):

ρm “ xϕm ¨ ϕmy “ xϕ0 ¨ ϕ2my,

σm “ xψm ¨ tψmy “ xψ0 ¨ tψ2
my.

So we can define

rpmq “ ϕ2mpAq rp0q, qpmq “ ψ2
mpAq rp0q. (2.37) eqn:CGS-residual

In order to compute these vectors, we can utilize (2.35) to obtain that

ψ2
m “ pϕm ` βmψm´1q2 “ ϕ2m ` 2βmϕmψm´1 ` β2mψ

2
m´1,

ϕ2m`1 “ pϕm ´ αmtψmq2 “ ϕ2m ´ 2αmtϕmψm ` α2
mt

2ψ2
m,
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and

ϕm`1ψm “ pϕm ´ αmtψmqψm “ ϕmψm ´ αmtψ
2
m,

ϕmψm “ ϕmpϕm ` βmψm´1q “ ϕ2m ` βmϕmψm´1.

By defining

ppmq “ ϕmpAqψm´1pAq rp0q, wpmq “ ϕmpAqψmpAq rp0q,

we arrive at the following iterative scheme

wpmq “ rpmq ` βmp
pmq;

qpmq “ rpmq ` 2βmp
pmq ` β2mq

pm´1q “ wpmq ` βm
`

ppmq ` βmq
pm´1q

˘

;

ppm`1q “ wpmq ´ αmAqpmq;

rpm`1q “ rpmq ´ 2αmAwpmq ` α2
mA2qpmq “ rpmq ´ αmA

`

wpmq ` ppm`1q
˘

;

upm`1q “ upmq ` αm

`

wpmq ` qpmq
˘

;

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

m “ 0, 1, . . .

(2.38) method:CGS-poly

Remark 2.35 (CGS and BCG). In the above method, we do not need to compute AT any

more. Theoretically speaking, we should have

r
pmq

BCG “ ϕmpAqrp0q, r
pmq

CGS “ ϕ2mpAqrp0q “ ϕmpAqr
pmq

BCG,

which means CGS should converge twice as fast as BCG. However, CGS usually generates

oscillating residual }rpmq}0 in practice.

Next we will introduce the BiCGstab method, which is much more popular in many appli-

cations. Consider a method who generates residuals in the following form:

rpmq “ ϕ̃mpAqr
pmq

BCG “ ϕ̃mpAqϕmpAqrp0q,

with a polynomial ϕ̃m ‰ ϕm. Usually, it can be given as

ϕ̃0 “ 1, ϕ̃m`1ptq “ p1 ´ ωm`1tq ϕ̃mptq.

In this iterative procedure, we need to determine the coefficients tωmum“1,2,...

ϕ̃m`1ϕm`1 “ p1 ´ ωm`1tqϕ̃m pϕm ´ αmtψmq “ p1 ´ ωm`1tq
´

ϕ̃mϕm ´ αmtϕ̃mψm

¯

,

ϕ̃mψm “ ϕ̃m pϕm ` βmψm´1q “ ϕ̃mϕm ` βmp1 ´ ωmtqϕ̃m´1ψm´1.

Motivated by (2.37), we define

rpmq “ ϕ̃mpAqϕmpAq rp0q, ppmq “ ϕ̃mpAqψmpAq rp0q. (2.39) eqn:BiCGstab-residual
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In this setting, we can immediately derive that

ppmq “ rpmq ` βmpI ´ ωmAq ppm´1q,

rpm`1q “ pI ´ ωm`1Aq

´

rpmq ´ αmAppmq
¯

“ pI ´ ωm`1Aqspmq,

with spmq :“ rpmq ´αmAppmq. We retain the freedom to choose a suitable coefficient ωm`1, also

known as the stabilization parameter, by minimizing

}rpm`1q}0 “ min
ω

}pI ´ ωAqspmq}0.

This immediately gives

ωm`1 :“

`

spmq
˘T A spmq

`

spmq
˘T ATA spmq

.

Now, in order to make the iteration work, we only need to compute αm and βm. We have

αm “
ρm
σm

, βm “
ρm
ρm´1

, ρm “ xϕm ¨ ϕmy, σm “ xψm ¨ tψmy.

We have the orthogonality property (2.36). For any ψ P Pm´1, the bilinear form

xϕm ¨ ψy “

´

ψpAT qr̃p0q
¯T ´

ϕmpAqrp0q
¯

” 0, (2.40) eqn:BiCGstab1

xψm ¨ tψy “

´

ψpAT qr̃p0q
¯T

A
´

ψmpAqrp0q
¯

” 0. (2.41) eqn:BiCGstab2

Suppose that the leading term coefficients of ϕm and ϕ̃m are ξm and ηm, respectively. ξ0 “ η0 “ 1.

Using the iteration procedure, we get

ξm`1 “ ´αmξm, ηm`1 “ ´ωmηm,

and ψm has the same leading term coefficient as ϕm. Hence, ψm ´
ξm
ηm
ϕ̃m and ϕm ´

ξm
ηm
ϕ̃m are

both pm´ 1q-polynomial in Pm´1. From (2.40) and (2.41), we can easily see that

ρm “ xϕm ¨ ϕmy “ xϕm ¨
ξm
ηm

ϕ̃my, σm “ xψm ¨ tψmy “ x
ξm
ηm

ϕ̃m ¨ tψmy

We summarize the above calculations in the following lemma:

lem:bcgs2 Lemma 2.36 (Stepsizes for BiCGstab). For the BiCGstab method, we have the following iden-

tities:

αm “

`

r̃p0q, rpmq
˘

`

r̃p0q,Appmq
˘

and βm “
αm´1

ωm

`

r̃p0q, rpmq
˘

`

r̃p0q, rpm´1q
˘
.

The BiCGstab algorithm is given in the following listing. Compared to the BCG and CGS

methods, BiCGstab is known for its superior stability. It avoids computing the transpose op-

erator AT , is based on short recurrence, and only requires two matrix-vector inner products in

each iteration.
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Listing 2.8: BiCGstab method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´ Au, p Ð r;

3 Choose a fixed vector r̃0 such that ρ Ð pr̃0, rq ‰ 0

4 while }r} ą ε

5 w Ð Ap, σ Ð pr̃0, wq, α Ð ρ{σ;

6 s Ð r ´ αw, v Ð As, ω Ð ps, vq{pv, vq;

7 u Ð u ` αp ` ω s;

8 r Ð s ´ ω v;

9 ρ̃ Ð pr̃0, rq, β Ð pα ρ̃q{pω ρq;

10 p Ð r ` β pp ´ ω wq;

11 Update: ρ Ð ρ̃;

12 end

2.2.7 Generalizing KSM to Hilbert spaces ‹
ss:KSM-Hilbert

It is important to note that the above convergence estimates (2.30) and (2.34) do not depend

on the finite dimensionality N . Hence the Krylov subspace methods (KSMs) can be applied for

operators A : V ÞÑ V , where V is a separable Hilbert space6. In view of Remark 1.23, we have

}A}L pV ;V q “ sup
vPV

pAv, vq

}v}2V
“ sup

vPV

arv, vs

}v}2V
ď Ca

and the inf-sup condition (1.16) gives

}A´1}
´1
L pV ;V q

“ inf
vPV

}Av}V

}v}V
“ inf

vPV
sup
uPV

pAv, uq

}v}V }u}V
“ inf

vPV
sup
uPV

arv, us

}v}V }u}V
ě α.

Hence the condition number κpAq ď Ca{α, which is bounded.

However, in order to employ KSMs for the continuous equations that we are interested in, like

the Poisson’s equation, we have to consider A : V ÞÑ W , where V and W are both separable

Hilbert spaces. Typically, W Ą V and most likely W “ V 1. For simplicity, we consider a

symmetric isomorphism A P L pV ;V 1q, i.e.,

xAu, vy “ xAv, uy, u, v P V ,

where x¨, ¨y is the duality pair. Since V 1 Ć V , KSMs are not well-defined in this case. The

question is how we can apply a KSM method in such a setting.

We need to construct an isomorphism B mapping V 1 back to V . We assume that the map B is

symmetric and positive definite, namely x¨,B¨y defines an inner product in V 1. We immediately

6Note that V here might not be finite dimensional.



CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 69

notice that B could be a Riesz operator7:

For any given f P V 1, pBf, vqV “ xf, vy, @v P V .

As a consequence, xB´1¨, ¨y is an inner product on V , with associated norm equivalent to

} ¨ }V . This leads to a so-called preconditioned system

BAu “ Bf

and BA is an isomorphism from V to itself. The Krylov subspace methods can be applied to

this preconditioned system and B is called a preconditioner.

Note that BA : V ÞÑ V is symmetric with respect to p¨, ¨qV , i.e.,

pBAu, vqV “ xAu, vy “ aru, vs “ pu,BAvqV , u, v P V .

The last equality follows from the symmetry of the bilinear form ar¨, ¨s. Furthermore, due to the

continuity of ar¨, ¨s (1.14), we obtain

}BA}L pV ;V q “ sup
vPV

|pBAv, vqV |

}v}2V
“ sup

vPV

arv, vs

}v}2V
ď Ca

and the inf-sup condition (1.16) gives

}pBAq´1}
´1
L pV ;V q

“ inf
vPV

}BAv}V

}v}V
“ inf

vPV
sup
uPV

pBAv, uqV

}v}V }u}V
“ inf

vPV
sup
uPV

arv, us

}v}V }u}V
ě α.

This discussion directly follows the work by Mardal and Winther [132].

Example 2.37 (Poisson solver as a preconditioner). As an example, we consider a second-order

elliptic operator A : H1
0 pΩq ÞÑ H´1pΩq. We need to define

pBf, vqH1
0 pΩq :“ p∇Bf,∇vq0,Ω “ xf, vy.

In this sense, we can choose B “ p´∆q´1 as a preconditioner. We note that other inner products

can be used, which will yield different preconditioners. As long as the above continuity condition

and the inf-sup condition hold, the preconditioned system is well-conditioned.

Now we summarize the above discussions on how to construct a “natural” preconditioner:

1. Define an appropriate inner product p¨, ¨qV ;

2. Establish the inf-sup condition supvPV
aru, vs

}v}V
ě α}u}V for any u P V ;

3. Define B as the Reisz operator, i.e., pBf, vqV “ xf, vy for any v P V ;
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4. The preconditioned system BA is symmetric with respect to p¨, ¨qV and well-conditioned;

5. Construct a discretization which satisfies the corresponding discrete inf-sup condition;

6. Define a spectrally equivalent Bh as a preconditioner.

2.3 Preconditioning techniques

The convergence rate of an iterative method depends greatly on the spectrum of the coef-

ficient matrix. Hence, iterative methods usually involve a second matrix that transforms the

coefficient matrix into one with a more favorable spectrum. The transformation matrix is called

a preconditioner. A good preconditioner B improves the convergence of the iterative method

sufficiently and is relatively cheap to compute, in order to overcome the overhead (extra cost)

of constructing and applying the preconditioner. There are a few different ways to apply pre-

conditioners, for example:

BAu “ Bf Left preconditioning

ABv “ f u “ Bv Right preconditioning

BLABRv “ BLf u “ BRv Split preconditioning

Although convergence behavior of iterative methods is not governed by the condition number

alone, it provides useful information for a variety of methods. For example, we would hope that

κpBAq ! κpAq, if we apply a Krylov subspace method to solve a preconditioned linear system.

2.3.1 Construction of preconditioners

We first introduce a few simple facts that could be helpful when we need to estimate the

condition number κpBAq.

lem:condnum Lemma 2.38 (Estimation of condition number). If µ0 and µ1 are positive constants satisfying

µ0
`

Au, u
˘

ď
`

B´1u, u
˘

ď µ1
`

Au, u
˘

, @u P V, (2.42) eqn:condnum1

then the condition number

κpBAq ď
µ1
µ0
.

Proof. By change of variable u “ A´ 1
2 v, we have σ

`

A´ 1
2B´1A´ 1

2

˘

Ď
“

µ0, µ1
‰

and, hence,

σ
`

pBAq´1
˘

Ď
“

µ0, µ1
‰

.

Using equivalent conditions found in (2.42) can often provide more convenient ways to analyze

the condition number, as demonstrated in the following lemma and remark. The proof of this

lemma has been left as an exercise for the reader and can be found in HW 2.10.
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lem:equiv-condnum Lemma 2.39 (Some equivalent conditions). If A and B are symmetric positive definite opera-

tors on a finite-dimensional space V , then we have the inequalities (2.42) are equivalent to

µ0pBu, uq ď pA´1u, uq ď µ1pBu, uq, @u P V, (2.43) eqn:condnum2

or

µ´1
1 pAu, uq ď pABAu, uq ď µ´1

0 pAu, uq, @u P V, (2.44) eqn:condnum3

or

µ´1
1 pBu, uq ď pBABu, uq ď µ´1

0 pBu, uq, @u P V. (2.45) eqn:condnum4

rem:AmABA Remark 2.40 (Another equivalent condition). If A and B are symmetric positive definite op-

erators on a finite-dimensional space V , α ą 0 and 0 ă δ ă 1, then it is easy to verify the

following two conditions are equivalent:

´αpAu, uq ď
`

ApI ´ BAqu, u
˘

ď δpAu, uq, @u P V (2.46) eqn:condnum5

and

p1 ` αq´1pAu, uq ď pB´1u, uq ď p1 ´ δq´1pAu, uq, @u P V. (2.47) eqn:condnum6

Apparently, (2.48) can also be written as

´αpu, uqA ď
`

pI ´ BAqu, u
˘

A ď δpu, uqA, @u P V. (2.48) eqn:condnum5

This equivalent relation will be useful later on.

2.3.2 Preconditioned conjugate gradient method

Before we talk about preconditioned KSMs, the first question to answer is why and how CG

can be applied to the preconditioned system BAu “ Bf . We have mentioned BA is usually not

symmetric w.r.t. p¨, ¨q but symmetric w.r.t. p¨, ¨qA in §2.2.7. Similarly, we can define a new inner

product p¨, ¨qB´1 :“ pB´1¨, ¨q. Then

pBA¨, ¨qB´1 “ pA¨, ¨q ùñ BA is SPD w.r.t. p¨, ¨qB´1 ,

which means CG can be applied to BAu “ Bf with this new inner product.

lem:pcg2 Lemma 2.41 (Stepsizes of PCG). For the preconditioned conjugate gradient method, we have

the following identities:

αm “

`

Brpmq, rpmq
˘

`

Appmq, ppmq
˘

and βm “

`

Brpm`1q, rpm`1q
˘

`

Brpmq, rpmq
˘

.
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We notice that B´1 is cancelled out in the above inner products. With the help of this

lemma, we can write the pseudo-code of PCG with left preconditioner (compared with regular

CG, it just requires one more matrix-vector multiplication):

Listing 2.9: Preconditioned conjugate gradient method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´ Au, p Ð Br;
3 while }r} ą ε

4 α Ð pBr, rq{pAp, pq;

5 ũ Ð u ` αp;

6 r̃ Ð r ´ αAp;

7 β Ð pBr̃, r̃q{pBr, rq;

8 p̃ Ð Br̃ ` β p;

9 Update: u Ð ũ, r Ð r̃, p Ð p̃;

10 end

2.3.3 Precondition v.s. iteration

Let B be a symmetric iterator of the SPD operator A. We have seen that a sufficient

condition for the iterative method to be convergent is that

ρpI ´ BAq ă 1.

In this case, let ρ0 :“ ρpI ´ BAq “ }I ´ BA}A. The method is not only converging but also

a contraction, i.e., }u ´ upmq}A ď ρm0 }u ´ up0q}A Ñ 0 as m Ñ `8. Similar argument as

Theorem 2.13 shows that B must be SPD. Furthermore, by definition of } ¨ }A, we have
´

`

A ´ 2ABA ` ABABA
˘

u, u
¯

ď ρ20pu, uqA.

Changing variable v “ A1{2u, we obtain
´

`

I ´ A1{2BA1{2
˘2
v, v

¯

ď ρ20pv, vq ùñ

ˇ

ˇ

ˇ

`

pI ´ A1{2BA1{2qv, v
˘

ˇ

ˇ

ˇ
ď ρ0pv, vq

ùñ

ˇ

ˇ

ˇ

`

pA ´ ABAqu, u
˘

ˇ

ˇ

ˇ
ď ρ0pAu, uq, @u P V.

Hence Remark 2.40 shows (see HW 2.12) that the condition number is uniformly bounded, i.e.,

κpBAq ď
1 ` ρ0
1 ´ ρ0

.

In fact, the above estimate can also be easily obtained from ρpI ´ BAq “ ρ0 ă 1.

We use the same notation B for the preconditioner and the iterator, apparently for a reason.

Indeed, the convergence rate of the preconditioned CG method (2.30) is equal to

δCG :“

a

κpBAq ´ 1
a

κpBAq ` 1
ď

b

1`ρ0
1´ρ0

´ 1
b

1`ρ0
1´ρ0

` 1
“

1 ´
a

1 ´ ρ20
ρ0

ă ρ0. (2.49) eqn:IterPrecond
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The last inequality holds true when 0 ă ρ0 ă 1.

The discussion above suggests that a preconditioner can be found for any convergent sta-

tionary linear iterative method, and its convergence can be accelerated by PCG. However, this

comes at an additional cost of applying the preconditioners. Preconditioning is crucial for prac-

tical problems, and KSMs are sometimes referred to as accelerators. It is desirable to have an

effective preconditioner which satisfy most, if not all, of the following properties:

• The preconditioned linear systems have improved “condition” of the linear system.

• The spectral condition number of BA should be better bounded independently of the size

of the problem.

• The preconditioner is relatively easy to setup and cheap to apply; the computational cost

of Br should be proportional to the size of the problem.

• The preconditioner should be robust on different domain shapes, mesh types, jumps in

coefficients, etc.

• The preconditioner can be implemented easily and efficiently.

To summarize, we present numerical results comparing standard and preconditioned Krylov

subspace methods for solving the finite difference system that arises from the 2D Poisson’s equa-

tion on a unit square domain with homogeneous Dirichlet boundary conditions. The problem

size for this study is 16384 ˆ 16384.

2.3.4 Stopping criteria

When an iterative method is employed, sometimes it is hard to determine when to stop the

iteration process. Ultimately we would like to have the error epmq :“ u ´ upmq in certain norm

(e.g. the energy norm) to be small enough, i.e.,
`

epmq, epmq
˘

1
2
A ă ϵ. However, the error is not

usually computable. Norms of the residual rpmq :“ f ´ Aupmq, which is not only computable

but also naturally available in the iterative process, are used instead. According to the standard

perturbation analysis, we have

›

›u´ upmq
›

›

}u}
ď κpAq

›

›rpmq
›

›

}f}
. (2.50) eqn:ResErr

In fact, Apu´ upmqq “ f ´ Aupmq “ rpmq. Hence }u´ upmq} ď }A´1}}rpmq}. On the other hand,

it is easy to see that }f} ď }A}}u}. By combining the last two inequalities, we can obtain the

desired estimate (2.50).
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Figure 2.2: Solving FD equation using Krylov subspace methods without preconditioning.fig:simulation

Figure 2.3: Solving FD equation using Krylov subspace methods with ILU(0) preconditioning.fig:simulation

We notice that the right-hand side of (2.50) is the relative residual (with initial guess equals

zero) and the left-hand side is just the relative error. Hence this inequality shows that, even

if the relative residual is small, the relative error could be still very large, especially for the
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ill-conditioned problems.

Although L2-norm of rpmq is usually used in practice,
`

rpmq, rpmq
˘

1
2
B is a better quantity to

monitor for convergence. We notice that

prpmq, rpmqqB “
`

Aepmq,Aepmq
˘

B “
`

ABAepmq, epmq
˘

.

According to Lemma 2.39,
`

rpmq, rpmq
˘

1
2
B is equivalent to

`

epmq, epmq
˘

1
2
A, if B is a good precondi-

tioner.

Another comment is that we have been using the residual of the original equation instead

of the preconditioned equation in PCG. In practice, there might be situations that the left

preconditioner changes the residual of the equation a lot, which will cause trouble for users to

design stopping criteria. The preconditioned equation has a residual rB “ Br “ Bpf ´ Auq and

}rB} might be a lot different than }r}. Sometimes it might not be a good idea to use rB instead

of r.

2.4 Domain decomposition methods
sec:DDM

Domain decomposition methods (DDMs) are commonly used in numerical methods for par-

tial differential equations (PDEs) as they employ efficient “divide and conquer” techniques to

iteratively solve sub-problems defined on smaller subdomains. DDMs provide a convenient

framework for solving and preconditioning heterogeneous or multiphysics problems, regardless

of the discretization method used (e.g., FD and FE). These methods offer significant benefits

for solving problems on parallel computers, particularly when it comes to their algebraic solu-

tion. Although there are two ways of subdividing the computational domain, overlapping and

non-overlapping, overlapping domain decomposition methods are the focus of our discussion.

2.4.1 Divide and conquer

We consider the model boundary value problem

#

Au “ f in Ω

u “ 0 on BΩ

Overlapping domain decomposition algorithms are based on a decomposition of the domain Ω

into a number of overlapping subdomains. To introduce the main ideas of DDMs, we consider

the case of two overlapping subdomains Ω1 and Ω2, which form a covering of Ω and Ω1
Ş

Ω2 ‰ Ø;

see Figure 1. We let Γi (i “ 1, 2) denote the part of the boundary of Ωi, which is in the interior

of Ω.
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Overlapping Domain Decomposition Methods 3

ΩΩ1 2

Γ

Γ2

1

Fig. 1. Solution domain for the classical alternating Schwarz method.

Then, we solve the Poisson equation within the rectangle ≠2, using the latest
solution un

1 on the artificial internal boundary °2:

°r2un
2 = f2 in ≠2,

un
2 = g on @≠2\°2,

un
2 = un

1 |°2 on °2.

The two local Poisson equations in ≠1 and ≠2 are coupled together in the
following way: the artificial Dirichlet condition on the internal boundary °1

of subdomain ≠1 is provided by subdomain ≠2 in form of un°1
2 |°1 , and vice

versa. It is clear that un°1
2 |°1 and un

1 |°2 may change from iteration to itera-
tion, while converging towards the true solution. Therefore, in each Schwarz
iteration, the two Poisson equations need to update the artificial Dirichlet
conditions on °1 and °2 by exchanging some data. Note also that the classi-
cal alternating Schwarz method is sequential by nature, meaning that the two
Poisson solves within each iteration must be carried out in a predetermined
sequence, first in ≠1 then in ≠2. Of course, the above alternating Schwarz
method can equally well choose the rectangle as ≠1 and the circle as ≠2,
without any noticeable effects on the convergence.

2.2 The Multiplicative Schwarz Method

We now extend the classical alternating Schwarz method to more than two
subdomains. To this end, assume that we want to solve a linear elliptic PDE
of the form:

Lu = f in ≠, (1)

u = g on @≠, (2)

Figure 2.4: Overlapping domain partition with two sub-domains.fig:ddm

If we already have an approximate solution upmq, we can construct a new approximation by

solving the following two equations:
$

’

’

&

’

’

%

Aupm`1q

1 “ f in Ω1,

u
pm`1q

1 “ upmq on Γ1,

u
pm`1q

1 “ 0 on BΩ1zΓ1,

and
$

’

’

&

’

’

%

Aupm`1q

2 “ f in Ω2,

u
pm`1q

2 “ gpmq on Γ2,

u
pm`1q

2 “ 0 on BΩ2zΓ2.

Here we have not specified how to choose the right boundary condition gpmq. There are two

approaches to apply these two subdomain corrections—the additive approach and the multi-

plicative approach.

• In the additive approach, we take gpmq “ upmq and carry out the two corrections simulta-

neously.

• In the multiplicative approach, we take gpmq “ u
pm`1q

1 and use the most up-to-date iterative

solution.

We then define the new iteration as

upm`1qpxq :“

$

&

%

u
pm`1q

2 , if x P Ω2;

u
pm`1q

1 , if x P ΩzΩ2.

2.4.2 Overlapping DD methods

With the above motivation in mind, we are ready to introduce the standard overlapping

domain decomposition method in matrix form:

Au⃗ “ f⃗ , V “ RN .
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Suppose we have an one-dimensional domain partitioning of Ω; see Figure 2.5. Of course, we

can use more general partitioning strategies as well.

Ω̂2

ΩΩ1 Ω2 Ω3 Ω4

βH

Figure 2.5: Overlapping domain partition with four sub-domains.fig:overlapping

Denote the set of grid point indices as G :“ t1, 2, . . . , Nu and it is partitioned into n subdo-

mains. Let Ĝi be the index set of the interior points of Ω̂i, and Ni :“ |Ĝi| be the cardinality of

Ĝi. Apparently, we have

G “ Ĝ1

ď

Ĝ2

ď

¨ ¨ ¨
ď

Ĝn and N ă N1 `N2 ` ¨ ¨ ¨ `Nn.

Let v⃗i P RNi . The injection matrix (natural embedding) Ii P RNˆNi is defined as

pIiv⃗iqk “

$

&

%

`

v⃗i
˘

k
, if k P Ĝi;

0, if k P GzĜi.
(2.51) eqn:restriction

It is natural to define sub-problems as Ai :“ ITi AIi (i “ 1, . . . , n). If we solve each sub-problem

exactly, then we have Bi :“ IiA
´1
i ITi .

We can define an additive Schwarz method (ASM) as

Bas :“
n
ÿ

i“1

Bi “

n
ÿ

i“1

IiA
´1
i ITi , (2.52) eqn:ASM

which generalizes the block Jacobi method. Similarly, a multiplicative Schwarz method (MSM)

is then defined by the following error propagation operator

I ´BmsA :“ pI ´BnAq ¨ ¨ ¨ pI ´B1Aq “

1
ź

i“n

pI ´BiAq. (2.53) eqn:MSM

This is a generalization of the block G-S method (with overlapping blocks). In practice, the

sub-problem solver A´1
i could be replaced by an approximation, like the ILU method.

2.4.3 Convergence of overlapping DDMs ‹

Domain decomposition methods, particularly the ASM version, are typically employed as

preconditioners for parallel computing. Convergence has been analyzed in [80, 81], and we will

showcase results for the additive version.
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Theorem 2.42 (Effect of DD preconditioner). The condition number of AS domain decompo-

sition method is independent of the mesh size h and satisfies

κpBasAq ď CH´2p1 ` β´2q,

where H is size of domain partitions, βH characterizes size of the overlaps, and C is a constant

independent of mesh sizes.

The DD preconditioner (2.52) performs very well in practice. But the convergence rate still

depends on H and the condition number could be large if H is very small. A simple approach

to get rid of this dependence on H is to introduce a coarse space V0 Ă V and a corresponding

coarse-level solver, i.e.

Bas,2 :“ I0A
´1
0 IT0 `

n
ÿ

i“1

IiA
´1
i ITi ,

where I0 : V0 ÞÑ V is the injection matrix and A0 is the coarse space problem. We then have

the following estimate on the condition number:

Theorem 2.43 (Effect of two-level DD preconditioner). The condition number of AS domain

decomposition method is independent of the mesh size h and satisfies

κpBas,2Aq À 1 ` β´1,

where C is a constant independent of mesh sizes.

The theorem above demonstrates that a suitable coarse-level correction can eliminate mesh

size dependence. In the subsequent chapters, we will create and evaluate two-level and multilevel

iterative methods.

2.5 Homework problems

hw:BtBstar HW 2.1. Show the identity (2.7).

hw:A-transpose HW 2.2. If BT “ B, show that pBAq˚ “ BTA “ BA.

hw:SDalpha HW 2.3. Show the optimal stepsize (2.17) for general descent direction method.

hw:CHThm HW 2.4. Let A P RNˆN and qpλq :“
ˇ

ˇλI ´A
ˇ

ˇ be the characteristic polynomial of A. Show the

Cayley–Hamilton theorem, i.e., qpAq “ 0.

hw:Krylov HW 2.5. Given A P RNˆN and 0 ‰ v P RN . Then the Krylov subspace satisfies the following

properties:
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1. KmpA, vq Ă Km`1pA, vq;

2. AKmpA, vq Ă Km`1pA, vq;

3. KmpA, vq “ KmpαA, vq “ KmpA,αvq, for any 0 ‰ α P R;

4. KmpA, vq “ KmpA´ αI, vq, for any α P R;

5. KmpQ´1AQ,Q´1vq “ Q´1KmpA, vq, for any nonsingular matrix Q P RNˆN ;

6. KmpA, vq “ tppAqv : p P Pm´1u, where Pm´1 is the real polynomial of degree less than m.

hw:CG-Krylov HW 2.6. Suppose thatA is SPD andAu “ f . Show that the following conditions are equivalent

to each other:

1. Vector um P KmpA, fq satisfies that }um ´ u}A “ min t}v ´ u}A : v P KmpA, fqu;

2. Vector um P KmpA, fq satisfies that }f ´ Aum}A´1 “ min t}f ´ Av}A´1 : v P KmpA, fqu;

3. Vector um P KmpA, fq satisfies that vT pf ´ Aumq “ 0, for any v P KmpA, fq.

hw:ConjugateDirections HW 2.7. Prove Lemmas 2.25 and 2.26.

hw:Cheb HW 2.8. The Chebyshev (or Tchebycheff) polynomial of first kind on r´1, 1s can be defined

recursively as

T0pxq “ 1, T1pxq “ x, Tn`1pxq “ 2xTnpxq ´ Tn´1pxq.

Show that

Tnpxq “
1

2

´

`

x`
a

x2 ´ 1
˘n

`
`

x´
a

x2 ´ 1
˘n
¯

and
ˇ

ˇTnpxq
ˇ

ˇ ď 1 for any x P r´1, 1s. Let 0 ă λmin ď λmax. Define

Snpλq :“

„

Tn

´λmax ` λmin

λmax ´ λmin

¯

ȷ´1

Tn

´λmax ` λmin ´ 2λ

λmax ´ λmin

¯

and we have

ˇ

ˇ

ˇ

ˇ

Tn

´λmax ` λmin

λmax ´ λmin

¯

ˇ

ˇ

ˇ

ˇ

´1

“
›

›Sn
›

›

8,rλmin,λmaxs
“ min

pPPn; pp0q“1

›

›p
›

›

8,rλmin,λmaxs
,

where Pn is the set of polynomials of degree less than or equal to n.

hw:BCG HW 2.9. In the BCG method, we have the following properties:

1.
`

r̃piq, rpjq
˘

“ ρiδij ;

2.
`

q̃piq,Aqpjq
˘

“ σiδij ;
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3. KmpA, rp0qq “ spantqp0q, qp1q, . . . , qpm´1qu “ spantrp0q, rp1q, . . . , rpm´1qu;

4. KmpAT , r̃p0qq “ spantq̃p0q, q̃p1q, . . . , q̃pm´1qu “ spantr̃p0q, r̃p1q, . . . , r̃pm´1qu.

hw:equiv-condnum HW 2.10. Prove Lemma 2.39.

hw:equiv-condnum2 HW 2.11. Show that (2.48) and (2.47) are equivalent to each.

hw:condBA HW 2.12. Let A be SPD and B be a symmetric iterator. If ρ “ }I ´BA}A ă 1, then B is also

SPD and

κpBAq ď
1 ` ρ

1 ´ ρ
.



Chapter 3

Twogrid Methods

ch:twogrid

In the preceding chapter, we explored a variety of iterative solvers and preconditioners for

solving the linear algebraic system presented in equation (2.1). However, as the meshsize h

approaches zero, the convergence rate of these methods tends to deteriorate, with the exception

of the two-level overlapping domain decomposition method that incorporates coarse-grid cor-

rection. This observation serves as the foundation for our subsequent discussions on multilevel

iterative methods. In this chapter, we will delve into the two-grid (or more generally, two-level)

method for solving the discrete Poisson’s equation:

$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.
ùñ Au⃗ “ f⃗ .

3.1 Finite element methods
sec:FEM

In Chapter 1, we briefly explored the finite element approximation for this model problem.

From this point forward, our discussions will primarily focus on finite element discretizations.

Throughout this chapter, we will utilize the standard notations for Sobolev spaces. That is,

HkpΩq represents the classical Sobolev space of scalar functions on a bounded domain Ω Ă Rd,

with derivatives up to order k that are square integrable. The full norm of this space is denoted

by } ¨ }k, which is accompanied by the corresponding semi-norm | ¨ |k. Additionally, the symbol

H1
0 pΩq denotes the subspace of H1pΩq whose trace vanishes on the boundary BΩ. We will also

discuss the corresponding spaces as they relate to the subdomain of Ω.

We now take a little detour and say a few more words about the finite element discretizations;

see [58] for more details. The linear operator A : V ÞÑ V 1 is defined by

xAu, vy :“ aru, vs “

ż

Ω
∇u∇v dx, @v P V

81



CHAPTER 3. TWOGRID METHODS 82

and f P V 1 is a function or distribution. Suppose that A is bounded (1.14), i.e.,

aru, vs ď Ca}u}V }v}V , @u, v P V

and coercive (1.23), i.e.,

arv, vs ě α}v}2V , @v P V .

We would like to find u P V such that Au “ f or in the weak form

aru, vs “ ⟨f, v⟩ , @ v P V (3.1) eqn:EqnWeak

which is well-posed. And we have seen that this problem is well-conditioned in Remark 1.23.

3.1.1 Galerkin approximation

The Galerkin method exploits the weak formulation (3.1) and replaces the underlying func-

tion space by appropriate finite dimensional subspaces. We choose a finite dimensional space

VN (trial/test space), which is an approximation to the space V with dimpVN q “ N . When no

confusion arises, we shall just drop the subscript and denote the space as V “ VN . Then we

arrive at the Galerkin discretization:

Find uN P V : aruN , vN s “ ⟨f, vN ⟩ , @ vN P V. (3.2) eq:ell_d

Equation (3.2) yields the so-called Galerkin discretization. If the bilinear form ar¨, ¨s is symmetric

and coercive, it is called the Ritz–Galerkin discretization. In the finite-dimensional setting, we

can identify the dual space V 1 and V ; this way, the duality pair x¨, ¨y becomes the l2-inner

product p¨, ¨q.

For conforming discretizations, the bilinear form ar¨, ¨s is well-defined on V ˆ V . If the

bilinear form ar¨, ¨s is coercive, then we have

arvN , vN s ě αN }vN}2V , @ vN P V.

Since coercivity is inherited from V to its subspace V , we can see that the constant αN is

bounded from below, i.e.,

αN ě α, @N

As a consequence, the discrete inf-sup condition holds1. It is easy to show the following simple

optimality approximation properties.

1In general, the continuous inf-sup condition does not imply the discrete one.
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rem:GO Remark 3.1 (Galerkin Orthogonality). Assume V Ă V . The weak formulations of the exact

and discrete solutions satisfy
$

&

%

aru, vs “ ⟨f, v⟩ , @ v P V ;

aruN , vN s “ ⟨f, vN ⟩ , @ vN P V.

Taking v “ vN in the first equation and simply subtracting the two equations gives the Galerkin

orthogonality, i.e.,

aru´ uN , vN s “ 0, @ vN P V. (3.3) eqn:GO

If ar¨, ¨s is symmetric and coercive, then (3.3) means the error u´ uN is orthogonal to V in the

induced inner product by the bilinear form ar¨, ¨s. Apparently, ΠNu :“ uN is a projection from

V to V with respect to p¨, ¨qA-inner product. It is oftentimes called the Ritz projection.

lem:Cea Lemma 3.2 (Céa’s Lemma). If the bilinear form ar¨, ¨s is continuous and coercive, then the

Galerkin approximation uN satisfies

}u´ uN}V ď
Ca

α
}u´ vN}V , @ vN P V.

More generally, we have the following quasi-optimality or quasi-best-approximation of the

finite-dimensional Galerkin approximation.

prop:optimal Proposition 3.3 (Quasi-Optimality). Suppose ar¨, ¨s : V ˆ V ÞÑ R is continuous. The fi-

nite dimensional subspace V in the Galerkin approximation satisfies the discrete inf-sup condi-

tion (1.22) with αN ą 0. Let u and uN be the exact solution of (3.1) and the Galerkin solution

of (3.2), respectively. Then the error

}u´ uN}V ď
}A}

αN

min
wNPV

}u´ wN}V .

Proof. For all wN P V , applying (1.20) and (3.3), we have

αN }uN ´ wN}V ď sup
vNPV

aruN ´ wN , vN s

}vN}V
“ sup

vNPV

aru´ wN , vN s

}vN}V
ď }A} }u´ wN}V .

Then simply applying the triangular inequality gives the estimate.

}u´ uN}V ď
}A} ` αN

αN

min
wNPV

}u´ wN}V .

Note that this constant in the upper bound is still not sharp. The desired constant in this

Proposition was obtained by Xu and Zikatanov [194].

rem:PGstab Remark 3.4 (Stability). In view of Theorem 1.16, we can see that the Galerkin solution de-

pends on the data continuously, i.e.,

}uN}V ď
1

α
}f}V 1 .
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3.1.2 Finite element ‹

The Finite Element Method (FEM) has a rich history of practical use and is widely applied

to various problems in physics and engineering. It has proven to be successful in numerous

fields, including structural mechanics. After decades of extensive development, the classical

(conforming) finite element method has become a well-understood and flourishing area in scien-

tific computation. One of the most attractive features of FEM is its ability to handle complex

geometries, boundaries, and operators with relative ease.

def:fe Definition 3.5 (Finite element). A triple pK,P,N q is called a finite element if and only if

(i) K Ď Rd be a bounded closed set with nonempty interior and piecewise smooth boundary;

(ii) P be a finite-dimensional space of functions on K;

(iii) N “ tN1, . . . ,Nku be a basis of P 1.

We usually call K the element domain, P the space of shape functions, and N the set of

nodal variables.

def:nodal_basis Definition 3.6 (Nodal basis). Let pK,P,N q be a finite element. The basis tϕjuj“1,...,k of P
dual to N , i.e., Nipϕjq “ δi,j is called the nodal basis of P.

Example 3.7 (1D Lagrange element). Let K “ r0, 1s, P be the set of linear polynomials, and

N “ tN1,N2u where N1pvq “ vp0q and N2pvq “ vp1q. Then pK,P,N q is a finite element and it

is the well-known P1-Lagrange finite element discussed in Chapter 1. The nodal basis functions

are ϕ1pxq “ 1 ´ x and ϕ2pxq “ x.

Remark 3.8 (Set of nodal variables). If P is a k-dimensional space and tN1, . . . ,Nku Ă P 1.

Then condition piiiq in Definition 3.5 is equivalent to the unisolvence: For any v P P,

Nipvq “ 0, i “ 1, . . . , k ùñ v ” 0.

Remark 3.9 (d-dimensional simplex). Let xp1q, . . . , xpd`1q are d` 1 points in Rd. Suppose that

these points do not lie in one hyper-plane. That is to say, the matrix

T :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
p1q

1 x
p2q

2 ¨ ¨ ¨ x
pd`1q

1

x
p1q

2 x
p2q

2 ¨ ¨ ¨ x
pd`1q

2
...

...
...

...

x
p1q

d x
p2q

d ¨ ¨ ¨ x
pd`1q

d

1 1 ¨ ¨ ¨ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚
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is non-singular. The convex hull of the d` 1 points

τ :“ tx “

d`1
ÿ

i“1

λix
piq : 0 ď λi ď 1, i “ 1 : d` 1,

d`1
ÿ

i“1

λi “ 1u

is called a geometric d-simplex generated (spanned) by the vertices xp1q, . . . , xpd`1q. Given any

point x P Rd, we have

x “

d`1
ÿ

i“1

λipxqxpiq, with
d`1
ÿ

i“1

λipxq “ 1.

Here the numbers λ1, . . . , λd`1 are called the barycentric coordinates of x with respect to the

simplex τ .

Now we describe the main steps of discretization using the pK,P,N q-finite element:

Step 1. Domain partitioning: Choose K to be a simplex in Rd. So we first partition the

physical domain into simplexes. We discretize a polygonal domain Ω into small triangles or

tetrahedrons τ . Let hτ :“ |τ |
1
d be the diameter of τ P M and hpxq be the local meshsize, that

is the piecewise constant function with h|τ :“ hτ for all τ P M. The collection M of elements

is called a mesh or triangulation. We call Mh :“ M quasi-uniform if there exists a constant h

independent of τ such that

h À hτ À h, @ τ P M.

We will only consider conforming meshes, i.e., the intersection of any two elements in M is

either an edge (d “ 2) / a face (d “ 3), vertex, or empty (see Figure 3.1 for an example). We

denote by GpMq the set of all grid points (vertices) in the mesh M. And G̊pMq Ď GpMq

is the set of vertices except those on the Dirichlet boundary. Here we use the subscript h to

describe the discrete nature and this does not imply the underlying meshes are quasi-uniform

with meshsize h. In the future discussions, we will focus on uniform conforming meshes only.

Figure 3.1: A polygonal domain Ω with conforming partition.fig:domain
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rem:VEF Remark 3.10 (Number of geometric entities). Let us now briefly discuss the relationships among

the numbers of vertices, edges, faces, and elements in a triangular or tetrahedral partition. We

denote these numbers as #V, #E, #F, and #τ , respectively. As a convention, #F “ #τ in

2D. In 2D, we can consider the term half-edge, which is defined as a pair consisting of an edge

and a face that it borders. We can easily see that the number of half-edges is 2#E or 3#F.

Therefore, we have 2#E “ 3#F. Furthermore, according to the famous Euler–Poincaré formula,

in any polyhedron, we have #V ´ #E ` #F “ 2. Hence, we can obtain that #F « 2#V and

#E « 3#V. In 3D, we have the following asymptotic relations: #F « 12#V, #E « 7#V, and

#τ « 6#V.

Step 2. Finite-dimensional approximation: Let Vh Ă V be the space of continuous

piecewise polynomials over a quasi-uniform conforming mesh Mh, which satisfies appropriate

conditions on the boundary Γ :“ ΩzΩ, i.e.,

Vh :“
␣

v P CpΩq : v|τ P Pτ , for all τ P Mh

(

č

V . (3.4) eq:u_h

We notice that there are many ways to approximate the continuous test function space. Different

choices will then result in different numerical methods. In this section, we shall focus on the

simplest case—linear finite element method on triangles or tetrahedrons, i.e., v|τ is a linear

polynomial on each τ P Mh. The weak form of the finite element approximation reads: Find

uh P Vh such that

aruh, vhs “ xf, vhy, @ vh P Vh, (3.5) eq:ell_w

or, equivalently denoted in an operator form,

Ahuh “ fh in Vh. (3.6) eq:ell_s

Step 3. Assembling the finite-dimensional problem: Using the finite element definition

pK,P,N q, we can give a basis of the finite dimensional approximation space Vh. Suppose tϕiu
N
i“1

be a basis of the N -dimensional space Vh. Then (3.6) can be written as an linear algebraic

equation

Âhuh “ f⃗h. (3.7) eq:ell_dis

We are going to discuss this notation in §3.2.

rem:sim Remark 3.11 (A very useful notation). In our discussion, we adopt the notations introduced

by Xu [189]. The symbol a À b signifies that there exists a constant C that is independent

of the mesh size h, satisfying a ď Cb. Similarly, the notations “Á” and “–” can be defined.

These notations are significant since, in our future discourse, we aim to devise solvers and

preconditioners that result in convergence rates that are independent of the mesh size h.
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3.1.3 Properties of finite element methods

There are a few important properties of finite element space and method that will become

crucial for our later analysis for multilevel iterative methods.

prop:interp Proposition 3.12 (Interpolation error). Let Mh be a uniform mesh and Vh be a Cα pα ě 0q

finite element space on Mh. The interpolant Jh :Wm
p pΩq ÞÑ Vh satisfies

›

›v ´ Jhv
›

›

Wk
p pΩq

À hm´k
›

›v
›

›

Wm
p pΩq

, @ v P Wm
p pΩq, 0 ď k ď mintm,α ` 1u.

prop:inverse Proposition 3.13 (Inverse estimate). Let Mh be a uniform mesh and P Ď W k
p pKq

Ş

Wm
q pKq

and 0 ď m ď k. If Vh is a finite element space for pK,P,N q on Mh, then we have

´

ÿ

τPMh

›

›v
›

›

p

Wk
p pτq

¯
1
p

À h
m´k`mint0, d

p
´ d

q
u
´

ÿ

τPMh

›

›v
›

›

q

Wm
q pτq

¯
1
q
, @ v P Vh.

Using Proposition 3.13, we can easily see that, for any v P Vh,
$

’

’

’

&

’

’

’

%

}v}L8pΩq À h
´ d

p }v}LppΩq, p P r1,8q;

}v}HspΩq À h´s}v}L2pΩq, s P r0, 1s;

}v}H1`αpΩq À h´α}v}H1pΩq, α P p0, 12q.

Moreover, there is a discrete Sobolev inequality at the bottom-line case (when d “ 2) which is

worthy for special attention.

prop:Linfty-estimate Proposition 3.14 (Discrete Sobolev inequality [49]). The following inequality holds

}v}L8pΩq À Cdphq}v}H1pΩq, @ v P Vh,

where C1phq ” 1, C2phq “ | log h|1{2, and C3phq “ h´ 1
2 .

prop:L2proj Proposition 3.15 (Weighted estimate for L2 projection [49]). Define Qh : L2pΩq ÞÑ Vh by, for

any v P L2pΩq, it holds that

pQhv, wq “ pv, wq, @w P Vh.

Then we have the following weighted L2-estimate

›

›v ´ Qhv
›

›

0
` h

›

›Qhv
›

›

1
À h

›

›v
›

›

1
, @ v P H1

0 pΩq.

rem:SimEst Remark 3.16 (Simultaneous estimate). From the above weighted L2-estimate, we can easily

show the so-called simultaneous estimate

inf
wPVh

´

›

›v ´ w
›

›

0
` h

›

›v ´ w
›

›

1

¯

À h}v}1, @ v P H1
0 pΩq.
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rem:rho-FE Remark 3.17 (Spectral radius and condition number of Ah). Suppose that we have a uniform

partition with meshsize h. It is clear, from the Poincaré inequality and the inverse inequality,

that

}v}20 À }∇v}20 “ pAhv, vq ď }v}21 À h´2}v}20 – ρpAhq}v}20, @v P Vh.

In fact, we have ρpAhq – h´2 and κpAhq – h´2.

3.1.4 Error analysis ‹

We now briefly introduce standard error estimates for the continuous linear finite element;

see [68, 58] for details. For standard finite element approximation of elliptic equations, the most

important property is the following Galerkin orthogonality property (see Remark 3.1)

aru´ uh, vhs “ 0, @ vh P V.

Using the definition of the energy norm |||¨||| :“ ar¨, ¨s1{2, the Galerkin orthogonality (3.3),

and the Cauchy-Schwarz inequality, we have

|||u´ uh|||
2

“ aru´ uh, u´ uhs “ aru´ uh, u´ vhs ď |||u´ uh||| |||u´ vh||| , @vh P V.

Hence, we obtain the optimality of the finite element approximation, i.e.,

|||u´ uh||| ď inf
vhPV

|||u´ vh||| . (3.8) eqn:optimal

This means uh is the best approximation of u in the subspace V . In general, it is not true for

finite element approximations.

thm:H1error Theorem 3.18 (H1-error estimate). If u P Hm
0 pΩq p1 ă m ď 2q, its P1-Lagrange finite element

approximation uh P Vh Ă V “ H1
0 pΩq satisfies

›

›u´ uh
›

›

1,Ω
À hm´1

ˇ

ˇu
ˇ

ˇ

m,Ω
.

If m “ 2, then we have }u´ uh}1,Ω À h
›

›f
›

›

0,Ω
.

By applying the well-known duality argument, we have the L2 error estimate; see [58, The-

orem 5.4.8] for example.

thm:L2error Theorem 3.19 (L2-error estimate). If u P H2
0 pΩq, its P1-Lagrange finite element approxima-

tion uh P Vh Ă V “ H1
0 pΩq satisfies

›

›u´ uh
›

›

0,Ω
À h

ˇ

ˇu´ uh
ˇ

ˇ

1,Ω
À h2

ˇ

ˇu
ˇ

ˇ

2,Ω
À h2

›

›f
›

›

0,Ω
.
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Remark 3.20 (A posteriori error analysis). A posteriori error estimation relies on the following

error equation (or residual equation):

aru´ uh, vs “ aru, vs ´ aruh, vs “ ⟨f, v⟩ ´ aruh, vs “ ⟨f ´ Auh, v⟩ , @v P V .

Hence, by the Cauchy-Schwarz inequality, we obtain (see HW 3.1)

|||f ´ Auh|||˚ À |||u´ uh||| À |||f ´ Auh|||˚ . (3.9) eqn:err-res-eq

Here |||¨|||˚ is the dual norm of |||¨|||. Notice that, on the right-hand side, we only have the data

f and the discrete solution uh. This upper bound does not depend on the unknown solution u.

Of course, to make the upper bound useful in adaptive algorithms, we need it to be local and

computable.

3.2 Algebraic representations
sec:matrixform

In the previous chapters, we have written the discrete problem simply as

Au⃗ “ f⃗ .

We will see that, in some sense, it is an abuse-of-notation. Now we would like to clarify (especially

for finite element methods) the relation between the general operator form Ahuh “ fh and its

often-used matrix form (3.7), i.e., Âhuh “ f⃗h. Sometimes we can drop the subscript h for

simplicity.

3.2.1 Vector and matrix representations

Assume that tϕiui“1,...,N is a basis of the finite-dimensional space V . Any function v P V

can be represented as

v “

N
ÿ

i“1

viϕi

and the vector representation (coefficient vector) of v is defined as

v :“

¨

˚

˚

˚

˚

˚

˝

v1

v2
...

vN

˛

‹

‹

‹

‹

‹

‚

P RN . (3.10) eqn:v-matrix

It is not hard to notice that there is another natural and easier-to-compute vector representation

v⃗ :“

¨

˚

˚

˚

˚

˚

˝

pv, ϕ1q

pv, ϕ2q

...

pv, ϕN q

˛

‹

‹

‹

‹

‹

‚

and v⃗ “ Mv, (3.11) eqn:v-matrix2
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where M P RNˆN with Mi,j :“ pϕj , ϕiq “ pϕi, ϕjq is the mass matrix. v and v⃗ can be referred

to as the primal and dual vector representations of v, respectively. Apparently, we have

pu, v⃗ q ” pu, v⃗ ql2 “ pu, v⃗ q0 “ uTMv “ pu, vqV .

SupposeW is another finite-dimensional linear space with a basis tψiui“1,...,N 1 . In general,W

could be of different dimension than V , namely, N 1 ‰ N . For any linear operator A : V ÞÑ W ,

we give a matrix representation (the so-called primal representation), A P RN 1ˆN , such that it

satisfies that
řN 1

i“1

`

A
˘

i,j
ψi “ Aϕj pj “ 1, . . . , N), i.e.,

pψ1, . . . , ψN 1qA “ Apϕ1, . . . , ϕN q. (3.12) eqn:A-matrix

On the other hand, the dual representation (the stiffness matrix ) corresponding to A is denoted

by Â P RNˆN with entries
`

Â
˘

i,j
:“ pAϕj , ϕiq.

It is not difficult to check the statements in the following identities; see HW 3.2.

lem:mat-form Lemma 3.21 (Algebraic representations). If A,B : V ÞÑ V and v, u P V , we have the following

results:

1. AB “ AB;

2. Av “ A v;

3. σpAq “ σpAq, κpAq “ κpAq;

4. v⃗ “ M v,
ÝÑAv “ Â v;

5. Â “ M A;

6. pu, vq “ pMu, vq.

ex:identity Example 3.22 (Identity operator). Let I : V ÞÑ V be the identity operator. Its stiffness and

mass matrices are equal to each other, i.e., Î “ M . Hence I “ M´1Î “ I. Note that this

relation is independent of the choice of basis functions. As a consequence, we have

I “ I “ AA´1 “ AA´1,

which gives the useful equality

A´1 “ A´1. (3.13) eqn:MatFormInverse

That is to say, the inverse matrix of the primal form of A is the primal form of the inverse of

operator A.

Example 3.23 (Finite difference matrices). For the finite difference methods, we can simply

let A : RN ÞÑ RN be a matrix and the canonical basis ϕi “ e⃗i :“ p0, . . . , 1, . . . , 0qT P RN , then

we have Â “ A. Generally speaking, if A : V ÞÑ V and tϕiu
N
i“1 is an orthonormal basis of V ,

then we have M “ I and Â “ A.
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3.2.2 Finite element matrices

We now use a few simple examples to demonstrate how to apply these notations. Suppose

that V “ Vh is the piecewise linear finite element space and tϕiui“1,...,N are the basis functions.

Let A be the resulting coefficient matrix of (3.2) with pAqi,j “ ai,j :“ arϕi, ϕjs. By definition,

A “ Â P RNˆN is the stiffness matrix corresponding to A. Since we are going to focus on the

finite element discretization from now on, we will not distinguish A and Â, when no ambiguity

arises.

Let u “
`

ui
˘N

i“1
P RN be the vector of coefficients of uh, namely uh. Let f⃗ “

`

fi
˘N

i“1
:“

␣

xf, ϕiy
(N

i“1
. Then u satisfies the linear system of equations:

Âu “ f⃗ or Au “ f⃗ .

Upon solving this finite-dimensional linear system, we are able to obtain a discrete approximation

uh “

N
ÿ

i“1

uiϕi.

The main algebraic properties for the stiffness matrix includes: A is sparse with OpNq

nonzeros, symmetric positive definite (for Dirichlet or mixed boundary condition problems) or

symmetric positive semi-definite (for Neumann boundary condition problems). We now summa-

rize this brief introduction of finite element matrices with a few comments. The following results

are valid for a large class of finite elements for second-order elliptic boundary value problems in

general domains.

rem:SpecMass Remark 3.24 (Spectrum of mass matrix). Suppose that we have a uniform partition with mesh-

size h. An often-used matrix is the mass matrix M P RNˆN , in which Mi,j “ pϕi, ϕjq. In fact,

we know that

pMv, vq “
ÿ

i,j

vi vj pϕi, ϕjq “ pv, vq “

ż

Ω
v2pxq dx – hd

ÿ

i

v2i – hdpv, vq. (3.14) eqn:spec-M

It is consistent with the well-known facts that the mass matrix is SPD and well-conditioned,

i.e.,

hd}ξ}20 À ξ TM ξ À hd}ξ}20, @ ξ P RN .

rem:SpecStiff Remark 3.25 (Spectrum of stiffness matrix). Suppose that we have a uniform partition with

meshsize h. It is also well-known that the stiffness matrix A is SPD and, from Remark 3.17,

hd}ξ}20 À ξ TAξ À hd´2}ξ}20, @ ξ P RN .

Hence the spectral radius ρpAq – hd´2 and the condition number κpAq – h´2. And it has been

observed that the CG method becomes slower when h decreases.
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3.2.3 Algebraic forms of simple iterative methods

Now we consider the solution of the standard finite element (say the P1-Lagrange element)

for the Poisson’s equation, i.e., Âu “ f⃗ . The simplest iterative solver for this finite element

equation is probably the well-known Richardson method:

unew “ uold ` ω
´

f⃗ ´ Âuold
¯

. (3.15) eqn:Richardson-Matrix

It is equivalent to

unew “ uold ` ω
´

Mf ´MAuold
¯

“ uold ` ωM
´

f ´ Auold
¯

.

That is to say, the Richardson method, can be written in the operator form as

unew “ uold ` Bω

´

f ´ Auold
¯

with an iterator Bω, whose matrix representation is Bω “ ωM . Therefore, it is easy to check

(HW 3.3) that the operator form of the Richardson method is

Bωv :“ ω
N
ÿ

i“1

pv, ϕiqϕi, @v P V ðñ Bω “ ωM. (3.16) eqn:RichardsonOp

In general, a smoother (or local relaxation) is just a linear stationary iterative method

unew “ uold ` Spf ´ Auoldq

and its matrix representation is

unew “ uold ` SpM´1f⃗ ´M´1Âuoldq “ uold ` SM´1pf⃗ ´ Âuoldq. (3.17) eqn:MatS

The above equality indicates that, we shall define a smoother in the matrix form as

S :“ SM´1, i.e., S “ SM. (3.18) eqn:MatRepSmoother

Example 3.26 (Matrix form of the Richardson iteration). If we consider the above Richardson

method (3.16) as an example, i.e. SR :“ Bω, then

SR “ SRM
´1 “ BωM

´1 “ ωI.

This coincides with the algebraic form of the Richardson method (3.15).

We will now discuss another important concept in our future analysis: the matrix form of

symmetrization. Let w :“ STu. Then we have

w⃗ “

´

`

STu, ϕi
˘

¯N

i“1
“

´

ÿ

j

uj
`

STϕj , ϕi
˘

¯N

i“1
“

´

ÿ

j

uj
`

ϕj ,Sϕi
˘

¯N

i“1
“
`

Ŝ
˘T
u.
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This immediately gives

ST u “ STu “ w “ M´1w⃗ “ M´1
`

Ŝ
˘T
u “ M´1

`

MS
˘T
u.

In turn, it shows

ST “ M´1
`

MS
˘T

“ M´1STM “ STM. (3.19) eqn:MatST

By definition of the primal matrix representation of an operator, we have

Spϕ1, . . . , ϕN q “ pϕ1, . . . , ϕN qS and S´1pϕ1, . . . , ϕN q “ pϕ1, . . . , ϕN qS´1.

Using (3.13) in Example 3.22, it is easy to see that

S´1 “
`

S
˘´1

“
`

SM
˘´1

“ M´1S´1. (3.20) eqn:MatSinv

Using the definition of symmetrized operator (2.13) and (3.18)–(3.20), we can define the

matrix form of the symmetrization

S :“ SM´1 “ ST pS´T ` S´1 ´ AqSM´1

“ STM
`

M´1S´T `M´1S´1 ´M´1Â
˘

SMM´1

“ ST
`

S´T ` S´1 ´A
˘

S, (3.21)

which is formally consistent with the definition of symmetrization (2.13).

3.3 Smoothers and smoothing effect
sec:smoother

The stationary linear iterative methods that have been discussed thus far, such as the damped

Jacobi and Gauss-Seidel methods, are primarily referred to as “local relaxation” methods. This

terminology reflects the fact that these techniques correct the residual vector locally, usually

one variable at a time, as demonstrated in Example 2.18. Although these methods are not

particularly efficient as standalone solvers now, they are critical components of modern multilevel

iterative methods, which can be applied to greatly reduce high-frequency error components (see

§1.3). Other methods, such as the SOR method and incomplete factorizations, have similar

effects. In this section, we will analyze the smoothing effects of these methods using different

approaches.

3.3.1 A numerical example

The damped Jacobi and Gauss-Seidel methods are frequently referred to as “local relax-

ations,” as they are particularly useful for addressing error components that are localized in

nature. Consequently, it is not unexpected that both of these methods can effectively damp out
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non-smooth components. However, given that relatively smoother error components tend to be

more globally related, both methods are comparatively inefficient at addressing them.

It has been observed that basic stationary linear iterative schemes tend to converge quickly

in the initial stages, followed by a slowdown after a few steps (see Figure 1.4 for the convergence

behavior of the damped Jacobi method). It is noteworthy that these methods not only converge

rapidly in the first few steps, but also exhibit the ability to smooth out the error function rather

swiftly. In other words, the error function becomes a much smoother function after only a few

iterations. This property of an iterative scheme is known as the “smoothing property,” and any

iterative scheme possessing this trait is referred to as a “smoother.”

(a) Initial Guess (b) A quarter of the domain relaxed

(c) First half relaxed (d) After smoothing

Figure 3.2: Iterative method in the viewpoint of subdomain relaxation.fig:basiciteration

In Figure 3.2, we see a visual representation of the multiplicative overlapping domain de-

composition method using four subdomains. After a single iteration, this method is capable

of smoothing out the high frequency portion and retaining the lower frequency portion. Basic

linear relaxation schemes, such as the Richardson, Jacobi, and Gauss-Seidel iterations, are in-

herently limited in their scope as local methods. As a result, they are only able to capture the

high frequency (local) portion of the error, and do not perform well on low frequency (global)

components.
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3.3.2 Local Fourier analysis ‹

Local Fourier analysis (LFA), also known as local mode analysis, is a powerful technique for

comprehending and forecasting the convergence rate of geometric multigrid (GMG) methods.

Classical LFA uses error expansion in terms of the eigenvectors of a discrete differential operator

without considering boundary conditions, followed by study of the behavior of the multigrid

error transfer operator when acting on these components. LFA has been proven to yield an

exact convergence rate for GMG on model problems with periodic boundary conditions on

rectangular domains. Further discussions can be found in [53, 179, 187]. More recently, LFA has

been demonstrated to be applicable to more practical scenarios, such as those involving Dirichlet

boundary conditions. Specifically, if a problem is compatible to a periodic boundary problem,

LFA can provide an exact convergence rate for multigrid schemes, as was proven in [162].

LFA has been developed for geometric multigrid algorithms for a wide range of problems,

including those with non-constant or non-linear coefficients. The technique can be applied to

various discretization methods, such as finite difference or finite volume methods, provided that

the resulting discrete problems can be represented in a stencil form. However, its applicability

to finite element methods is limited, owing to the fact that their grids are typically unstructured.

In this context, we will use LFA to analyze simple smoothers, with the aim of providing readers

with a glimpse of this powerful tool. For more comprehensive information, readers may refer to

the practical guide on LFA written by Wienands and Joppich [187].

In order to analyze the local behavior of iterative methods, we consider the 2D Poisson’s

equation; see §1.2. We begin with the damped (weighted) Jacobi method as an example. Using

the local Fourier analysis, we have the following observation:

1. The standard five-point FD stencil can be written as

4ui,j ´
`

ui´1,j ` ui`1,j ` ui,j´1 ` ui,j`1

˘

“ h2fi,j , i, j “ 1, . . . , n

and the damped Jacobi (or Richardson) method for the above equation reads

unewi,j “ p1 ´ ωquoldi,j `
ω

4

`

uoldi´1,j ` uoldi`1,j ` uoldi,j´1 ` uoldi,j`1

˘

`
ω

4
h2fi,j , i, j “ 1, . . . , n.

2. Define the discrete error function enewi,j :“ ui,j ´ unewi,j and eoldi,j :“ ui,j ´ uoldi,j , for i, j “

1, . . . , n. It is clear that the error function satisfies the local error equation

enewi,j “ p1 ´ ωqeoldi,j `
ω

4

`

eoldi´1,j ` eoldi`1,j ` eoldi,j´1 ` eoldi,j`1

˘

, i, j “ 1, . . . , n.

3. Define a grid function (essential in the LFA):

ei,j “
ÿ

θPΘn

αθe
?

´1piθ1`jθ2q
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and

Θn :“
!

pθ1, θ2q : θ1 “
2kπ

n
, θ2 “

2lπ

n
, k, l P r´m1,m2s

)

,

where m1 “ n{2´1,m2 “ n{2, if n is even and m1 “ m2 “ pn´1q{2, if n is odd. Plugging

the discrete Fourier transforms of enewi,j and eoldi,j to the above error equation, we get the

amplification factor of the local mode e
?

´1piθ1`jθ2q

λpθq :“
αnew
θ

αold
θ

“ 1 ´ ω
´

1 ´
cospθ1q ` cospθ2q

2

¯

ď 1.

Furthermore, λpθq Ñ 1 when |θ| Ñ 0 (low-frequency components).

4. Asymptoticly, m1 « m2 « n
2 . So we can define a smoothing factor (i.e. maximal amplifi-

cation factor corresponding to high-frequency local modes) by

ρ̄ :“ sup
θ

!

ˇ

ˇλpθq
ˇ

ˇ : θ P r´π, πq2 z r´π{2, π{2q2
)

.

By plugging in the end points, we get the the smoothing factor for the damped Jacobi

method is

ρ̄
Jacobi

:“ max
!ˇ

ˇ

ˇ
1 ´ 2ω

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
1 ´

1

2
ω
ˇ

ˇ

ˇ

)

.

Remark 3.27 (Optimal damping factor for smoothing). We notice that, if ω “ 1 (the Jacobi

method), then ρ̄
Jacobi

“ 1. This confirms the result we obtained in the previous subsection.

Apparently, the “best” weight that minimizes the smoothing factor is ω “ 4{5, which leads to

ρ̄
Jacobi

“ 3{5.

rem:GeoHighFreq2 Remark 3.28 (What is high-frequency error). In the preceding local Fourier analysis, we de-

fined the high-frequency component to correspond to π
2 ď |θk| ď π. However, as noted in

Remark 1.30, high-frequency components can be accurately approximated by looking at local

behavior, while low-frequency components should be well represented on coarser grids; this will

be further discussed in Remark 3.33. As such, this definition is not universal and must be

adjusted to correspond with the coarsening algorithm under consideration. Semi-coarsening or

red-black coarsening, for instance, will lead to distinct definitions of high-frequency, as detailed

in [179]. Later, we will explore how to define this concept from an algebraic perspective.

It is natural for us to imagine that the G-S method should be better than the Jacobi method

in terms of smoothing property. Using the same steps as above, we have the following LFA

analysis:

1. The G-S method in lexicographical order reads

unewi,j “
1

4

`

unewi´1,j ` uoldi`1,j ` unewi,j´1 ` uoldi,j`1

˘

`
1

4
h2fi,j , i, j “ 1, . . . , n.
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2. The discrete error function satisfies

enewi,j “
1

4

`

enewi´1,j ` eoldi`1,j ` enewi,j´1 ` eoldi,j`1

˘

, i, j “ 1, . . . , n.

3. Apply the discrete Fourier transform and compute the amplification factor

λpθq :“
αnew
θ

αold
θ

“
e

?
´1θ1 ` e

?
´1θ2

4 ´ e´
?

´1θ1 ´ e´
?

´1θ2
.

4. One can show the smoothing factor for the G-S method is

ρ̄GS :“
ˇ

ˇ

ˇ
λ
´π

2
, arccosp4{5q

¯ˇ

ˇ

ˇ
“

1

2
.

Remark 3.29 (Anisotropic problems and smoothing effect). It should be observed that the

aforementioned analysis only applies to problems that feature uniform partition and isotropic

coefficients. For anisotropic problems, it is important to note that the G-S method (as well

as other point relaxation methods) does not provide as effective a smoothing factor as in the

isotropic case. In fact, the smoothing factor will converge to 1 as the ratio between small and

large coefficients approaches 0 (refer to Chapter 6 for more detailed discussion).

rem:GSordering Remark 3.30 (Ordering and G-S smoother). For the G-S method, ordering is important. When

using the red-black ordering instead of the lexicographical ordering above, one can show the

smoothing factor ρ̄RBGS is 1
4 [173, 179]. This means the smoothing effect of the red-black order-

ing for G-S is better.

3.3.3 Smoothing effect

Considering the Richardson method (3.16), then we have Bωv “ ω
řN

i“1pv, ϕiqϕi. This implies

pBωv, vq “ ω
N
ÿ

i“1

pv, ϕiq
2 “ ω

N
ÿ

i“1

pMvq2i “ ωpMv,Mvq “ ωpM2v, vq.

Since M is SPD, we get

pM2v, vq “ pMM
1
2 v, M

1
2 vq – hdpM

1
2 v, M

1
2 vq “ hdpMv, vq.

The estimate (3.14) implies that

pBωv, vq – ωhdpv, vq. (3.22) eqn:Richardson1

Now we choose the weight of the Richardson iteration to be ω “ h2´d, i.e.,

SRv :“ Bωv “ h2´d
N
ÿ

i“1

pv, ϕiqϕi, @v P V. (3.23) eqn:RichardsonOpLevel
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In view of (3.22) and using the fact that the spectral radius of the FE operator is ρpAq – h´2

(see Remark 3.17), we find

pSRv, vq – h2pv, vq –
1

ρpAq
pv, vq.

Roughly speaking, SR behaves like A´1 in the high-frequency regime. This is a natural property

we will ask for from a smoother later on:

pSv, vq –
1

ρpAq
pv, vq. (3.24) eqn:smoothing

In fact, such conditions are only needed in the range of S.
Apparently, the damped Jacobi method also satisfies this condition. In fact, using the

standard scaling argument on each element, we can see that

hd´2pξ, ξq À pDξ, ξq À hd´2pξ, ξq.

Hence, using (3.18), we have the Jacobi smoother

pSJv, vq “ pMSJv, vq “ pMD´1Mv, vq – hd`2pv, vq – h2pv, vq –
1

ρpAq
pv, vq.

Next, we shall show an interesting fact that the G-S method behaves in a similar way as in

the Jacobi method.

lem:GS-algebraic Lemma 3.31 (Smoothing property of G-S in matrix form). Let Â be the stiffness matrix and

Â “ A “ D ` L` U . Then the G-S method satisfies

›

›pD ` Lqξ
›

›

0
–
›

›Dξ
›

›

0
– hd´2}ξ}0, @ξ P RN .

Proof. Locality of the nodal basis functions leads to sparse matrix L; in turn, this gives

›

›pD ` Lqξ
›

›

0
À
›

›Dξ
›

›

0
À hd´2}ξ}0.

The other direction follows from

hd´2}ξ}20 À
`

Dξ, ξ
˘

ď
`

pD `Aqξ, ξ
˘

“ 2
`

pD ` Lqξ, ξ
˘

À }pD ` Lqξ}0 }ξ}0.

We then get the desired estimates with simple manipulations.

Similar results for SGS follows directly as in the Jacobi method. Now we consider the

symmetrized G-S method.

lem:SGS-operator Lemma 3.32 (Smoothing property of SGS). Let S : V ÞÑ V be the symmetrized G-S (SGS)

iterator. Then we have
`

Sv, v
˘

– h2pv, vq –
1

ρpAq
pv, vq. (3.25) eqn:smoother-property
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Proof. The matrix form of SGS can be written as

S “ SM “ pD ` Uq´1DpD ` Lq´1M.

Let v be the primal vector representation of v P V . Then we have

pSv, vq “ pMSv, vq “ pMS v, vq “
›

›D
1
2 pD ` Lq´1Mv

›

›

2

0
.

Hence to show the lemma is equivalent to prove that

›

›D
1
2 pD ` Lq´1Mv

›

›

2

0
– h2pMv, vq.

By changing of variable ξ :“ pD`Lq´1Mv P RN and the fact M – hd, we can obtain the above

equality using

hd´2pDξ, ξq – h2pd´2q}ξ}20 –
›

›pD ` Lqξ
›

›

2

0
“ pMv,Mvq, @ ξ P RN ,

which can be seen from Lemma 3.31.

3.3.4 Smoother as preconditioner ‹

From the property (3.24), which is satisfied by the aforementioned popular smoothers, we

can easily see that

ρ´1
A pv, vq À pSv, vq À ρ´1

A pv, vq, (3.26) eqn:smoothing1

where ρA :“ ρpAq. In this note, we refer to the smoothing property as the phenomenon whereby

the smoother S behaves similarly to A´1 in the high frequency regime. While other conditions

or assumptions for smoothers have been explored and discussed in the literature, readers who

are interested in learning more about general smoothers that are defined as additive and mul-

tiplicative Schwarz methods are encouraged to refer to the paper by Bramble and Pasciak [44],

as well as the references cited within it.

Based on this property, we can establish a lower bound for the minimal eigenvalue, namely

ρ´1
A À λminpSq. When the smoother is symmetric, this property also suggests that the smoother

satisfies the Symmetric Positive Definite (SPD) criteria, making its symmetrized form, S, a viable
preconditioner candidate. With regards to Remark 3.17, which asserts that }v}20 À pv, vqA ď

ρA}v}20, a simple manipulation of the terms leads us to the following conclusion:

ρ´1
A pv, vqA À ρ´1

A pAv,Avq À pSAv, vqA À ρ´1
A pAv,Avq ď pv, vqA. (3.27) eqn:smoothing2

Thanks to Lemmas 2.38 and 2.39, we can deduce from (3.27) that

κpSAq À ρpAq – κpAq,
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thereby suggesting that these smoothers, if used as preconditioners, may not necessarily improve

the condition number of the linear system. Consequently, it becomes apparent that creating an

effective preconditioner requires more than just having a good smoother, which we shall delve

into further in the subsequent sections of this note.

3.4 Twogrid methods
sec:twogrid-algorithm

From the analysis in §3.3, we have found that local relaxation methods (smoothers) can damp

the oscillatory components of the error rather quickly. To address the less efficient treatment

of the smooth components by local relaxation methods, coarser levels can be introduced, as

motivated by the two-level DD method in §2.4. After a few smoothing steps, the resulting

problem can be approximated on a coarser grid and continued with a ”coarse version” of the

problem. This approach allows high frequency parts of the error to be resolved with relaxation

schemes, while the low frequency part is addressed by the coarse levels. To begin, we investigate

a much simpler case: the two-grid method, before delving into multilevel methods.

Firstly, we make an observation that heuristically explains why a coarse-grid solution can

provide a good approximation for smooth functions. Specifically, smooth functions can be

accurately represented on the coarse grid, which is the final piece of the puzzle that motivates

multilevel iterative methods. We provide only a brief outline of the proof here and leave the

complete proof to the readers (see HW 3.5).

rem:CoarseCorrection Remark 3.33 (Low frequency error). Let uh and uH be the finite element solutions on Vh and

VH Ă Vh, respectively. Then we immediately have

aruh ´ uH , vHs “ 0, @ vH P VH .

Using the Aubin-Nitsche’s argument, we consider a boundary value problem
$

&

%

´∆w “ uh ´ uH in Ω,

w “ 0 on BΩ.

Assume that we have full elliptic regularity. Then }w}2 ď C}uh ´ uH}0 is bounded. For any

wH P VH , we get

}uh ´ uH}20 “ arw, uh ´ uHs “ arw ´ wH , uh ´ uHs

ď |||w ´ wH ||| |||uh ´ uH ||| À H|w|2 |||uh ´ uH ||| .

Hence the following inequality holds

}uh ´ uH}0 À H |||uh ´ uH ||| À H |||uh||| . (3.28) eqn:SmoothPart
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That is to say, if uh is relatively smooth (small first derivatives), then uh can be well approxi-

mated by uH .

We summarize the motivations of multilevel iterative methods discussed so far:

• Solution of local problems can be used to approximate high frequency components of the

global solution; see Remark 1.30.

• A high resolution mesh can be effective in capturing local features; see Remark 1.31.

• Local relaxation methods are effective in reducing high frequency errors but not for low

frequency errors; smoother alone is not good enough; see Figures 1.4 and 3.2.

• Coarse-space problems can provide good approximations to the fine-space problems if the

solution is smooth; see Remark 3.33.

• Multilevel iterative methods can be used as preconditioners for Krylov subspace methods;

see the inequalities in (2.49).

3.4.1 General twogrid methods

Let Vh be fine grid finite element space and VH be the coarse gird space (usually it is a

subspace of Vh.) The twogrid method for equation (3.2) can be described as

alg:atwogrid Algorithm 3.1 (General twogrid method). Given an initial guess up0q P Vh.

(i) Pre-smoothing: Apply a few smoothing steps to smooth up0q in the fine space to obtain

a new approximation up1q P Vh;

(ii) Coarse-grid Correction: Find eH P VH by solving (exactly or approximately) the error

equation

pAeH , vHq “ pf ´ Aup1q, vHq, @ vH P VH

in the coarse space, and then set up2q “ up1q ` eH ;

(iii) Post-smoothing: Apply a few more smoothing steps to smooth up2q in the fine space to

obtain up3q P Vh.

A more concrete algorithm based on the above abstract algorithm can be introduced. Let

V be the fine space associated with meshsize h and Vc Ă V be the coarse space associated with

meshsize H. Let Ic : Vc ÞÑ V be the natural embedding (injection), i.e., Icvc “ vc, @vc P Vc.
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Remark 3.34 (Embedding and projection). By the definition of embedding Ic : Vc ÞÑ V and

the fact

pIT
c v, wcq “ pv, Icwcq “ pv, wcq, @v P V,wc P Vc,

it is easy to see that

IT
c “ Qc

is the p¨, ¨q-projection from V to Vc. And the coarse-level operator

Ac “ IT
c AIc “ QcAIc

is defined by the Galerkin relation.

Suppose that S is a smoother and Bc is a solver or approximate solver for the coarse-grid

problem.

alg:twogrid Algorithm 3.2 (Twogrid method). Given an initial guess up0q P V .

(i) Pre-smoothing: up1q “ up0q ` Spf ´ Aup0qq;

(ii) Coarse-grid Correction: up2q “ up1q ` pIcBcIT
c qpf ´ Aup1qq;

(iii) Post-smoothing: up3q “ up2q ` ST pf ´ Aup2qq.

If Bc “ A´1
c , the algorithm is called an exact twogrid (TG) method. On the contrary, if

Bc « A´1
c , the algorithm is an inexact twogrid (ITG) method.

An interesting observation about this algorithm is its striking similarity to the multigrid

algorithm discussed in Chapter 1. In particular, it consists of two core processes: smoothing

steps and coarse-grid correction (CGC). When implemented in a complimentary fashion, these

processes can lead to highly effective algorithms with superior performance. Specifically, choos-

ing appropriate S, Vc, and Bc can enhance the efficiency of the algorithm in solving the given

equation. The two-grid method was developed with the intention of capturing high-frequency

components of error on the fine grid and delegating the low-frequency components to the coarser

grid. The effect of coarse-grid correction is illustrated in Figure 3.3; it’s worth noting that the

two images depicted there are in different scales.

3.4.2 Convergence analysis of twogrid method

In this section, we will estimate the convergence rate of twogrid methods. To begin, we

present a few simple lemmas. The first lemma concerns the norm of oblique projections, also

known as Kato’s lemma, which has been proven and reproduced in several different fields. For

further details, please refer to the paper by Szyld [175].
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Figure 3.3: After coarse-grid correction, global low frequency is replaced by local high frequency.fig:coarsecorrection

lem:Kato Lemma 3.35 (Norm of oblique projections). If Π is a continuous projection onto a Hilbert

space V and Π is neither I nor 0 , then

}Π } “ }I ´ Π }.

Proof. Let u P V be arbitrary and }u} “ 1. From the assumption on Π , we can take x :“ Πu P

rangepΠ q and y :“ pI ´ Π qu P nullpΠ q. Then we have

1 “ }u}2 “ }x}2 ` }y}2 ` 2 px, yq.

If x “ 0 or y “ 0, then we have Πu “ 0 or }Πu} “ 1, respectively. If both x and y are nonzero,

we define w :“ x̃` ỹ P V , where

x̃ :“
}y}

}x}
x P rangepΠ q and ỹ :“

}x}

}y}
y P nullpΠ q.

Then }w}2 “ }x}2 ` }y}2 ` 2 px, yq “ 1 and

}Πu} “ }x} “ }ỹ} “ }pI ´ Π qw} ď }I ´ Π } ùñ }Π } ď }I ´ Π }.

The other direction can be shown in a similar way and the lemma can be proved.

Proof of the next two lemmas are straightforward and left to the readers; see HW 3.4.

lem:TGiter Lemma 3.36 (Iterator of twogrid method). The twogrid method has a corresponding iterator

BTG : V 1 Ñ V defined as

BTG “ S `
`

I ´ STA
˘

IcBcIT
c pI ´ ASq , (3.29) B_Inv

where S “ ST ` S ´ STAS is the symmetrization of the smoother S.
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lem:TGerror Lemma 3.37 (Error propagation of twogrid method). The error propagation operator ETG “

I ´ BTGA for the twogrid method is

ETG “ pI ´ STAqpI ´ BcAcΠcqpI ´ SAq, (3.30) E_op

where Πc is the p¨, ¨qA-orthogonal projection onto Vc. If the coarse-level solver is exact, namely,

Bc “ A´1
c , then we have

ETG “ pI ´ STAqpI ´ ΠcqpI ´ SAq. (3.31) E_op1

The explicit formula for the projection operator Πc in (3.31) can be written as

Πc “ IcA´1
c IT

c A.

Upon examining equation (3.31), we recognize the crucial role played by reducing the norms of

both the coarse-level correction operator I ´ Πc and the error reduction operator I ´ SA in

achieving optimal performance. Furthermore, by taking into account Lemma 3.35, it is evident

that analyzing the behavior of }Πc}A is equivalent to assessing the exact coarse-level correction

operator }I ´ Πc}A.

Notice that Πc is the A-projection from V to Vc. So there is an implicit natural embedding

operator Ic in front of Πc in the above equality (3.31).

We now present a theorem which gives the convergence rate of a simplified twogrid method

(Algorithm 3.3) in terms of approximability of the coarser space Vc.

alg:twogrid2 Algorithm 3.3 (Simplified twogrid method). Given an initial guess up0q P V .

(i) Coarse-grid Correction: up1q “ up0q ` pIcBcIT
c qpf ´ Aup0qq;

(ii) Post-smoothing: up2q “ up1q ` Spf ´ Aup1qq.

Assume that S is SPD. In the twogrid method analysis below, we need the following notation

T “ TS :“ SA : V ÞÑ V. (3.32) eqn:SA

With the above notation, we can define the inner product

`

u, v
˘

S´1 :“
`

T ´1u, v
˘

A,

the accompanying norm } ¨ }S´1 , and p¨, ¨qS´1-orthogonal projection QS´1 : V ÞÑ Vc.

The convergence rate of the twogrid method is given by the following theorem. One can

compare this result with the convergence rate of the smoother or iterator, S, given by Theo-

rem 2.15:

}I ´ SA}A “ 1 ´
1

c1
, with c1 :“ sup

}v}A“1
}v}2S´1 .
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The following theorem can be derived from the X-Z identity, as stated in Theorem 4.17. Here,

for the sake of completeness, we present a direct proof originally given in [195].

thm:twogrid-convergence Theorem 3.38 (Convergence rate of the twogrid method). The convergence rate of the twogrid

method, Algorithm 3.3, with the exact coarse-level solver is given by

}ETG}2A “ 1 ´
1

c1pVcq
, (3.33) eq:twogrid-convergence

where

c1pVcq :“ sup
vPV

›

›pI ´ QS´1qv
›

›

2

S´1

}v}2A
“ sup

vPV
inf
vcPVc

›

›v ´ vc
›

›

2

S´1

}v}2A
. (3.34) KVc

Sketch of the proof. (1) It follows from (3.30) that the simplified TG method has the following

error propagation operator

ETG “ pI ´ SAqpI ´ Πcq.

Hence, we can immediately see that

}ETG}2A “ sup
vPV

}pI ´ SAqpI ´ Πcqv}2A
}v}2A

“ sup
vPV

KA
c

}pI ´ SAqv}2A
}v}2A

.

Using the definition of p¨, ¨qA-projection Πc, we can show that

}ETG}2A “ sup
vPV

KA
c

`

pI ´ T qv, v
˘

A
}v}2A

“ 1 ´ inf
vPV

KA
c

`

T v, v
˘

A
pv, vqA

“ 1 ´ inf
vPV

KA
c

`

pI ´ ΠcqT v, v
˘

A
pv, vqA

.

(2) Define

X :“ pI ´ ΠcqT : V KA
c ÞÑ V KA

c (3.35) eqn:Xdef

and it is easy to check that X is self-adjoint with respect to p¨, ¨qA. A key observation is that

the inverse of X can be explicitly written as

Z “ T ´1pI ´ QS´1q.

Since
`

ΠcT ´1pI ´ QS´1qu, v
˘

A “
`

T ´1pI ´ QS´1qu, v
˘

A “
`

pI ´ QS´1qu, v
˘

S´1 “ 0 for any

u P V KA
c and v P Vc, we have ΠcZ “ 0, which implies that Z : V KA

c ÞÑ V KA
c . Furthermore, by

the definition of projections, we get

XZ “ pI ´ ΠcqpI ´ QS´1q “ I ´ Πc “ I on V KA
c .

(3) Consequently λmin pX q “ λmax pZq
´1. Finally,

λmax pZq “ sup
vPV

KA
c

pT ´1pI ´ QS´1qv, vqA
pv, vqA

“ sup
vPV

KA
c

`

pI ´ QS´1qv, v
˘

S´1

pv, vqA

“ sup
vPV

KA
c

}pI ´ QS´1qv}2
S´1

pv, vqA
“ sup

vPV

›

›pI ´ QS´1qv
›

›

2

S´1

}v}2A
“: c1pVcq.
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The last identity holds because I ´ QS´1 “ pI ´ QS´1qpI ´ Πcq and we can then take the

supremum back over all v P V (using the same argument in the very beginning of this proof).

Theorem 3.38 estimates the convergence rate of a twogrid method in terms of c1pVcq. A

smaller bound on c1pVcq indicates a faster convergence rate for a given method. Specifically,

the twogrid method achieves uniform convergence if c1pVcq is uniformly bounded with respect to

mesh size. However, one potential issue when applying Theorem 3.38 is that it can be challenging

to work with S´1
.

A natural approach to overcome such a difficulty is to introduce a simpler but spectrally

equivalent SPD operator D, such that

CL

›

›v
›

›

2

D ď
›

›v
›

›

2

S´1 ď CU

›

›v
›

›

2

D, @ v P V.

Similar to the definition of c1pVcq, we can introduce the quantity

c1pVc,Dq “ sup
vPV

›

›pI ´ QDqv
›

›

2

D
}v}2A

“ sup
vPV

inf
vcPVc

›

›v ´ vc
›

›

2

D
}v}2A

,

where QD : V ÞÑ Vc is the p¨, ¨qD-orthogonal projection. Hence

CL c1pVc,Dq ď c1pVcq ď CU c1pVc,Dq.

It is straight-forward to derive the following estimates:

thm:twogrid-convergence2 Theorem 3.39 (An estimate of convergence rate of TG). The convergence rate of the twogrid

method (3.29) with exact coarse-level solver is given by

1 ´
1

CL c1pVc,Dq
ď }ETG}A ď 1 ´

1

CU c1pVc,Dq
ď 1 ´

1

CUC
, (3.36) eq:twogrid-convergence2

where C is an upper bound of c1pVc,Dq, i.e.,

inf
vcPVc

›

›v ´ vc
›

›

2

D ď C}v}2A, @ v P V. (3.37) KVc1

It is important to note that we have only presented the simplest case where the coarse

problem is solved exactly. In practice, the coarse problem is rarely solved exactly. We can also

obtain convergence estimates for the inexact twogrid method by using the convergence factor of

the exact twogrid method, as outlined in [148, 198].

3.4.3 Optimal coarse space

Next, we will discuss how to choose the coarse space to optimize the convergence rate, which

is a helpful concept when developing algebraic multigrid methods (AMGs). The space that

spans the eigenvectors of SA corresponding to small eigenvalues is the “best” coarse space as

it minimizes the convergence rate. The following theorem characterizes the optimal choice of

coarse space Vc with a fixed smoother S:
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thm:twogrid-optimal Theorem 3.40 (Optimal coarse space). Given a smoother S, the best coarse space of dimen-

sion Nc is given by

V opt
c :“ argmin

dimVc“Nc

}ETGpVcq}A “ span
␣

ξk
(Nc

k“1
, (3.38) optVH

where
␣

ξk
(Nc

k“1
are the eigenfunctions corresponding to the Nc smallest eigenvalues λk of SA.

Proof. Recall that ETG “ pI ´ STAqpI ´ ΠcqpI ´ SAq. Since ETG depends on Vc we write

ETGpVcq and using the same argument as in the proof of Theorem 3.38, we have

}ETGpVcq}A “ 1 ´ min
vPV

KA
c

pSAv, vqA
}v}2A

.

Thus,

min
dimVc“Nc

}ETGpVcq}A “ 1 ´ max
dimVc“Nc

min
vPV

KA
c

pSAv, vqA
}v}2A

.

By the well-known Courant minimax principle [69], we have

max
dimVc“Nc

min
vPV

KA
c

`

SAv, v
˘

A
}v}2A

“ λNc`1

and the equality holds if Vc “ V opt
c as given in (3.38).

Remark 3.41 (Lower bound of contraction factor). Since the coarse space which minimizes

the convergence rate is the coarse space which minimizes also c1pVcq, we have the following

inequalities

c1pVcq “
1

1 ´ }ETG}A
ě

1

λNc`1
or }ETG}A ě 1 ´ λNc`1,

which is a lower bound of the contraction factor in terms of size of the small eigenvalues (low

frequencies) of SA.

Since the eigenpairs of SA are expensive to compute, the practical value of Theorem 3.40 is

limited. But it will provide useful guidance in the design practical algebraic multilevel methods

in §7.1.

3.5 Algebraic representation of twogrid methods
sec:MatrixFromTG

Prior to implementation, it is essential to comprehend the matrix representation of an al-

gorithm in order to tackle inquiries arising from it, such as those noted in Section 1.4. In this

regard, we will outline the matrix representation of the two-grid method within the finite element

domain.
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3.5.1 Grid transfer operators in matrix form

Let tϕiu be the basis of a finite element space V on the fine-grid. Then the stiffness matrix

Â reads
`

Â
˘

i,j
“ arϕi, ϕjs.

Let tϕcl u be the basis functions of the coarse-grid subspace Vc Ă V and the stiffness matrix on

the coarser space is denote by Âc with
`

Âc

˘

k,l
“ arϕck, ϕ

c
l s. Then ϕ

c
l can be expressed as

ϕcl “

N
ÿ

i“1

`

P
˘

i,l
ϕi

or

pϕc1, . . . , ϕ
c
Nc

q “ pϕ1, . . . , ϕN qP,

which defines a prolongation matrix P P RNˆNc . By definition, this implies that P “ Ic.

rem:PreserveConst Remark 3.42 (Cannonical prolongation operator). Let 1N :“ p1, 1, . . . , 1qT . Since the basis

functions form the partition of unity, it follows that

pϕ1, ¨ ¨ ¨ , ϕN q1N “

N
ÿ

i“1

ϕi “ 1 “

Nc
ÿ

l“1

ϕcl “ pϕc1, ¨ ¨ ¨ , ϕcNc
q1Nc “ pϕ1, ¨ ¨ ¨ , ϕN qP 1Nc .

Hence we have that the prolongation matrix preserves constant away from the boundary, i.e.,

P 1Nc “ 1N .

The prolongation preserves the smooth vectors (actually, 1N is in the null space of Â in this

case).

It is important to note that IT
c “ Qc ‰ IcT , i.e., the matrix representation of adjoint

operator is not equal to the transpose of the matrix representation. If we take any v P V , then

we have

vc :“ Qcv and vc “ pϕc1, . . . , ϕ
c
Nc

qvc.

On the other hand, with straightforward calculations, we obtain that

v⃗c “

´

pvc, ϕ
c
kq

¯Nc

k“1
“

´

pv, ϕckq

¯Nc

k“1
“

´

N
ÿ

j“1

vjpϕj , ϕ
c
kq

¯Nc

k“1
“

´

N
ÿ

j“1

vj

´

IcTM
¯

k,j

¯Nc

k“1
“ IcTMv.

In turn, we can obtain the matrix representation of the L2-projection

Qcv “ vc “ M´1
c v⃗c “ M´1

c IcTMv ùñ IT
c “ Qc “ M´1

c IcTM “ M´1
c P TM. (3.39) eqn:MatQ
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3.5.2 Coarse problem in matrix form

Since the coarse-level operator is defined as Ac “ IT
c AIc, we obtain its matrix representation

Ac “ QcAIc ùñ Âc “ McAc “ McQcAIc “ P TMAP “ P T ÂP. (3.40) eqn:Ac-PtAP

Then the coarse stiffness matrix satisfies

Âc “ P T ÂP. (3.41) eqn:PtAP

Therefore, the algebraic form (3.41) of the coarse level problem is equivalent to the matrix

representation of the operator form.

In the above equality, we observe that, the L2-projection Qc is not needed for implementation.

Instead, we only need to use a restriction matrix R :“ P T .

Remark 3.43 (Finite difference case). Notice that, here, for the finite element stiffness matrices,

the restriction matrix is just R “ P T . However, we have already noticed that R ‰ P T for the

finite difference method in (1.37). In fact, many books (see [64] for example) states R “ αP T .

This difference comes from the scaling effect caused by different meshsizes. In the 1D FD

example, the coefficient matrices on fine and coarse levels are A “ h´1Â and Ac “ H´1Âc,

respectively. Hence we get

Âc “ P T ÂP ùñ Ac “

ˆ

h

H
P T

˙

AP “: RAP.

This remark explains how we can obtain such the constant α in general.

3.5.3 Twogrid iterator in matrix form

From (3.29), we have that the twogrid method with exact coarse solver is

BTG “ S `
`

I ´ STA
˘

IcA´1
c IT

c pI ´ ASq .

We can then write the above equation in matrix form

BTG “ S `
`

I ´ STA
˘

IcA´1
c IT

c

`

I ´ AS
˘

.

So we define

BTG :“ BTGM
´1 “ SM´1 `

`

I ´ STA
˘

IcA´1
c IT

c

`

I ´ AS
˘

M´1.

Using the matrix form the symmetrization, inversion, and transpose derived earlier, we can

easily get

BTG “ S ` pI ´ STAqPA´1
c P T pI ´ASq “ S ` pI ´ STAqP

`

P TAP
˘´1

P T pI ´ASq.
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Now we are ready to introduce the matrix representation of the twogrid method for solving the

linear system Au “ f⃗ . We describe the twogrid method as a preconditioner action BTGp¨q. For

the sake of simplicity and consistency, here we abuse the notation and still use the general vector

notation v⃗ to denote the primal form of v. For any given vector (usually it is the residual vector)

r⃗ P RN , we can compute BTGpr⃗q in the following steps:

Listing 3.1: A twogrid method

1 %% Given any vector r⃗;

2 Pre−smoothing: v⃗ Ð Sr⃗;

3 Coarse−grid correction: w⃗ Ð v⃗ ` P pPTAP q
´1PT

pr⃗ ´ Av⃗q;

4 Post−smoothing: BTGr⃗ Ð w⃗ ` ST
pr⃗ ´ Aw⃗q;

Similarly, from (3.31), we have matrix form of the iteration matrix

ETG “ ETG “ pI ´ STAqpI ´ PA´1
c P TAqpI ´ SAq

“ pI ´ STAqpI ´ ΠcqpI ´ SAq, (3.42) eqn:ETG_matrix

where Πc :“ Πc “ PA´1
c P TA is the matrix form of the coarse-level correction; see HW 3.8.

In [89], an algebraic analysis of the twogrid method has been given and the convergence rate

of the TG method can be written as

ρpETGq “ 1 ´ inf
v

vT pI ´ Π̃cqA
1
2SA

1
2 pI ´ Π̃cqv

vT pI ´ Π̃cqv
,

where Π̃c :“ A
1
2ΠcA

´ 1
2 “ A

1
2PA´1

c P TA
1
2 . This algebraic form is explicit and might be easier

to understand compared with Theorem 3.38.

3.6 Homework problems

hw:ApostBound HW 3.1. Show the a posteriori error bounds (3.9).

hw:matrix-rep HW 3.2. Prove the statements in Lemma 3.21.

hw:Richardson HW 3.3. Show the operator form and matrix form (3.16) of the Richardson method.

hw:TG HW 3.4. Prove Lemma 3.36 and Lemma 3.37.

hw:CoarseCorrection HW 3.5. Give a complete proof of Remark 3.33.

hw:MGTG HW 3.6. Write the 1D multigrid method in §1.4 as a twogrid method (Algorithm 3.2) called

recursively and modify your implementation in this way.
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hw:ETG HW 3.7. Give the detailed proof of Theorem 3.38. Hint: First show that

sup
vPV

}pI ´ SAqpI ´ Πcqv}2A
}v}2A

“ sup
vPV

}pI ´ SAqpI ´ Πcqv}2A
}pI ´ Πcqv}2A ` }Πcv}2A

“ sup
vPV

KA
c

}pI ´ SAqv}2A
}v}2A

;

Then prove that X defined in (3.35) is self-adjoint with respect to p¨, ¨qA-inner product.

hw:ETGmatrixform HW 3.8. Derive the primal matrix representation of Πc and ETG respectively.



Chapter 4

Subspace Correction Methods

ch:subspace

In the previous chapters, we have introduced several iterative solvers for the linear equation

Au “ f, (4.1) eqn:original

where A : V ÞÑ V is SPD. A linear stationary iterative method can be written as

unew “ uold ` Bpf ´ Auoldq. (4.2) eqn:original-iter

In Chapter 2, we have seen that: If B is an SPD operator, with proper scaling, the above iterative

method (4.2) converges; Furthermore, B can be applied as a preconditioner of Krylov subspace

methods, like PCG.

In this chapter, we present a theoretical framework for analyzing linear iterative methods

and/or preconditioners in terms of space decomposition and subspace corrections. This gen-

eral framework can be used to establish convergence theory for various methods, including the

multigrid method, the domain decomposition method, and the twogrid method discussed in the

previous chapters.

4.1 Successive and parallel subspace corrections

Suppose we have a subspace decomposition of the solution space

V “

J
ÿ

j“1

Vj and Vj Ă V pj “ 1, . . . , Jq.

For any v P V , we can write it as v “
řJ

j“1 vj with vj P Vj . Notice that this representation

is not unique as there could be redundancy in the subspace decomposition. Later on, it will

become clear that such redundancy is crucial for constructing optimal multilevel methods.

112
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4.1.1 Abstract framework for subspace corrections

We first define a few operators which have already been used at different places in the

previous chapters.

def:subproblems Definition 4.1. Let V be a finite-dimensional Hilbert space with inner product p¨, ¨q and Vj Ă V

be a subspace. We define
$

’

’

&

’

’

%

subspace problem Aj : Vj ÞÑ Vj , pAjvj , wjq “ pAvj , wjq, @ vj , wj P Vj ;

p¨, ¨q-projection Qj : V ÞÑ Vj , pQjv, wjq “ pv, wjq, @wj P Vj ;

p¨, ¨qA-projection Πj : V ÞÑ Vj , pΠjv, wjqA “ pv, wjqA, @wj P Vj .

Using Definition 4.1, we have the following elementary results:

lem:projections Lemma 4.2 (Relation between projections). The following equalities hold:

1. IT
j “ Qj , I˚

j “ Πj ;

2. QjA “ AjΠj .

Proof. (i) By definition, for any u P V, vj P Vj , we have

pQju, vjq “ pu, vjq “ pu, Ijvjq “ pIT
j u, vjq,

pΠju, vjqA “ pu, vjqA “ pu, IjvjqA “ pI˚
j u, vjqA.

(ii) For any u P V, vj P Vj , we have

pAjΠju, vjq “ pΠju, vjqA “ pu, vjqA “ pu, IjvjqA “ pAu, Ijvjq “ pQjAu, vjq,

which gives the second identity.

Remark 4.3 (Matrix representation of the A-projection). Let uc :“ Πcu. Since Πc : V ÞÑ Vc Ă

V is the A-orthogonal projection operator, for any u P V , we have

aruc, vcs “ arΠcu, vcs “ aru, vcs, @ vc P Vc.

Using the matrix representation notations introduced in §3.2, we have, for any vc P Vc, that

aruc, vcs “ pAuc, vcq “ vc
T Âc uc, @uc P Vc; (4.3)

aru, vcs “ pAu, vcq “ pIcvcqT Âu “ vc
TP T Âu, @u P V. (4.4)

From (4.3) and (4.4), we can derive the matrix representation of the Galerkin projection on the

coarse grid

Âcuc “ P T Âu ùñ Πc u “ Πcu “ uc “ Â´1
c P T Âu.
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Hence, we obtain the matrix representation of the A-projection operator

Πc “ Â´1
c P T Â. (4.5)

One can compare the above equation with the matrix form of the L2-projection in (3.39), i.e.

Qc “ IT
c “ M´1

c P TM,

which has been derived in the previous chapter.

Remark 4.4 (Subspace problems). From the definition of Aj , we get

Aj “ IT
j AIj “ QjAIj “ QjAQT

j .

With the help of Lemma 4.2 and simple calculations, we can immediately obtain the error

equation on each subspace Vj :

Ae “ r ùñ QjAe “ Qjr ùñ AjΠje “ Qjr ùñ Ajej “ rj ,

where rj :“ Qjr and ej :“ Πje.

The main idea of method of subspace corrections (MSC), namely divide and conquer, has

already been discussed in the domain decomposition method; see §2.4. We first describe the

idea of subspace correction in the following abstract “algorithm”1, which is just a generalization

of Algorithm 2.1:

alg:msc Algorithm 4.1 (Method of subspace corrections). unew “ SCpuoldq

(i) Form residual: r “ f ´ Auold

(ii) Solve error equation on Vj : Ajej “ rj by ej « ẽj “ Sjrj

(iii) Apply correction: unew “ uold ` ẽj

Notice that, instead of constructing an iterator for the whole system, Algorithm 4.1 only con-

siders one subproblem (on the subspace Vj) at a time.

rem:subsolvers Remark 4.5 (Subspace solvers). It is well-known that

uj “ argmin
vPVj

Fpvq :“
1

2
pAv, vq ´ pf, vq

1Note that this procedure is not a real algorithm due to the fact that it does not specify how to combine the
corrections ẽj ’s from different subspaces.
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is equivalent to find

uj “ argmin
vPVj

›

›u´ v
›

›

A.

We notice that the solution of the subspace problem Ajej “ rj “ Qjr
old satisfies that

Fpuold ` ejq “ min
ePVj

Fpuold ` eq.

In order to provide an effective yet practical subspace solver, we should pay attention to the

dimension of the subspace and choose an appropriate problem size.

4.1.2 SSC and PSC methods

Algorithm 4.1 did not specify how to combine the corrections ẽj ’s from different subspaces.

There are two basic approaches: the successive subspace correction (SSC) and the parallel

subspace correction (PSC). SSC can be viewed as the multiplicative Schwarz method (2.53) and

PSC can be viewed as the additive Schwarz method (2.52). We now give descriptions of the SSC

and PSC algorithms.

Algorithm 4.2 (Successive subspace corrections). unew “ SSCpuoldqalg:ssc

(i) v “ uold

(ii) v “ v ` SjQjpf ´ Avq, j “ 1, . . . , J

(iii) unew “ v

rem:relaxed-subsolvers Remark 4.6 (Relaxation for subspace solvers). In the above algorithm, we can introduce a re-

laxation parameter in each subspace correction step

v “ v ` ωjSjQjpf ´ Avq, j “ 1, . . . , J.

Good relaxation parameters are difficult to obtain in general, but they can improve convergence

if optimal values can be found. We will not discuss this modified subspace correction though

because ωj can always be absorbed in Sj .

Algorithm 4.3 (Parallel subspace corrections). unew “ PSCpuoldqalg:psc

(i) rold “ f ´ Auold

(ii) unew “ uold `
řJ

j“1 SjQjr
old
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From the above algorithms (Algorithm 4.2 and 4.3), it is immediately clear why they are

named as SSC and PSC, respectively.

Define operators

Tj “ TSj :“ SjQjA “ SjAjΠj : V ÞÑ Vj .

Apparently, as in (3.32), if we restrict the domain to Vj , then we have

Tj “ TSj “ SjAj : Vj ÞÑ Vj .

We shall now assume all the subspace solvers Sj are SPD operators. As ST
j “ Sj , the operator

Tj “ SjAj : Vj ÞÑ Vj is symmetric and positive definite with respect to p¨, ¨qA. If Sj “ A´1
j , i.e.,

the subspace solvers are exact on each subspace, then we have Tj “ Πj .

• The SSC method satisfies:

u´ unew “ pI ´ BSSCAqpu´ uoldq “ pI ´ TJq ¨ ¨ ¨ pI ´ T2qpI ´ T1qpu´ uoldq. (4.6) eqn:SSC

If J “ N , Vj “ spantϕju and Sj “ A´1
j (j “ 1, . . . , N), then the corresponding SSC

method (4.6) is exactly the G-S method; see (2.19).

• For the PSC method, the iterator (or, more often, the preconditioner) satisfies

BPSC “

J
ÿ

j“1

SjQj “

J
ÿ

j“1

IjSjQj and BPSCA “

J
ÿ

j“1

SjQjA “

J
ÿ

j“1

Tj . (4.7) eqn:PSC

If Sj ’s (j “ 1, . . . , J) are all SPD, then the preconditioner BPSC is also SPD; see HW 4.2.

If each subspace Vj “ spantϕju (j “ 1, . . . , N), then the resulting PSC methods with

Sj “ ωp¨, ϕjqϕj and Sj “ A´1
j correspond to the Richardson method and the Jacobi

method, respectively.

So far, we have not mentioned any multilevel structures in the above methods. In order to intro-

duce multilevel iterative methods in the subspace correction framework, we will need multilevel

subspace decompositions.

4.2 Expanded systems and block solvers

In this section, we discuss an expanded system of Au “ f (namely the equation (4.1)) and

its block iterative solvers. Moreover, we will show how these block solvers are related to the

subspace correction methods for the original linear system (4.1). This relation will become

important in the next section for deriving the XZ identity, which gives the convergence rate of

SSC.
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4.2.1 Generalized G-S method

Similar to the weighted Jacobi method (see Example 2.16), we define the weighted G-S

method Bω “ pω´1D ` Lq´1. We have

B´T
ω `B´1

ω ´A “ pω´1D ` LqT ` pω´1D ` Lq ´ pD ` L` Uq “ p2ω´1 ´ 1qD.

The weighted G-S method converges if and only if 0 ă ω ă 2. In fact, ω “ 1 yields the standard

G-S method; 0 ă ω ă 1 yields the SUR method; 1 ă ω ă 2 yields the SOR method. One

can select optimal weights for different problems to achieve good convergence result, which is

beyond the scope of this lecture.

Motived by the weighted G-S methods, we assume that there is an invertible smoother or a

local relaxation method S for the equation Au⃗ “ f⃗ , like the damped Jacobi smoother S “ ωD´1

(0 ă ω ă 1). We can define a generalized or modified G-S method:

B :“
`

S´1 ` L
˘´1

. (4.8) eqn:MGS

This method seems abstract and not very interesting now; but we will employ this idea on block

matrices for multilevel iterative methods later on.

We can analyze the convergence rate of this generalized G-S method using the same technique

discussed in §2.1. Since K “ B´T `B´1 ´A is a symmetric matrix and we can write (2.13) as

B “ BTKB. If B is the iteration matrix defined by (4.8), we have

K “ pS´T ` Uq ` pS´1 ` Lq ´ pD ` L` Uq “ S´T ` S´1 ´D.

Furthermore, from the definition of K, we find that B´1 “ K ` A ´ B´T . Hence we get an

explicit form of B
´1

by simple calculations:

B
´1

“ pK `A´B´T qK´1pK `A´B´1q “ A` pA´B´T qK´1pA´B´1q.

This identity and the definition of B yield:

´

B
´1
v⃗, v⃗

¯

“ pAv⃗, v⃗q `

´

K´1pD ` U ´ S´1qv⃗, pD ` U ´ S´1qv⃗
¯

, @v⃗ P RN .

Now we apply Theorem 2.15 and get the following identity for the convergence rate:

thm:rateGS Corollary 4.7 (Convergence rate of generalized G-S). If K “ S´T `S´1 ´D is SPD, then the

generalized G-S method converges and

}I ´BA}2A “ }I ´BA}A “ 1 ´
1

1 ` c0
, with c0 :“ sup

}v⃗}A“1

›

›

›
K´ 1

2

`

D ` U ´ S´1
˘

v⃗
›

›

›

2
.

This fundamental result will serve as the foundation for our subsequent analysis of subspace

correction methods.
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ex:FDGS Example 4.8 (Solving 1D Poisson’s equation using G-S). If we apply the G-S method to the

1D FD/FE system (1.25) for the Poisson’s equation discussion in §1.2. For simplicity, we first

rescale both sides of the equation such that A :“ tridiagp´1, 2,´1q and f⃗ :“
`

h2fpxiq
˘N

i“1
. In

this case, S “ D´1 and K “ D in the above generalized G-S method. Corollary 4.7 shows that

the convergence rate of the G-S iteration satisfies that

}I ´BA}2A “ 1 ´
1

1 ` c0
, with c0 “ sup

v⃗PRN zt0u

pLD´1Uv⃗, v⃗q

}v⃗}2A
.

The positive constant can be further written

c0 “ sup
v⃗PRN zt0u

`

D´1Uv⃗, Uv⃗
˘

pAv⃗, v⃗q
“ sup

v⃗PRN zt0u

1
2

`

Uv⃗, Uv⃗
˘

pAv⃗, v⃗q
“ sup

v⃗PRN zt0u

1
2

řN
i“2 v

2
i

pAv⃗, v⃗q
.

Because we have the eigenvalues of this discrete coefficient matrix A of FD (see Remark 1.26),

we can estimate the denominator

pAv⃗, v⃗q ě λminpAq}v⃗}2 “ 4 sin2
´ π

2pN ` 1q

¯

}v⃗}2.

Hence, asymptotically, we have the following estimate

c0 ď sup
v⃗PRN zt0u

1
2}v⃗}2

4 sin2
´

π
2pN`1q

¯

}v⃗}2
„ pN ` 1q2 “ h´2.

Hence

}I ´BA}A „

a

1 ´ C̃h2 „ 1 ´ Ch2.

Similarly, for the FE equation, the condition number also likes Oph´2q and convergence rate will

deteriorate as the meshsize decreases.

4.2.2 Expansion of the original problem

Suppose that the finite dimensional vector space V can be decomposed as the summation of

linear vector subspaces (might not be linearly independent), V1, V2, . . . , VJ , i.e., V “
řJ

j“1 Vj .

We define a new vector space

V :“ V1 ˆ V2 ˆ ¨ ¨ ¨ ˆ VJ .

Define an operator Π : V ÞÑ V such that Πu :“
řJ

j“1 uj , where u “ pu1, . . . , uJqT P V with

each component uj “ uj P Vj . From the definition, it is easy to see that Π is surjective. This

operator can be formally interpreted as

Π :“ pI1, . . . , IJq,
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where Ij is the natural embedding from Vj to V . Hence, we have

Πu “ pI1, . . . , IJq

¨

˚

˚

˝

u1
...

uJ

˛

‹

‹

‚

“

J
ÿ

j“1

Ijuj “

J
ÿ

j“1

uj .

So we have

ΠT “

¨

˚

˚

˝

IT
1
...

IT
J

˛

‹

‹

‚

“

¨

˚

˚

˝

Q1

...

QJ

˛

‹

‹

‚

.

It should be noted that ΠΠT ‰ I, in general.

Define A : V ÞÑ V such that Ai,j “ Ai,j :“ IT
i AIj : Vj ÞÑ Vi. And we denote Aj :“ Aj,j

(j “ 1, . . . , J). Hence we can write the operator A in a matrix form

A :“ ΠTAΠ “

¨

˚

˚

˝

A1,1 ¨ ¨ ¨ A1,J

...
. . .

...

AJ,1 ¨ ¨ ¨ AJ,J

˛

‹

‹

‚

“

´

Ai,j

¯

JˆJ
.

Given any right-hand side function f P V , we define

f :“ ΠT f “

¨

˚

˚

˝

IT
1 f
...

IT
J f

˛

‹

‹

‚

P V.

In this setting, we consider the following problem: Find u P V, such that

Au “ f . (4.9) eqn:expanded

This system is called the expanded equation of the original linear equation (4.1). We will see

how the solution of these two problems are related. If A is SPD, then A is a symmetric positive

semidefinite (SPSD) operator. Note that A is usually singular due to its nontrivial null space,

nullpΠq. However, its diagonal entries Aj (j “ 1, 2, . . . , J) are non-singular. We can define a

semi-norm for B : V ÞÑ V

}B}A :“ sup
}v}A‰0

}Bv}A

}v}A
.

4.2.3 Block solvers for expanded systems

As before, we denote the lower, upper, and diagonal part of A as L, U, and D, respectively.

We can immediately see that the stationary iterative methods discussed in §1.3 can be easily
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adapted to solve (4.9). The linear stationary iterative methods for (4.9) can be written in the

following abstract form

unew “ uold ` Bpf ´ Auoldq, (4.10) eqn:iterEx

where the iterator B : V ÞÑ V. If B “ D´1, then we have the block Jacobi method for (4.9); if

B “ pD ` Lq´1, then we have the block Gauss–Seidel method.

Motivated by (4.8), we can generalize the block Jacobi and G-S methods. Suppose that there

is a non-singular block diagonal smoother (or relaxation operator) S : V ÞÑ V, i.e.,

S “ diagpS1,S2, . . . ,SJq, with Sj : Vj ÞÑ Vj , j “ 1, 2, . . . , J.

We define generalized block Jacobi method by B “ S and the generalized block Gauss–Seidel

method by B “ pS´1 ` Lq´1.

thm:equivalence Theorem 4.9 (Solution of expanded and original systems). The linear stationary iteration (4.10)

for the equation (4.9) reduces to an equivalent stationary iteration (4.2) with the iterator

B “ ΠBΠT

for the original equation (4.1). Moreover, these two methods have the same convergence behav-

ior, namely,

}I ´ BA}A “ }I ´ BA}A.

Proof. The linear stationary iterative method

unew “ uold ` Bpf ´ Auoldq

is equivalent to

unew
j “ uold

j `
ÿ

k

Bj,k

´

IT
k f ´

ÿ

i

Ak,iu
old
i

¯

“ uold
j `

ÿ

k

Bj,kIT
k

´

f ´
ÿ

i

AIiuold
i

¯

“ uold
j `

ÿ

k

Bj,kIT
k

´

f ´ Auold
¯

.

Therefore, we have

unew “
ÿ

j

Ijunew
j “ uold `

ÿ

j,k

IjBj,kIT
k

´

f ´ Auold
¯

“ uold ` B
´

f ´ Auold
¯

.

This proves the equivalence of (4.10) and (4.2).

A key observation is that

pBAv,vqA “ pABAv,vq “ pΠTAΠBΠTAΠv,vq “ pABAΠv,Πvq “ pBAΠv,ΠvqA.
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The contraction factor can be written

}I ´ BA}2A “ sup
v‰0

}pI ´ BAqv}2A
}v}2A

“ sup
v‰0

pv, vqA ´
`

pBT ` B ´ BTABqAv, v
˘

A
pv, vqA

“ sup
Πv‰0

pΠv,ΠvqA ´
`

pBT ` B ´ BTABqAΠv,Πv
˘

A
pΠv,ΠvqA

“ sup
}v}A‰0

pv,vqA ´
`

pBT ` B ´ BTABqAv,v
˘

A

}v}2A

“ }I ´ BA}2A.

Hence we get the desired result.

ex:Jacobi-psc Example 4.10 (Block Jacobi method and PSC). We now apply the block Jacobi method for

the expanded system (4.9), i.e.,

unew “ uold ` D´1pf ´ Auoldq.

We notice that D´1A “ D´1ΠTAΠ, which is spectrally equivalent to ΠD´1ΠTA because

σpBAqzt0u “ σpABqzt0u. In fact, from Theorem 4.9, we can see that the above iterative method

is equivalent to

unew “ uold ` ΠD´1ΠT pf ´ Auoldq “ uold `

J
ÿ

j“1

IjA´1
j IT

j

`

f ´ Auold
˘

.

We immediately recognize that this is the PSC method (or the additive Schwarz method) with

exact subspace solvers.

ex:GS-ssc Example 4.11 (Block G-S method and SSC). Similar to the above example, we find that the

block G-S method is just the SSC method (or the multiplicative Schwarz method) for the original

problem. We now apply the block G-S method for the expanded system (4.9), i.e.,

unew “ uold ` pD ` Lq´1pf ´ Auoldq.

We can rewrite this method as

pD ` Lqunew “ pD ` Lquold ` pf ´ Auoldq.

Hence we have

Dunew “ Duold ` f ´ Lunew ´ pD ` Uquold;

in turn, we get

unew “ uold ` D´1
´

f ´ Lunew ´ pD ` Uquold
¯

.
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For j “ 1, . . . , J , the block G-S method can be written as

unewj “ uoldj ` A´1
j

´

IT
j f ´

ÿ

iăj

IT
j AIiunewi ´

ÿ

iěj

IT
j AIiuoldi

¯

.

We define iteration

u
j
J :“

ÿ

iăj

unewi `
ÿ

iěj

uoldi “
ÿ

iăj

Iiunewi `
ÿ

iěj

Iiuoldi , j “ 1, . . . , J.

By this definition, we can see that

u
j`1
J “ u

j
J ` Ijunewj ´ Ijuoldj “ u

j
J ` IjA´1

j IT
j pf ´ Au j

J q.

Here the term f ´ Au j
J is sometimes called the dynamic residual, which is the residual at an

inner iteration of the G-S method. From the above equation, we notice that the block G-S

method is just the SSC method with exact subspace solvers Sj “ A´1
j for the original linear

equation (4.1).

4.2.4 Convergence of block solvers

Motived by the weighted Jacobi and G-S methods, we assume that there is an invertible

smoother or local relaxation S for solving Au “ f . Similar to the method presented in §2.1, we

define a generalized or modified block G-S method:

B :“
`

S´1 ` L
˘´1

. (4.11) eqn:blockMGS

We analyze the convergence rate of this method. Let K :“ B´T ` B´1 ´ A be a symmetric

operator and the symmetrization operator as B “ BTKB. Then we get

´

B
´1

v,v
¯

“

´

B´1K´1B´Tv,v
¯

“

´

`

S´1 ` L
˘

K´1
`

S´T ` U
˘

v, v
¯

, @v P V (4.12) eqn:invBbar1

By the definition of K, it is clear that K is diagonal and

K “ pS´T ` Uq ` pS´1 ` Lq ´ pD ` L ` Uq

“ S´T ` S´1 ´ D “ S´T
`

ST ` S ´ STDS
˘

S´1.

Hence, its inverse matrix is also diagonal and

K´1 “ SpST ` S ´ STDSq´1ST . (4.13) eqn:invK

Using the definition of K, we can obtain that B´1 “ K ` A ´ B´T . Hence we have a represen-

tation of B
´1

by simple manipulations:

B
´1

“ pK ` A ´ B´T qK´1pK ` A ´ B´1q “ A ` pA ´ B´T qK´1pA ´ B´1q.
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The last equality and (4.11) immediately yield another important identity:

´

B
´1

v,v
¯

“ pAv,vq `

´

K´1pD ` U ´ S´1qv, pD ` U ´ S´1qv
¯

, @v P V. (4.14) eqn:invBbar0

Now we apply a modification of Theorem 2.15 (i.e., the general convergence rate estimate

for SPD problems2) and get the following convergence result:

thm:MBGS Theorem 4.12 (Convergence rate of generalized block G-S). If K :“ S´T ` S´1 ´ D is SPD,

then the generalized block G-S method converges and

}I ´ BA}2A “ 1 ´
1

1 ` c0
, with c0 :“ sup

}v}A“1

›

›

›
K´ 1

2

`

D ` U ´ S´1
˘

v
›

›

›

2
.

4.3 Convergence analysis of SSC
sec:XZ

In the previous section, we have found that the SSC method for the original equation is

equivalent to the block G-S method for the expanded equation using the subspaces
␣

Vj
(J

j“1
.

Now we try to analyze the convergence rate of the block G-S method for the expanded system.

In this way, we can give a convergence analysis for the successive subspace correction method.

The proof here follows the discussion in [67].

4.3.1 A technical lemma

Suppose V “
řJ

j“1 Vj . It is clear that Π : V ÞÑ V is surjective and Πu “
řJ

j“1 Ijuj . We

have the following simple but useful lemma:

lemma:equiv Lemma 4.13. If the iterator B in (4.10) is SPD, then B “ ΠBΠT is also SPD and

pB´1v, vq “ inf
vPV
Πv“v

pB´1v,vq, @v P V.

Proof. It is clear that pBv, vq ě 0 for any v P V due to positive definiteness of B. Furthermore,

we have

0 “ pBv, vq “ pBΠT v,ΠT vq ùñ ΠT v “ 0 ùñ v P nullpΠT q “ rangepΠq
K.

Since Π is surjective (onto), we have v “ 0. This proves the iterator B is SPD.

Define v˚ :“ BΠTB´1v. It is easy to see that

Πv˚ “ ΠBΠTB´1v “ BB´1v “ v, @v P V,

2In order to apply the convergence rate estimate Theorem 2.15 for stationary iterative methods to a symmetric
positive semi-definite problem, we can restrict the domain of operator A inside the subspace, rangepAq. This way
the operator A is non-singular.
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and

pB´1v˚,wq “ pΠTB´1v,wq “ pB´1v,Πwq, @w P V.

If w P nullpΠq, then pB´1v˚,wq “ 0. This ensures that, for any vector v P V, there exists a

B´1-orthogonal decomposition v “ v˚ ` w with w P nullpΠq. Hence, we get

pB´1v,vq “
`

B´1pv˚ ` wq,v˚ ` w
˘

“
`

B´1v˚,v˚

˘

`
`

B´1w,w
˘

.

Thus

inf
vPV
Πv“v

pB´1v,vq “
`

B´1v˚,v˚

˘

` inf
wPnullpΠq

`

B´1w,w
˘

“
`

B´1v˚,v˚

˘

“
`

ΠTB´1v,BΠTB´1v
˘

“
`

B´1v, v
˘

.

Hence the result.

Remark 4.14 (Minimizer for the expanded system). From the above proof, we can easily see

that

v˚ “ BΠTB´1v

is actually the minimizer of inf vPV
Πv“v

pB´1v,vq.

Remark 4.15 (Auxiliary space method). The above lemma on relation between the expanded

problem and the original problem can also be extended to the auxiliary space lemma: For two

vector spaces V and Ṽ and a surjective Π : Ṽ ÞÑ V , if the iterator B̃ : Ṽ 1 ÞÑ Ṽ is SPD, then

B “ Π B̃ΠT is also SPD and

pB´1v, vq “ inf
ṽPṼ
Πṽ“v

pB̃´1ṽ, ṽq, @v P V.

See more discussion on the auxiliary space method in §4.5.

We can then derive the following expression for the inverse of the PSC preconditioner (see

Example 4.10), which can be found in [186, 190, 102, 195].

lem:InversePSC Lemma 4.16. Assume that all Sj ’s are SPD. Then

pB´1
PSCv, vq “ inf

ř

j vj“v

J
ÿ

j“1

pS´1
j vj , vjq, @ v P V.

Apparently, if Sj “ A´1
j , the above lemma reads

pB´1
PSCv, vq “ inf

ř

j vj“v

J
ÿ

j“1

pvj , vjqAj , @ v P V.
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4.3.2 The XZ identity

We now give the XZ identity originally proved by Xu and Zikatanov [193] which gives the

exact convergence rate of the SSC method.

th:xzidentityc0 Theorem 4.17 (XZ Identity). Assume that B is defined by Algorithm 4.2 and, for j “ 1, . . . , J ,

wj :“ AjΠj
ř

iěj vi ´ S´1
j vj . If S´T

j ` S´1
j ´ Aj are SPD’s for j “ 1, . . . , J , then

}I ´ BA}2A “ 1 ´
1

1 ` c0
“ 1 ´

1

c1
, (4.15) eq:xzidentityc0

where

c0 :“ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

}ST
j wj}

2

S´1
j

(4.16) eq:xzc0

and

c1 :“ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
SjS´1

j vj ` ST
j wj

›

›

›

2

S´1
j

. (4.17) eq:xzc1

Proof. (1) By applying Theorem 2.15 and Lemma 4.13, we know

}I ´ BA}2A “ 1 ´

ˆ

sup
}v}A“1

`

B´1
v, v

˘

˙´1

“ 1 ´

ˆ

sup
}v}A“1

inf
Πv“v

`

B
´1

v,v
˘

˙´1

. (4.18) eqn:c1Bbar

From (4.14), we have, for any v P V, that

´

B
´1

v,v
¯

“ pAv,vq `

´

K´1
`

D ` U ´ S´1
˘

v,
`

D ` U ´ S´1
˘

v
¯

.

By simple calculation, we get

`

D ` U
˘

v “

´

ÿ

jě1

Q1AQT
j vj ,

ÿ

jě2

Q2AQT
j vj , ¨ ¨ ¨

¯T

“

´

ÿ

jě1

A1Π1Ijvj ,
ÿ

jě2

A2Π2Ijvj , ¨ ¨ ¨

¯T

“

´

A1Π1

ÿ

jě1

vj , A2Π2

ÿ

jě2

vj , ¨ ¨ ¨

¯T
.

Hence we can denote

`

D ` U ´ S´1
˘

v “ pw1,w2, . . . ,wJqT , with wj :“ AjΠj

ÿ

iěj

vi ´ S´1
j vj .

Due to (4.13) and the fact that K is diagonal, we have

´

K´1
`

D ` U ´ S´1
˘

v,
`

D ` U ´ S´1
˘

v
¯

“

J
ÿ

j“1

´

SjS´1
j ST

j wj ,wj

¯

“

J
ÿ

j“1

›

›

›
ST
j wj

›

›

›

2

S´1
j

,
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where Sj :“ ST
j ` Sj ´ ST

j AjSj is the symmetrization of Sj . We then obtain, for any v P V ,

that

sup
}v}A“1

inf
Πv“v

´

B
´1

v,v
¯

“ 1 ` sup
}v}A“1

inf
Πv“v

J
ÿ

j“1

›

›

›
ST
j wj

›

›

›

2

S´1
j

.

This gives the desired estimate for the constant c0.

(2) On the other hand, from (4.12), we have

´

B
´1

v,v
¯

“

´

K´1
`

S´T ` U
˘

v,
`

S´T ` U
˘

v
¯

“

J
ÿ

j“1

›

›

›

`

S´1
j ` S´T

j ´ Aj

˘´ 1
2
`

S´T
j vj `

ÿ

iąj

QjAIivi

˘

›

›

›

2
. (4.19)

We notice that

S´T
j vj `

ÿ

iąj

QjAIivi “ S´T
j vj ` AjΠj

ÿ

iąj

vi “
`

S´T
j ` S´1

j ´ Aj

˘

vj ` wj

“ S´T
j SjS´1

j vj ` wj “ S´T
j

´

SjS´1
j vj ` ST

j wj

¯

.

Plug this into the previous identity, we get

´

B
´1

v,v
¯

“

J
ÿ

j“1

›

›

›

›

SjS´1
j vj ` ST

j wj

›

›

›

›

2

S´1
j

.

Hence the estimate for the constant c1.

Remark 4.18 (An equivalent form). We have introduced operators Tj :“ SjAj : Vj ÞÑ Vj .

Hence TSj
:“ SjAj “ Tj ` T ˚

j ´ T ˚
j Tj : Vj ÞÑ Vj and we can rewrite the above estimate (4.17)

in a slightly different form. Notice that, in (4.19),

S´T
j vj `

ÿ

iąj

QjAIivi “ Aj

`

ST
j Aj

˘´1
vj ` AjΠj

ÿ

iąj

vi “ Aj

”

`

T ˚
j

˘´1
vj ` Πj

ÿ

iąj

vi

ı

and
`

S´1
j ` S´T

j ´ Aj

˘´1Aj “
`

T ´1
j ` pT ˚

j q´1 ´ Ij
˘´1

“ TjT ´1
Sj

T ˚
j .

Thus we have

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›

›

T ´ 1
2

Sj

´

vj ` T ˚
j Πj

ÿ

iąj

vi

¯

›

›

›

›

2

Aj

. (4.20) eq:xzc1T

Example 4.19 (Linear stationary iterative method). One-level linear stationary iterative method

unew “ uold ` Spf ´ Auoldq,
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can be viewed as a special subspace correction method with only one subspace V . Hence,

using (4.20), we immediately have

c1 “ sup
}v}A“1

›

›T ´ 1
2

S v
›

›

2

A “ sup
}v}A“1

`

pSAq´1v, v
˘

A “ sup
}v}A“1

`

S´1
v, v

˘

,

which is exactly the convergence rate derived in Theorem 2.15.

Example 4.20 (Twogrid method). Theorem 3.38 can be viewed as a special case of the XZ

identity in the case of space decomposition with two subspaces, i.e., V “ Vc ` V . Suppose we

use A´1
c and S as subspace solvers, respectively. According to (4.20), we get

c1 “ sup
}w}A“1

inf
w“vc`v
vcPVc,vPV

}vc ` Πcv}2A ` }pSAq´ 1
2 v}2A.

We can prove that

c1 “ sup
}v}A“1

›

›T ´ 1
2

S pI ´ QS´1qv
›

›

2

A,

which is consistent with (3.34) in Theorem 3.38. For a complete proof of this result, we refer to

Zikatanov [212].

When we solve each subspace problem exactly, the XZ identity is substantially simpler since

Tj “ Πj : V ÞÑ Vj in this case. This special case of the XZ identity is given in the following

corollary.

cor:XZ-exact Corollary 4.21 (SSC with exact subspace solvers). If an exact subspace solver Sj “ A´1
j is

used for each subspace, then we have, in (4.15), that

c0 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
Πj

ÿ

iąj

vi

›

›

›

2

Aj

(4.21) eq:c0p

and

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
Πj

ÿ

iěj

vi

›

›

›

2

Aj

. (4.22) eq:c1p

Remark 4.22 (Alternating projection method). Provided that Πj : V ÞÑ Vj (j “ 1, 2, . . . , J),

define Θj :“ I ´ Πj : V ÞÑ V K
j “: Uj . Now we can define a projection

Θ0 : V ÞÑ U0, U0 :“
J
č

j“1

Uj .

We notice that ΘjΘ0 “ Θ0. From the XZ identity with exact subspace solvers, we have

›

›

›
Πj“J,...,1Θj

›

›

›

2

A
“

›

›

›
Πj“J,...,1pI ´ Πjq

›

›

›

2

A
“

c0
1 ` c0

.
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We immediately see that

›

›

›
Πj“J,...,1ΘjpI ´ Θ0qv

›

›

›

2

A
ď

c0
1 ` c0

›

›

›
pI ´ Θ0qv

›

›

›

2

A
.

Hence,
›

›

›
pΠj“J,...,1Θj ´ Θ0q v

›

›

›

2

A
ď

c0
1 ` c0

}v}2A.

Besides, pΠj“J,...,1Θj ´ Θ0q
k

“ pΠj“J,...,1Θjq
k

´Θ0. We obtain that limkÑ8 pΠj“J,...,1Θjq
k

“ Θ0,

which means the method of alternating projections by von Neumann converges.

4.4 Convergence analysis of PSC
sec:ConvPSC

In this section, we estimate the condition number of the PSC method. In general, PSC

might not converge as an iterative method, but we can show that it is uniform convergent as a

preconditioner under certain conditions.

4.4.1 Relating PSC to SSC

The following theorem shows the relation between the PSC and SSC methods.

thm:PSCvsSSC Theorem 4.23 (PSC and SSC). If Sj “ A´1
j for all j and Vj are subspaces of V , then there

exists a constant c˚ depends only on topology of the overlaps between the subspaces such that

1

4

`

B´1
PSCv, v

˘

ď
`

B´1
SSCv, v

˘

ď c˚

`

B´1
PSCv, v

˘

, @ v P V.

Proof. Given v “
řJ

j“1 vj with vj P Vj . It follows that

}v}2A “

J
ÿ

k,j“1

pvk, vjqA “

J
ÿ

k“1

´

pvk, vkqA ` 2
J
ÿ

jąk

pvk, vjqA
¯

“ 2
J
ÿ

k“1

J
ÿ

jěk

pvk, vjqA ´

J
ÿ

k“1

pvk, vkqA.

Hence, since Πk is an A-projection, it follows that

J
ÿ

k“1

}vk}2A ď 2
J
ÿ

k“1

´

vk,
J
ÿ

j“k

vj

¯

A
“ 2

J
ÿ

k“1

´

vk,Πk

J
ÿ

j“k

vj

¯

A

ď 2
´

J
ÿ

k“1

}vk}2A
¯

1
2
´

J
ÿ

k“1

›

›Πk

J
ÿ

j“k

vj
›

›

2

A

¯
1
2
.

In turn, it gives
J
ÿ

k“1

}vk}2A ď 4
J
ÿ

k“1

›

›Πk

J
ÿ

j“k

vj
›

›

2

A.
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Together with Lemma 4.16, Corollary 4.21, and (4.18), it gives the first inequality. The second

one is also easy; see HW 4.5.

Remark 4.24 (From sequential method to parallel method). This theorem shows that, if the

SSC method works well as an iterative method, then the PSC method based on the same space

decomposition also works well, as a preconditioner at least.

4.4.2 Condition number of PSC

Next, we give a direct analysis of the condition number of the PSC method. In order

to obtain estimates on the condition number of the preconditioned systems, we first give the

following assumptions:

Assump:MSC Assumption 4.25 (Convergence assumptions for MSC). We assume that

1. For any v P V , there exists a decomposition v “
řJ

j“1 vj with vj P Vj such that

J
ÿ

j“1

`

S´1
j vj , vj

˘

ď K1pAv, vq; (4.23) assump:MSC1

2. For any u, v P V ,

ÿ

pi,jq

`

Tiu, Tjv
˘

A ď K2

´

J
ÿ

i“1

pTiu, uqA
¯

1
2
´

J
ÿ

j“1

pTjv, vqA
¯

1
2
. (4.24) assump:MSC2

thm:PSC Theorem 4.26 (Condition number of PSC). If the above Assumption 4.25 holds true, the PSC

method (4.7) satisfies

κpBAq ď K1K2.

Proof. (1) For any v P V , suppose that v “
řJ

j“1 vj is a decomposition that satisfies the first

condition of Assumption 4.25. It is easy to see that

pv, vqA “

J
ÿ

j“1

pvj , vqA “

J
ÿ

j“1

pvj ,ΠjvqA “

J
ÿ

j“1

pvj ,AjΠjvq “

J
ÿ

j“1

`

S´ 1
2

j vj ,S
1
2
j AjΠjv

˘

ď

J
ÿ

j“1

`

S´1
j vj , vj

˘
1
2
`

SjAjΠjv,AjΠjv
˘

1
2 “

J
ÿ

j“1

`

S´1
j vj , vj

˘
1
2
`

SjAjΠjv, v
˘

1
2
A

ď

˜

J
ÿ

j“1

`

S´1
j vj , vj

˘

¸

1
2
˜

J
ÿ

j“1

`

Tjv, v
˘

A

¸

1
2

ď
a

K1

›

›v
›

›

A pBAv, vq
1
2
A.

Consequently, we have the lower bound

1

K1
pv, vqA ď pBAv, vqA, @ v P V.
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(2) From the second assumption, we have

}BAv}2A “

J
ÿ

i,j“1

`

Tiv, Tjv
˘

A ď K2pBAv, vqA ď K2}BAv}A}v}A.

So we obtain the upper bound

pBAv, vqA ď K2pv, vqA, @ v P V.

Thus Lemmas 2.38 and 2.39 yield the desired estimate.

According to Theorem 4.26, if we can find a space decomposition and corresponding smoothers

with uniform constants K1 and K2, then we are able to construct a uniformly convergent pre-

conditioner using the PSC framework. Similar results can be obtained for SSC as well.

Remark 4.27 (Similar estimate for SSC). In fact, with the same assumptions (Assump-

tion 4.25), we can also show that the SSC method also converges with

}I ´ BA}2A ď 1 ´
2 ´ ω1

K1p1 `K2q2
and ω1 :“ max

j
ρpSjAjq “ max

j
ρpTjq. (4.25) eqn:omega1

Because a sharp result has been given in §4.3, we will just leave the proof to the readers (cf., for

example, [189]).

4.4.3 Estimates of K1 and K2 ‹

Assumption 4.25 is not easy to verify directly. So we now give a few useful estimates for

the constants in these conditions. We first give a straight-forward estimate of K1, which clearly

separates the condition on space decomposition part and smoother part.

lem:K1 Lemma 4.28 (Estimates of K1). Assume that, for any v P V , there exists a decomposition

v “
řJ

j“1 vj with vj P Vj :

(i) If the decomposition satisfies that

J
ÿ

j“1

pvj , vjqA ď C1pv, vqA,

then we have

K1 ď C1{ω0, where ω0 :“ min
j“1,...,J

␣

λminpSjAjq
(

;

(ii) If ρj :“ ρpAjq and
J
ÿ

j“1

ρjpvj , vjq ď Ĉ1pv, vqA,

then we have

K1 ď Ĉ1{ω̂0, where ω̂0 :“ min
j“1,...,J

␣

ρjλminpSjq
(

.
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Proof. (i) By the definition of ω0 and the fact that λpS1{2
j AjS1{2

j q “ λpSjAjq, we have

pS1{2
j AjS1{2

j S´1{2
j vj ,S´1{2

j vjq ě ω0pS´1
j vj , vjq, j “ 1, . . . , J.

Note that

J
ÿ

j“1

pS1{2
j AjS1{2

j S´1{2
j vj ,S´1{2

j vjq “

J
ÿ

j“1

pAjvj , vjq “

J
ÿ

j“1

pvj , vjqA ď C1pv, vqA.

We then have

ω0

J
ÿ

j“1

pS´1
j vj , vjq ď C1pAv, vq or

J
ÿ

j“1

pS´1
j vj , vjq ď

C1

ω0
pAv, vq,

which implies that K1 ď C1{ω0.

(ii) Similar to the previous part, from the definition of ω̂0, we have

ρjpvj , vjq “ ρjpSjS´1{2
j vj ,S´1{2

j vjq ě ω̂0pS´1
j vj , vjq, j “ 1, . . . , J.

Hence, we have

ω̂0

J
ÿ

j“1

pS´1
j vj , vjq ď

J
ÿ

j“1

ρjpvj , vjq ď Ĉ1pv, vqA,

which implies that K1 ď Ĉ1{ω̂0.

We introduce a nonnegative symmetric matrix

Σ “
`

σi,j
˘

P RJˆJ , (4.26) eqn:Sigma

where each entry σi,j is the smallest constant such that

`

Tiu, Tjv
˘

A ď ω1σi,j
`

Tiu, u
˘

1
2
A
`

Tjv, v
˘

1
2
A, @u, v P V. (4.27) eqn:StrengthenedCS

It is clear that 0 ď σi,j ď 1. ω1 has been defined in (4.25).

lem:K2 Lemma 4.29 (Estimate of K2). The constant K2 ď ω1ρpΣq. Furthermore, if σi,j À γ|i´j| holds

for some parameter 0 ă γ ă 1, then ρpΣq À p1 ´ γq´1; in this case, the inequality (4.24) is the

well-known strengthened Cauchy-Schwarz inequality.

Proof. From the definition of Σ as in (4.26), it is immediately clear that K2 ď ω1ρpΣq. Fur-

thermore, because the matrix Σ is a real symmetric matrix and ρpΣq ď maxj“1,...,J
řJ

i“1 σi,j , we

have

ρpΣq ď max
1ďjďJ

J
ÿ

i“1

σi,j À

J
ÿ

i“1

γi´1 ď
1

1 ´ γ
.

Hence the result.
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4.5 Auxiliary space method ‹
sec:auxspace

Sometimes, we cannot apply subspace correction methods directly due to difficulties in ob-

taining an appropriate space decomposition. In this case, we can introduce an auxiliary or

fictitious space Ṽ for assistance. Suppose Π : Ṽ ÞÑ V is surjective and satisfies the following two

conditions:

• Firstly, Π is stable

}Πṽ}A ď µ1}ṽ}Ã, @ ṽ P Ṽ .

• Secondly, for any v P V , there exists ṽ P Ṽ such that Πṽ “ v and

µ0}ṽ}Ã ď }v}A, @ ṽ P Ṽ .

Under the above assumptions, if B̃ is a SPD preconditioner for Ã, then B “ ΠB̃ΠT is SPD and

κpBAq ď

ˆ

µ1
µ0

˙2

κpB̃Ãq.

This suggests that we can construct a subspace correction method on Ṽ instead of the original

space V . This result is also known as the Fictitious Space Lemma or the Fictitious Domain

Lemma; see [145, 191].

The fictitious domain method is a large class of methods which is usually employed for

problems in geometrically complex, and most likely moving, domains. By embedding the original

physical domain in a larger artificial domain, we can discretize the partial differential equations

on a more structured grid and, hence, solve the resulting linear algebraic systems more quickly.

Of course, the boundary conditions have to be handled with great care; see [98] for details.

4.6 Homework problems

HW 4.1. Prove the statements in Remark 4.5.

hw:B-spd HW 4.2. If Sj (j “ 1, . . . , J) are all SPD, then the preconditioner B “
řJ

j“1 SjQj is also SPD.

hw:bGS HW 4.3. Show that the block G-S method for the expanded system is just the SSC method

for the original problem.

hw:thm42 HW 4.4. Prove Theorem 4.12.

hw:PSCvsSSC HW 4.5. Prove Theorem 4.23. What is the constant c˚?
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Chapter 5

Subspace Correction Preconditioners

ch:examples

In Chapter 4, we discussed linear stationary iterative methods in the method of subspace

corrections (MSC) framework. In this chapter, we provide examples of multilevel methods and

analyze their convergence within the subspace corrections framework.

5.1 Two-level overlapping DDM

In this section, we will investigate the two-level overlapping domain decomposition method

(DDM) presented in §2.4 using the MSC framework.

5.1.1 Two-level space decomposition

Based on the previous discussions, it is now easy to understand that the additive and mul-

tiplicative Schwarz domain decomposition methods can be considered as PSC and SSC, respec-

tively. For proof-of-concept, we use the Poisson’s equation on Ω as an example. In this case,

V “ H1
0 pΩq, Ω “

ŤJ
j“1Ωj , and Vj :“ tv P V : supp v Ă Ω̂ju Ă V ; see Figure 2.5. Sup-

pose we have a finite-dimensional coarse space V0 Ă V on a quasi-uniform mesh of meshsize

H “ diampΩjq. Apparently, this yields a space decomposition:

V “ V0 ` V1 ` ¨ ¨ ¨ ` VJ .

The SSC method based on this space decomposition with exact subspace solvers on each sub-

domain as well as on the coarse space gives an abstract multiplicative Schwarz DDM method1.

We first define a partition of unity function θj P C1pΩq (j “ 1, . . . , J) such that

(1) 0 ď θj ď 1 and
řJ

j“1 θj “ 1;

1It is an abstract algorithm because we did not discretize each sub-domain problems.

134
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(2) supp θj Ă Ω̂j ;

(3) max |∇θj | ď Cβ{H, where Cβ depends on the relative overlap size β.

This way, for any function v P V , we can define a decomposition

v “ v0 ` v1 ` ¨ ¨ ¨ ` vJ ,

where

v0 P V0 and vj :“ θjpv ´ v0q P Vj , j “ 1, . . . , J.

5.1.2 Convergence analysis of DDM

Based on the above decomposition, we have
řJ

j“1 vj “ v ´ v0 and

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
“

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
“

ˇ

ˇ

ˇ
Π0pv ´ v0q

ˇ

ˇ

ˇ

2

1
`

J
ÿ

j“1

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
.

Since Πj ’s : V ÞÑ Vj (j “ 1, . . . , J) are A-projections, it is easy to see that |Πjw|1 ď |w|1.

Furthermore,

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
“

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1,Ω̂j

ď

ˇ

ˇ

ˇ

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1,Ω̂j

ď

›

›

›

`

ÿ

iąj

θi
˘

∇pv ´ v0q

›

›

›

2

0,Ω̂j

`

›

›

›
∇
`

ÿ

iąj

θi
˘

pv ´ v0q

›

›

›

2

0,Ω̂j

ď
ˇ

ˇv ´ v0
ˇ

ˇ

2

1,Ω̂j
` C2

βH
´2
›

›v ´ v0
›

›

2

0,Ω̂j
.

By summing up all the terms, we have

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
ď

ˇ

ˇv ´ v0
ˇ

ˇ

2

1
`

J
ÿ

j“1

ˇ

ˇv ´ v0
ˇ

ˇ

2

1,Ω̂j
` C2

βH
´2

J
ÿ

j“1

›

›v ´ v0
›

›

2

0,Ω̂j

À
ˇ

ˇv ´ v0
ˇ

ˇ

2

1
` C2

βH
´2
›

›v ´ v0
›

›

2

0
,

where the constant in the last inequality depends on the maximal number of overlaps in domain

decomposition. Because v0 could be any function in V0, in view of Proposition 3.15 or the

so-called simultaneous estimate in Remark 3.16, we can obtain

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
À |v|21.

Using the X-Z identity (Corollary 4.21), we can get the following uniform convergence result.
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prop:ConvDDM Proposition 5.1 (Uniform convergence of two-level DDM). The abstract domain decomposi-

tion method with coarse space correction converges uniformly.

We leave the full proof to the interested readers; see HW 5.16.

rem:DDM-onelevel Remark 5.2 (DDM without coarse space). This analysis demonstrates the importance of the

coarse space V0. In fact, a similar proof shows the convergence rate depends on H´2 without

applying the coarse space correction.

5.2 HB preconditioner
sec:HB

In the previous section, we have seen a two-level domain decomposition method in the setting

of subspace corrections. Now we investigate an example with multiple levels.

5.2.1 Nested space decomposition

We consider the Poisson’s equation on a sequence of nested meshes Ml (l “ 0, . . . , L) gen-

erated from an initial mesh M0 by uniform regular refinements. Hence meshsize hl of Ml is

proportional to γ2l with γ P p0, 1q. For example, in Figure 1.5, there is a hierarchy of grids with

hl “ p1{2ql`1 (l “ 0, 1, . . . , L). Clearly,

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h.

Define continuous piecewise linear finite element spaces on the mesh Ml as

Vl :“
␣

v P V : v|τ P P1pτq, @ τ P Ml

(

. (5.1) eqn:SpaceV

This way, we build a nested subspaces

V0 Ă V1 Ă ¨ ¨ ¨ Ă VL “: V Ă V “ H1
0 pΩq.

The set of interior grid points on the l-th level is denoted as xl,i P G̊pMlq (i “ 1, . . . , nl). The

subspace Vl is assigned with a nodal basis tϕl,iu
nl
i“1, where nl :“

ˇ

ˇG̊pMlq
ˇ

ˇ. The space Vl can be

further decomposed as the sum of the one-dimensional subspaces spanned with the nodal basis

Vl,i :“ spantϕl,iu (i “ 1, . . . , nl).

We then define

Wl :“
␣

v P Vl : vpxq “ 0, @x P G̊pMl´1q
(

(5.2) eqn:SpaceW

and obtain a multilevel space decomposition

V “ W0 ‘W1 ‘ ¨ ¨ ¨ ‘WL. (5.3) eqn:DecompW
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Let Jl : V ÞÑ Vl be the cannonical interpolation operator and define J´1 :“ 0. It is easy to see

that

Wl “ pJl ´ Jl´1qV “ pI ´ Jl´1qVl, l “ 0, . . . , L.

For level l “ 0, . . . , L, we define a nodal basis function

ψl,ipxq “ ϕl,ipxq, for xl,i P G̊pMlqzG̊pMl´1q and i “ 1, . . . ,ml :“ nl ´ nl´1.

Apparently,
řL

l“0ml “ nL “ N . This basis

tψl,ipxq : i “ 1, . . . ,ml, l “ 0, . . . , Lu (5.4) eqn:HB

is the so-called hierarchical basis.

Figure 5.1: Regular and hierarchical bases in 1D.fig:MGbasis
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Notice that the decomposition (5.3) is a direct sum and there is no redundancy in this decom-

position at all.

5.2.2 Telescope expansions

Using notations in Definition 4.1, we have
$

’

’

&

’

’

%

Al : Vl ÞÑ Vl pAlul, vlq “ arul, vls, @ul, vl P Vl;

Ql : L
2 ÞÑ Vl pQlu, vlq “ pu, vlq, @ vl P Vl;

Πl : V ÞÑ Vl pΠlu, vlq “ aru, vls, @ vl P Vl.

(5.5)

We introduce a new notation i^ j :“ minpi, jq. It is trivial to see that

QiQj “ Qi^j , ΠiΠj “ Πi^j , (5.6) eqn:proj1

and

pQi ´ Qi´1qpQj ´ Qj´1q “ pΠi ´ Πi´1qpΠj ´ Πj´1q “ 0, @ i ‰ j. (5.7) eqn:proj2

If we define Q´1 “ Π´1 “ 0, we have the following possible decompositions

v “

L
ÿ

l“0

pQl ´ Ql´1qv “

L
ÿ

l“0

pΠl ´ Πl´1qv. (5.8) eqn:decomp2

5.2.3 Hierarchical basis preconditioner

We now use the Richardson iteration discussed in §3.3 as the subspace solver, i.e.,

Sl,iQl,iv “ h2´d
l

`

Ql,iv, ψl,i

˘

ψl,i “ h2´d
l

`

v, ψl,i

˘

ψl,i.

The PSC method based on the space decomposition (5.3) can then be written

BHBr “

N
ÿ

j“1

SjQjr “

L
ÿ

l“0

˜

h2´d
l

ml
ÿ

i“1

pr, ψl,iqψl,i

¸

. (5.9) eqn:HBprecond

And this is the explicit form of the well-known hierarchical basis (HB) preconditioner proposed

by Yserentant [206].

We now analyze this preconditioner in the framework of PSC in §4.4. In order to do that,

we need a few important estimates.

lem:StableInterp Lemma 5.3 (H1-stability of interpolation). We have

›

›pJl ´ Jl´1qv
›

›

2

0
` h2l

ˇ

ˇJlv
ˇ

ˇ

2

1
À cdplqh2l |v|21, @v P V,

where c1plq ” 1, c2plq “ L´ l, and c3plq “ γ´2pL´lq.
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Proof. Using the interpolation error estimate in Proposition 3.12, we have

}pJl ´ Jl´1qv}0 “ }Jlv ´ Jl´1Jlv}0 À hl|Jlv|1.

Let τ P Ml and vτ :“ |τ |´1
ş

τ v dx be the average of v on τ . Using the standard scaling

argument for | ¨ |1,τ , the discrete Sobolev inequality Proposition 3.14, and the Poincaré inequality

Proposition 1.10, we can obtain that

|Jlv|1,τ “ |Jlv ´ vτ |1,τ À h
d
2

´1}Jlv ´ vτ }8,τ

ď h
d
2

´1}v ´ vτ }8,τ À Cd}v ´ vτ }1,τ À Cd|v|1,τ .

Hence the desired result follows by summing up terms on all elements in Ml.

Remark 5.4 (Condition number in hierarchical basis). The above lemma suggests that, if

v P Wl for any 0 ď l ď L, we have

c´1
d plqh´2

l pv, vq À arv, vs.

Compare this with the general Poincaré inequality in Proposition 1.11. Furthermore, from the

inverse inequality Proposition 3.13, we always have

arv, vs “ |v|21 À h´2
l }v}20 “ h´2

l pv, vq.

Hence the operator AHB
l is “well-conditioned” up to a constant cdplq; compare this property

with the standard Lagrange finite element basis case in Remark 3.17.

5.2.4 Strengthened Cauchy-Schwarz inequality

lem:SCS1 Lemma 5.5 (Inner product between two levels). If i ď j, we have

aru, vs À γj´ih´1
j |u|1}v}0, @u P Vi, v P Vj .

Proof. We first restrict our attention to an element τi P Mi. For v P Vj , there is a unique

function v1 P Vj , such that v1 vanishes on Bτi and equals to v at all other grid points. Let

v0 :“ v ´ v1. Because u P Vi is a linear function on τi, we have
ş

τi
∇u∇v1 “ 0.

Define T :“
Ť

τjPMj ,τ j
Ş

Bτi‰Ø τj . Then |T | –
`

hi
hj

˘d´1
hdj “ hd´1

i hj and supppv0q Ă T . We

have
›

›∇v0
›

›

2

0,τi
À

ÿ

xPG̊pMjq
Ş

Bτi

hdjh
´2
j v20pxq “

ÿ

xPG̊pMjq
Ş

Bτi

hd´2
j v2pxq À h´2

j

›

›v
›

›

2

0,τi
.

Since ∇u is a constant on τi, we have

›

›∇u
›

›

0,T
Ş

τi
“

|T
Ş

τi|
1{2

|τi|1{2

›

›∇u
›

›

0,τi
À

˜

hd´1
i hj

hdi

¸1{2
›

›∇u
›

›

0,τi
À γj´i

ˇ

ˇu
ˇ

ˇ

1,τi
.
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Combining the above two inequalities, we have

ż

τi

∇u ¨ ∇v “

ż

τi

∇u ¨ ∇v0 À γj´ih´1
j

ˇ

ˇu
ˇ

ˇ

1,τi

›

›v
›

›

0,τi
, @τi P Mi.

By the Cauchy-Schwarz inequality, we obtain the estimate:

aru, vs “
ÿ

τiPMi

ż

τi

∇u ¨ ∇v À γj´ih´1
j

ÿ

τiPMi

ˇ

ˇu
ˇ

ˇ

1,τi

›

›v
›

›

0,τi

ď γj´ih´1
j

´

ÿ

τiPMi

ˇ

ˇu
ˇ

ˇ

2

1,τi

¯1{2´ ÿ

τiPMi

›

›v
›

›

2

0,τi

¯1{2
“ γj´ih´1

j

ˇ

ˇu
ˇ

ˇ

1

›

›v
›

›

0
.

Hence the result.

lem:SCS2 Lemma 5.6 (Strengthened Cauchy-Schwarz inequality for interpolations). If u, v P V , let ui :“

pJi ´ Ji´1qu, and vj :“ pJj ´ Jj´1qv, then we have

arui, vjs À γ|i´j|
›

›ui
›

›

A
›

›vj
›

›

A.

Proof. If j ě i, we have vj “ vj ´ Jj´1vj . So }vj}0 “ }vj ´ Jj´1vj}0 À hj}vj}A follows from

Proposition 3.12. If i ě j, we can argue in a similar way. Hence the result follows directly from

Lemma 5.5.

If v P V , Lemma 5.6 yields

|v|21 “
ÿ

l,m

`

∇pJl ´ Jl´1qv,∇pJm ´ Jm´1qv
˘

À
ÿ

l,m

γ|l´m|
›

›pJl ´ Jl´1qv
›

›

1

›

›pJm ´ Jm´1qv
›

›

1
À

ÿ

l

›

›pJl ´ Jl´1qv
›

›

2

1
.

On the right-hand side, we have the summation of components from all levels.

lem:SCS3 Lemma 5.7 (Estimating K2). Assume that Tj “ SjAjΠj and the subspace smoother Sj : Vj ÞÑ

Vj satisfies
›

›SjAjv
›

›

2

0
À ρ´1

j

`

Ajv, v
˘

, @ v P Vj ,

where ρj :“ ρpAjq. Then, if i ă j, we have

pui, TjvqA À γj´i}ui}A}v}A, @ui P Vi, v P V. (5.10) eqn:SCSIneq1

For 0 ď i, j ď L, we have the strengthened Cauchy-Schwarz inequality

pTiu, TjvqA À γ|j´i|{2pTiu, uq
1
2
A pTjv, vq

1
2
A, @u, v P V. (5.11) eqn:SCSIneq2
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Proof. By applying Lemma 5.5, we get

pui, TjvqA “ arui, Tjvs À γj´ih´1
j }ui}A}Tjv}0.

Furthermore, we have

}Tjv}0 “ }SjAjΠjv}0 À hj}A1{2
j Πjv}0 ď hj}Πjv}A ď hj}v}A.

This proves the first inequality (5.10).

Consider the case when j ě i. By the Cauchy-Schwarz inequality and the inequality (5.10),

we get

pTiu, TjvqA ď pTjTiu, Tiuq
1
2
A pTjv, vq

1
2
A À γpj´iq{2}Tiu}A pTjv, vq

1
2
A.

Also observe that, a special case of the above inequality is pTiu, TiuqA À }Tiu}ApTiu, uq
1
2
A and

the second inequality (5.11) follows immediately.

5.2.5 Convergence analysis of HB preconditioner

thm:rateHB Theorem 5.8 (Convergence of HB preconditioner). The multilevel PSC preconditioner BHB de-

fined in (5.9) satisfies

κpBHBAq À Cdphq,

where C1phq ” 1, C2phq “ | log h|2, and C3phq “ h´1.

Proof. We choose a decomposition v “
řL

l“0 vl :“
řL

l“0pJl ´ Jl´1qv, where pJl ´ Jl´1qv P Wl

and J´1 “ 0. With careful calculations, Proposition 3.13 and Lemma 5.3 (Jl “ Πl in 1D) yield

L
ÿ

l“0

}vl}
2
A À

L
ÿ

l“0

h´2
l }vl}

2
0 À Cdphq}v}2A. (5.12) HB:lowerbd

On the other hand, we know ω̂0 “ minl ρlλminpSlq – 1. Therefore K1 À Cdphq due to

Lemma 4.28. The strengthened Cauchy-Schwarz inequality (5.11) and Lemma 4.29 give that

K2 À 1. The convergence result then follows directly from Theorem 4.26.

This theorem shows the HB preconditioner converges rapidly when combined with some

Krylov subspace method. However, the condition number still depends on the mesh size h,

especially in 3D. We now briefly discuss how to eliminate this dependence.

Define an operator H : V ÞÑ V such that

pHv, wq :“
L
ÿ

l“0

ÿ

xiPG̊pMlqzG̊pMl´1q

hd´2
l

´

`

Jlv ´ Jl´1v
˘

pxiq,
`

Jlw ´ Jl´1w
˘

pxiq
¯

.
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Hence we get

pHv, vq “

L
ÿ

l“0

ÿ

xiPG̊pMlqzG̊pMl´1q

hd´2
l

ˇ

ˇ

ˇ

`

Jlv ´ Jl´1v
˘

pxiq
ˇ

ˇ

ˇ

2
, @ v P V.

In fact, this operator is the inverse of the HB preconditioner, i.e., H “ B´1
HB; see [207]. In fact,

in the proof of Theorem 5.8, we have shown the following norm equivalence result:

}v}2A À pHv, vq “

L
ÿ

l“0

h´2
l }pJl ´ Jl´1qv}20 À Cdphq}v}2A. (5.13) eqn:HBYser

Since Πl is the p¨, ¨qA-projection from V to Vl, it is easy to check that

a
“

pΠi ´ Πi´1qv, pΠj ´ Πj´1qv
‰

“ 0, @i ‰ j.

We can then obtain that

}v}2A “

›

›

›

L
ÿ

l“0

pΠl ´ Πl´1qv
›

›

›

2

A
“

ÿ

0ďi,jďL

a
“

pΠi ´ Πi´1qv, pΠj ´ Πj´1qv
‰

“

L
ÿ

l“0

a
“

pΠl ´ Πl´1qv, pΠl ´ Πl´1qv
‰

“

L
ÿ

l“0

ˇ

ˇ

ˇ
pΠl ´ Πl´1qv

ˇ

ˇ

ˇ

2

1
.

Notice that this is corresponding to the telescope sum of the Ritz-projections in (5.8). Motivated

by the above norm equivalence and (5.13), one can easily construct a “better” multilevel PSC

method B “
řJ

j“1 SjΠj . However, Πj is not good for computation in general except for d “ 1 in

which Πj “ Jj is just the interpolation2. In the next section, we explore the idea of telescope

expansion using the L2-projection (5.7) instead of the interpolation or the Ritz-projection. And

it turns out to give rise to the well-known BPX preconditioner.

5.3 BPX preconditioner
sec:BPX

In the previous section, along with the hierarchical basis decomposition, we have also ob-

tained a natural multilevel space decomposition

V “

L
ÿ

l“0

Vl “

L
ÿ

l“0

nl
ÿ

i“1

Vl,i, (5.14) eqn:MGdecomp

which contains a lot of “redundancy”. Heuristically, one might want to avoid such redundancy

in their algorithms. However, it turns out these extra subspaces are indeed critical for optimal

convergence rate.

2Note that this is equivalent to the HB preconditioner in 1D.
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Using the multilevel space decomposition (5.14), we can construct multilevel subspace cor-

rection methods. Among them, the most prominent (multilevel) example of PSC methods is the

BPX preconditioner [48] based on the multilevel subspace decomposition (5.14):

B “

J
ÿ

j“1

SjQj , with J “

L
ÿ

l“0

nl, (5.15) eqn:MultilevelPSC

which is computationally more appealing and converges uniformly. The HB and BPX precon-

ditioners both belong to the class of so-called multilevel nodal basis preconditioners.

5.3.1 Norm equivalence

We will now show why the BPX preconditioner is “better” than the HB preconditioner. We

note the HB preconditioner is not optimal for dimensions higher than 1D due to the worsened

H1-stability property of the interpolations. We would expect improved stability properties for

L2 projections.

lem:telescope Lemma 5.9 (Telescope sum of L2-projections). For any v P V , we have

ˇ

ˇpQl ´ Ql´1qv
ˇ

ˇ

1
– h´1

l

›

›pQl ´ Ql´1qv
›

›

0
.

Proof. Using the inverse inequality, Proposition 3.13, we get

ˇ

ˇpQl ´ Ql´1qv
ˇ

ˇ

1
À h´1

l

›

›pQl ´ Ql´1qv
›

›

0
.

Proposition 3.15, together with the trivial equality

pQl ´ Ql´1qv “ pI ´ Ql´1qpQl ´ Ql´1qv,

gives the other direction.

lem:SCS4 Lemma 5.10 (Strengthened Cauchy-Schwarz inequality for L2-projections). If u, v P V , let ui :“

pQi ´ Qi´1qu, and vj :“ pQj ´ Qj´1qv, then we have

arui, vjs À γ|i´j|}ui}A}vj}A.

Proof. If j ě i, Lemma 5.9 shows that }vj}0 À hj}vj}A. Hence the desirable result follows

directly from Lemma 5.5. If i ě j, we can argue in a similar way.

lem:norm-equiv Lemma 5.11 (Norm equivalence). For any v P V , we have

L
ÿ

l“0

›

›pQl ´ Ql´1qv
›

›

2

1
– }v}21.
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Proof. (i) Since Ql is the L
2-projection, we have }Qlv}0 ď }v}0, @ v P L2pΩq. Furthermore, using

Proposition 3.15, we obtain

}Qlv}1 ď }v}1, @ v P V .

By space interpolation, we have, for any σ P p0, 12q, that

}Qlv}σ ď }v}σ, @ v P V .

Let α P p12 , 1q. If Πl : V ÞÑ Vl is the standard H1-projection, the finite element theory gives

›

›v ´ Πlv
›

›

1´α
À hαl

›

›v
›

›

1
, @ v P V . (5.16) eqn:GalerkinError

Let vi :“ pΠi ´ Πi´1qv. Note that ρl “ ρpAlq – h´2
l . It is easy to show, with help from the

inverse inequality (Proposition 3.13) and (5.16), that

›

›pQl ´ Ql´1qvi
›

›

2

1
À h´2α

l

›

›pQl ´ Ql´1qvi
›

›

2

1´α
À h´2α

l

›

›vi
›

›

2

1´α
À h´2α

l h2αi
›

›vi
›

›

2

1
– ραl h

2α
i

›

›vi
›

›

2

1
.

Using this inequality and the Cauchy-Schwarz inequality, we can derive that

ÿ

l

ÿ

i,j

`

∇pQl ´ Ql´1qvi,∇pQl ´ Ql´1qvj
˘

“
ÿ

i,j

i^j
ÿ

l“1

`

∇pQl ´ Ql´1qvi,∇pQl ´ Ql´1qvj
˘

À
ÿ

i,j

i^j
ÿ

l“1

ραl h
α
i h

α
j }vi}1}vj}1 À

ÿ

i,j

ραi^jh
α
i h

α
j }vi}1}vj}1 À

ÿ

i,j

γα|i´j|}vi}1}vj}1.

Note that here l, i, and j are all level indices and we can apply summation by parts.

We can show that
ř

i,j γ
α|i´j|}vi}1}vj}1 À

ř

i }vi}
2
1 À }v}21, which, in turn, gives

ÿ

l

›

›pQl ´ Ql´1qv
›

›

2

1
À }v}21.

(ii) On the other hand, using Lemma 5.10, we obtain

|v|21 “
ÿ

l,m

`

∇pQl ´ Ql´1qv,∇pQm ´ Qm´1qv
˘

À
ÿ

l,m

γ|l´m|
›

›pQl ´ Ql´1qv
›

›

1

›

›pQm ´ Qm´1qv
›

›

1
À

ÿ

l

›

›pQl ´ Ql´1qv
›

›

2

1
.

Hence we get the norm equivalence using Proposition 1.11.

Remark 5.12 (Fractional norm). We have shown the norm equivalence in H1-norm. In fact,

similar results also hold for HαpΩq with 1
2 ă α ă 3

2 .
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5.3.2 Convergence analysis for BPX preconditioner

All subspaces in (5.14) are one-dimensional and, thus, the subspace problems are very easy

to solve. We can write the subspace solver (exact solver on each one-dimensional subspace) as

follows:

S0
l v :“

nl
ÿ

i“1

pAϕl,i, ϕl,iq´1 pv, ϕl,iqϕl,i “

nl
ÿ

i“1

p∇ϕl,i,∇ϕl,iq´1 pv, ϕl,iqϕl,i.

Since we are now considering the uniform refinement for the linear finite element discretization,

we can use an approximation of S0
l , for example a local relaxation method:

Slv :“
nl
ÿ

i“1

h2´d
l pv, ϕl,iqϕl,i p« S0

l vq. (5.17) eqn:Slv

This simplification helps us to reduce the cost of computation as well as implementation. Ap-

parently, we have

pSlv, vq “ h2´d
l pv⃗, v⃗q “ h2l pv, vq. (5.18) eqn:BPX-Smoother

We have seen that the Richardson method, the damped Jacobi method, and the G-S method

all satisfy such a condition; see (3.24).

rem:RichardsonRequirement Remark 5.13 (Behavior of the smoother). Note that the method (5.17) is just the Richardson

method with a weight ω “ h2´d
l on level l.

Using the above space decomposition and subspace solvers Sl, the PSC method yields the

well-known BPX preconditioner

B “

L
ÿ

l“0

SlQl “

L
ÿ

l“0

IlSlQl “

L
ÿ

l“0

IlSlIT
l (5.19) eqn:BPX

in operator form [48].

thm:BPX Theorem 5.14 (Uniform convergence of BPX). The BPX preconditioner (5.19) is uniformly

convergent, i.e., κpBAq À 1.

Proof. We take a decomposition v “
řL

l“0 vl :“
řL

l“0pQl ´ Ql´1qv, where Q´1 “ 0. Then we

can obtain, from Lemmas 5.11 and 5.9, that

pAv, vq –

L
ÿ

l“0

ˇ

ˇpQl ´ Ql´1qv
ˇ

ˇ

2

1
–

L
ÿ

l“0

h´2
l }pQl ´ Ql´1qv}20 “

´

L
ÿ

l“0

h´2
l pQl ´ Ql´1qv, v

¯

.

Define Ã :“
řL

l“0 h
´2
l pQl ´Ql´1q. Apparently, pAv, vq – pÃv, vq, @v P V . Using (5.6) and (5.7),

we can easily verify that (see HW 5.17)

Ã´1 “

L
ÿ

l“0

h2l pQl ´ Ql´1q.
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Hence

pÃ´1v, vq “

L
ÿ

l“0

h2l pQlv, vq ´

L
ÿ

l“0

h2l pQl´1v, vq “ h2LpQLv, vq `

L´1
ÿ

l“0

p1 ´ γ2qh2l pQlv, vq.

On the other hand, we have

pBv, vq “

´

L
ÿ

l“0

SlQlv, v
¯

“

L
ÿ

l“0

pSlQlv, vq “

L
ÿ

l“0

h2l pQlv, vq.

Namely, pÃ´1v, vq – pBv, vq. That is to say, pAv, vq – pÃv, vq – pB´1v, vq. Hence it gives the

uniform convergence result by Lemma 2.38.

Remark 5.15 (Multilevel decomposition according to frequencies). From the above analysis,

we find that, for any v P V ,

ˇ

ˇpQl ´ Ql´1qv
ˇ

ˇ

1
– h´1

l

›

›pQl ´ Ql´1qv
›

›

0
ùñ }∇vl}0 „ }h´1

l vl}0.

This fact draws close comparison with the Fourier expansion. That is to say v “
řL

l“0 vl is a

multilevel decomposition to different frequencies. Hence Ã can be viewed as a multi-resolution

expansion of A and κpÃ´1Aq À 1.

5.3.3 Matrix representation of BPX

Using the matrix representation notations introduced in §3.2 and §3.5, the equation (3.39)

in particular, we immediately obtain the matrix representation of the BPX method:

B u “ Bu “

L
ÿ

l“0

Il Sl Ql u “

L
ÿ

l“0

Pl ph2´d
l Mlq pM´1

l P T
l Mqu “

L
ÿ

l“0

h2´d
l Pl P

T
l M u.

In view of (3.17), we get the matrix form of the BPX preconditioner

B :“ BM´1 “

L
ÿ

l“0

h2´d
l Pl P

T
l . (5.20) eqn:MatBPX

This is the matrix form of the BPX preconditioner when we implement it. To improve efficiency,

we can use prolongation between two consecutive levels to obtain Pl.

5.4 Homework problems

hw:ConvDDM Problem 5.16. Give the complete proof of the uniform convergence of the two-level domain

decomposition method (Proposition 5.1). What will happen if we do not include the coarse-level

correction (Remark 5.2)?
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hw:bpx-inv Problem 5.17. Let Ã :“
řL

l“0 h
´2
l pQl ´ Ql´1q. Show that Ã´1 “

řL
l“0 h

2
l pQl ´ Ql´1q.

hw:BPX Problem 5.18. Implement the BPX preconditioner for the Poisson’s equation on a uniform

grid. You can choose your favorite discretization method.



Chapter 6

Geometric Multigrid Methods

ch:mg

Multigrid methods are a group of algorithms for solving differential equations using a hierar-

chy of discretizations.The idea of multigrid was proposed initially by Fedorenko [91] in 1962 for

2D finite difference systems arising from the Poisson’s equation. It accelerates the convergence of

a basic iterative method (known as a relaxation or smoother) by global corrections from time to

time, accomplished by solving a coarse problem approximately.The coarse problem is “similar”

to the fine grid problem, but much cheaper to solve. This recursive process is repeated until a

coarse grid where the cost of direct solution is negligible compared to the cost of one relaxation

sweep on the finest grid. In 1970’s, Widlund, Hackbusch, Brandt et al. [104, 50] noticed that

this iterative procedure was considerably faster than standard relaxation methods and brought

it to the attention of the western scientific community.

6.1 Geometric multigrid method
sec:GMG

The geometric multigrid (GMG) method is an optimal iterative solver for the linear algebraic

systems (2.1) arising from some discretizations of partial differential equations. It is based on

two important observations we have pointed out earlier in Chapter 3:

• A local relaxation method damps out the non-smooth (high-frequency) error components

and the residual becomes relatively smooth after a few relaxation sweeps;

• A smooth (low-frequency) vector can be approximated well on coarse spaces.

GMG establishes and exploits hierarchical structures. It exemplifies the divide and conquer

approach, which has been applied in two-grid methods, as discussed in §3.4. Unfortunately,

for large-scale problems, the coarse grid problem can remain too large to solve efficiently. This

naturally leads to introducing more than two nested meshes.

148
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• Smoothing: Reduce high-frequency error using a few smoothing steps based on a simple

iterative method;

• Restriction: Restrict the residual on a finer grid to a coarser grid;

• Coarse grid correction: Solve an approximate problem on a coarse grid;

• Prolongation: Represent the correction computed on a coarser grid to a finer grid.

✻

P
ro

lo
n
ga

ti
on

❄

R
estriction

Coarse Grid

Fine Grid

Figure 6.1: Pictorial representation of a multigrid method with three grid levels.fig_multigrid

6.1.1 V-cycle multigrid method

Now we will explain the multigrid algorithms using the P1 finite element method for the

Poisson’s equation on Ω Ă Rd as an example. Suppose we have a sequence of meshes Ml

(l “ 0, . . . , L) generated from an initial mesh M0 by (uniform) regular refinements. Hence

meshsize hl of Ml is proportional to γ
l with γ P p0, 1q. Clearly,

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h.

It is easy to see that a multigrid method can be viewed a recursive two-grid method. So

we only need to introduce how to do the iteration on two consecutive levels. We denote Il´1,l :

Vl´1 ÞÑ Vl pl “ 1, ¨ ¨ ¨ , Lq as the natural embedding and Ql,l´1 “ IT
l´1,l : Vl ÞÑ Vl´1 as the

p¨, ¨q-projection. Define Al pl “ 1, ¨ ¨ ¨ , Lq as the operator form of A on the subspace Vl in (5.1).

Then a V-cycle multigrid method is given as follows:

alg:V-cycle Algorithm 6.1 (One iteration of MG V-cycle). Assume that Bl´1 : Vl´1 ÞÑ Vl´1 is defined and

the coarsest level solver B0 “ A´1
0 is exact. We shall define, recursively, Bl : Vl ÞÑ Vl, which is
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an iterator for the equation Alvl “ rl. Let vl be the initial guess on each level, i.e., vL “ up0q

and vl “ 0 for 0 ă l ă L. Do the following steps:

(1) Pre-smoothing: For k “ 1, 2, . . . ,m, compute

vl Ð vl ` Sl

`

rl ´ Alvl
˘

;

(2) Coarse grid correction: Find an approximate solution el´1 P Vl´1 of the residual equation

on level l ´ 1, i.e., Al´1el´1 “ Ql,l´1

`

rl ´ Alvl
˘

, by an iterative method:

el´1 Ð Bl´1Ql,l´1prl ´ Alvlq, vl Ð vl ` Il´1,lel´1;

(3) Post-smoothing: For k “ 1, 2, . . . ,m, compute

vl Ð vl ` ST
l

`

rl ´ Alvl
˘

.

Remark 6.1 (Setup and solve phases). Algorithm 6.1 gives a typical solve phase of multigrid

methods. It relies on the hierarchical information (for exampleAl, l “ 0, 1, . . . , L´1) constructed

by a procedure called the setup phase. Apparently, the setup phase only need to be called once

and shared by the iterations in the solve phase.

From the above algorithm, we can see this V-cycle multigrid method is just a generalization

of Algorithm 3.2 (the abstract two-grid method). Clearly, this geometric multigrid method

(with one G-S iteration as pre-smoothing and one backward G-S iteration as post-smoothing) is

actually a special successive subspace correction (SSC) method based on the following multilevel

space decomposition

V “

J
ÿ

j“1

Ṽj “
ÿ

l“L:´1:1

ÿ

i“1:nl

Vl,i ` V0 `
ÿ

l“1:L

ÿ

i“nl:´1:1

Vl,i,

which is a modification of (5.14). Furthermore, on each one-dimensional subspace Ṽj , the

subspace problem is solved exactly.

According to Lemma 3.37, the error transfer operator of V-cycle on the l-th level can be

written as

El :“ I ´ BlAl “
`

I ´ ST
l Al

˘

pI ´ Bl´1Al´1Πl´1q
`

I ´ SlAl

˘

,

where Πl´1 is the Ritz-projection from V to Vl´1. By applying this operator recursively, we

obtain the error transfer operator for the MG V-cycle:

EL “ I ´ BLALΠL “
`

I ´ ST
LAL

˘

¨ ¨ ¨
`

I ´ ST
1 A1

˘`

I ´ Π0

˘`

I ´ S1A1

˘

¨ ¨ ¨
`

I ´ SLAL

˘

.
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6.1.2 Matrix representation of GMG

Similar to the matrix representation of two-grid method discussed in §3.4, we can write the

matrix representation of multigrid method. By definition, we have

pAlul, vlq “ pAul, vlq, @ul, vl P Vl.

Hence,

pAlQlu,Qlvq “ pIT
l AIlQlu,Qlvq “ pAIlQlu, IlQlvq, @u, v P V.

It is easy to see that

Al “ IT
l AIl ùñ Al “ IT

l AIl “ IT
l AIl.

This and (3.39), in turn, give the inter-grid transformations:

Âl “ Ml Al “ Ml IT
l AIl “ Ml IT

l M
´1Â Il “ IlT Â Il, 0 ď l ă L.

Hence we get the matrix form of the coarse level operator

Âl “ P T
l ÂPl, 0 ď l ă L. (6.1) eqn:AlgebraicGalerkinRelation

6.1.3 Anisotropic problems ‹

For GMG, error smoothness is in the usual geometric sense. However, this is not trivial for

problems on unstructured meshes or with complex coefficients. A representative example is the

second-order elliptic problem

´ϵuxx ´ uyy “ fpx, yq, @ px, yq P Ω, (6.2) eqn:aniso

where ϵ ą 0 is usually small.

If we just naively apply the standard finite difference discretization in §1.2 on the uniform

n ˆ n tensor-product grid for this problem, or equivalently the P1 finite element discretization

on uniform triangular grid from regular refinements, then the coefficient matrix for (6.2) is

Aϵ “ I bA1,ϵ ` C b I, with A1,ϵ “ tridiagp´ϵ, 2 ` 2ϵ,´ϵq, C “ tridiagp´1, 0,´1q.

The eigenvalues of A are given

λi,jpAϵq “ 2p1 ` ϵq ´ 2ϵ cos
iπ

n` 1
´ 2 cos

jπ

n` 1
“ 4ϵ sin2

iπ

2pn` 1q
` 4 sin2

jπ

2pn` 1q
,

with eigenvectors

ξ⃗i,j “

´

sin
kiπ

n` 1
sin

ljπ

n` 1

¯

k,l“1,...,n
.
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If ϵ ! 1, then λ1,1 ă λ2,1 ă ¨ ¨ ¨ ă λn,1 ă λ1,2 ă λ2,2 ă ¨ ¨ ¨ . We notice that, unlike the

Poisson’s equation, these eigenvalues are ordered in a different pattern. The geometric low-

frequencies can be highly oscillatory in the x-direction. It is natural to expect such a behavior

from the PDE itself as the x-direction is much less diffusive than the y-direction. We call the

x-direction (with smaller coefficient) the weak direction and the y-direction the strong direction.

We can also view this problem from a different perspective. Using the LFA analysis in §3.3,

we obtain that the error of the G-S method satisfies

p2 ` 2ϵqenewi,j “ ϵenewi´1,j ` ϵeoldi`1,j ` enewi,j´1 ` eoldi,j`1, i, j “ 1, . . . , n.

According to the local Fourier analysis, we can obtain that

λpθ1, θ2q :“
αnew
θ

αold
θ

“
ϵe

?
´1θ1 ` e

?
´1θ2

2 ` 2ϵ´ ϵe´
?

´1θ1 ´ e´
?

´1θ2
.

In this case, the smoothing factor of the G-S method is

ρ̄GS “ λ

ˆ

π

2
, arctan

´ ϵp1 ´ ρ̄2
GS

q

2pϵ` 1qρ̄2
GS

¯

˙

“

?
5ϵ2 ´ 2ϵ` 1 ` 2

5ϵ` 3
ÝÑ 1, as ϵ Ñ 0.

This observation suggests that the standard G-S method barely have any smoothing effect on

the anisotropic problem when ϵ is small.

Figure 6.2: Standard (left) and line Gauss–Seidel (right) smoothers: Blue points have updated
values and white points have old values.fig_LGS

On the other hand, if we apply the line G-S smoother, things will be a lot different; see

Figure 6.2. Suppose we apply the line smoother in natural ordering (from left to right), namely,

p2 ` 2ϵqunewi,j “ ϵunewi´1,j ` ϵuoldi`1,j ` unewi,j´1 ` unewi,j`1, j “ 1, . . . , n, i “ 1, . . . , n.

Then the error satisfies

p2 ` 2ϵqenewi,j “ ϵenewi´1,j ` ϵeoldi`1,j ` enewi,j´1 ` enewi,j`1, j “ 1, . . . , n, i “ 1, . . . , n.
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And we get

λpθ1, θ2q :“
αnew
θ

αold
θ

“
ϵe

?
´1θ1

2 ` 2ϵ´ ϵe´
?

´1θ1 ´ 2e´
?

´1θ2
.

The maximal smoothing factor is then

ρ̄LGS “ max
! ϵ

2 ` ϵ
,

?
5

5

)

.

If 0 ă ϵ ď 1, we always have ρ̄LGS “
?
5{5 ă 1 independent of ϵ.

In the multigrid setting, one can handle such an equation using special treatments like: (1) apply

an line smoother (group all those y-variables corresponding to the same x-coordinate together),

or (2) employ y-semi-coarsening (only coarse in the y-direction), or (3) construct operator-

dependent interpolations. In the next chapter, we will turn our attention to the third approach,

which leads to algebraic multigrid methods for solving such difficult problems.

Figure 6.3: Examples of coarsening methods (Left: standard coarsening; Right: y-semi-
coarsening): Red depicts coarse points and black depicts fine points.fig_coarsening

This example illustrates a typical problem used by researchers to evaluate the robustness of

multigrid methods as well as other iterative solvers. Other examples may include problems with

high-contrast coefficients, heterogeneous coefficients, anisotropic meshes, etc.

6.2 Convergence analysis of multigrid methods
sec:qualconv

In this section, we show the slash cycle or sawtooth cycle (i.e., {-cycle) method converges

uniformly (h-independently) using the XZ identity discussed previously. For simplicity, we will

only discuss the proof in 1D here. Multidimensional cases and other MG methods can also be

analyzed in the subspace correction framework, but the analysis is more technically involved;

see [189] for an example.
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6.2.1 Convergence analysis of GMG method

Assume the subspace problems are solved exactly, i.e., Sl,i “ A´1
l,i , for i “ 1, . . . , nl and

l “ 0, . . . , L. We denote the canonical interpolation operators from V to Vl as Jl. That is to

say, for any function v P V ,

`

Jlv
˘

pxq “

nl
ÿ

i“1

vpxliqϕ
l
ipxq, l “ 0, . . . , L.

Let J´1v :“ 0, v0 :“ J0v, and vl :“ pJl ´ Jl´1qv, l “ 1, . . . , L. Using the interpolants in

multilevel spaces, we can write

v “ JLv “

L
ÿ

l“0

`

Jl ´ Jl´1

˘

v “

L
ÿ

l“0

vl. (6.3) eqn:HBdecomp

We also have

v “

L
ÿ

l“0

vl “

L
ÿ

l“0

nl
ÿ

i“1

vpxliqϕ
l
ipxq “:

L
ÿ

l“0

nl
ÿ

i“1

vl,i.

It is easy to check that

pI ´ Jkqv “

L
ÿ

l“k`1

vl “

L
ÿ

l“k`1

nl
ÿ

j“1

vl,j

To estimate the convergence rate, in view of Corollary 4.21, we only need to estimate the

quantity:

c1 :“ sup
|v|1“1

inf
ř

l,i vl,i“v

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇ

ˇ
Πl,i

ÿ

pk,jqěpl,iq

vk,j

ˇ

ˇ

ˇ

2

1
.

We now define and estimate

c1pvq :“
L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇ

ˇ
Πl,i

´

nl
ÿ

j“i

vl,j `

L
ÿ

k“l`1

nl
ÿ

j“1

vk,j

¯ˇ

ˇ

ˇ

2

1
.

We use the same notations introduced in Chapter 4 for projections, Πl,i : V ÞÑ Vl,i is the

p¨, ¨qA-projection. For one-dimensional problems, it is easy to see that Πl “ Jl; see HW 6.2.

This leads to the following identity

Πl,ipI ´ Jlq “ 0, @ 1 ď i ď nl, 0 ď l ď L.

Furthermore, we also have Πl,ip
ř

jěi vl,jq “ Πl,i

`

vl,i ` vl,i`1

˘

. Using these properties, we have

c1pvq “

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇΠl,i

`

vl,i ` vl,i`1

˘

` Πl,ipI ´ Jlqv
ˇ

ˇ

2

1

“

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇΠl,i

`

vl,i ` vl,i`1

˘ˇ

ˇ

2

1
À

L
ÿ

l“0

nl
ÿ

i“1

|vl,i|
2
1

“

L
ÿ

l“0

h´2
l

›

›pJl ´ Jl´1qv
›

›

2

0
À

L
ÿ

l“0

|vl|
2
1 “ |v|21.
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The last equality is easy to check; see HW 6.3. This estimate shows the convergence rate of MG

is uniformly bounded.

rem:HB Remark 6.2 (Relation with the HB preconditioner). Note that several parts of the above anal-

ysis depend on the one-dimensional (d “ 1) assumption for simplicity. In fact, the decomposition

(6.3) used in this proof is the hierarchical basis (HB) decomposition discussed in §5.2. We have

already seen that the HB method convergence rate is not actually optimal for multidimensional

cases (d ą 1). So the proof requires modification for higher dimensions. We will not explore

the details of that approach here. Several alternative approaches in the literature prove the

optimality of GMG methods; we briefly review them in the following subsection.

6.2.2 Some historical remarks ‹

The theoretical analysis in this note closely follows the argument of subspace corrections

theory. We now briefly review the history of multigrid convergence theory. A comprehensive

literature review is not possible here; interested readers should see the monographs [106, 135,

40, 64, 179, 183], survey papers [189, 208], and references therein for a more thorough treatment.

In the early 1960s, Fedorenko first introduced and analyzed the multigrid method for finite

difference equations of the Poisson equation on a unit square [91, 92]. Bakhvalov extended the

result to more complex cases with variable coefficients [10]. Nicolaides provided an analysis

for finite element discretizations of second-order elliptic equations [147]. In the late 1970s,

Hackbusch and Brandt made a major breakthrough, showing multigrid is highly efficient [104,

50]. Their seminal work popularized multigrid, motivating extensive research to develop a

general convergence theory. The simplest case is a two-level hierarchy. Bank and Dupont

developed a two-level hierarchical basis (HB) finite element method [13] and proved two-grid

method convergence for finite elements [12]. Under certain conditions, their two-grid theory

shows W-cycle (or more robust) multigrid with sufficient smoothing steps converges similarly to

the two-grid method; see [12, 105, 106, 179]. However, this approach cannot prove the uniform

convergence of V-cycle multigrid, which is more important in practice [105].

Hackbusch [105] and Braess and Hackbusch [38] first gave a general convergence theory

for multigrid, including the V-cycle. The classical book by Hackbusch [106] summarized early

development of convergence and optimality of multigrid methods. Hackbusch and collabora-

tors reduced the conditions for the V-cycle convergence to the smoothing and approximation

properties, namely,

pvl,Alvlq À pvl,B´1
l vlq, @ vl P Vl; (6.4) cond_smooth

pwl,B´1
l wlq À κpwl,Alwlq, @wl P Wl :“

␣

pΠl ´ Πl´1qv : v P V
(

. (6.5) cond_approx
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If the above conditions hold, then there is a positive mesh-independent constant C such that

V(m, m)-cycle multigrid converges uniformly and

}I ´ BV-cycleA}A ď
C

C `m
,

which indicates the convergence factor goes to zero as the number of smoothing steps increases.

The approximation property (6.5) often requires full elliptic regularity on the boundary value

problem and quasi-uniformness of the underlying meshes. These restrictions made the classical

theory not applicable in many situations where the multigrid methods are still effective. There

are some exceptional cases where full elliptic regularity is not necessary; see, for example, [36, 16].

Bramble and Pasciak [42] introduced a regularity and approximation condition to show conver-

gence of multigrid methods including the V-cycle for any positive m. Bank and Yserentant [16]

presented the classical convergence theory of the multigrid methods from an algebraic point of

view.

An alternative convergence theory is the framework of subspace corrections, with which

inexact subspace solvers can be analyzed, very general meshes can be treated, and restrictive

regularity assumptions can be removed. The subspace correction methods (or the Schwarz meth-

ods) emerged and analyzed in both multigrid and domain decomposition communities. Closely

related to the multigrid methods (which can be viewed as multiplicative Schwarz methods),

additive versions of the multilevel Schwarz method also gained popularity as parallel comput-

ers emerged and became the dominant computing environment. Yserentant [206] and Bank,

Dupont, and Yserentant [14] extended the two-level HB idea to the multilevel case and obtained

the HB preconditioner (additive) and the HBMG method (multiplicative), respectively. The

HB-type methods (see §5.2) are easy to implement and very efficient in many cases, especially

so in 2D.

Bramble, Pasciak, and Xu [48] proposed a parallel version of V-cycle multigrid called the

multilevel nodal basis preconditioner, which is better known as the BPX preconditioner. In

this seminar paper, the authors suggested an L2-type telescope sum (see §5.3) to construct a

stable decomposition, which is a break-through and motivated a lot of research. Such a tool also

allowed Bramble, Pasciak, Wang, and Xu [47, 46] to analyze the V-cycle multigrid and domain

decomposition methods on nonuniform meshes. This analysis gave convergence estimates for the

multilevel Schwarz methods mildly depending on mesh size (i.e., depending on the number of

levels only). Dryja and Widlund [82] also showed similar convergence estimates for the multilevel

additive Schwarz methods in a more general setting. Later, these results were improved and

the multilevel Schwarz methods were finally shown to converge uniformly with respect to mesh

size and number of levels (without regularity nor quasi-uniformity assumptions) in different

ways [154, 211, 189, 45, 35, 102].
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Xu [189] gave a unified theory on subspace correction methods based on stable subspace

decomposition of finite element spaces and laid solid foundation for further studies in this field.

Yserentant [208] reviewed the classical proof and the subspace correction proof for the conver-

gence of multigrid methods. By combining the two convergence theories, Brenner [57] proved

that convergence factor for some V-cycle methods decreases as number of smoothing steps in-

creases without full elliptic regularity assumption. Moreover, Xu and Zikatanov [193] considered

methods of subspace corrections in an abstract setting and showed that the convergence factor

of successive subspace correction methods can be characterized by a precise estimate

}I ´ BV-cycleA}2A “ 1 ´
1

c1
,

which is known as the XZ identity (Theorem 4.17). This theory does not depend on the number

of smoothing steps explicitly.

By far, we have mainly discussed general convergence theories for the multigrid methods.

These theoretical results indicate that the convergence factor of multilevel iterative methods is

independent of mesh size h without telling how big the convergence rate accurately is. Such

qualitative theories usually do not give satisfactorily sharp nor realistic predictions of the actual

convergence factor in practice [179]. This statement seems confusing as the XZ identity gives

an exact equality for the convergence factor instead of an upper bound. But an optimal space

decomposition in the XZ identity is not readily available practically speaking and, hence, it is

not easy to obtain a quantitative convergence estimate with the identity. Algebraic convergence

estimates can be applied to obtain reasonable quantitative convergence speed for multigrid

methods; see [134, 141] for more details. More algebraic convergence analysis results will be

reviewed in Chapter 7.

Although the aforementioned qualitative results show h-independent convergent speed of

multigrid methods, they still do not fully reflect high efficiency of multigrid algorithms (like the

so-called textbook multigrid efficiency). Moreover, these results can not provide much assistance

for designing an optimal algorithm. On the other hand, quantitative analysis tools, including

rigorous Fourier analysis and local Fourier analysis, have been developed in the literature to

analyze practical performance of multigrid methods for rather general problems. For some cases,

they can even provide exact convergence factor of the multigrid algorithms (in the sense this

convergence factor can be obtained by the worst case mode); see [52, 161].

6.3 Nested iterations
sec:cycles

As in Algorithm 6.1, the solve phase approximates corresponding problems by calling a two-

grid algorithm recursively. There are different approaches for the solve phase; for example, the
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V-cycle method in §6.1. In this section, we discuss other popular methods for the solve phase.

6.3.1 V-cycle and its generalizations

The V-cycle iterator B, Algorithm 6.1, is a two-grid method with an inexact coarse-level

solver defined recursively, i.e., the coarse-level iterator Bc is just B on the coarse grid. On the

coarse level, we start from the initial guess uoldc “ 0 and then iterate

unewc “ uoldc ` Bc

`

fc ´ Acu
old
c

˘

, where Bc is the two-grid method for Ac.

In the the V-cycle, we only apply the above iteration once on the coarse-level. Apparently, this

procedure can be generalized. For example, we can iterate multiple steps:

up0q
c “ 0, upkq

c “ upk´1q
c ` Bc

`

fc ´ Acu
pk´1q
c

˘

, k “ 1, . . . , ν. (6.6) eqn:mgstep

This gives the following equation

upνq
c “ Bcfc ` pI ´ BcAcqu

pν´1q
c “ Bcfc ` Ecupν´1q

c “ ¨ ¨ ¨ “
`

I ` Ec ` ¨ ¨ ¨ ` Eν´1
c

˘

Bcfc,

where Ec :“ I ´ BcAc. We can define a new iterator Bc,ν such that

Bc,νfc :“
`

I ´ Eν
c

˘`

I ´ Ec
˘´1Bcfc “

`

I ´ Eν
c

˘

A´1
c fc. (6.7) eqn:nu-cycle

Motivated by (6.7), we introduce a polynomial qνptq :“ p1 ´ tqν P Pν and let

Bc,ν :“
´

I ´ qν
`

BcAc

˘

¯

A´1
c .

The parameter ν is often called the cycle index .

Some schematic description of MG-cycle

Chunsheng Feng

March 24, 2016

Fine

Coarse

Relaxation

Exact solving

Restriction

Prolongation

Figure 1: A schematic description of the V-cycle.

Finest
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Relaxation

Exact solving

Restriction

Prolongation

FMG prolongation

Figure 2: A schematic description of the full multigrid algorithm.

V–Cycle W–Cycle
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Relaxation
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Restriction

Prolongation

1

Figure 6.4: Multigrid V-cycle (left) and W-cycle (right).fig:VW-cycle

alg:MG-cycle Algorithm 6.2 (One iteration of multigrid cycle). Assume that Bl´1 : Vl´1 ÞÑ Vl´1 is defined

and the coarsest level solver B0 “ A´1
0 is exact. We shall recursively define Bl : Vl ÞÑ Vl which

is an iterator for the equation Alv “ rl. Let v “ vp0q be the initial guess.
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(1) Pre-smoothing: For k “ 1, 2, . . . ,m, compute

v Ð v ` Sl

`

rl ´ Alv
˘

;

(2) Coarse grid correction: Find an approximate solution el´1 P Vl´1 of the residual equation

on level l ´ 1, i.e., Al´1el´1 “ Ql,l´1

`

rl ´ Alv
˘

using the iteration: Set el´1 “ 0 initially.

For k “ 1, . . . , ν, compute

el´1 Ð el´1 ` Bl´1

´

Ql,l´1prl ´ Alvq ´ Al´1el´1

¯

; (6.8) eqn:W-cycle

Update the solution with

v Ð v ` Il´1,lel´1;

(3) Post-smoothing: For k “ 1, 2, . . . ,m, compute

v Ð v ` ST
l

`

rl ´ Alv
˘

.

In the above general algorithm, the numbers of pre-smoothing and post-smoothing steps

could be different from each other or level from level. The notation like Vp1, 2q means the

V-cycle multigrid with 1 pre-smoothing and 2 post-smoothing steps.

From the previous discussion, we notice that there is a lot of freedom in the choice of qνptq.

If ν “ 1, then Algorithm 6.2 is the V-cycle. The first non-trivial example is the well-known

W-cycle (ν “ 2), which is a simple extension of the V-cycle algorithm; see Figure 6.4. By calling

the coarse correction steps twice as in (6.8), we can obtain Bc,2, i.e. the W-cycle; see HW 6.4.

Apparently, the cycle index ν on each level does not have to be a fixed integer and one can use

νl´1 ą 0 to balance convergence and computation complexity; see Remark 6.5 for an alternative

scheme.

In V-cycle and W-cycle, the iterators on different coarse levels (except the coarsest level) are

the same. We can also use different polynomial orders νl on different levels l (0 ă l ă L). For

example, we can use a polynomial qνptq such that qνp0q “ 1 and 0 ď qνptq ă 1 on the spectrum of

BcAc. This type of methods are referred to as the AMLI-cycle (Algebraic Multi-Level Iteration

cycle1); see [6] and references therein for details.

Remark 6.3 (Nonlinear AMLI cycles). Indeed, we can choose some optimal polynomial qνptq

like the Chebyshev polynomials. This reminds us about the Krylov subspace methods discussed

in §2.2. Inspired by this similarity, we can apply a preconditioned Krylov methods (like Flexible

CG or GCR methods) on some of the coarse levels to improve convergence. This type of methods

are called Krylov-cycle (K-cycle) methods or Nonlinear AMLI methods [152].

1Here “algebraic” stands for the fact that certain inner polynomial iterations are used in the multilevel cycle.
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ex:AMLI Example 6.4 (A simple AMLI-cycle). A simple AMLI-cycle method is to give l0 ě 1, µ1 ě

µ2 ě 1, and use the following polynomial orders

νl :“

#

µ1, if l “ kl0;

µ2, otherwise.

It is clear that, if l0 “ 1 and µ1 “ µ2 “ 1, then this method is just the standard V-cycle.

6.3.2 Complexity of multigrid iterations

Now we turn our attention to the work estimate (i.e. the number of floating-point calcula-

tions) of nested iterations. For simplicity, we only consider the AMLI-cycle in Example 6.4 with

µ2 ” 1. Denote the computational work needed by Bl is Wl. Assume the each smoothing sweep

costs OpNlq operations and Nl „ h´d
l „ γ´ld. Then it requires 2mOpNlq operations for the pre-

and post-smoothing on level l. The prolongation and restriction also requires OpNlq operations.

Hence, for the AMLI-cycle, we have

Wpk`1ql0 “ µ1O
`

Npk`1ql0

˘

`O
`

Nkl0`1 ` ¨ ¨ ¨ `Nkl0`l0

˘

` µ1Wkl0

“ µ1O
`

Npk`1ql0

˘

` µ1Wkl0

“ µ1O
`

Npk`1ql0

˘

` µ21OpNkl0q ` µ21Wpk´1ql0

“ ¨ ¨ ¨ ¨ ¨ ¨

“ O
´

k`1
ÿ

j“2

µk`2´j
1 Njl0

¯

` µk1Wl0

“ O
´

k`1
ÿ

j“1

µk`2´j
1 Njl0

¯

“ O
`

Npk`1ql0

˘

k`1
ÿ

j“1

`

µ1γ
d l0

˘j
.

Let N “ NL be the number of unknowns on the finest grid. This AMLI method costs OpNq

operations in each cycle, if we choose an appropriate µ1 such that µ1γ
d l0 ă 1. Apparently, this

analysis also yields computational complexity of the standard multigrid cycles like V-cycle and

W-cycle quickly.

rem:VV Remark 6.5 (Variable V-cycle). Sometimes it is very desirable to use more smoothing steps

on the coarse meshes to achieve better convergence. For example, we can modify the V-cycle

algorithm by making the number of smoothing steps vary with the level l. Namely, we can

replace m in Algorithm 6.1 with ml, where ml “ βlm with a fixed integer β ą 1. Usually

in practice β “ 2 and m “ 1 are taken and then ml “ 2L´l. Note that the computational

complexity is still optimal OpNq as the number of grid points decreases geometrically.
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6.3.3 Full multigrid method

The multigrid methods discussed above converge uniformly with respect to the meshsize h

and requires OpNq operations in each cycle. This means the computational cost is OpNq to reach

a fixed tolerance. On the other hand, when we solve a discrete partial differential equation, we

need to solve the linear systems increasingly accurate using smaller tolerances for finer meshes,

in order to obtain discretization accuracy. This leads to the fact that, to reach the discretization

accuracy, the V-cycle multigrid method requires OpN logNq operations.

One way to further improve the cycling algorithms (for example, the V-cycle algorithm) is

to provide better initial guesses using coarse approximations (cheap in computation). This idea

leads to a nested iteration method, i.e., the so-called full multigrid (FMG) cycle; see Figure 6.5.

From this figure, we can see the full multigrid method can be viewed as a sequence of V-cycles

on different levels. Note that FMG prolongations are different than the usual prolongations

because they must control error and decide when to proceed to the next finer level.

Some schematic description of MG-cycle

Chunsheng Feng

March 24, 2016

Fine

Coarse

Relaxation

Exact solving

Restriction

Prolongation

Figure 1: A schematic description of the V-cycle.

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

FMG prolongation

Figure 2: A schematic description of the full multigrid algorithm.
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1

Figure 6.5: Full multigrid cycle.fig:F-cycle

We can write the concrete algorithm as follows:

Listing 6.1: Full multigrid method

1 ũ0 Ð A´1
0 f0;

2 for l “ 1, . . . , L

3 u
p0q

l Ð Il´1,lũl´1;

4 u
pkq

l Ð V-cyclepl, fl, u
pk´1q

l q, k “ 1, . . . , ν;

5 ũl Ð u
pνq

l ;

6 end

thm:FMG Theorem 6.6 (Full multigrid convergence). Assume that the l-th level iteration is a contrac-

tion with contraction factor 0 ă δ ă 1 independent of level l. If ν is large enough, then we

have

|||ul ´ ũl||| À hl
ˇ

ˇu
ˇ

ˇ

2
,
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where ul is the exact solution of finite element problem on level l and ũl is the full multigrid

approximation solution on the l-th level.

Proof. Let el :“ ul ´ ũl. Apparently, on the coarsest level, we have e0 “ 0 initially. On the l-th

level (0 ă l ď L), we have

|||el||| ď δν |||ul ´ ũl´1||| ď δν
´

|||ul ´ u||| ` |||ul´1 ´ u||| ` |||ul´1 ´ ũl´1|||

¯

ď δν
´

Chl
ˇ

ˇu
ˇ

ˇ

2
` |||el´1|||

¯

.

By iteration, we obtain that

|||el||| ď C
´

δνhl ` δ2νhl´1 ` ¨ ¨ ¨ ` δlνh1

¯

ˇ

ˇu
ˇ

ˇ

2

“ Cδνhl

´

1 ` δνγ ` ¨ ¨ ¨ ` δpl´1qνγl´1
¯

ˇ

ˇu
ˇ

ˇ

2
.

Furthermore, if ν is large enough, then δν ă γ and

|||el||| ď
Cδνhl

1 ´ γ´1δν
ˇ

ˇu
ˇ

ˇ

2
À hl

ˇ

ˇu
ˇ

ˇ

2
.

Hence the result.

The above theorem indicates that, if we do enough number of V-cycles on each level (independent

of meshsize hl), we can obtain an approximate solution within the accuracy of discretization

error. That is to say, |||u´ ũl||| ď |||u´ ul||| ` |||ul ´ ũl||| À hl|u|2. This means that FMG can reach

discretization error tolerance within OpNq operations.

6.4 Two-grid estimates for multigrid analysis
sec:quanconv

In this section, we introduce a simple tool for estimating convergence speed of the multigrid

methods using the two-grid convergence factor. As we mentioned earlier, although this classical

approach works well for the W-cycle or more complicated cycles only, it is relatively easy to give

practitioners some idea how fast a multigrid code should be quantitatively.

6.4.1 From two-grid to multigrid

It is well-known that, if the exact two-grid method converges sufficiently fast, then the

corresponding W-cycle multigrid method will also converge fast [12, 105, 179]. This is very

helpful, for practical purposes, to assess how fast a multigrid algorithm will work for a particular

problem.
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A more rigorous analysis has been given by Notay [148] through a closer look at convergence

rate of the inexact (or perturbed) two-grid methods BTG in Algorithm 3.2. As we have seen

earlier, the multigrid methods can be viewed as recursive calls of the two-grid method. Hence

they are indeed inexact two-grid methods. Moreover, we have the following relations between

the general two-grid method BTG and the exact two-grid method BeTG:

λmaxpBTGAq ď λmaxpBeTGAq max
!

λmaxpBcAcq, 1
)

,

λminpBTGAq ě λminpBeTGAq min
!

λminpBcAcq, 1
)

.

Let ρl :“ ρpIl ´ BlAlq. In view of the above inequalities and (2.10), we obtain the following

estimate

ρW-cycle
l ď 1 ´

´

1 ´ ρ eTG
l

¯´

1 ´
`

ρW-cycle
l´1

˘2
¯

, l “ 2, 3, . . . , L.

If ρ eTG
l ď σ ă 1{2 and ρW-cycle

l´1 ď σ
1´σ , then we can derive, by recursion, that

ρW-cycle
l ď

σ

1 ´ σ
, l “ 2, 3, . . . , L.

This is a uniform estimate of the “convergence speed” of the W-cycle multigrid method with

respect to the number of levels. This result confirms and quantifies the common wisdom about

the W-cycle convergence speed.

6.4.2 Limitations of two-grid theory for GMG ‹

As we mentioned earlier, this approach does not yield uniform convergence estimate for the

V-cycle multigrid. This fact shows there is a fundamental difference between two-level and V-

cycle multigrid iterations in terms of conditions on convergence. When the above technique is

applied to the V-cycle multigrid method, we can easily obtain that: If λmaxpB eTG
l Alq ď 1 holds

for all levels, then

ρV-cycle
l ď 1 ´

´

1 ´ ρ eTG
l

¯´

1 ´
`

ρV-cycle
l´1

˘

¯

, l “ 2, 3, . . . , L.

For example, suppose that ρV-cycle
1 “ ρ eTG

1 and the exact two-grid method converges uni-

formly with ρ eTG
l ď 0.2 for all l ą 0. Then it yields the following non-uniform convergence
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estimates for the V-cycle multigrid:

ρV-cycle
2 ď 1 ´ 0.8 ˆ p1 ´ 0.200q “ 0.360,

ρV-cycle
3 ď 1 ´ 0.8 ˆ p1 ´ 0.360q “ 0.488,

ρV-cycle
4 ď 1 ´ 0.8 ˆ p1 ´ 0.488q « 0.590,

ρV-cycle
5 ď 1 ´ 0.8 ˆ p1 ´ 0.590q « 0.672,

ρV-cycle
6 ď 1 ´ 0.8 ˆ p1 ´ 0.672q « 0.738,

...

In general, uniform two-grid convergence is not sufficient to guarantee uniform convergence

for the V-cycle multigrid; see [139] for example. To give uniform estimate for the V-cycle

multigrid, there are additional conditions to be satisfied; see the work by Napov and Notay [142].

Nevertheless, from the above discussion, we find that the analysis for two-grid methods can

improve understanding of the convergence behavior of multilevel iterative methods. It is simple

yet very powerful. Furthermore, the analysis of inexact two-grid methods indicates that it is

possible to apply the inexact (possibly non-Galerkin) coarse-level operators and might lead to

new multigrid algorithms (particularly, algebraic multigrid methods). More discussions can be

found in the PhD thesis of Xuefeng Xu [198] and [203].

6.4.3 LFA ladder

For a specific problem, it is recommended to perform quantitative analysis (more specifically,

the LFA method) to determine the maximum possible convergence rate of multigrid algorithms.

A general procedure for developing multigrid programs, known as the ”LFA ladder”, has been

adopted in practice:

1. Choose an appropriate discretization scheme for the problem;

2. Find an effective smoother with a satisfactory convergence factor µ using the LFA method;

3. Select transfer operators and determine the two-grid LFA convergence factor σ;

4. Check if the two-grid LFA convergence factor σ is close to µ;

5. Check if the convergence factor of the multigrid program approximates σ;

6. Apply the full multigrid method and verify if the expected discretization accuracy is

achieved.

This procedure helps practitioners make development decisions and improve efficiency. We

recommend readers see [179, 187] for more details on these techniques.
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6.5 Implementation of multigrid methods
sec:implement

In this section, we will briefly discuss how to implement the multigrid V-cycle (Algorithm 6.1)

for solving the finite element equation Au “ f with A P RNˆN (N is usually very large). There

are a couple of different ways for implementing the multigrid V-cycle algorithm. Here we use a

matrix-based implementation to allow generality while it might not be an efficient way.

6.5.1 A sparse matrix data structure

First, we discuss how to represent a sparse matrix in practice. Evidently, we do not wish

to store the zeros in a sparse matrix. There exist various ways to store a sparse matrix with

optimal storage complexity. More importantly, the choice of storage format usually depends

on the hardware architecture. A widely used general purpose data structure is the so-called

Compressed Sparse Row (CSR) format [166]. The CSR storage format of a sparse matrix A

consists of three arrays, defined as follows:

1. A double array of non-zero entries corresponding to the column indices, val, of size nnz;

2. An integer array of row pointers, IA, of size N ` 1;

3. An integer array of column indices, JA, of size nnz.

More precisely, the index IA(i) points to the beginning of the i-th row in JA and val. Moreover,

the nonzero entries of a sparse matrix are stored in the array val row after row consecutively,

that is to say, the i-th row begins at val(IA(i)) and ends at val(IA(i` 1)´1). In a similar way,

JA(IA(i)) to JA(IA(i`1)´1) contain the column indices of the nonzeros in row i. Thus IA is of

size N ` 1 (number of rows plus one), JA, and val are of size equal to the number of nonzeros.

The number of nonzeros in the i-th row is then equal to IApi` 1q´IA(i) and the total number

of nonzeros is equal to IApN `1q´IA(1). Note that, as a convention, we always start the indices

from 1 instead of 0.

When the matrix is a boolean (i.e., all entries are either true or false), the actual nonzeros

are not stored because there is no need to store them.

Example 6.7 (A simple CSR matrix). Consider the following 4 ˆ 5 matrix

¨

˚

˚

˚

˚

˚

˝

1.0 1.5 0 0 1.2

0 1.0 6.0 7.0 1.0

3.0 0 6.0 0 0

1.0 0 2.0 0 5.0

˛

‹

‹

‹

‹

‹

‚

When in the CSR format, this matrix is stored in the following way:
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• val is of the same size as JA and

val “ 1.0 1.5 1.2 1.0 7.0 6.0 1.0 3.0 6.0 2.0 5.0 1.0

• IA is of size 5 and

IA “ 1 4 8 10 13

• JA is of size IAp5q ´ IAp1q “ 12

JA “ 1 2 5 2 4 3 5 1 3 3 5 1

Note that the indices in JA need not be sorted in ascending order as seen in this example.

Remark 6.8 (Some comments on CSR). We provide a few comments on the CSR format:

1. There exist various data structures for storing sparse matrices, suited to specific problems,

algorithms and hardware. Nevertheless, the CSR format remains widely used and accepted.

2. The format does not assume any ordering of entries within each row.

3. The format allows duplicating nonzero values.

With a sparse matrix stored in the CSR format, the matrix-vector multiplication v “ Au

can be performed in the following way:

Listing 6.2: Sparse matrix-vector multiplication

1 for i “ 1, . . . , N

2 t Ð 0;

3 for k “ IApiq, . . . ,IApi ` 1q ´ 1

4 j Ð JApkq;

5 t Ð t ` valpkq ˚ upjq;

6 end

7 vpiq Ð t;

8 end

Now we give a pseudo code of the GS method (1.31) for solving Au “ f . We assume that

the initial guess is stored in the vector u. The pseudo code below uses an ordering given by a

permutation array π, which takes value from 1 to N . Note that if πpℓq “ ℓ for any ℓ, then the

code just yields the forward Gauss–Seidel method. It is important to notice that the positions

of the diagonal entries of A in JA and val are not known in advance.

Listing 6.3: Gauss–Seidel method with ordering

1 for ℓ “ 1, . . . , N

2 i Ð πpℓq;
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3 t Ð fpiq;

4 for k Ð IApiq, . . . ,IApi ` 1q ´ 1

5 j Ð JApkq;

6 if ( j == i )

7 diag Ð valpkq;

8 else

9 t Ð t ´ valpkq ˚ upjq;

10 end

11 end

12 upiq Ð t{diag;

13 end

We immediately notice that this pseudo code is very similar to the previous matrix-vector

multiplication and can be implemented very easily.

6.5.2 Assembling finite element matrix

Geometric multigrid methods are often implemented without assembling the global stiffness

matrix (matrix-free). However, we implement GMG using a matrix-based approach. So we first

discuss how to assemble the finite element matrix. Consider the mesh in Figure 6.6 which has

both triangles and quadrilaterals.

4 LUDMIL ZIKATANOV

contain for example the information, which point is on the Dirichlet
boundary or not (i.e. such point is never added to any row)

? end For
• Here is where we clean IB by putting back 0 for all column indexes in row i, so

we can add them later on to other row if necessary.
• end For

s
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Figure 1. A simple triangulation of 4 elements and 8 nodes

It just remains to show how we can perform steps (1) and (2) of the above algorithm 1.3. It
turns out that this can be easily achieved by thinking of the correspondence element�node
as a sparse matrix, of size (elements⇥ nodes). For example the so called element topology
is trivially represented by a 4⇥ 8 matrix E for which Eij = 1 if and only if the node j is in
element i. Otherwise Eij = 0. For our example on Fig 1 E is given below:

E =

0
BB@

0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 1
1 1 0 0 0 1 1 0
0 1 0 0 1 0 0 1

1
CCA

Representing this in compressed row storage gives the following two arrays (IE and JE)

IE = [1, 4, 8, 12, 15]
JE = [7, 8, 2k8, 3, 4, 5k1, 6, 7, 2k2, 5, 8]

This concludes step (1) of the algorithm 1.3. Step (2) is also easy to achieve if we realize
that the columns of E exactly represent the correspondence

node 7! {elements� the� node� belongs� to}.

This means that for step (2) we need Et. If we represent Et as a sparse matrix by using two
arrays (IET and JET ), we obtain that

IET = [1, 2, 5, 6, 7, 9, 10, 12, 15]
JET = [3k1, 3, 4k2k2k2, 4k3k1, 3k1, 2, 4]

Figure 6.6: A mesh with 4 elements and 8 nodesfig:FEmesh

Most finite element basis functions are constructed to be locally supported. Very often, a

“natural” assumption can be made about how a stiffness matrix is constructed from a finite

element mesh:
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We have a nonzero in the stiffness matrix at the pi, jq-entry if and only if the nodes i and j

appear in the same element.

In order to assemble the stiffness matrix, the following two steps are performed:

1. Find the sparsity pattern of the stiffness matrix A, namely, IA and JA;

2. Loop through elements and compute the actual entries in A; This step (the actual assembly

of the entries) is usually easier but has to be done case by case. We leave this step to the

readers.

Here we only explain the first step in the following abstract algorithm:

alg:silly Algorithm 6.3 (Finding sparsity). Suppose a finite element mesh M is given.

(1) For each element, find the indices of nodes that belong to it;

(2) For each node, find the indices of elements that it belongs to ùñ Patch(i);

(3) Obtain the sparsity pattern of A:

for i P Nodes(M)

for e P Patch(i)

Add all nodes in element e to the list of possible nonzeros in row i2.

It just remains to show how we can perform steps (1) and (2) of Algorithm 6.3. This can

be easily achieved by thinking of the element–node correspondence as a sparse matrix of size

#elementsˆ#nodes. For example, the so-called element topology is trivially represented by a

4 ˆ 8 matrix E for which Eij “ 1 if and only if the node j is in the element i. Using the mesh

in Figure 6.6 as an example, E is given below:

E “

¨

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 1 1

0 0 1 1 1 0 0 1

1 1 0 0 0 1 1 0

0 1 0 0 1 0 0 1

˛

‹

‹

‹

‹

‹

‚

Since this matrix has value either 1 or 0, we can represent E in the compressed sparse row

format with the sparsity pattern only:

IE “ } 1 | 4 | 8 | 12 | 15 }

JE “ } 7 | 8 | 2 } 8 | 3 | 4 | 5 } 1 | 6 | 7 | 2 } 2 | 5 | 8 }

2Make sure that you do not add anything twice. This can be done using an additional indicator array.
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This concludes Step (1) of Algorithm 6.3.

On the other hand, Step (2) is also easy to achieve because the columns of E represent the

correspondence

Node ÞÑ Patch.

This means that, for step (2), we can use the transpose matrix ET .

rem:transpose Remark 6.9 (How to find transpose of a CSR matrix). The nontrivial task is to perform trans-

position without using additional memory. An algorithm by F. Gustavson from the 1970s can

achieve this, found in [155]. During transposition by Gustavson’s algorithm, column indices

within each row emerge in increasing order naturally.

6.5.3 Matrix form of transfer operators

As seen in (6.1), we can obtain coarse level stiffness matrices using the algebraic Galerkin

relation:

Al “ P T
l APl, 0 ď l ă L.

Since we can calculate the matrices Al’s level by level, we only need the prolongation matrix

between two consecutive levels, Pl´1,l for 0 ă l ď L. In the operator form, it is trivial to

define the prolongation, which is just the natural embedding operator. But for implementation,

we need to find the algebraic form of the prolongations. For geometric multigrid methods, we

usually have to write the prolongation subroutines for different cases, and it makes the multigrid

code almost a white box.

Here we are going to use a matrix-based implementation. Such a strategy is easy to be

adapted to different discretization methods and have an almost identical structure as the AMG

methods we will discuss next. Since we have seen how to apply a matrix-vector multiplication

and how to apply the smoothers, we are left with construct prolongations as a sparse matrix.

But, of course, obtaining such flexibility will cost us more storage as well as computational time.

To complete the algorithm we have to give the action of P T
l´1,l and Pl´1,l, which are just matrix-

vector multiplications to transfer data between two consecutive levels. The only programming

difficulty here is keeping track of who on the fine grid is interpolated by whom on the coarse

grid. We now focus on the particular case in which Vh is the classical linear finite element space

corresponding to a uniform grid with size 2´L.

Remark 6.10 (Matrix-free implementation of prolongation). One can easily observe that, there

is actually no need for Al´1 to be computed as P T
l´1,lAlPl´1,l because Al´1 is just the stiffness

matrix corresponding to finite element discretization on a grid with size 21´l. In such a case,

we do not need to store P themselves, but only the action of prolongations.
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In the following example, it is shown how to perform the actions of prolongation for l “ 1

of grid with meshsize 1{4 on the unit square. We can easily obtain the finite element matrix on
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Figure 6.7: Fine and coarse meshes.grid12

the coarse mesh M1; see Table 6.1.

i j pA1qij

1 1 1.0
1 4 ´0.5
1 2 ´0.5
2 1 ´0.5
2 5 ´1.0
2 2 2.0
2 3 ´0.5
3 2 ´0.5
3 6 ´0.5

i j pA1qij

3 3 1.0
4 1 ´0.5
4 4 2.0
4 5 ´1.0
4 7 ´0.5
5 4 ´1.0
5 5 4.0
5 2 ´1.0

i j pA1qij

5 6 ´1.0
5 8 ´1.0
6 5 ´1.0
6 6 2.0
6 3 ´0.5
6 9 ´0.5
7 4 ´0.5
7 7 1.0

i j pA1qij

7 8 ´0.5
8 7 ´0.5
8 8 2.0
8 5 ´1.0
8 9 ´0.5
9 8 ´0.5
9 9 1.0
9 6 ´0.5

Table 6.1: The nonzero entries of the stiffness matrix A1 on the fine grid.tab:A1

Let epiq, i “ 1, 2, . . . , 9 be a given vector corresponding to the representation of eH on the

coarse grid. Let rpiq, i “ 1, 2, . . . , 25 be a residual vector on the fine grid. According to the
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numbering given in Figure 6.7, we have the following formulae for computing Pe and P T r:

pPeqp13q “ ep5q;

pPeqp12q “ 0.5 ˚
`

ep4q ` ep5q
˘

;

pPeqp8q “ 0.5 ˚
`

ep2q ` ep5q
˘

;

pPeqp17q “ 0.5 ˚
`

ep4q ` ep8q
˘

;

...

pP T rqp5q “ rp13q ` 0.5 ˚
`

rp7q ` rp8q ` rp12q ` rp14q ` rp18q ` rp19q
˘

;

pP T rqp1q “ rp1q ` 0.5 ˚
`

rp2q ` rp6q ` rp7q
˘

;

pP T rqp4q “ rp11q ` 0.5 ˚
`

rp6q ` rp12q ` rp17q ` rp16q
˘

;

...

The remaining values in Pe and P T r at other grid points can be obtained in a similar way.

Remark 6.11 (Improving efficiency of V-cycle implementation). While Algorithm 6.1 is defined

as a recursive call of the two-grid method, this often results in a costlier implementation. Several

techniques can improve the efficiency (reducing wall time) of each V-cycle:

• Matrix-free implementation to avoid SpMV;

• Replace the recursive procedure by a loop over each level;

• Use red-black ordering for smoothers to obtain better parallelism;

• Combine smoothing sweeps to reuse cache.

6.6 Homework problems

prob:GMGconv HW 6.1. Show the geometric multigrid V-cycle (Algorithm 6.1) is uniformly convergent in Rd.

prob:interp-proj HW 6.2. If A “ ´∆, show that the interpolant Jl : V ÞÑ Vl is equal to the p¨, ¨qA-projection

Πl : V ÞÑ Vl.

prob:decompH1 HW 6.3. Let Ω “ p0, 1q and v P Vh be a P1 Lagrange finite element function. Show that

|v|21 “
řL

l“l |vl|
2
1.

prob:W-cycle HW 6.4. Let qptq “ p1 ´ tq2. Show that Bc,2 “
`

I ´ qpBcAcq
˘

A´1
c can be obtained by (6.8).

prob:FMG HW 6.5. Show the work estimate of the full multigrid method is OpNq.
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Algebraic Multigrid Methods

ch:amg

Consider the system of equations arising from Poisson’s equation on unstructured grids or

the second-order elliptic equation with anisotropic coefficients

Au “ f, where A P RNˆN is SPD and u, f P RN .

Problems with anisotropic coefficients on regular grids, or problems with isotropic coefficients

but on anisotropic grids, can cause difficulties for geometric multigrid methods. While ge-

ometric multigrid (GMG) fundamentally relies on the availability of robust smoothers, alge-

braic multigrid (AMG) takes a different approach by focusing on constructing a suitable coarse

space [55, 56, 165]. AMG is a means to generalize GMG and enhance its robustness. There are

several situations where AMG can be applied but GMG cannot, for instance, problems on com-

plex domains or irregular triangulations, problems with discontinuous coefficients, and purely

algebraic problems.

7.1 From GMG to AMG
sec:AMG

How to make multigrid methods more robust in practice has been an important question since

the early stages of the method’s development. AMG is one approach to improving robustness.

In this section, we first demonstrate some motivations for algebraic multigrid methods.

7.1.1 General procedure of multigrid methods

From our previous discussions, we observe that a typical multigrid (MG) algorithm contains

two phases: the “setup” phase and the “solve” phase. The setup phase initializes a hierarchical

structure, including coarse spaces, prolongations, restrictions, and coarse solvers for multilevel

iterations. Note that the setup phase only needs to be called once before iterations; sometimes,

172
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the same setup phase can be used at different time levels for time-dependent problems. For geo-

metric multigrid (GMG) methods, the setup phase is trivial using the hierarchical grid structure.

However, GMG methods are challenging to apply for equations on general domains equipped

with unstructured grids. Algebraic multigrid (AMG) methods can be viewed as a generalization

of GMG methods. See [196] and references therein for details.

We now explain how to perform the multigrid setup phase in a relatively general setting.

Once complete, an appropriate nested iteration scheme should be chosen for the solve phase;

see §6.3. It is immediately evident that we only need to discuss how to set up hierarchical

information between two consecutive grids/levels for multigrid methods. We can summarize a

general multigrid setup procedure in the following steps:

Step 1. Selecting a smoother: Choose a smoother S for Au “ f .

Step 2. Coarsening: Identify a coarse space Vc Ă V , which contains smooth vectors.

Step 3. Constructing a prolongation: Construct a prolongation P in two steps:

3a. Decide, for each fine variable, which coarse variables are used for interpolation;

3b. Determine the weights for prolongation P .

Step 4. Multilevel cycling: Apply the same algorithm one or more times for the coarse

problem Acuc “ fc, where Ac “ P TAP and fc “ P T f .

For GMG methods, Steps 2–4 are determined by the information of nested grids and the

users can only find an appropriate smoother S. For example, in §1.4, we have presented a 1D

GMG method in a purely algebraic fashion. We have observed that:

(1) In GMG coarsening, the topologies of the graph representing the stiffness matrices on

different levels are explicitly clear from the geometric refinement procedure.

(2) Prolongation and restriction for GMG usually depend only on the topological structure of

the grids without considering the grid coordinates.

(3) For GMG, smoothness of error is defined geometrically. In more general settings, a geo-

metrically smooth error can be non-smooth.

The key to an efficient GMG algorithm is to construct effective and cheap smoothers for

the problem at hand. On the contrary, for AMG, we focus on how to pick coarse space and

constructing interpolation to approximate the error components that cannot be effectively re-

duced by smoothing. AMG usually employs a simple relaxation process (typically point-wise
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relaxation) and then attempts to construct a suitable operator-dependent interpolation using

the algebraic information of A to treat the error components that cannot be reduced by the

relaxation process.

7.1.2 Sparse matrices and graphs ‹

A sparse matrix can be represented as a graph. As the sparse matrices that we consider are

mainly symmetric, we only discuss undirected graphs here. We first introduce a few elementary

concepts from the graph theory. An undirected graph (or simply a graph) G is a pair pV,Eq,

where V is a finite set of points called vertices and E is a finite set of edges. As set of vertices we

always consider subsets of t1, . . . , Nu. An edge in E is an unordered pair pj, kq with j, k P V. A

graph G0 “ pV0,E0q is called a subgraph of G “ pV,Eq, if V0 Ă V and E0 Ă E.

If pj, kq P E is an edge in an undirected graph G “ pV, Eq, vertices j and k are said to be

adjacent. The set of neighboring vertices of i is the set of all vertices that are adjacent to i;

and it is denoted as Ni Ď V. An independent set of a graph G is a set of vertices in G that are

nonadjacent (i.e. no two vertices are adjacent). A maximal independent set (MIS) or maximal

stable set is an independent set such that adding any other vertex would introduce an adjacent

pair. A graph can have many MISs of varying sizes; the largest MIS, or potentially several

equally large MISs, of a graph is called a maximum independent set .

A path from a vertex i to another vertex j is a sequence of edges

␣

pi, j1q, pj1, j2q, . . . , pjl´2, jl´1q, pjl´1, jq
(

Ď E

and the number of edges l is called the length of this path. A vertex j is connected to a vertex

k if there is a path from j to k. The distance between j and k is defined as the length of

the shortest path between these two vertices. Apparently, the distance between two vertices is

equal to 1 if they are adjacent and is set to 8 if they are not connected. An undirected graph

G “ pV, Eq is called connected if any pair of vertices are connected by a path; otherwise, G is

said to be disconnected.

Let A P RNˆN be a sparse matrix. The adjacency graph of A, denoted by GpAq, is a graph

G “ pV, Eq with V :“ t1, 2, . . . , Nu and

E :“
␣

pj, kq : aj,k ‰ 0
(

.

As a general rule, sparse matrices do not provide any geometric information for the underlying

graph except the combinatorial/topological properties of GpAq or its subgraphs; see Figure 7.1.

We note that two different discretizations on different meshes could lead to same sparse coefficient

matrix A and, hence, same graph GpAq.
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Figure 7.1: Finite element grid (left), finite difference grid (middle), and graph of their corre-
sponding stiffness matrices (right).fig:graph

Let A be the coefficient matrix corresponding to the finite element discretization of the

second-order elliptic equation with Neumann boundary condition. Apparently, A has zero row

sum. Hence we can write

pAu, vq “
ÿ

pi,jqPE
iăj

´ai,jpui ´ ujqpvi ´ vjq. (7.1) eqn:Auv-Neumann

We can also easily derive the corresponding equality for the Dirichlet boundary condition or the

mixed boundary condition:

pAu, vq “
ÿ

pi,jqPE
iăj

´ai,jpui ´ ujqpvi ´ vjq, if uj “ vj “ 0, @xj P ΓD. (7.2) eqn:Auv-Dirichlet

7.1.3 M-matrix and Delaunay triangulation ‹

We first introduce the concept of M-matrix. We call A an M-matrix if it is irreducible (i.e.,

the graph GpAq is connected) and

ai,i ą 0, ai,j ď 0 pi ‰ jq, aj,j ě
ÿ

i‰j

ˇ

ˇai,j
ˇ

ˇ, aj,j ą
ÿ

i‰j

ˇ

ˇai,j
ˇ

ˇ for at least one j.

Apparently, the stiffness matrix A in equation (1.26) for the model problem is an M-matrix .

The classical convergence theory for AMG was developed for this class of symmetric M-matrices

(see [51, 165]). However, stiffness matrices from finite element discretizations are generally

not M-matrices, even for the Poisson’s equation. In fact, whether a stiffness matrix is an M-

matrix depends on the specific mesh M used. In practice, many AMG algorithms use simple

filtering schemes to construct an approximate M-matrix AM from the stiffness matrix A. Xu

and Zikatanov [195] introduced the concept of ”M-matrix relatives” to analyze such constructed

M-matrices.
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First, we introduce a few notations using Figure 7.2. In any given simplicial element τ in

R3; similar definitions can be introduced in Rd for d ě 2. An edge pi, jq has two vertices xi and

xj and denote this edge as E. Let κEpτq :“ Fi
Ş

Fj and θEpτq be the angle between faces Fi

and Fj . Define a quantity

ωEpτq :“
1

dpd´ 1q

ˇ

ˇκEpτq
ˇ

ˇ cot θEpτq. (7.3) eqn:OET

xi

xj

E

Fi

Fj

θE

κE

1

Figure 7.2: Definition of θE and κE in a simplex in 3D.fig:simplex

We then have the following result; see [192] for details.

prop:M-matrix Proposition 7.1 (Condition for M-matrix). The stiffness matrix for the Poisson’s equation is

an M-matrix if and only if, for any edge E,
ř

τĄE ωEpτq ě 0 with ωEpτq defined in (7.3).

Remark 7.2 (Delaunay triangulation and M-matrix). In R2, the above proposition simply

means the sum of the angles opposite to any edge is less than or equal to π, implying the un-

derlying triangulation must be Delaunay. Hence, the stiffness matrix for the Poisson’s equation

will be an M-matrix if the triangulation is Delaunay. This condition is nearly sharp1.

For a given mesh Mh, the stiffness matrix of P1-finite element method for the Poisson’s

equation is not necessarily an M-matrix. However, it can be estimated by an M-matrix. More

1The opposite direction is true with a few possible exceptions near the boundary.
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specifically, if we keep all the vertices on Mh and swap internal edges, we can obtain a Delaunay

triangulation MD
h . We have

`

AMD
h
v, v

˘

ď
`

AMh
v, v

˘

, @ v P RN ;

moreover, the equality in the above inequality holds if and only if Mh is Delaunay. We refer

the interested readers to [160] for details. Let ϕMh
P Vh is a piecewise linear function and

ϕMh
pxq “

řN
i“1 viϕi,Mh

pxq. Then we have

ˇ

ˇϕMD
h

ˇ

ˇ

2

1
ď
ˇ

ˇϕMh

ˇ

ˇ

2

1
, @ v P RN .

This means the Delaunay triangulation results in lower roughness of finite element functions

among all possible triangulations on a fixed set of vertices.

7.1.4 Tarjan’s algorithm ‹

By far we have not assigned any kind of ordering for the unknowns in the solution vector.

Sometimes, it is very important for the iterative methods like the Gauss–Seidel method. For

example, in Remark 3.30, we have shown that the ordering is important using the local Fourier

analysis. In AMG methods, the underlying meshes are not accessible and the natural ordering

or C/F ordering can be used. We can also order the unknowns based on algebraic information.

In particular, when we solve a flow problem, we would like to order the unknowns following

the direction of the flow. Such an ordering (or permutation) results in a matrix which has all

its “big” entries in the lower triangle and this technique can enhance the performance of the

Gauss–Seidel smoother.

The first question is of course how to find such an ordering. In this section, we present

the Tarjan’s algorithm [178] in the graph theory to find the “best” ordering for the Gauss–

Seidel method. Tarjan’s algorithm is used to find strongly connected components in a graph. A

strongly connected component is a maximal subset of vertices such that there is a path between

any two vertices in the subset. Tarjan’s algorithm uses depth first search on the graph:

1. Drop some of the entries in the matrix A, which are considered non-essential. This will

transform the graph corresponding to A to a directed one.

2. Find the strongly connected components in this directed graph. Each one of these com-

ponents will correspond to a diagonal block in the stiffness matrix after the permutation.
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In fact, after permutation according to the strongly connected component ordering obtained by

the Tarjan’s algorithm, the matrix A will have the following structure:

A “

»

—

—

—

—

—

—

—

—

–

A11 « ϵ « ϵ ¨ ¨ ¨ ¨ ¨ ¨

A21 A22 « ϵ ¨ ¨ ¨ ¨ ¨ ¨

A31 A32 A33 ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
. . . ¨ ¨ ¨

AK1 AK2 AK3 ¨ ¨ ¨ AKK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (7.4) eqn:lower

Before we explain the actual algorithm for finding the strongly connected components in the

digraph, we look at Figure 7.3, in which the bold edges represent the “strong” connections for

flow

Figure 7.3: A sample mesh with a specify flow directionfig:block

example. If we number the blocks sequentially from left to right, with the degrees of freedom

within each block ordered arbitrarily, the stiffness matrix will have a lower triangular structure

as shown in Equation (7.4).

Imagine now that the graph represents a town, the edges are streets and the vertices are

houses. You are walking along the streets, some of them are one way (directed). You may go

and arrive at a house for the first time; other than that, there are two situations which may

occur:

1. Either you arrive at a house (vertex) you have already visited, or

2. You are at a house with no way out of it, i.e. a vertex with all edges pointing to it.

Having this in mind it is obvious that, if we return at a place we have been before (encountering

a cycle), this corresponds to a so-called strongly connected component. In the second case, it is
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precisely the vertex we would like to number last, because all edges are sinking into it, i.e., it is

at the end of the flow. The algorithm then is as follows:

alg:tarjan Algorithm 7.1 (Simplified Tarjan’s algorithm). Given a directed graph G with N vertices.

1. If all vertices of G have been numbered, stop.

2. Set i “ 0.

3. Choose any unnumbered vertex v P G.

4. If v has no edge out, we number it N ´ i, set i “ i` 1, and return to Step 3.

5. If v has been visited before (encounter a cycle), then

• Collapse all the vertices in the cycle as a single vertex vmacro;

• Connect vmacro with all vertices which were connected to member(s) of vmacro;

• Thus we obtain a new graph G1. Goto Step 2 and continue with G1.

Example 7.3 (Finding strongly connected components of a graph). The above algorithm is

visualized in Figures 7.4, which we have a 2D flow problem. First we assume that we start from

R

k j 4′′

R k 3′

k

R

k j 4′′

R k 3′

k

Figure 7.4: Finding strongly connected components of a directed graphfig:gt2-5

vertex 1 and then follow the path

1 Ñ 2 Ñ 3 Ñ 4 Ñ 5 Ñ 6 Ñ 4,

and we encounter a cycle. We collapse t4, 5, 6u as a single vertex vmacro “ 41 and return from

the beginning. Following the path

1 Ñ 2 Ñ 3 Ñ 41 Ñ 7 Ñ 8 Ñ 41,
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again we have a cycle. We collapse the cycle and set 42 “ t41, 7, 8u. The next step is again

collapsing a cycle t42, 3, 42u to a vertex 31. What is left after this step is a simple graph with

three vertices, which precisely looks like the one corresponding to 1D convection dominated

problem.

Apparently, this algorithm has a drawback that there might be quite a lot of renumbering

when collapsing the cycles. The fix is to use a stack as proposed by Tarjan and do not renumber

anything until the whole connected component is in the stack. This reduces the renumbering

dramatically and such an algorithm is linear in the total number of vertices and edges in the

graph. In turn, for finite element stiffness matrices and their graphs, this algorithm is linear

in the number of unknowns, because these matrices have just a few number of non-zeros per

row, i.e., each vertex is incident with only few edges (only a bounded number independent of

the mesh size h). A computer program realizing the above Tarjan’s algorithm can be found

in the article by Gustavson [103]. A good explanation and a lots of examples related to the

Tarjan’s algorithm are to be found in [96]. A better and more general algorithm is known as

the Cross-Wind-Block method by Wang and Xu [184].

Remark 7.4 (Preprocessing to a get directed graph). We comment that sometimes the graph

corresponding to A (for example, the finite element stiffness matrix of the Poisson’s equation)

is undirected. However, if we are consider a non symmetric problem, situation could be very

different. In any event, suppose that we can make the graph be directed by “dropping” some

of the “insignificant” entries of A. For example, by setting a threshold ϵ P p0, 1q, we drop all

aki such that |aki{aik| ă ϵ. Then we can apply the Tarjan’s algorithm for finding the strongly

connected components in the digraph.

7.2 Motivations of algebraic multigrid methods
sec:ConvergenceAMG

In §6.2, we have discussed general convergence theory for multigrid methods. In this section,

we briefly review the convergence theory that are applicable to AMG methods and give on the

construction of AMG methods. Following the seminar work by Brandt et al. [55, 56, 51] on the

convergence analysis applicable to AMG methods, there have been a lot of discussions on the

AMG convergence theory; see [165, 60, 172, 88, 89, 183] for example. The readers are referred

to the recent survey paper by Xu and Zikatanov [195].

7.2.1 Algebraic convergence theory

Since the Fourier analysis is not available, algebraic convergence theory appears to be the

right tool for developing and analyzing AMG algorithms. Since sharp and computable estimates
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for general AMG schemes are still lacking [125, 151, 195], we mainly focus on the classical two-

level theory of AMG for symmetric positive-definite (SPD) problems. For the development on

non-symmetric problems, we refer to [127, 149, 129, 128]; for analysis based on aggregation-type

AMG algorithms, we refer to [180, 182, 61, 139, 143, 59].

We have shown the exact convergence factor estimate of two-level methods in Theorem 3.38.

Now we derive a convergence estimate from an algebraic viewpoint. In particular, we wish to

give conditions on the grid-transfer matrices, like P , such that two-level AMG methods converge.

We mainly follow the argument in a recent survey by MacLachlan and Olson [125]. Throughout

this chapter, we assume that

Assumption 7.5 (General AMG setting). The coefficient matrix A is SPD, the prolongation

P has full column-rank, and the given smoother S itself is A-convergent (i.e., }I ´ SA}A ă 1).

Let V “ RN and Vc “ RNc denote the fine and coarse spaces, respectively. For simplicity, we

focus on Algorithm 3.3, Vp0, 1q two-grid method. The CGC operator corresponds to the matrix

I ´ Πc and

Πc “ PA´1
c P TA “ P pP TAP q´1P TA (7.5) eqn:Pi_cForm

is a projection onto rangepP q. The error reduction matrix for the two-gird method in Algo-

rithm 3.3 can then be written as

ETG :“ pI ´ SAqpI ´ Πcq. (7.6) eq:EtgMatrix

From Theorem 3.38, the convergence rate of the two-grid method depends on effectiveness

of the smoother S and approximability of the coarse space rangepP q. Our goal is to give an

estimate in the form of

}ETG}2A “ sup
e‰0

}pI ´ SAqpI ´ Πcqe}
2
A

}e}2A
“ 1 ´ δ˚, (7.7) eq:ErrorEtgMatrix

where δ˚ yields the sharp and parameter-independent two-grid convergence factor. Of course,

it is essential to pose conditions only on the prolongation P to ensure convergence, as the rest

components in (7.6) are considered given.

AMG:TG Theorem 7.6 (Convergence factor of two-level algorithm). If there exists δ ą 0 such that

›

›pI ´ SAqe
›

›

2

A
ď }e}2A ´ δ

›

›pI ´ Πcqe
›

›

2

A
, @ e P V, (7.8) eq:TGassump1

then the Vp0, 1q two-grid method satisfies that

}ETG}2A “ 1 ´ δ̂ with δ̂ :“ inf
pI´Πcqe‰0

}e}2A ´ }pI ´ SAqe}2A
}pI ´ Πcqe}2A

ě δ.
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Proof. Notice that }e}2A “ }Πce}
2
A ` }pI ´ Πcqe}

2
A because Πc is an A-orthogonal projection.

Since pI ´ Πcqe “ 0 yields pI ´ SAqpI ´ Πcqe “ 0 as well, we have

}ETG}2A “ sup
e‰0

}pI ´ SAqpI ´ Πcqe}
2
A

}e}2A
“ sup

pI´Πcqe‰0

}pI ´ SAqpI ´ Πcqe}
2
A

}pI ´ Πcqe}2A ` }Πce}2A
.

If ê achieves the above supremum, then pI ´ Πcqê also achieves the supremum because

}pI ´ SAqpI ´ Πcq
2ê}2A

}pI ´ Πcq
2ê}2A ` }ΠcpI ´ Πcqê}2A

“
}pI ´ SAqpI ´ Πcqê}

2
A

}pI ´ Πcqê}2A
ě

}pI ´ SAqpI ´ Πcqê}
2
A

}ê}2A
.

So the convergence factor achieves the supremum when Πcê “ 0. That is to say, from the

definition (7.7),

›

›ETG

›

›

2

A
“ sup

pI´Πcqe‰0

›

›pI ´ SAqe
›

›

2

A
›

›pI ´ Πcqe
›

›

2

A

.

Hence the result.

Note that, if we further assume that the parameter δ̂ in Theorem 7.6 is bounded uniformly on all

levels, we can also obtain a uniform bound for the V-cycle convergence factor by recursion [134].

This bound also gives reasonable estimates numerically [141].

Basically, the assumption (7.8) implies that the smoother S is efficient for the components

that cannot be treated by CGC efficiently. On the one hand, for the error components that

cannot be reduced by CGC, the smoother S must be effective uniformly; on the other hand, for

the error components that can be reduced by CGC efficiently, S is allowed to be ineffective. The

components for which S is ineffective are called smooth and they have to be in the range of the

interpolation, rangepP q, roughly. So (7.8) is natural to assume in order to get an efficient TG

algorithm.

However, such a δ̂ is difficult to obtain in practice and we need to give some positive lower

bounds of δ̂. So we introduce a nonnegative function gpeq ě 0 and define

αgpeq :“
}e}2A ´ }pI ´ SAqe}2A

gpeq
and βgpeq :“

}pI ´ Πcqe}
2
A

gpeq
.

Let α̂g :“ infgpeq‰0 αgpeq and β̂g :“ supgpeq‰0 βgpeq. Due to the fact

}ETGe}
2
A ď

›

›pI ´ Πcqe
›

›

2

A
´ α̂gg

`

pI ´ Πcqe
˘

ď
›

›pI ´ Πcqe
›

›

2

A
´ α̂gβ̂

´1
g

›

›pI ´ Πcqe
›

›

2

A

“

´

1 ´ α̂gβ̂
´1
g

¯

›

›pI ´ Πcqe
›

›

2

A
(7.9) eq:EandCGC1

ď

´

1 ´ α̂gβ̂
´1
g

¯

›

›e
›

›

2

A
, (7.10) eq:EandCGC2
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we have δ̂ ě α̂gβ̂
´1
g , i.e.,

}ETG}2A ď 1 ´ α̂gβ̂
´1
g .

In view of the above estimate, we can give two separate assumptions:

›

›pI ´ SAqe
›

›

2

A
ď }e}2A ´ ᾱg gpeq, @ e P V, (7.11) A1_smooth

and

D β̄g, s, such that
›

›pI ´ Πcqe
›

›

2

A
ď β̄g, s gpeq, @ e P V. (7.12) A2_approx

The condition (7.11) is a smoothing property and the condition (7.12) is a type of approximation

property. The condition (7.12) is oftentimes called the strong approximation assumption. In view

of (7.9), we can further weaken this condition and assume the weak approximation assumption:

D β̄g,w, such that
›

›pI ´ Πcqe
›

›

2

A
ď β̄g,w g

`

pI ´ Πcqe
˘

, @ e P V. (7.13) A2_wapprox

From the above analysis, we can easily deduce the following theorem.

AMG:TG2 Theorem 7.7 (Convergence estimate of two-level AMG). If (7.11) and (7.12) (or its weaker

version (7.13)) hold, then V(0, 1) two-grid method satisfies

}ETG}2A ď 1 ´ ᾱg β̄
´1
g .

Remark 7.8 (Strong and weak approximation properties). The strong approximation assump-

tion (7.12) can be used to show convergence of V-cycle AMG methods via a recursion [134, 165].

But the weak approximation assumption (7.13) is not sufficient for V-cycle to converge [51].

It is important to recognize that, even if we can provide simple conditions on coarsening to

ensure the approximation assumptions necessary for a convergent two-level or multilevel AMG

method, it remains unclear how to develop an algorithm that satisfies these assumptions using

purely algebraic information. In fact, doing so in a strict sense is challenging. The coarsening

process involves identifying coarse variables and constructing prolongation matrices, and these

two steps are typically interdependent. In the remainder of this chapter, we discuss more

practical approaches for constructing the coarsening space.

7.2.2 Interpolation operators

Now the question is how to choose such a function gpeq? Furthermore, how to apply The-

orem 7.7 to enforce convergence conditions on the prolongation (or interpolation) matrix P to

guarantee good AMG performance?
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Apparently, if gpeq :“ }pI ´Πcqe}
2
A, we have α̂g “ δ̂ and β̂g ” 1. Another possible choice has

been suggested by Ruge and Stüben [165]:

gpeq :“ }e}2AD´1A.

In this case, by definition, the strong approximation assumption (7.12) can be rewritten as

inf
ecPVc

}e´ Pec}
2
A ď β̄s }e}2AD´1A, @ e P V. (7.14) A2_approx2

On the other hand, noticing (7.5) and let ec P Vc, we have

›

›pI ´ Πcqe
›

›

2

A
“
`

pI ´ Πcqe, pI ´ Πcqe
˘

A
“
`

pI ´ Πcqe, pI ´ Πcqe´ Pec
˘

A

ď
›

›pI ´ Πcqe
›

›

AD´1A
¨
›

›pI ´ Πcqe´ Pec
›

›

D

If we assume, instead of (7.14), that

inf
ecPVc

}e´ Pec}
2
D ď β̄w }e}2A, @ e P V, (7.15) A2_wapprox2

then

›

›pI ´ Πcqe
›

›

2

A
ď
›

›pI ´ Πcqe
›

›

AD´1A
¨
›

›pI ´ Πcqe´ Pec
›

›

D

ď
›

›pI ´ Πcqe
›

›

AD´1A
¨ β̄

1
2
w

›

›pI ´ Πcqe
›

›

A
,

which yields the weak approximation property (7.13). In this way, we derived two alternative

bounds, Eqs. (7.14) and (7.15), for the strong and weak approximation assumptions, respectively.

Using Eq. (7.15), we can also obtain a convergence bound for the two-level method.

As noted previously, the weak approximation property in Eq. (7.15) is typically insufficient to

ensure good interpolation P for a V-cycle. Additional conditions must be imposed for practical

construction of AMG methods.

Let Q P RNˆN be a projection onto rangepP q. So, by definition, it can be written as Q “ PR,

where R P RNcˆN satisfies RP “ Ic. If Rs :“ pP TAP q´1P TA, then it is easy to see that

Qs “ PRs “ Πc is such an example. We can also give a simplified choice Rw :“ pP TDP q´1P TD.

For any vector 0 ‰ e P V , we can assume that

inf
ecPVc

›

›e´ Pec
›

›

2

A

}e}2
AD´1A

ď

›

›e´Qe
›

›

2

A

}e}2
AD´1A

ď β̄s or inf
ecPVc

›

›e´ Pec
›

›

2

D

}e}2A
ď

›

›e´Qe
›

›

2

D

}e}2A
ď β̄w, (7.16) cond:WeakApproxAssum

to give upper bounds for the strong and weak approximation assumptions, respectively. These

inequalities give bounds for constructing P such that the two-level method converges according

to Theorem 7.7.
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We notice that, in the above inequalities (the second one in particular), the measure like

µDpQ, eq :“
}pI ´Qqe}2D

}e}2A
, @ e ‰ 0

can be generalized to

µXpQ, eq :“
}pI ´Qqe}2X

}e}2A
, @ e ‰ 0,

where X is an SPD matrix. We assume that µXpQ, eq ď κ. Then

inf
ecPVc

›

›e´ Pec
›

›

2

X

}e}2A
ď

›

›e´Qe
›

›

2

X

}e}2A
“ µXpQ, eq ď κ. (7.17) eq:XZ_TGAMG_Assumption

If we minimize

sup
e‰0

µXpPR, eq

to find the “best possible” interpolation operator P , then it yields the so-called ideal interpola-

tion [88, 202].

In particular, if X “ S
´1

, then ᾱ ” 1 for the smoothing assumption and the convergence

factor of TG is bounded by

}ETG}2A ď 1 ´
1

κ
. (7.18) eq:XZ_TGAMG

7.2.3 Algebraic smooth error

In Theorem 3.40, we have seen the following theoretical result: For any given smoother S,

the best coarse space of dimension Nc is given by

V opt
c :“ spantϕku

Nc
k“1, (7.19) eqn:optVH

where tϕku
Nc
k“1 are the eigenfunctions corresponding to the smallest eigenvalues λkpSAq. So the

desirable coarse space should well approximate the lower end of the spectrum of SA, which can

also be called the near-null space. However, it is difficult to find small eigenvalues of SA in

practice.

A good interpretation of smooth error in algebraic sense could lead to an efficient AMG

method. In view of (3.27), we know that the standard pointwise relaxation methods, like the

Richardson, weighted Jacobi, and Gauss–Seidel methods, satisfy that

ρ´1
A

`

v, v
˘

A
À
`

SAv, v
˘

A
À
`

v, v
˘

A
.

Together with (7.11), it motivates the following definition of the algebraic smooth vector:

Definition 7.9 (Algebraic smoothness). Let ε P p0, 1q be a small parameter. If e P V satisfies

`

SAe, e
˘

A
ď ε

`

e, e
˘

A
, i.e.

`

SAe,Ae
˘

ď ε
›

›e
›

›

2

A
,

then e is algebraically ε-smooth (or the ε-algebraic low-frequency) with respect to A.
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For the algebraic smooth error component e, by adding and subtraction and (2.13), we immedi-

ately have
´

`

I ´ SA
˘

e, e
¯

A
ě p1 ´ εq

`

e, e
˘

A
ùñ

›

›pI ´ SAqe
›

›

2

A
›

›e
›

›

2

A

ě 1 ´ ε.

Evidently, the contraction factor for this error component e approaches 1 if ε is small. Essentially,

this means that algebraically smooth error components are those that the smoother S or S cannot

effectively damp. That is, an error that cannot be eliminated by the smoother constitutes a

smooth error, as noted in Remark 1.30 for geometrically smooth errors.

Since S is SPD, the algebraically smooth vectors satisfy

›

›e
›

›

2

A
“
`

S
1
2Ae, S

´ 1
2 e
˘

ď
`

SAe,Ae
˘1{2 `

S
´1
e, e

˘1{2
ď ε1{2

›

›e
›

›

A

`

S
´1
e, e

˘1{2
.

Then we can derive the following estimate

›

›e
›

›

2

A
ď ε

›

›e
›

›

2

S
´1 , (7.20) eqn:algsmooth

which can be viewed as an alternative characterisation of algebraically smooth (low-frequency)

vectors.

Similar to algebraic low-frequency components, we can define algebraic high-frequency com-

ponents as follows:

Definition 7.10 (Algebraic high-frequency). Let ζ P p0, 1s. If e P V satisfies

›

›e
›

›

2

A
ě ζ

›

›e
›

›

2

S
´1 ,

then e is called the ζ-algebraic high-frequency vector with respect to A.

With this notion, we can obtain the following convergence estimate [195]:

Theorem 7.11 (Convergence estimate based on space decomposition). Let Vc Ă V be the

coarse space and Vhf consist of ζ-algebraic high frequencies. Suppose V “ Vc ` Vhf is a stable

decomposition, i.e., for any v P V , there exist vc P Vc and vhf P Vhf such that v “ Pvc ` vhf and

}vhf}
2
A ď β}v}2A. Then the resulting two-level AMG satisfies

}ETG}A ď 1 ´ ζβ´1.

Proof. Since we have the following estimate

inf
wcPVc

›

›v ´ Pwc

›

›

2

S
´1 ď

›

›vhf
›

›

2

S
´1 ď

1

ζ

›

›vhf
›

›

2

A
ď

β

ζ

›

›v
›

›

2

A
,

we can prove the theorem using (7.18).
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Remark 7.12 (Local adaptation of AMG). In AMG methods, it is not important whether the

smoother S smooths the error in a geometric sense. Rather, the key point is that the error after

smoothing sweeps must be characterized algebraically to a certain degree, making it possible

to construct coarse levels and define interpolations locally adapted to the given smoother’s

properties.

rem:smootherror Remark 7.13 (Smooth error and Classical AMG). A simpler characterization of smooth error

is used in methods like the Classical AMG. If the vector e corresponds to the low-end of eigen-

values, then we have Ae ! 1 in the entry-by-entry sense. According to (7.1) and (7.20), the

algebraically smooth error e satisfies that
ÿ

iăj

´ai,jpei ´ ejq
2 “ pAe, eq ď ε

›

›e
›

›

2

S
´1 ! 1. (7.21) eqn:CAMG-smooth

This inequality provides an important motivation for the Classical AMG: Smooth error varies

slowly in the direction of relatively large (negative) coefficients of the matrix. And it motivates

the notion of strongly negative coupled variables.

7.2.4 Construction of coarse spaces

We now discuss a few guidelines on how to construct coarse spaces and prolongation matrices

based on the AMG theory developed above. In §6.1, we have discussed a general procedure

of the multigrid setup phase, among which the coarsening algorithms (Step 2) are automatic

procedures for determining the coarse-level variables. Such algorithms are usually based on

selecting or combining vertices in the adjacency graph corresponding to the (filtered) coefficient

matrix A.

A natural choice of the coarse-level DOFs is to use a subset of fine-level DOFs. Under proper

re-ordering (coarse variables first and then fine variables), R “ pI, 0q P RNcˆN . According to

Theorem 3.39, we can use the diagonal matrix D P RNˆN of A to analyze the smoother S

defined by the point-wise Gauss–Seidel method. This result motivates that we should construct

a coarse space Vc, such that

›

›v ´ QDv
›

›

2

D
“ inf

vcPVc

›

›v ´ vc
›

›

2

D
ď β

›

›v
›

›

2

A
, @ v P V,

where the constant β should be small and uniform with respect to interested parameters (like

the meshsize h). If v is smooth, i.e., }∇v} is small, then v can be approximated well in the

coarse space Vc. This condition is sufficient for convergence of the two-grid method. Motivated

by Lemma 3.32, we can further simplify it and just choose D :“ }A}I, for example.

Heuristically, the error becomes smooth after a few relaxation steps, and we can expect

the coarse space to approximate a smooth vector v accurately if the coarse space is chosen

appropriately. Motivated by Theorem 7.7 and Equation (7.16), we propose Assumption 7.14:
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asmp2 Assumption 7.14 (Weak approximability).
›

›pI ´ PRqv
›

›

D
ď β}v}A, @ v P V.

In view of Remark 3.42, we assume that the prolongation operator preserves constants (As-

sumption 7.15). In fact, from the weak approximation property (Assumption 7.14) and let

D :“ }A}I, we have

}A}1{2
›

›v ´ PRv
›

› ď β}v}A.

If v is in the near-null space of A, i.e., }v}A « 0, then PRv « v. Hence we get the following

simplified assumption:

asmp1 Assumption 7.15 (Constant preserving). P1Nc “ 1N .

Unlike in the geometric setting, considering convergence alone is not meaningful in the algebraic

multigrid context. This is because the computational complexity of each AMG cycle could be

prohibitively large. Compare this with the GMG complexity discussed in §6.3. A uniformly

convergent AMG method could be still very slow. Hence the complexity of the multilevel

hierarchy for AMG is crucial.

rem:OpComplexity Remark 7.16 (Operator complexity). When constructing the prolongation P , we must control

the sparsity of the coarse level matrices. For efficient overall performance, convergence speed

is only one aspect. An equally important aspect is the complexity (sparsity) of the coarser

level matrices produced by AMG. We now define a measurement of sparsity, i.e., the operator

complexity

CA :“

řL
l“0 nnzpAlq

nnzpAq
,

where nnzp¨q is the number of nonzeros of a matrix. Apparently, CA ě 1 is always true and

CA “ 1 corresponds to the one-level case. When constructing an interpolation operator, we

would like to make CA as close to 1 as possible while keeping good convergence performance.

This is not always the case when using the Galerkin-type coarse operator as we discussed in

this note. Usually, the coarser matrices Al´1 becomes more dense than Al. This problem

becomes more serious when solving very large linear systems. Sometimes, we have to truncate the

“insignificant” nonzero entries or specify sparsity patterns to maintain low complexity [87].

7.3 Classical algebraic multigrid methods
sec:ClassicalAMG

The original AMG approach (the classical AMG) was developed under the assumption that

such a problem with A being an M-matrix was solved [55]. The multilevel hierarchy is con-

structed based on the coefficient matrix only. Later, the AMG algorithm was further gener-

alized using many heuristics that served to extend its applicability to more general problems.
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For simplicity, we suppose that A “ pai,jq P RNˆN is an SPD M-matrix and G “ pV,Eq is the

corresponding graph of A.

7.3.1 General AMG setup phase

We have presented a general framework for implementing multigrid methods in Section 7.1.

Here, we provide a general two-level setup procedure suitable for AMG methods (including both

the classical AMG and aggregation-based AMG approaches). This setup algorithm can then

be applied recursively to construct a multilevel hierarchy until the coarse grid size Nc becomes

sufficiently small or the coarse grid matrix Ac becomes too dense to continue coarsening.

alg:AMGsetup Algorithm 7.2 (General algebraic setup algorithm). Given a sparse matrix A P RNˆN .

1. Filter A to obtain a suitable matrix for coarsening Af (usually Af “ A);

2. Define a coarse space with Nc variables;

3. Construct the interpolation P P RNˆNc :

3.1. Give a sparsity pattern for the interpolation P ;

3.2. Determine weights of the interpolation P ;

4. Construct the restriction R P RNcˆN (for example, R “ P T );

5. Form the coarse-level coefficient matrix (for example, Ac “ RAfP );

6. Give a sparser approximation of Ac if necessary.

The above framework is abstract and general enough to describe a variety of algorithms.

Now we give a few comments on this algorithm:

1. If the coefficient matrix A is not symmetric or not an M-matrix, one might be able to

perform a preprocessing step to obtain a more suitable matrix Af . This step can be used

as a way to introduce an auxiliary space method.

2. In classical AMG methods, we use the so-called C/F splitting, namely, split all N variables

into two sets: Nc C-variables and Nf F-variables, i.e., N “ Nc `Nf . On the other hand,

aggregation-based AMG forms aggregates of F-variables.

3. As observed previously, forming an interpolation P that satisfies the weak approximation

property is crucial for convergence. This task can be further divided into two stages:

(1) Determining the sparsity pattern; (2) Assigning weights to P . Sometimes, we can

truncate small entries if it is not sparse enough.
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4. For symmetric problems, the Galerkin relation naturally leads to assuming R “ P T . But

for nonsymmetric problems, R may also need to be constructed.

5. In GMG, the coarse-level problems can be given by discretization on a coarser grid. But

in AMG, we must use the restriction, interpolation, and the fine-level coefficient matrices

to compute Ac using the triple-matrix product. This can easily become the most time-

consuming part of the setup phase. Implementing this part requires attention, especially

for parallel efficiency.

6. Sometimes, Ac might not be sparse enough even after P is truncated when using the

Galerkin relation. In this case, Ac may need to be further modified to obtain a sparse

approximation.

7.3.2 Strength of connections

In coarsening, we need to find coarse-level variables. Let θstr P p0, 1q be a given real num-

ber, usually called relative strength parameter. In view of Remark 7.13, we give the following

definition: If a pair of indices pi, jq satisfies that

´ai,j ě θstr
ˇ

ˇmin
k
ai,k

ˇ

ˇ,

then we say that the variable i is strongly negatively coupled or strongly n-coupled to the variable

j. Note that, by this definition, pi, jq and pj, iq are two different pairs. We can easily generalize

this concept to strongly coupling by considering the positive coupling as well.

Remark 7.17 (Alternative definitions for strong coupling). There are different ways to define

strongly coupled pairs. For example, we can call i and j strongly negatively coupled, if

ai,j ă 0 and |ai,j | ą θstr
?
ai,iaj,j

or

´ai,j ą θstr
?
ai,iaj,j .

Such definitions can be used to define aggregation-based methods in the next section.

Denote further

Sj :“
␣

i P Nj : i strongly coupled to j
(

and STj :“
␣

i P V : j P Si
(

.

So Sj is the set of indices which affects j and STj is the ones which are affected by j. After

finding the strongly coupled variables, we can filter the coefficient matrix to obtain a filtered

matrix AS by removing non-strongly coupled connections.
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The above definition of strongly coupled variables applies to the direct connections. Some-

times we also need to consider indirect (i.e., long-range) connections; for example, in aggressive

coarsening (see Remark 7.20). A variable i is said strongly connected to another variable j along

a path of length l if there exists a sequence of edges

␣

pi, j1q, pj1, j2q, . . . , pjl´2, jl´1q, pjl´1, jq
(

Ď E

such that jk`1 P Sjk . If there exist at least one path of length less than or equal to ℓ such that i

is strongly connected to j, then we say that i is ℓ-strongly connected to j and denoted by j P Sℓi .

We note that, based on the nonzero pattern of Aℓ or a filtered version Aℓ
S, one can tell

whether there are paths between i and j of length ℓ or not. For example, if we consider five-

point stencil finite difference scheme on the mesh given in Figure 7.5 (left). Consider the vertex

at the center, the point 13. Then

S13 “ t12, 8, 14, 18u and S213 “ t12, 8, 14, 18, 11, 3, 15, 23, 7, 9, 19, 17u.

And we give the weights of A and A2 in Figure 7.5. See Figures 7.6, 7.7, and 7.8 for powers of

the matrix A.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

4

-1

-1 -1

-1

20

-8

-8 -8

-8

2

2

2

2

1

1

1

1

1

Figure 7.5: Finite difference grid (left), strong connections and weights inA of vertex 13 (middle),
and 2-strong connections and weights in A2 of 13 (right).fig:strongconnections

7.3.3 C/F splitting

The classical Ruge–Stüben method splits the set of vertices V into two non-intersecting sets:

the fine variables F and the coarse variables C. All indices in F are affected by some index in

C, while C contains as few entries as possible. Then, F is chosen as the set of indices of finer

grid nodes, and C is chosen as the set of indices of coarse grid nodes. The indices of nodes are
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Figure 7.6: The stiffness matrix A for five-point stencil finite difference scheme on the mesh
given in Figure 7.5 (left).fig:A1

Figure 7.7: The matrix A2 for five-point stencil finite difference scheme on the mesh given in
Figure 7.5 (left).fig:A2
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Figure 7.8: The matrix A3 for five-point stencil finite difference scheme on the mesh given in
Figure 7.5 (left).fig:A3

assigned as coarse or fine successively. Let U denote the set of indices of nodes not yet assigned.

We summarize the algorithm in the following subroutine:

Listing 7.1: Classical C/F splitting method

1 U Ð V, C Ð Ø, F Ð Ø;

2 while U ‰ Ø

3 λi Ð 2|ST
i

Ş

F| ` |ST
i

Ş

U|, i P U;

4 k Ð argmaxtλi, i P Uu;

5 C Ð C
Ť

tku, U Ð Uztku;

6 F Ð F
Ť

ST
k , U Ð UzST

k ;

7 end

Note that λi is a measure of importance—It is a measurement about how many points are

affected by i. If λi is big, we would like to include this point in C. In this way, we can make C

contains less points to get bigger coarsening ratio, which is extremely important for the classical

AMG because it usually yields relatively small coarsening ratio.

• We weight more on |STi
Ş

F| than |STi
Ş

U| due to the fact that the first part has already

been determined to be on the fine grid.

• In the early stage of coarsening procedure, F does not contain many points, the above

algorithm selects a coarse point with as many as neighbors that strongly coupled to it.



CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 194

• In the later stage, vertices that strongly coupled to many F-variables are preferred to be

selected.

There are a few special cases which require careful treatment during the C/F splitting pro-

cedure. We now summarize them in the following remarks:

Remark 7.18 (Isolated points). Before starting the above algorithm, isolated points (like

Dirichlet boundary points) are usually filtered out and defined as F-variables. Similarly, if a

point has very strong diagonal dominance, it can also be safely considered isolated and moved

to F. These are trivial cases.

Remark 7.19 (Termination of C/F splitting). If successfully terminated, the set C is an in-

dependent set of vertices of the underlying graph G. All F-variables have at least one strongly

negatively coupled C-variable, except the trivial ones in the previous remark. However, there

might be some U-variables left (with measure λi “ 0)—They are not strongly negatively coupled

to any C-variables or themselves. Furthermore, there are no F-variables are strongly negatively

coupled to these points. In order to interpolate at these points, we can add them as F-variables

and interpolate indirectly through the F-variables, to which they are strongly coupled.

rem:Aggressive Remark 7.20 (Aggressive coarsening). In practice, the standard C/F splitting scheme given

above usually results in high operator complexity (refer to Remark 7.16), which leads to high

computational and storage demands; see Table 7.1. In such cases, we can apply the so-called

Coarsening method Standard Aggressive

Operator complexity 2.889 1.606
Setup time (sec) 1.536 1.036
Number of iterations 6 38
Solve time (sec) 0.791 3.293
Time per iteration (sec) 0.132 0.087

Table 7.1: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
different coarsening methods in the classical AMG method (stopping criteria for PCG is the
relative residual smaller than 10´6).tab:coarsening

aggressive coarsening by considering strong connections of length ℓ. Oftentimes a small ℓ, for

example ℓ “ 2, is used. However, A2
S is expensive to compute and we can apply the regular C/F

splitting twice—At the first pass, find C-variables among all variables using AS; at the second

pass, apply the C/F splitting on the selected C-variables from the first pass using A2
S (but on C

only, we don’t need all entries of A2
S).

Example 7.21 (Anisotropic elliptic PDE). To illustrate the effect of the above C/F splitting

algorithm, we consider an anisotropic diffusion example in §6.1. The computational domain is
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a unit square. Let us consider the anisotropic diffusion equation

´ϵuxx ´ uyy “ 0 pϵ ą 0q.

Roughly speaking, we have ϵ}uxx} « }uyy}. This means the solution is smooth in y-direction

(low-frequencies); but rough in x-direction (high-frequencies). We consider the five-point stencil.

The difference equation at the node pxi, yjq is

´ϵ
2ui,j ´ ui`1,j ´ ui´1,j

h2x
´

2ui,j ´ ui,j´1 ´ ui,j`1

h2y
“ 0.

If ϵ
h2
x

! 1
h2
y
, then ui,j depends on ui,j`1 and ui,j´1 mainly. Thus if we apply the C/F procedure,
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Figure 7.9: C/F splitting for the 2D elliptic problem with ϵ “ 1 (left) and ϵ ! 1 (right), where
the red points are C-variables and the black points are F-variables.fig:coarsening

the coarsening will take place indeed in one direction only (semi-coarsening); see Figure 7.9.

7.3.4 Construction of prolongation

After obtaining a C/F splitting, upon a reordering of indices, we can always assume that the

indices of the nodes in C is from 1 to Nc, and those in F are from Nc ` 1 to N . We can write

the stiffness matrix in the following block structure

˜

AC,C AC,F

AF,C AF,F

¸˜

uC

uF

¸

“

˜

fC

fF

¸

Let eH P RNc be a vector corresponding to the variables on the coarse grid. We now consider

how to prolongate it to eh P RN corresponding to the variables on the fine grid.

We first use the geometric multigrid method for linear finite element method on uniform

grids for the 1D Poisson’s equation as an example. Let tϕhi uNi“1 be the basis of the fine space V
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and tϕHj u
Nc
j“1 be the basis of the coarse space Vc. From the geometrical multigrid point of view,

it is natural to expect

apϕHj , ϕ
h
i q “ 0, j P C, i P F. (7.22) eqn:CFcondition

It is trivial to see that, we should have pPeHqj “ eHj , if j P C. Define

P :“

˜

IC

W

¸

,

where IC P RNcˆNc is the identity matrix and W P RpN´NcqˆNc . In the matrix form, the

condition (7.22) can be written as

˜

0 0

0 IF

¸˜

AC,C AC,F

AF,C AF,F

¸˜

IC

W

¸

“

˜

0

0

¸

.

That is to say, AF,C `AF,FW “ 0 or W “ ´A´1
F,FAF,C. It is easy to check that this prolongation

matrix P satisfies Assumption 7.15 if the row-sum of A is zero. However, this prolongation is

too expensive to compute in practice and there are many different ways to approximate W by

a simpler sparse matrix.

1) Direct interpolation scheme

For the smooth error component eh P RN , we have

AF,F e
h
F `AF,C e

h
C ! 1 ùñ

N
ÿ

j“1

ai,je
h
j « 0, i P F.

Motived by the above observation, we can assume

ai,ie
h
i `

ÿ

jPNi

ai,je
h
j “ 0, i P F. (7.23) eqn:GInterp

This would be an interpolation scheme itself if all points in Ni are C-variables. Of course, it is

not always the case. Alternatively, we can throw out the entries that are not strongly negatively

coupled and obtain

ai,ie
h
i `

ÿ

jPSi

ai,je
h
j “ 0, i P F. (7.24) eqn:SInterp

We approximate the above equation (7.23) with

ai,ie
h
i ` αi

ÿ

jPNi
Ş

C

ai,je
h
j “ 0, αi “

ř

kPNi
ai,k

ř

kPNi
Ş

C ai,k
, i P F.

If the i-th row has zero row-sum, then

αi “ ´
ai,i

ř

kPNi
Ş

C ai,k
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and we get an interpolation method

ehi “
ÿ

jPNi
Ş

C

wi,je
H
j and wi,j “

ai,j
ř

kPNi
Ş

C ai,k
. (7.25) eqn:direct-interp2

In this case, the matrix form is just W “
`

diagpAF,C1q
˘´1

AF,C. It is straightforward to show

that Assumption 7.15 holds in this case.

We can make W more sparse by shrinking the support slightly. Define an interpolation set

(support) Pi :“ Si
Ş

C for i P F. After further sparsifying the interpolation (by keeping the

strongly negatively coupled C-variables only), we get

ai,ie
h
i ` αi

ÿ

jPPi

ai,je
h
j “ 0, αi “

ř

kPNi
ai,k

ř

kPPi
ai,k

, @ i P F.

If the i-th row has zero row-sum, then this gives the well-known direct interpolation

ehi “
ÿ

jPPi

wi,je
H
j and wi,j “

ai,j
ř

kPPi
ai,k

. (7.26) eqn:direct-interp

2) Standard interpolation scheme

In the equation (7.23), we can first eliminate all ehj for j P Si
Ş

F, using the j-th equation,

by the approximation

ehj :“ ´
1

aj,j

ÿ

kPNj

aj,ke
h
k .

This results in a new equation for ehi :

âi,ie
h
i `

ÿ

jPN̂i

âi,je
h
j “ 0, i P F,

with N̂i “ tj ‰ i : âi,j ‰ 0u. Define a new interpolation set P̂i “ p
Ť

jPSi
Ş

F Sjq
Ť

pSi
Ş

Cq.

Then we apply the above direct interpolation for this new equation and arrive at the so-called

standard interpolation scheme.

3) Jacobi interpolation scheme

We can rewrite the equation (7.24) as

ai,ie
h
i `

ÿ

jPPi

ai,je
H
j `

ÿ

jPSizPi

ai,je
h
j “ 0, i P F.

Therefore, in order to obtain an interpolation matrix Q, we just need to approximately solve

the above equations for ehi pi P Fq. For example, we can just apply one Jacobi iteration using
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ẽhj «

ř

kPPi
ai,ke

h
k

ř

kPPi
ai,k

as the initial guess of ehj , j P F pj ‰ iq. Then the prolongation can be defined as

$

’

&

’

%

ehi “ eHi , i P C

ai,ie
h
i `

ř

jPPi
ai,je

H
j `

ř

jPSizPi
ai,j

ř

kPPi
ai,ke

h
k

ř

kPPi
ai,k

“ 0, i P F.
(7.27) intprol

This is the so-called Jacobi interpolation method.

Remark 7.22 (Some simple alternatives). The biggest advantage of the above approach is that

it is simple and local: For the i-th entry, we only need the information on the i-th row of the ma-

trix. We can improve this prolongation matrix P using some straightforward modifications. For

example, the initial guess for the same entry can be different for different entries; an alternative

initial guess could be

ẽhj «

ř

kPPj
aj,ke

h
k

ř

kPPj
aj,k

, j P F.

And a few more steps of Jacobi iteration might improve performance.

Remark 7.23 (Initial guess of weights). If the initial guess W p0q preserves constants, then we

get

Q´W pkq “

´

I ´D´1
F,FAF,F

¯k
`

Q´W p0q
˘

.

Since both Q and W p0q preserves constants, all improved weights W pkq also preserve constants

by iteration.

7.4 Aggregation-based algebraic multigrid methods
sec:AggregationAMG

In this section, we consider the aggregation-base AMG methods whose easy-to-implement

feature has drawn a lot of attention recently. The idea is to sub-divide the set of vertices into

non-intersecting sets (or aggregates), i.e., V “
Ť

j“1,...,Nc
Cj . Each aggregate Cj corresponds to

a coarser variable.

7.4.1 Unsmoothed aggregation AMG

There are several different sophisticated ways to form aggregates. In principle, any combina-

torial graph partitioning algorithms can be applied to form aggregation. We first give a simple

greedy algorithm to form such an aggregation based on the concept of maximum independent

set discussed in §7.1.

Listing 7.2: A greedy aggregation method

1 Nc Ð 0, U Ð V;

2 for i P U
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3 if Ni Ď U

4 Nc Ð Nc ` 1;

5 CNc Ð tiu
Ť

Ni, U Ð UzCNc;

6 end

7 end

It is possible to have some “left-over” vertices which do not belong to any aggregate after the

above procedure. We can, for example, add them to their neighboring aggregates with least

points.

C1 C2 C3 C4

1 2 3 4 5 6 7

1

Figure 7.10: Aggregates and prolongation corresponding to (7.28).fig:aggregates

Whence an aggregation is given, it is easy to define the prolongation matrix, for 1 ď i ď N

and 1 ď j ď Nc, by

`

P
˘

i,j
“

#

1, if i P Cj ;

0, if i R Cj .

With this interpolation, it is straight-forward to see that P1Nc “ 1N . We now give an example

to explain P in one dimension. Let

P “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RNˆNc . (7.28) eqP

Figure 7.10 shows the aggregation corresponding to the prolongation P in (7.28).

Of course, there are different ways to form aggregates and we give another approach here.

The algorithm to construct coarse grid and prolongation based on the concept of strong coupling

can be written as:
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Listing 7.3: Another aggregation method

1 U Ð V;

2 for i P U

3 Si Ð tj P U : j is strongly coupled to iu;

4 construct a column of prolongation P based on Si;

5 U Ð Uz
`

tiu
Ť

Si

˘

;

6 end

7.4.2 Smoothed aggregation AMG

The unsmoothed aggregation methods are very simple but usually converge slowly. There

are two ways to improve their convergence behavior. One way is to employ a more complicated

multilevel iteration, like the K-cycle multigrid method discussed in §6.3. And the other way is

to enlarge the aggregates and smooth out the basis functions. The latter approach gives the

smoothed aggregation AMG methods, which is based on the idea of minimizing the energy of

the coarse basis functions among the set of all functions with same L2-norm.

Assume that all variables are partitioned into non-overlapping subsets
␣

Ci

(Nc

i“1
. We further

assume that each Ci has at least one interior point, i.e., there exists an index ki P Ci such that
`

A
˘

ki,j
“ 0 for any j R Ci. Suppose that 1 is in the null space of A, namely, A1 “ 0. Define a

vector for each aggregate:

1ipxjq :“

#

1pxjq, if j P Ci;

0, otherwise.

Apparently,
ř

i 1i “ 1 and
`

A1i
˘

ki
“ 0.

We now smooth out these piecewise basis functions by, for example, one step of weighted

Jacobi iteration

ψi “ pI ´ ωD´1Aq1i.

Hence we have the partition of unity

ÿ

i

ψi “ pI ´ ωD´1Aq
ÿ

i

1i “ pI ´ ωD´1Aq1 “ 1.

Thus we can obtain

1pxkiq “
ÿ

j

ψjpxkiq “
ÿ

j

pI ´ ωD´1Aq1ipxkiq “ 1ipxkiq ´ ωD´1A1ipxkiq,

which implies that D´1A1ipxkiq “ 0 and ψipxkiq “ 1.

We can define the prolongation

PSA :“
`

ψ1, ψ2, . . . , ψNc

˘

.
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Define 1c :“ p1, . . . , 1qT P RNc . Hence we have PSA1c “ 1. Furthermore, the coarse level matrix

Ac “ P T
SAAPSA satisfies that

Ac1c “ pP T
SAAPSAq1c “ P T

SAA1 “ 0.

By applying this definition recursively, we can finish the AMG setup for the smoothed aggrega-

tion method.

Listing 7.4: Smoothed aggregation method

1 U Ð V;

2 for i P U

3 Si Ð tj P U : j is strongly coupled to iu;

4 construct a column of prolongation P based on Si;

5 U Ð Uz
`

tiu
Ť

Si

˘

;

6 end

7 Smooth the basis functions using the weighted Jacobi method PSA “ pI ´ ωD´1AqP;

Aggregation method SA [180] UA [180] Pairwise UA [150]

Number of levels 5 5 7
Operator complexity 1.364 1.264 1.332
Setup time (sec) 0.557 0.171 0.277
Number of iterations 16 21 12
Solve time (sec) 1.223 1.696 1.336

Table 7.2: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
aggregation-based AMG methods (stopping criteria for PCG is the relative residual smaller
than 10´6).tab:aggregation

We have mentioned in the previous subsection that there are different ways to form aggre-

gates. After forming aggregates one can apply UA or SA to give prolongation. Now we do

preliminary tests on aggregation methods for solving the 2D Poisson’s equation using the five-

point stencil; see Table 7.2. The AMG methods are applied as preconditioners of PCG. Note

that, for the SA method, we use the standard V-cycle multigrid in the solve phase; on the other

hand, for the UA methods, we use the K-cycle multigrid for better convergence behavior.
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Chapter 8

Fluid Problems

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical

analysis and algorithms to solve and analyze fluid problems. Computers are used to perform

the calculations required to simulate liquids or/and gases with surfaces defined by boundary

conditions. The fundamental basis of most CFD problems are the Navier–Stokes (NS) equations,

which define single-phase fluid flows. These equations can be simplified by removing terms

describing viscous actions to yield the Euler equations. These equations can be simplified by

dropping the nonlinear convection term to yield the Stokes equation. In this chapter, we discuss

multilevel iterative methods suitable for problems arising from CFD.

8.1 The Navier–Stokes equations ‹

The Navier–Stokes equations describe the motion of viscous fluid substances. These balance

equations arise from applying the Newton’s second law to fluid motion, together with the as-

sumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the

gradient of velocity) and a pressure term.

8.1.1 Flow map

Let Ω0 be an open bounded set in Rd (d “ 2, 3). As a convention, we denote the location of a

particle in Ω0 by X “ pX1, . . . , Xdq. This is the configuration at time t “ 0, which is also called

the initial configuration. To describe movement of particles, we denote the current configuration

as Ωt at any time t ě 0. The position of a particle at time t is denoted by x “ px1, . . . , xdq; see

Figure 8.1. The Lagrangian specification of the flow field is a way of looking at particle motion

where the observer follows an individual particle as it moves through space and time; see the

right figure in Figure 8.1. The Eulerian specification of the flow field is a way of looking at

203
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Figure 8.1: From initial configuration Ω0 to current configuration Ωt.fig:configuration

particle motion that focuses on specific locations in the space through which the fluid flows as

time passes; see the left figure in Figure 8.1.

For a vector-valued function f : Ωt ÞÑ Rd, the divergence operator can then be written as

∇ ¨ f :“
řd

i“1 Bifi. The gradient tensor ∇f with p∇fqi,j “ Bjfi. Let a P Rd be a constant

vector field and pa ¨ ∇qf “ p
řd

i“1 aiBiqf . We define an inner product of two gradient matrices

∇f : ∇g “
řd

i“1∇fi ¨ ∇gi. Let up¨, tq : Ωt ÞÑ Rd be the velocity field at a fixed time t. The

gradient of u is denoted by ∇u “ pBjuiqi,j . Furthermore, ∇u is often divided into the symmetric

part and the anti-symmetric part. The symmetric gradient is denoted as εpuq :“ 1
2p∇u`∇uT q

and it is the so-called strain rate.

We are ready to introduce an important concept to describe trajectory of particles, namely,

the flow map xpX, tq, which is the trajectory of a particle X along time. We define that

9x “
dxpX, tq

dt
“ upx, tq and xpX, 0q “ X. (8.1) eqn:flowmap

This simple one-dimensional ordinary differential equation (ODE) is called the characteristic

equation. Hence xp¨, tq is a mapping from the initial configuration Ω0 to the current configuration

Ωt, or deformation. The deformation gradient and its determinant are then defined as

F :“
Bx

BX
and J :“ |F | “ detpF q, (8.2) eqn:defgrad

respectively. F is also called the Jacobian matrix.

For any function fp¨, tq : Ωt ÞÑ R, we can easily derive that

9f :“
dfpx, tq

dt
“ ∇f ¨

dx

dt
` ft “ ft ` u ¨ ∇f, (8.3) eqn:fdot
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which is usually called the material derivative of f . Apparently, F and J are functions of t.

Using the well-known Jacobi’s formula in matrix calculus, we can show that

9J “ J trpF´1 9F q. (8.4) eqn:JacobiFormula

Hence we can immediately obtain

9J “ J trp
BX

Bx

B 9x

BX
q “ J trp∇uq “ Jp∇ ¨ uq. (8.5) eqn:Jdot

This way, we get an ODE for J , i.e.

9J “ p∇ ¨ uqJ and Jp0q “ 1. (8.6) eqn:Jode

In fact, we can also obtain the variation of the determinant of F ,

δ|F | “ |F | trpF´1δF q.

We can also derive similar results for the deformation gradient F itself:

9F “
d

dt
p

Bx

BX
q “

B 9x

BX
“

Bu

BX
“ ∇uF. (8.7) eqn:Fdot

We can easily immediately see that

Ft ` u ¨ ∇F “ ∇uF and F p0q “ I. (8.8) eqn:F

8.1.2 Volume and mass conservation

A very useful trick for doing calculus in continuum mechanics is the pull-back (from Ωt to

Ω0) and push-forward (from Ω0 to Ωt) argument. We first give an example:

d

dt

ż

Ωt

fpx, tq dx “
d

dt

ż

Ω0

fpxpX, tq, tqJ dX

“

ż

Ω0

d

dt
fpxpX, tq, tqJ dX `

ż

Ω0

fpxpX, tq, tq 9J dX

“

ż

Ω0

pft ` u ¨ ∇f ` f∇ ¨ uqJ dX

“

ż

Ωt

9f ` f∇ ¨ u dx “

ż

Ωt

ft ` ∇ ¨ pfuq dx. (8.9)

This identity is often called the transport formula.

lem:transport Lemma 8.1 (Transport formula). For a function f : Ωt ÞÑ R and upx, tq :“ dxpX,tq
dt , we have

d

dt

ż

Ωt

fpx, tq dx “

ż

Ωt

ft ` ∇ ¨ pfuq dx “

ż

Ω0

pft ` u ¨ ∇f ` f∇ ¨ uqJ dX.
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For a domain Ω Ă Rd, we denote its volume (or area) as |Ω|. We then find that

|Ωt| “

ż

Ωt

1 dx “

ż

Ω0

J dX “ J |Ω0|

For incompressible fluids, we have that the volume preserving property

|Ωt| ” |Ω0| or Jptq ” 1.

From the equation (8.6), we can derive that ∇ ¨ u “ 0. This is the so-called divergence-free

condition.

Denote the density of the material occupying Ωt by ρpx, tq. According to the equation (8.9),

for any region ωt Ă Ωt, we have that

d

dt

ż

ωt

ρpx, tq dx “

ż

ωt

ρt ` ∇ ¨ pρuq dx

Since this identity holds for any ω, we immediately see that

ρt ` ∇ ¨ pρuq “ 0 and 9ρ` ρ∇ ¨ u “ 0, (8.10) ean:fluidcon

which is called the equation of mass conservation or the continuity equation.

It is clear that integrating the density over any domain ωt gives the mass. Due to mass

conservation, we have that
ż

ω0

ρ0pXq dX “

ż

ωt

ρpx, tq dx “

ż

ω0

ρpxpX, tq, tqJ dX.

Hence, we have the relation

ρpxpX, tq, tq “
ρ0pXq

J
. (8.11) eqn:rhoratio

If the incompressible condition ∇ ¨ u “ 0 holds, we obtain that ρpxpX, tq, tq “ ρ0pXq.

If ρ ” ρ0 is a constant, then (8.10) gives the divergence-free condition immediately. On the

other hand, if we assume incompressibility, we can get a simplified equation:

ρt ` pu ¨ ∇qρ “ 0 or 9ρ “ 0. (8.12) ean:fluidcon1

Together with ρpX, 0q “ ρ0 being a constant, we can get ρ ” ρ0 for all time t P r0, T s.

8.1.3 Balance of momentum

Now we consider the incompressible Newtonian fluids. Due to the Newton’s Second Law, we

have the balance of momentum

d

dt

ż

Ωt

ρu dx “ ForcepΩtq. (8.13) eqn:Newton2
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The left-hand side of the above equation is the rate of change for the momentum. Using the

transport formula (Lemma 8.1), we derive that

d

dt

ż

Ωt

ρu dx “

ż

Ω0

pρt ` u ¨ ∇ρqu ` ρput ` u ¨ ∇uq dX.

Due to the mass conservation and incompressibility (8.12), we then have

d

dt

ż

Ωt

ρu dx “

ż

Ωt

ρput ` u ¨ ∇uq dx. (8.14) eqn:momentumLHS

On the other hand, the right-hand side of the Newton’s Second Law is the total force acting on

Ωt. We have, from the divergence theorem, that

ForcepΩtq :“

ż

Ωt

f dx`

ż

BΩt

T ¨ n dS “

ż

Ωt

f ` ∇ ¨ T dx,

where f is the total external body force (like gravity), T is the traction tensor on the boundary

of Ωt, and n is the outer normal direction on the boundary BΩt. The exact form of T depends

on the underlying constitutive laws. For Newtonian fluids, the traction can be defined as

T :“ ´pI ` 2µεpuq, (8.15) eqn:T

where p is the pressure and µ is the viscosity.

For incompressible fluids, we have ∇ ¨ u “ 0. In turn, we can obtain (see HW 8.1) that

`

∇ ¨ p2εpuqq
˘

j
“

d
ÿ

i“1

Bipui,j ` uj,iq “

d
ÿ

i“1

Bjui,i `

d
ÿ

i“1

Biuj,i “ ∆uj ,

which means

2∇ ¨ εpuq “ ∆u. (8.16) eqn:div_Laplace

This way we can get the momentum equation (balance of force) for incompressible Newtonian

fluids:

ρput ` u ¨ ∇uq “ ´∇p` µ∆u. (8.17) eqn:momentum

If the density ρ is a constant, we further simplify the above equation (by modifying the definition

of p and µ) to give

ut ` u ¨ ∇u “ ´∇p` µ∆u. (8.18) eqn:momentum1
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8.1.4 Mathematical models
ssc:model

To summarize, we have derived the mathematical model for incompressible Newtonian fluids,

i.e., the Navier–Stokes (NS) equations:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ρput ` u ¨ ∇uq ´ µ∆u ` ∇p “ f , Ωt balance of momentum;

ρt ` ∇ ¨ pρuq “ 0, Ωt conservation of mass;

∇ ¨ u “ 0, Ωt incompressibility;

u “ 0, BΩt no-slip boundary;

u|t“0 “ u0, Ωt initial condition.

(8.19) eqn:NS

If we assume the density ρ is a constant, then we can write (8.19) as follows:

$

’

’

’

’

’

&

’

’

’

’

’

%

ut ` u ¨ ∇u ´ µ∆u ` ∇p “ f , Ωt momentum equation;

∇ ¨ u “ 0, Ωt continuity equation;

u “ 0, BΩt no-slip boundary;

u|t“0 “ u0, Ωt initial condition.

(8.20) eqn:NS1

Now we have the mathematical model for incompressible viscous Newtonian fluids. If we

consider ideal fluids (viscosity µ “ 0) and assume that there is no external body force (f “ 0),

then we get the incompressible Euler equations:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ρput ` u ¨ ∇uq ` ∇p “ 0, Ωt balance of momentum;

ρt ` ∇ ¨ pρuq “ 0, Ωt conservation of mass;

∇ ¨ u “ 0, Ωt incompressibility;

u ¨ n “ 0, BΩt no-flow boundary;

u|t“0 “ u0, Ωt initial condition.

(8.21) eqn:Euler

If the density ρ is a constant, then we have the following simplified form:

$

’

’

’

’

’

&

’

’

’

’

’

%

ut ` u ¨ ∇u ` ∇p “ 0, Ωt momentum equation;

∇ ¨ u “ 0, Ωt continuity equation;

u ¨ n “ 0, BΩt no-flow boundary;

u|t“0 “ u0, Ωt initial condition.

(8.22) eqn:Euler1

For numerical simulation of the Navier–Stokes and Euler equations, there are several tech-

nical difficulties. First of all, the incompressibility condition is a constraint on the velocity field

and appropriate finite element spaces need to be selected to discretize this mixed problem. Sec-

ondly, these equations have a nonlinear convection term; when the viscosity coefficient µ is small

(corresponding to high Reynolds number), the convection is essentially dominant.
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8.2 The Stokes-type equations

For simplicity, we now focus on a linearized problem of the Navier–Stokes equation, namely

the Stokes equation.

8.2.1 The time-dependent Stokes equation

On an open bounded set Ω Ă Rd, we consider
$

’

’

’

’

’

&

’

’

’

’

’

%

ut ´ µ∆u ` ∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ;

u|t“0 “ u0, Ω.

(8.23) eqn:Stokes

This set of equations is usually referred to as the time-dependent Stokes equations. After time

discretization, we need to solve the Stokes-like equations
$

’

’

&

’

’

%

pI ´ ϵ2∆qu ` ∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(8.24) eqn:Stokes1time

We can further simplify the discussion and only consider the following steady-state Stokes

equations, i.e.,
$

’

’

&

’

’

%

´∆u ` ∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(8.25) eqn:Stokes1

Let V :“
“

H1
0 pΩq

‰d
and Q :“ L2

0pΩq “
␣

q P L2pΩq :
ş

Ω q “ 0
(

. The weak form of the Stokes

equation (8.25) can be written as: Find u P V and p P Q, such that
$

’

&

’

%

2

ż

Ω
εpuq : εpvq dx` pp, ∇ ¨ vq “ pf ,vq, @v P V ;

p∇ ¨ u, qq “ 0, @ q P Q.

(8.26) eqn:Stokes1w

The derivation is straightforward and hence leave to the readers; see HW 8.2.

Remark 8.2 (Constrained energy minimization). We can view the Stokes equations as a con-

strained energy minimization problem

min
vPZ

ż

Ω
εpvq : εpvq dx´

ż

Ω
f ¨ v dx,

where Z :“ tv P V : ∇ ¨ v “ 0u is the subspace of divergence-free functions. The equation

(8.26) is the first-order optimality condition of this constrained minimization problem and p is

the Lagrange multiplier.
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8.2.2 The Brezzi theory

Let V 1 and Q1 be the dual spaces of V and Q, respectively. Generally speaking, we can put

the Stokes problem in an abstract framework and consider the following saddle-point problem:

For any given pf, gq P V 1 ˆ Q1, find a pair pu, pq P V ˆ Q, such that the following system holds

$

&

%

aru, vs ` brv, ps “ ⟨f, v⟩ , @v P V ;

bru, qs “ ⟨g, q⟩ , @q P Q.
(8.27) eqn:saddle

Here ar¨, ¨s : V ˆ V ÞÑ R and br¨, ¨s : V ˆ Q ÞÑ R are continuous bilinear forms, i.e.,

aru, vs ď Ca}u}V }v}V , @u, v P V ,

bru, ps ď Cb}u}V }p}Q, @u P V , p P Q.

We can identify a linear operator A : V ÞÑ V 1 such that

⟨Au, v⟩ “ aru, vs, @u P V , v P V

and another linear operator B : V ÞÑ Q1 (or its adjoint BT : Q ÞÑ V 1) such that

⟨Bu, p⟩ “
〈
u,BT p

〉
“ bru, ps, @u P V , p P Q.

Hence (8.27) can be written in the following operator form

$

&

%

Au` BT p “ f,

Bu “ g.

We now analyze under what condition(s) the weak formulation (8.27) is well-posed. We

define the kernel space of B as

Z :“ nullpBq “
␣

v P V : brv, qs “ 0, @q P Q
(

Ă V .

Because br¨, ¨s is continuous, Z is closed. Hence we can give an orthogonal decomposition

V “ Z ‘ Z K “ nullpBq ‘ nullpBqK.

For any u P V , we have u “ u0 ` uK, with u0 P nullpBq and uK P nullpBqK.

In order to solve Bu “ g, we only need to solve BuK “ g. Using the inf-sup theory discussed

in §1.1.4, we can see that, if B is surjective, namely,

inf
qPQ

sup
vPV

brv, qs

}v}V }q}Q
“ β ą 0, (8.28) eqn:infsupB
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then uK exists. Furthermore, it is easy to see that uK is also unique1. Hence we have B : Z K ÞÑ

Q1 and BT : Q ÞÑ pZ Kq1 are isomorphisms.

Now we only need to show the existence and uniqueness of the following problem: Find

u0 P Z , such that

aru0, vs “ ⟨f, v⟩ ´ aruK, vs, @ v P Z .

According to the Nečas Theorem 1.16, we know that the existence and uniqueness of u0 is

equivalent to the following inf-sup conditions

inf
uPZ

sup
vPZ

aru, vs

}u}V }v}V
“ inf

vPZ
sup
uPZ

aru, vs

}u}V }v}V
“ α ą 0. (8.29) eqn:infsupA

With the conditions (8.29) and (8.28), we obtain a unique solution u “ u0 ` uK.

We can find the solution for the pressure variable by solving

BT p “ f ´ Au. (8.30) eqn:Bp

For any v P Z “ nullpBq, it is easy to see that

⟨f ´ Au, v⟩ “
〈
BT p, v

〉
“ ⟨p,Bv⟩ “ 0.

Hence, f ´ Au P pZ Kq1 “ tw P V 1 : ⟨w, v⟩ “ 0, @v P Z u. Because BT : Q ÞÑ pZ Kq1 is an

isomorphism, there is a unique solution to (8.30).

Hence we obtain the following well-posedness result [62, Theorem 1.1]:

thm:Brezzi Theorem 8.3 (Brezzi Theorem). For continuous bilinear forms ar¨, ¨s and br¨, ¨s, the saddle-

point problem (8.27) is well-posed if and only if (8.29) and (8.28) hold. Furthermore, the

solution pu, pq satisfies the stability condition

}u}V ` }p}Q À }f}V 1 ` }g}Q1 .

rem:mixed-inf-sup Remark 8.4 (Inf-sup condition of the mixed formulation). Let X :“ V ˆQ. We define a new

bilinear form ã : X ˆ X ÞÑ R

ãrpu, pq, pv, qqs :“ aru, vs ` brv, ps ` bru, qs.

Then the saddle-point problem (8.27) is equivalent to finding pu, pq P X such that

ãrpu, pq, pv, qqs “ ⟨f, v⟩ ` ⟨g, q⟩ , @pv, qq P X . (8.31) eqn:saddle2

If both ar¨, ¨s and br¨, ¨s are continuous, then ãr¨, ¨s is also continuous. If ar¨, ¨s and br¨, ¨s satisfy

the standard Brezzi conditions (8.29) and (8.28), respectively, then ãr¨, ¨s satisfies the inf-sup

condition as well.

1Suppose there is another solution ũK, then BpuK ´ ũKq “ 0. In turn, we have uK ´ ũK is in nullpBq. Due to
uK ´ ũK P nullpBq

K, we find uK ´ ũK “ 0.
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8.2.3 Well-posedness of the Stokes equation

In view of the general theory developed in the previous subsection, we can define

aru,vs :“ 2

ż

Ω
εpuq : εpvq dx A :“ ´∆ (8.32)

brv, qs :“ ´

ż

Ω
∇ ¨ v q dx B :“ ´∇¨, BT :“ ∇ (8.33)

In this case, the inf-sup condition (8.29) is trivial since the coercive condition holds, i.e.,
ż

Ω
εpuq : εpuq ě α}u}21, @u P rH1

0 pΩqsd.

Hence we only need to check the inf-sup condition for br¨, ¨s.

Lemma 8.5 (Inf-sup condition for divergence operator). For any q P Q “ L2
0pΩq, there exists

v P V “ rH1
0 pΩqsd such that

∇ ¨ v “ q and }v}1 À }q}0.

So the inf-sup condition (8.28) holds.

Proof. This non-trivial result goes back to Nečas and a proof can be found in [95, III.3.1].

Remark 8.6 (Existence of solution). It has been shown in the above lemma that rangepBq “

L2pΩq{R – Q. Or equivalently, we have nullpBT q
Ş

Q “ t0u.

Using the previous lemma and the Brezzi theorem, we can easily get the following result:

thm:Stokes_wellposed Theorem 8.7 (Well-posedness of the Stokes equation). There exists a unique solution pu, pq P

rH1
0 pΩqsd ˆ L2

0pΩq to the weak form of the Stokes equation (8.26) and

}u}1 ` }p}0 À }f}´1.

8.2.4 Penalty method for the Stokes equation ‹

In general, there are two approaches to approximate the Stokes problem. The first one is to

approximate (8.26) directly. An alternative method is to formulate the original problem using

a penalty method as

Find u P V : 2

ż

Ω
εpuq : εpvq dx` γp∇ ¨ u, ∇ ¨ vq “ pf ,vq, @v P V . (8.34) eqn:Stokes2w

The above equation can also be seen in the linear elasticity problems and it is known for

causing the locking phenomena2 for many finite element methods when γ is big. This is usually

caused by overly constraint on the velocity space. To cure such a problem, penalty methods

introduce selective or reduced integration procedures. It has been shown that penalty methods

are sometimes equivalent to mixed methods [126].
2The computed velocity is vanishing or unnaturally small for big λ.
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8.3 Mixed finite element methods

In this section, we consider conforming mixed finite element methods for the Stokes equations.

Let Vh Ă V “ rH1
0 pΩqsd and Qh Ă Q “ L2

0pΩq be finite dimensional spaces. Find uh P Vh and

ph P Qh, such that
$

’

&

’

%

2

ż

Ω
εpuhq : εpvhq dx´ pph, ∇ ¨ vhq “ pf ,vhq, @vh P Vh,

p∇ ¨ uh, qhq “ 0, @ qh P Qh.

(8.35) eqn:Stokes1d

The existence of the discrete solution puh, phq is straightforward due to the conformity of the

approximation spaces.

8.3.1 Well-posedness and convergence

Let Zh “ nullpBhq be the kernel of the discrete divergence operator. In fact, the coercivity

of ar¨, ¨s yields that

inf
uhPZh

sup
vhPZh

aruh,vhs

}uh}1}vh}1
“ αh ą 0. (8.36) eqn:inf_sup_Ah

If Zh Ă Z and the coercivity condition holds, we have the following optimal approximation

property by the Céa’s lemma (Lemma 3.2):

}u ´ uh}V ď
Ca

αh
inf

vhPZh

}u ´ vh}V .

However, it is not easy to make the finite element kernel space Zh Ă Z . A sufficient condition

for this inclusion property is BpVhq Ă Qh, which suggests Qh should be large enough for a fixed

space Vh. In fact, we have

Bhuh “ 0, in Q1
h ðñ pBuh, qhq “ 0, @qh P Qh.

Furthermore, we also have

Buh “ 0, in Q1 ðñ pBuh, qq “ 0, @q P Q.

If uh P Zh and q P Q, then pBuh, qq “ pBuh, q0 ` qKq “ pBuh, q0q ` pBuh, qKq “ 0, where

q “ q0`qK with q0 P Qh. Notice that pBuh, qKq “ 0 because the inclusion condition BpVhq Ă Qh.

If Zh Ć Z , then there is a variational crime and we have following estimate:

}u ´ uh}V ď

´

1 `
Ca

αh

¯

inf
vPZh

}u ´ v}V `
1

αh
sup

wPZhzt0u

ˇ

ˇaru ´ uh,ws
ˇ

ˇ

}w}V
.

For w P Zh, we have

aru ´ uh,ws “ aru,ws ´ pf ,vq “ ´brw, ps “ ´brw, p´ qs,
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for any q P Qh. Because br¨, ¨s is continues, we find that

ˇ

ˇaru ´ uh,ws
ˇ

ˇ ď Cb}w}V }p´ q}Q.

We can then conclude with the following best approximation result:

Lemma 8.8 (Quasi-optimality for velocity). Let Vh Ă V and Qh Ă Q. If the bilinear form

ar¨, ¨s is coercive, then we have

}u ´ uh}V ď

´

1 `
Ca

αh

¯

inf
vPZh

}u ´ v}V `
Cb

αh
inf
qPQh

}p´ q}Q.

We have the identity

pBhuh, qhq “ bruh, qhs “ pBuh, qhq, @qh P Qh.

In the other words, Bhuh is the L2-projection of Buh onto Qh. If nullpBT
h q is not trivial, then

rangepBhq is strictly included in Qh. This could lead to ill-posed problems. For a fixed Qh, the

velocity approximation space Vh should be rich enough in order to guarantee the discrete inf-sup

condition:

inf
qhPQh

sup
vhPVh

bpvh, qhq

}vh}1}qh}0
“ βh ą 0. (8.37) eqn:inf_sup_Bh

The condition nullpBT
h q “ t0u is necessary for the inf-sup condition above. If nullpBT

h q is non-

trivial, then the numerical solution ph is not unique, namely, ph ` sh is also a solution when

sh P nullpBT
h q. In this case, we usually find the computed pressure is oscillatory and, hence,

nullpBT
h q is often referred to as the space of spurious pressure modes.

Theorem 8.9 (Quasi-optimality). Let Vh Ă V and Qh Ă Q. If the bilinear form ar¨, ¨s is

coercive and the inf-sup condition (8.37) holds with βh ě β0 ą 0, then we have

}u ´ uh}V ` }p´ ph}Q À inf
vPZh

}u ´ v}V ` inf
qPQh

}p´ q}Q.

8.3.2 Some stable finite element pairs ‹

From the above discussions, we conclude that: To balance computational efforts and conver-

gence rates for the velocity in rH1
0 pΩqsd and the pressure in L2

0pΩq, it is better to use pk ` 1q-th

degree of polynomials for Vh and k-th degree of polynomials for Qh.

Remark 8.10 (Constraint ratio). An empirical approach has been used to check the balance

between velocity and pressure approximation spaces. The so-called constraint ratio is defined as

Cr :“ dimQh{dimVh.

Apparently, if Cr ą 1 then number of constraints exceeds the number of variables, which will

usually cause locking. On the other hand, if Cr is too small, then divergence free condition is

not approximated accurately enough.
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The easiest and seemingly natural choice for the mixed finite element spaces is the pair of

the lowest order polynomials P 1,0
h –P 0

h . Unfortunately, this pair does not satisfy the discrete

inf-sup condition and we have to either enlarge velocity field finite element space or restrict the

pressure space. There are many possible stable pairs; see the survey paper [32] and references

therein for more details. Here we just name a few:

•
“

P k,0
h

‰d
–P k´1,0

h for k ě 2, Taylor–Hood

•
“

Qk,0
h

‰d
–Qk´1,0

h for k ě 2, Taylor–Hood

•
“

P 1,0
h ‘ B3

τ

‰2
–P 0

h , where B3
τ are cubic bubble functions, MINI

•
“

P 1,0
h{2

‰2
–P 0

h

•
“

P 2,0
h

‰d
–P 0

h , important theoretically, but degree not matching

•
“

P 2,0
h ‘ B3

τ

‰2
–P 1,´1, Crouzeix–Raviart

•
“

P 2,0
h ‘ B4

τ

‰3
–P 1,´1, Crouzeix–Raviart

•
“

P 1,NC
h

‰d
–P 0

h , non-conforming Crouzeix–Raviart

•
“

P k,0
h

‰2
–P k´1,´1

h for k ě 4, Scott–Vogelius

•
“

Qk,0
h

‰d
–P k´1,´1

h for k ě 2

Figure 8.2: A sample discretization using the MAC schemefig:mac

Constructing stable finite difference schemes for the Stokes equation lacks of theoretical

guidance like the Babuška–Brezzi condition discussed above. However we can expect that the
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standard five-point stencil does not work for the Stokes equation. This is because the five-point

stencil can be viewed as Q1,0
h ´Q1,0

h finite element with a specific quadrature rule. If we change

the pressure discretization to the center of cells, then it yields Q1,0
h ´ Q0,´1

h . And, apparently,

both finite element pairs are not stable. The main idea of the Marker-and-Cell (MAC) scheme is

to place the degrees of freedom for velocity and pressure at different locations. More specifically,

the pressure p is defined at the cell centers, the velocity component u1 is defined at the middle

points of vertical edges, and the velocity component u2 defined at the middle points of horizontal

edges; see Figure 8.2. This method is same as the RT0 finite element on rectangular grids.

8.3.3 Mixed methods for the Poisson’s equation ‹
sec:MixedPoisson

Mixed finite element methods have been applied to our model problem, the Poisson’s equa-

tion, as well. By introducing an artificial variable p, a general mixed formulation of the Poisson’s

equation can be written as
$

’

’

’

’

&

’

’

’

’

%

u ´ ∇p “ f , in Ω;

∇ ¨ u “ g, in Ω;

u ¨ n “ 0, on BΩ

(8.38) eqn:PoissonMixed

In this section, we use this model problem to further explain how to construct preconditioners

arising from the saddle-point problems.

Sometimes the mixed formulation of the Poisson’s equation is used for numerical treatment:

Find pu, pq P H0pdiv,Ωq ˆ L2
0pΩq such that

$

&

%

pu,vq ` pp, ∇ ¨ vq “ xf ,vy, @v P H0pdiv,Ωq;

p∇ ¨ u, qq “ xg, qy, @ q P L2
0pΩq.

(8.39) eqn:PoissonMixed1

Here Hpdiv,Ωq consists of all functions in rL2pΩqsd with divergence in L2pΩq and H0pdiv,Ωq

contains theHpdiv,Ωq-functions with vanishing normal components on the boundary BΩ. Define

an inner product

pu,vqH0pdiv,Ωq :“ pu,vq ` p∇ ¨ u,∇ ¨ vq. (8.40) eqn:Hdiv-inner

This problem corresponds to the mixed formulation of the Poisson’s equation with the Neumann

boundary condition.

If u P Z is divergence free, then }u}H0pdiv,Ωq “ }u}0,Ω. Hence we can easily verify the Brezzi

conditions hold for this problem. As a consequence, the operator

Ã0 “

˜

I ´ grad

div 0

¸

: H0pdiv,Ωq ˆ L2
0pΩq ÞÑ H0pdiv,Ωq1 ˆ L2

0pΩq
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is an isomorphism. The canonical preconditioner is a block diagonal isomorphism

D̃p1q

0 “

˜

pI ´ grad divq´1 0

0 I

¸

: H0pdiv,Ωq1 ˆ L2
0pΩq ÞÑ H0pdiv,Ωq ˆ L2

0pΩq.

There is an alternative mixed formulation for the Poisson’s equation: Find pu, pq P rL2pΩqsdˆ
`

H1pΩq
Ş

L2
0pΩq

˘

such that

$

&

%

pu,vq ´ p∇p,vq “ xf ,vy, @v P rL2pΩqsd;

´pu,∇qq “ xg, qy, @ q P H1pΩq
Ş

L2
0pΩq.

(8.41) eqn:PoissonMixed2

The Brezzi conditions can be verified using the Poincaré’s inequality. Hence Ã is also well-defined

on rL2pΩqsd ˆ
`

H1pΩq
Ş

L2
0pΩq

˘

. And in this case, the canonical preconditioner is

D̃p2q

0 “

˜

I 0

0 p´∆q´1

¸

: rL2pΩqsd ˆ
`

H1pΩq
č

L2
0pΩq

˘1
ÞÑ rL2pΩqsd ˆ

`

H1pΩq
č

L2
0pΩq

˘

.

Apparently, this preconditioner is significantly different than the one given in the previous

subsection. As a result, different choices of approximation space and its norm can yield very

different solution methods.

8.4 Canonical preconditioners

In this section, we discuss how to construct canonical preconditioners for the saddle-point

problems, like the Stokes equation and the time-dependent Stokes equation. The basic idea

follows the discussion in §2.2.

8.4.1 Preconditioning the Stokes equation

We notice that the corresponding operator of the Stokes system

Ã :“

˜

´∆ ´ grad

div 0

¸

is an isomorphism mapping from rH1
0 pΩqsd ˆL2

0pΩq onto rH´1pΩqsd ˆL2
0pΩq. A natural precon-

ditioner would be the classical block diagonal preconditioner

D̃ “

˜

p´∆q´1 0

0 I

¸

.

This observation immediately motivates the classical block diagonal preconditioner [43].
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Similar to the continuous case, we can construct natural preconditioners based on the map-

ping properties. Let tXhu be a family of finite element spaces and it is conforming in the sense

that Xh Ă X :“ rH1
0 pΩqsd ˆ L2

0pΩq. Consider the discrete Stokes problem: Find puh, phq P Xh

such that

ãrpuh, phq, pvh, qhqs “ ⟨f,vh⟩ , @pvh, qhq P Xh.

The corresponding linear map Ãh : Xh ÞÑ X 1
h is given by

xÃhx, yy “ ãrx, ys, @x, y P Xh.

Note that, in this case, ã is not positive definite and the system Ãh can be singular.

According to Remark 8.4, the stable discretizations can be characterized by a discrete inf-sup

condition: There exists a constant α0, independent of h, such that

inf
xPXh

sup
yPXh

ãrx, ys

}x}X }y}X
ě α0 ą 0. (8.42) eqn:dis-mixed-inf-sup

This condition does not follow from the corresponding continuous inf-sup condition. Similar to

the continuous case, we can define a preconditioner D̃h : X 1
h ÞÑ Xh by

pD̃hf, yqX “ xf, yy, @y P Xh.

That is to say

D̃h :“

˜

p´∆hq´1 0

0 I´1
h

¸

. (8.43) eqn:Stokes-precond

Apparently, if Ãh is symmetric, D̃hÃh is symmetric with respect to p¨, ¨qX and

}D̃hÃh}L pXh;Xhq ď Ca, }pD̃hÃhq´1}L pXh;Xhq ď α´1
0 .

Hence the condition number κpD̃hÃhq is uniformly bounded.

8.4.2 Preconditioning the time-dependent Stokes equation ‹

Now we are in position to develop preconditioners for the time-dependent Stokes prob-

lem (8.23). Like in many other applications, it is crucial to get robust or parameter-independent

performance for problems with small or large parameters. One of the useful technique is to define

proper parameter-dependent spaces and norms, such that the operator-norms of the coefficient

operator can be bounded uniformly with respect to the parameters [132].

According to the classical theory of intersections and sums of Hilbert spaces [23], we can

introduce the norms for X1
Ş

X2 and X1 ` X2 as

}u}X1
Ş

X2
:“

´

}u}2X1
` }u}2X2

¯
1
2
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and

}u}X1`X2 :“ inf
u“u1`u2

u1PX1,u2PX2

´

}u1}2X1
` }u2}2X2

¯
1
2
.

If X1
Ş

X2 is dense in both X1 and X2, then

pX1

č

X2q1 “ X 1
1 ` X 1

2 and pX1 ` X2q1 “ X 1
1

č

X 1
2 .

If F P L pX1;Y1q
Ş

L pX2;Y2q, then

F P L
`

X1

č

X2;Y1

č

Y2

˘

č

L
`

X1 ` X2;Y1 ` Y2

˘

.

For our purpose, we assume that X1 and X2 are real separable Hilbert spaces and X2 Ă X1.

Hence it is natural to assume }u}X1 ď }u}X2 . For a real positive parameter ϵ ą 0, we consider

the norm for the space X1
Ş

ϵX2 and its dual, respectively, by

}u}X1
Ş

ϵX2
:“

´

}u}2X1
` ϵ2}u}2X2

¯
1
2
, }f}X 1

1`ϵ´1X 1
2
:“ inf

f“f1`f2
f1PX 1

1 ,f2PX 1
2

´

}f1}2X 1
1

` ϵ´2}f2}2X 1
2

¯
1
2
.

Apparently, Xϵ :“ X1
Ş

ϵX2 is the same as X2 as a set. Furthermore, as ϵ tends to zero, the

norm of Xϵ approaches the norm of } ¨ }X1 . Similarly, X 1
ϵ :“ X 1

1 ` ϵ´1X 1
2 , as a set, is the same

as X 1
2 and its norm approaches } ¨ }X 1

1
when ϵ tends to zero.

Consider preconditioning the time-dependent Stokes problem (8.24) where the coefficient

operator is defined as

Ãϵ :“

˜

I ´ ϵ2∆ ´ grad

div 0

¸

For this problem, we shall construct a preconditioner which is uniformly convergent with respect

to both h and ϵ.

1○ In view of §8.3.3, we know that Ã0 is bounded from H0pdiv,Ωq ˆ L2
0pΩq into its dual

space. Hence we consider the operator Ãϵ on

Xϵ :“
´

H0pdiv,Ωq
č

ϵrH1
0 pΩqsd

¯

ˆL2
0pΩq and X 1

ϵ :“
´

H0pdiv,Ωq1 `ϵ´1rH´1pΩqsd
¯

ˆL2
0pΩq.

In this case, the two Brezzi conditions holds and Ãϵ is an isomorphism. In turn, the canonical

preconditioner is of the form

D̃p1q
ϵ “

˜

pI ´ grad div´ϵ2∆q´1 0

0 I

¸

.

2○ We have seen that Ã0 is also bounded on rL2pΩqsd ˆ
`

H1pΩq
Ş

L2
0pΩq

˘

into its dual space.

Furthermore, in order to guarantee the inf-sup condition, the proper norm for the pressure

unknown is [130, 131]:

sup
vPrH1

0 pΩqsd

pq,∇ ¨ vq

}v}L2
Ş

ϵH1

“ }∇q}L2`ϵ´1H´1 „ }q}H1`ϵ´1L2 .
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Motivated by these observations, we can consider

Xϵ :“
”

L2pΩq
č

ϵH1
0 pΩq

ıd
ˆ

´

H1pΩq
č

L2
0pΩq ` ϵ´1L2

0pΩq

¯

and

X 1
ϵ :“

”

L2pΩq ` ϵ´1H´1pΩq

ıd
ˆ

´

`

H1pΩq
č

L2
0pΩq

˘1
č

ϵL2
0pΩq

¯

.

This choice of spaces gives a preconditioner of the form

D̃p2q
ϵ “

˜

pI ´ ϵ2∆q´1 0

0 p´∆q´1 ` ϵ2I

¸

.

Along this line, we can construct discrete block diagonal preconditioners for the time-

dependent Stokes problem [85, 41].

8.4.3 Preconditioning the heat equation ‹

In order to introduce a uniform preconditioner for the time-dependent Stokes equation, we

still need to give a reasonable solver for I ´ ϵ2∆ in D̃p2q
ϵ . And this problem is in fact much more

general. For example, it also appears in a simpler scalar time-dependent problem—the heat

equation:
$

’

’

&

’

’

%

ut ´ ∆u “ f, Ω;

u “ 0, BΩ;

u|t“0 “ u0, Ω.

(8.44) eqn:heat2

We discretize the first equation in (8.44) using the Backward Euler method for the time

variable to obtain that
um ´ um´1

tm ´ tm´1
´ ∆um “ fm,

where um and fm are approximations to u and f , respectively, at time level tm. Since u0 is

given, we can iteration over m to obtain approximate solutions tumum“0,1,... to uptm, ¨q, namely

pI ´ ϵ2∆qum “ f 1
m. (8.45) eqn:Reaction-Diffusion

In this case, ϵ2 :“ tm´tm´1 equals the time step-size and f 1
m :“ um´1`ptm´tm´1qfm is known.

So we need to find out how to construct a preconditioner for operators like Aϵ :“ I ´ ϵ2∆

corresponding to the reaction-diffusion equation.

In particular, in order to solve the reaction-diffusion equation Aϵu “ f in Ω and u|BΩ “ 0 in

the previous subsection, we have

Xϵ :“ L2pΩq
č

ϵH1
0 pΩq and X 1

ϵ “ L2pΩq ` ϵ´1H´1pΩq.

As ϵ goes to zero, both norms approaches the L2-norm and Aϵ also tends to the identity.
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In this setting, we have

xf, pI ´ ϵ2∆q´1fy “ xpI ´ ϵ2∆qpI ´ ϵ2∆q´1f, pI ´ ϵ2∆q´1fy

“ xpI ´ ϵ2∆q´1f, pI ´ ϵ2∆q´1fy ´ ϵ2x∆pI ´ ϵ2∆q´1f, pI ´ ϵ2∆q´1fy

“ }f0}20 ` ϵ´2}f1}2´1,

where f0 :“ pI ´ ϵ2∆q´1f and f1 :“ ´ϵ2∆pI ´ ϵ2∆q´1f . Furthermore, we can get (cf. [132,

Example 4.1])

}f}2X 1
ϵ

“ xf, pI ´ ϵ2∆q´1fy “ xpI ´ ϵ2∆qu, uy.

We can easily see the natural norm is

}u}Xϵ “ }u}L2
Ş

ϵH1
0
:“

´

}u}20 ` ϵ2}∇u}20

¯
1
2
.

Hence, it is clear that

}u}Xϵ “ }f}X 1
ϵ
.

Although I ´ ϵ2∆ is norm preserving from the above analysis, it is not yet clear how to

construct a practical algorithm to solve it. We notice that the above semi-discrete problem or

temporal discrete problem resembles our model problem—the Poisson’s equation. In order to

construct an efficient preconditioner for this equation, we can use the BPX preconditioner (5.19)

in §5.3. In view of (5.18), on level l, we wish to have a smoother Sl behaves like

`

Slv, v
˘

“
h2l

h2l ` ϵ2
`

v, v
˘

, @ v P Vl.

This smoother then defines the corresponding BPX preconditioner for the semi-discrete prob-

lem (8.45). Such a simple example shows how to handle a new problem from geometric point of

view and it can be used as a component when solving the time-dependent Stokes problem.

8.5 Block preconditioners

In the previous section, we discussed how to construct canonical (natural) preconditioners

based on the mapping property of the continuous Stokes equation. Now we shall consider the

discrete Stokes problem arising in the mixed finite element method (such as the Taylor–Hood

finite element method) in algebraic setting, i.e.,

Ã

˜

u

p

¸

“

˜

f

g

¸

and Ã :“

˜

A BT

B 0

¸

. (8.46) eqn:dis-saddle

Suppose A P Rnˆn, B P Rmˆn, u P Rn, and p P Rn. Let N “ n ` m. Assume that A is SPD

and B has full rank. It is well-known that the coupled system Ã is symmetric, indefinite, and

non-singular.
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8.5.1 Block diagonal and lower triangular method

If we consider the block diagonal preconditioner given in the previous section, the precondi-

tioner can be written as

D̃ :“

˜

A´1 0

0 M´1
p

¸

, (8.47) eqn:diag-precond

where Mp is the mass matrix corresponding to the pressure approximation space and, hence, it

is well-conditioned; see Remark 3.24. It is easy to check that (8.47) is exactly the algebraic form

of (8.43). Because both A and Mp are symmetric positive definite matrices, the preconditioner

is well-defined.

rem:factorization Remark 8.11 (Block factorizations). We can apply the following block factorizations to the

matrix Ã such that
˜

A BT

B 0

¸

“

˜

Iu 0

BA´1 Ip

¸˜

A 0

0 S

¸˜

Iu A´1BT

0 ´Ip

¸

“

˜

A 0

B S

¸˜

Iu A´1BT

0 ´Ip

¸

“

˜

Iu 0

BA´1 ´Ip

¸˜

A BT

0 S

¸

,

where the matrix S :“ BA´1BT is the Schur complement. In fact, D̃ in (8.47) can be viewed

as an approximation of diagpA´1, S´1q.

rem:Schur Remark 8.12 (Schur complement). Since the A is SPD, the Schur complement S “ BA´1BT

is symmetric and positive semi-definite. Moreover, if B has full rank, S is also SPD and we can

apply the CG method to solve the Schur complement equation. However, generally speaking,

S´1p cannot be computed efficiently with acceptable computational cost. Hence the Schur

complement S should be approximated by some approximation Ŝ. There are many different

ways based on approximation of the Schur complement; see the survey paper [19].

We can also use the block lower triangular matrix to construct a preconditioner

T̃ :“

˜

A 0

B Ŝ

¸´1

. (8.48) eqn:lowertrig-precond

In particular, if we replace A by its diagonal part D in the LU decomposition of Remark 8.11,

then we get the so-called SIMPLE preconditioner

T̃SIMPLE :“

˜

Iu D´1BT

0 ´Ip

¸´1˜

A 0

B BD´1BT

¸´1

. (8.49) eqn:simple-precond

The name comes from the widely-used SIMPLE method for fluid problems.
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8.5.2 Augmented Lagrangian method

One of the most well-known iterative method for solving (8.46) is probably the Uzawa

method. As the last decomposition in Remark 8.11, we can factorize the coefficient matrix

as
˜

A BT

B 0

¸

“

˜

Iu 0

BA´1 ´Ip

¸˜

A BT

0 S

¸

.

This means the original linear system can be rewritten as
˜

A BT

0 S

¸˜

u

p

¸

“

˜

f

BA´1f ´ g

¸

.

As discussed in Remark 8.12, the pressure Schur complement equation might be too expensive

to be solved exactly. We can apply an iterative method to solve it. For example, we can apply

the Richardson’s iteration for the second equation in the above system, i.e.,

pnew “ pold ` ω
´

BA´1f ´ g ´ Spold
¯

“ pold ´ ω
´

g ´BA´1f `BA´1BT pold
¯

.

Hence we can write the above iteration as an alternative direction method

Aunew “ f ´BT pold, pnew “ pold ´ ωpg ´Bunewq. (8.50) eqn:uzawa

The method (8.50) is called the Uzawa iteration and it is just the Richardson iteration for

the Schur complement equation. As we have discussed in §2.1, the method converges with an

appropriate scaling factor ω but the convergence rate is usually very slow. One way to speedup

the convergence is to apply the Augmented Lagrangian method (cf., for example, [93]):

pA` ϵ´1BTBqunew “ f ` ϵ´1BT g ´BT pold, pnew “ pold ´ ϵ´1pg ´Bunewq. (8.51) eqn:AL

rem:UzawaAL Remark 8.13 (Uzawa method and Augmented Lagrangian method). It is easy to see that the

Augmented Lagrangian (AL) method is just the Uzawa method for the modified equation

Ãϵ

˜

u

p

¸

“

˜

f ` ϵ´1BT g

g

¸

, where Ãϵ :“

˜

A` ϵ´1BTB BT

B 0

¸

. (8.52) eqn:dis-saddle-mod

Furthermore, the damping factor ω is chosen to be ϵ´1.

thm:AL Theorem 8.14 (Convergence rate of Augmented Lagrangian method). Let pup0q, pp0qq be a given

initial guess and pupmq, ppmqq be the iterates obtained via the Augmented Lagrangian method (8.51).

Then we have

›

›p´ ppmq
›

›

0
ď

´ ϵ

ϵ` λ1

¯m›
›p´ pp0q

›

›

0
,

›

›u´ upmq
›

›

A
ď

?
ϵ
›

›p´ ppm´1q
›

›

0
ď

?
ϵ
´ ϵ

ϵ` λ1

¯m´1›
›p´ pp0q

›

›

0
,

where λ1 is the minimal eigenvalue of S “ BA´1BT .
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Sketch of proof. From (8.51) and (8.52), we have

pA` ϵ´1BTBq
`

u´ upmq
˘

“ ´BT
`

p´ ppm´1q
˘

and

p´ ppmq “

´

I ´BpϵA`BTBq´1BT
¯

`

p´ ppm´1q
˘

.

By the Shermann–Morrison–Woodburry formula, we have

Z :“ BpϵA`BTBq´1BT “ Sϵ ´ SϵpI ` Sϵq
´1Sϵ, Sϵ :“ ϵ´1BA´1BT .

It is easy to verify that

I ´BpϵA`BTBq´1BT “ I ´ Sϵ ` SϵpI ` Sϵq
´1Sϵ “ pI ` Sϵq

´1.

The above equality shows ρpZq ď 1 and p´ ppmq “ pI `Sϵq
´1
`

p´ ppm´1q
˘

. So the first estimate

follows immediately. The second estimate is obtained by observing

›

›u´ upmq
›

›

2

A
“

´

pA` ϵ´1BTB ´ ϵ´1BTBq
`

u´ upmq
˘

, u´ upmq
¯

ď ϵ
`

Zpp´ ppm´1qq, p´ ppm´1q
˘

and then applying the first estimate.

According to Theorem 8.14, we can make the convergence as fast as we want by adjusting

the parameter ϵ. However, the price to pay is that, in each iteration, we have to solve a nearly-

singular system with coefficient matrix A` ϵ´1BTB, which was discussed in [123]. We can also

apply the Augmented Lagrangian method as a preconditioner

T̃AL :“

˜

A` ϵ´1BTB 0

B ϵI

¸´1

, (8.53) eqn:AL-precond

which is often referred to as the AL preconditioner [20].

The method is closely related to the grad-div stabilization [63] of the Stokes (or Navier–

Stokes) problem:
$

’

’

&

’

’

%

pI ´ µ∆qu ´ ϵ´1∇∇ ¨ u ` ∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(8.54) eqn:Stokes2

In this modified problem, the coercivity condition automatically holds on the discrete level for

the H0pdivq-norm defined by (8.40). After discrezation by some mixed finite element method, we

obtain discrete systems in the form of (8.51). We can apply the block preconditioners discussed

in the previous subsection to solve the resulting discrete problems; see the survey and numerical

experiments by He and Vuik [108].
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8.6 Multigrid methods for the Stokes equation

Using a general multilevel iterative procedure, we can construct coupled geometric multigrid

methods for the saddle-point problem (8.46) as well. For the transfer operators, by applying the

similar ideas as in multigrid methods for scalar equations, we can construct prolongations and

restrictions for velocity and pressure variables separately. Coarse-level solvers can also apply the

same multilevel cycles as in §6.3. So we only discuss smoothers for the Stokes system. Analysis

and numerical experiments using different smoothers have been reviewed in the survey by Larin

and Reusken [121]. Apparently, the block preconditioners discussed in the previous section can

also be applied as smoothers for coupled multigrid methods. In this section, we discuss two

other widely-used smoothers in practice.

8.6.1 Braess–Sarazin smoother

The Braess–Sarazin smoother was introduced in [39] and can be written as

˜

upm`1q

ppm`1q

¸

“

˜

upmq

ppmq

¸

`

˜

ωD BT

B 0

¸´1 «˜

f

0

¸

´

˜

A BT

B 0

¸˜

upmq

ppmq

¸ff

, (8.55) eqn:Braess

where ω is a positive parameter. This method mimics the damped Jacobi smoother for the

Poisson’s equation.

We need to solve, in each smoothing step, the following the linear system

˜

ωD BT

B 0

¸˜

δupmq

δppmq

¸

“

˜

f ´Aupmq ´BT ppmq

´Bupmq

¸

.

The second equation ensures the discrete divergence free condition, i.e.,

Bupm`1q “ B
`

upmq ` δupmq
˘

“ 0, m “ 1, 2, . . .

Apparently, the Braess–Sarazin smoother can be reduced to an auxiliary pressure equation

`

BD´1BT
˘

δppmq “ ωBupmq `BD´1
`

f ´Aupmq ´BT ppmq
˘

.

The coefficient matrix Ŝ :“ BD´1BT is similar to a scaled discrete Laplace operator on the

pressure space. In practice, we can solve it approximately using an iterative method for example.

8.6.2 Vanka smoother

Next we introduce a smoother originally proposed by Vanka [181]. In the context of finite

element methods, the Vanka-type smoothers are just block Gauss–Seidel (or Jacobi) methods.

Each block contains degrees of freedom in an element or a set of elements. One of the popular
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variant of Vanka-type smoothers is the so-called pressure-oriented Vanka smoother for continuous

pressure approximations. We only discuss this special case of Vanka smoother here.

For each pressure variable indexed by i (1 ď i ď m), let the set of velocity indices that are

“connected” to i as

Si :“ t1 ď j ď n : bi,j ‰ 0u,

where bi,j is the pi, jq-entry of the matrix B. So we can define an injection to the set of variables

tuj pj P Siq, piu, i.e.,

Ii “

˜

Iu,i 0

0 Ip,i

¸

P Rp|Si|`1qˆpn`mq,

where Ip,ip “ pi and Iu,iu “ pujqjPSi are the corresponding injection matrices for velocity and

pressure, respectively.

We can then apply a multiplicative Schwarz method (or the so-called Full Vanka smoother):

I ´ T̃FVankaÃ “

m
ź

i“1

´

I ´ ITi Ã
´1
i IiÃ

¯

, (8.56) eqn:FVanka

where

Ãi “ IiÃI
T
i “

˜

Ai BT
i

Bi 0

¸

P Rp|Si|`1qˆp|Si|`1q.

We can also use a simplified version (i.e., the Diagonal Vanka smoother):

I ´ T̃DVankaÃ “

m
ź

i“1

´

I ´ ITi D̃
´1
i IiÃ

¯

, (8.57) eqn:DVanka

where

D̃i “

˜

Di BT
i

Bi 0

¸

P Rp|Si|`1qˆp|Si|`1q.

In this case, due to the special nonzero pattern of D̃i, it can be solved very efficiently.

8.7 Homework problems

hw:div-eps HW 8.1. Show the equation (8.16). Hint: In R2, taking divergence of the symmetric gradient,

we get

∇ ¨ εpuq “

¨

˝

B2
1u1 ` 1

2B2pB2u1 ` B1u2q

B2
2u2 ` 1

2B1pB1u2 ` B2u1q

˛

‚

“

¨

˝

1
2pB2

1u1 ` B2
2u1q ` 1

2B1pB1u1 ` B2u2q

1
2pB2

1u2 ` B2
2u2q ` 1

2B2pB1u1 ` B2u2q

˛

‚“
1

2
∆u `

1

2
∇∇ ¨ u.
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hw:Stokes_weak HW 8.2. Derive the weak form (8.26) of the Stokes equations (8.25).

hw:AL HW 8.3. Give the complete proof of Theorem 8.14.



Chapter 9

Optimization Problems

ch:optim

Mathematical optimization (mathematical programming or optimization) is the selection

of a “best” element (with regard to certain criterion) from some set of available alternatives.

Many optimization problems can be written as variational inequalities (VIs); for example, many

problems in economics, operations research, and transportation equilibrium problems. In this

chapter, we discuss multilevel iterative methods for solving finite-dimensional variational in-

equalities.

9.1 Model problems
sec:vi

VIs arise from a wide range of application areas, like mechanics, control theory, engineering,

and finance. After several decades of development, this subject has become very rich on both

theory and numerics. For a general discussion on the existence and regularity, we refer the

interested readers to [116]. For a comprehensive discussion on numerical methods for VIs, we

refer to Glowinski [97].

9.1.1 A model variational inequality

Let ar¨, ¨s and fp¨q be a symmetric bilinear form and a linear form, respectively, and χ P

H1
0 pΩq be an admissible obstacle (for simplicity, we assume the zero boundary condition). Con-

sider the following elliptic variational inequality (or the obstacle problem): Find u P Kχ :“ tv P

H1
0 pΩq : v ě χu, such that

aru, v ´ us ě fpv ´ uq, @ v P Kχ. (9.1) eqn:evi1

After transformation w :“ u´χ, we arrive at a new problem with a simple inequality constraint:

Find w P K0 :“ tv P H1
0 pΩq : v ě 0u, such that

arw, v ´ ws ě f0pv ´ wq :“ fpv ´ wq ´ arχ, v ´ ws, @ v P K0. (9.2) eqn:evi2

228
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For problem (9.1), the Lagrange multiplier can be defined as σ1 such that

⟨σ1puq, φ⟩ :“ fpφq ´ aru, φs, @ φ P H1
0 pΩq. (9.3) eqn:sigma

On the other hand, for (9.2), notice, for any φ P H1
0 pΩq, that

⟨σ2pwq, φ⟩ “ f0pφq ´ arw,φs “ fpφq ´ aru, φs “ ⟨σ1puq, φ⟩ .

It is easy to see that

⟨σ1puq, v ´ u⟩ ď 0, @ v P Kχ, (9.4) eqn:nonpos

or

⟨σ2pwq, v ´ w⟩ ď 0, @ v P K0.

On the other hand, if σ is the Lagrange multiplier of (9.1), we have

⟨σpvq ´ σpuq, φ⟩ “ ´arv ´ u, φs, @ φ P H1
0 pΩq.

Hence,

⟨σpvq ´ σpuq, v ´ u⟩ “ ´arv ´ u, v ´ us “ ´ |||v ´ u|||
2 , @ v, u P H1

0 pΩq. (9.5) eqn:mono

Hence, we have ⟨σpvq ´ σpuq, v ´ u⟩ ď 0, for any v, u P H1
0 pΩq, i.e., σ is a monotone operator.

Remark 9.1 (Uniqueness of solution). Notice that if both u1 and u2 are solutions of the

variational inequality (9.1), by the monotonicity of σ, |||u1 ´ u2||| “ 0 and then we obtain the

uniqueness.

As before, we assume that A : H1
0 pΩq ÞÑ H´1pΩq be the operator corresponding to ar¨, ¨s.

An frequently equivalent formulation of (9.1) is the so-called linear complementarity problem

(LCP): Find a solution u P H1
0 pΩq such that

$

’

’

’

&

’

’

’

%

Au´ f ě 0

u´ χ ě 0

⟨Au´ f, u´ χ⟩ “ 0.

(9.6) eqn:lcp

The last equation is the so-called complementarity condition.

Proof. If u is a solution of LCP (9.6), then for any v P H1
0 pΩq and v ě χ we have

⟨Au´ f, u´ v⟩ “ ⟨Au´ f, χ´ v⟩ ď 0,

in view of the complementarity condition and the sign condition of Au´ f . On the other hand,

if u is solution of (9.1), it is trivial to see that u satisfies the first two conditions of LCP. The

complementarity condition is obtained by taking v “ u` pu´ χq and v “ χ.
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9.1.2 Finite element discretization for VIs

As discussed in §3.1, the domain Ω is partitioned into a quasi-uniform simplexes of size h;

this mesh is denoted by Mh. Let Vh Ă W 1,8
0 pΩq be the continuous piecewise linear finite element

space associated with Mh. The obstacle problem (9.2) can be approximated by a finite element

function uh P K0
Ş

Vh satisfying:

aruh, vh ´ uhs ě f0pvh ´ uhq, @ vh P K0

č

Vh. (9.7) eqn:fem2

As before, we denote all the interior nodes of the partition Mh by G̊pMhq. Let tϕzuzPG̊pMhq

be the canonical linear finite element basis of the mesh Mh. Let u “ uh :“
ř

zPG̊pMhq
uzϕz

and u “ puzqzPG̊pMhq
, the discrete solution and its nodal value vector (primal vector form),

respectively. Hence we have the following linear system

pv ´ uqT pAu´ f⃗0q ě 0, @ v ě 0, (9.8) eqn:dis2

where A is the corresponding stiffness matrix of the bilinear form and f⃗0 is the dual vector form

of f0.

Remark 9.2. One can prove (see for example [54]) that the l2-error between the exact solution

u of (9.8) and any approximation solution v satisfies that

}v ´ u}0 À }pf⃗0 ´Avq`}0,

where the vector pf⃗0 ´Avq` is defined element-wise by

pf⃗0 ´Avq`,i “

#

pf⃗0 ´Avqi if vi ą 0

mintpf⃗0 ´Avqi, 0u if vi “ 0.

9.1.3 Error and residual
ssc:residual

As usual, we define the energy functional as following

Fpvq :“
1

2
arv, vs ´ fpvq.

Then it follows that

Fpvq ´ Fpuq “
1

2
|||v ´ u|||

2
´ ⟨σ, v ´ u⟩ , @ v P Kχ. (9.9) eqn:Idiff

Consider finite element solutions, uh and wh for problems (9.1) and (9.2), respectively. The

differences, in terms of energy, between the finite element solutions and the exact solutions can

be written as

Fpuhq ´ Fpuq “
1

2
|||uh ´ u|||

2
´ ⟨σ, uh ´ u⟩

Fpwhq ´ Fpwq “
1

2
|||wh ´ w|||

2
´ ⟨σ,wh ´ w⟩ .

(9.10) eqn:diff
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It is easy to see that the variational inequality (9.2) can be written as the following quadratic

minimization problem:

min
wPK0

1

2
arw,ws ´ f0pwq. (9.11) eqn:min2

For finite element approximation, we compute the finite dimensional minimization problem

min
whPVh

ŞK0

1

2
arwh, whs ´ f0pwhq. (9.12) eqn:femmin2

Suppose ŵh is an approximate solution of the above minimization problem. Then the defect

eh :“ wh ´ ŵh satisfies

min
ŵh`ehPVh

ŞK0

1

2
arŵh ` eh, ŵh ` ehs ´ f0pŵh ` ehq “

1

2
areh, ehs ´ f0pehq ` arŵh, ehs ` C,

i.e.,

min
ŵh`ehPVh

ŞK0

1

2
areh, ehs ´ ⟨σpŵhq, eh⟩ . (9.13) eqn:ErrVI

Notice that it is in the same form as (9.12) but replacing f0 by σpŵhq. Hence the above problem

can be viewed as the error problem; compare this with the error equation in the linear case (1.38).

Whence we have eh, we can update wh “ ŵh ` eh as in the linear case.

9.2 Nonlinear equation and unconstrained minimization

We first consider the unconstrained optimization problem

u “ argmin
vPV

Fpvq. (9.14) eqn:min

If F : V ÞÑ R is a convex function, then the problem is called a convex optimization (or

convex programming). If F is differentiable, a minimizer satisfies the well-known first-order

optimization condition

Gpuq :“ F 1puq “ 0, (9.15) eqn:1st-cond

where G : V ÞÑ R is the Frechet derivative of F . If F is convex, then (9.14) is equivalent

for solving the nonlinear equation (9.15). In particular, if F is quadratic, then the problem is

called a quadratic optimization. Apparently, if F is a convex quadratic functional, then the

problem (9.14) is equivalent to our model problem (2.1), Au “ f , with an SPD operator A “ G1.

9.2.1 Nonlinear solvers

In general, the problem (9.14) is much more difficult to solve than (2.1) due to its non-

linearity. We can employ a nonlinear iterative solver to linearize (9.15) to obtain a linear
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(differential) equation, i.e., linearization then discretization. For example, we may use the stan-

dard approaches, like the Picard method or the Newton–Raphson method. Another strategy is

to discretize the continuous problem (9.14) or (9.15) in order to obtain a nonlinear algebraic

problem

u “ argmin
vPRN

Fpvq (9.16) eqn:dmin

or

Gpuq “ 0. (9.17) eqn:d1st-cond

The idea of coarse-grid correction used in Algorithm 3.1 does not apply any more here because the

classical residual equation is linear. There are basically two approaches to apply the multilevel

idea on this problem—The first approach is to linearize the problem and then apply multigrid

methods to linear problems; The second one is to apply multigrid directly to the nonlinear

problem using the so-called Full Approximation Scheme (FAS).

9.2.2 Newton–Raphson method

There are different ways to linearize a nonlinear problem like (9.15). For simplicity, we

now only consider discrete version of the nonlinear equation, i.e., V “ RN . The most popular

approach is the so-called Newton–Raphson (or Newton) linearization. We apply second-order

Taylor expansion to approximate the objective function near the current iteration upkq P RN ,

i.e.,

Fpupkq ` eq « Fpupkqq ` p∇Fpupkqq, eq `
1

2
p∇2Fpupkqqe, eq.

In order to find a good incremental correction step, we can consider

epkq “ argmin
ePRN

1

2
p∇2Fpupkqqe, eq ` p∇Fpupkqq, eq “ ´

“

∇2Fpupkqq
‰´1∇Fpupkqq.

This is the Newton–Raphson iteration

upk`1q “ upkq ´
“

∇2Fpupkqq
‰´1∇Fpupkqq. (9.18) eqn:Newton

In the above iteration step, we need to solve a linear system, the Jacobian equation:

Aepkq :“
“

∇2Fpupkqq
‰

epkq “ ´∇Fpupkqq “: rpkq. (9.19) eqn:Jeqn

We can employ the methods discussed in the previous chapters to solve such equations.

Listing 9.1: Newton–Raphson method

1 Given an initial guess u P V and set r Ð ´∇Fpuq;

2 while }r} ą ε

3 solve the Jacobian equation ∇2Fpuqe “ r;
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4 find a good stepsize α ą 0;

5 u Ð u ` α e; r Ð ´∇Fpuq;

6 end

The Newton-Raphson method converges very fast (second-order convergence) if the initial

guess is close enough to the exact solution. So if a good initial guess is available, the main

computation cost of the above algorithm is assembling the Jacobian systems and solving it to

acceptable accuracy. If we apply a multigrid algorithm to solve the Jacobian systems, then this

method is usually called Newton-Multigrid method. Similarly, another wide-used approach to

apply a domain decomposition preconditioned Krylov method to solve the Jacobian systems,

then this method is called Newton-Schwarz-Krylov method. Note that we might not need to

assemble the Jacobian system explicitly; instead, we can use a Jacobian-free scheme.

9.2.3 Full approximation scheme

For the nonlinear equation (9.15), the residual corresponding to an approximate solution v

can be defined as

r :“ ´Gpvq “ Gpuq ´ Gpvq (9.20) eqn:nonlinear-res

However, because G is not linear, r ‰ Gpu ´ vq. In FAS, instead of considering the residual

equation as in the linear case, the full equation is solved on the coarse grids.

We now use the following two-grid method to demonstrate the basic idea of FAS. Let up1q

be an approximate solution on the fine grid after several steps of relaxation. On the coarse grid,

according to (9.20), we need to solve the following nonlinear equation

Gc

`

up1q
c

˘

´ Gc

`

IT
c u

p1q
˘

“ rc “ IT
c r “ ´IT

c G
`

up1q
˘

. (9.21) eqn:nonlinear-coarse

This means, on the coarse level, a problem similar to the original problem (with different right-

hand side) should be solved

Gc

`

up1q
c

˘

“ Gc

`

IT
c u

p1q
˘

´ IT
c G

`

up1q
˘

. (9.22) eqn:nonlinear-coarse1

Usually the right-hand side of the above equation is denoted as τcpu
p1qq and is called the tau

correction. Note that the coarse-level equation Gc can be obtained from the discretization on

the coarse grid. We can also use the Galerkin method

Gcpucq :“ IT
c GpIcucq.

Once the problem (9.22) is solved, we correct the approximation as

up2q “ up1q ` Ic
`

up1q
c ´ IT

c u
p1q
˘

. (9.23) eqn:nonlinear-correction
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Apparently the above idea can be applied recursively as we discussed in §6.3. Because the

coarse-grid problem is solved for the full approximation, rather than the error, the method is

named as the Full Approximation Scheme. In this algorithm, evaluating the nonlinear function

is usually the most expensive part computationally. We summarize the two-grid FAS algorithm

as follows:

Listing 9.2: Full Approximation Scheme

1 Given an initial guess u P V ;

2 Solve the nonlinear equation Gcpucq “ GcpIT
c uq ´ IT

c Gpuq;

3 u Ð u ` Icpuc ´ IT
c uq;

9.2.4 Subspace correction methods for convex minimization

Apparently, the idea of subspace correction methods can be easily extended to unconstrained

convex minimization problems here. The convergence analysis of SSC and PSC methods has

been given by Tai and Xu [177].

9.3 Constrained minimization

In this section, we consider multilevel solvers for constrained minimization problems

u “ argmin
vPK0

Fpvq :“
1

2
arv, vs ´ fpvq, (9.24) eqn:EVI2

which is equivalent to the variational inequality (9.2).

9.3.1 Projected full approximation method

Since the the above problem is nonlinear, we can apply the Full Approximation Scheme

introduced in the previous section to solve this problem. And this is the so-called Projected

Fully Approximation Scheme (PFAS) by Brandt and Cryer [54].

As we have discussed in the previous chapters, we first need to find a relatively simple iterative

procedure which is able to dump the high-frequency part of the error quickly. In order to obtain

a smoother for (9.24), we can employ the simple iterative methods discussed in §2.1 and then

apply a projection step to ensure the new iteration stays in the feasible set. For example, if uold

is the previous iteration and uGS is the iteration after one or several Gauss-Seidel sweeps, then

unew :“ maxt0, uGSu P K0 is the new iteration. This method is naturally called the Projected

Gauss-Seidel (PGS) method.

At some point PGS will not reduce error efficiently any more, we then apply FAS to approx-

imate the error on a coarser level and continue this procedure until the coarsest level where the
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nonlinear problem can be solved quickly and accurately. To ease the notation, we explain the

idea using a two-grid algorithm for now. We first solve the general LCP problem on a fine level

with a given right-hand side fl
$

’

’

’

&

’

’

’

%

Au ě f

u ě 0

⟨Au´ f, u⟩ “ 0.

using the PGS method or some other smoother to obtain an approximate solution up1q. Then

we solve the above LCP on a coarse level with the right-hand side

fc :“ IT
c

`

f ´ Aup1q
˘

` Ac IT
c u

p1q

to obtain an approximation u
p1q
c . In turn, an improved approximation is given by

up2q “ up1q ` Ic
`

up1q
c ´ IT

c u
p1q
˘

.

9.3.2 Interior point method

For simplicity, we now consider the constrained minimization problem (9.2) on the finite

dimensional space RN , that is to say

u “ argmin
vě0, vPRN

Fpvq :“
1

2
vTAv ´ fT v. (9.25) eqn:disEVI2

In this case, the Lagrange multiplier σ P RN satisfies that σ “ ´Gpuq. Then we have the

first-order optimality condition

σ ` Gpuq “ 0, σ ď 0,

Uσ “ 0, u ě 0.

Here we use a convention often employed in the literature U :“ diagtu1, . . . , uNu; similarly, we

will denote Σ :“ diagtσ1, . . . , σNu.

The condition Uσ “ 0 (or equivalently, uiσi “ 0 for any i “ 1, . . . , N) is usually called the

complementarity condition. We now try to relax this condition such that Uσ “ µ1, where µ is

a positive penalty parameter and 1 is an all-one vector. At the same time, we try to maintain

the iterative solution pu, σq strictly in the primal-dual feasible set, i.e., u ą 0 and σ ă 0. Hence

we need to solve a system of nonlinear equations:
#

σ ` Gpuq “ 0,

Uσ ´ µ1 “ 0.

We apply the Newton’s method for this system and obtain an iterative method
#

Aδu` δσ “ ´σ ´ Gpuq

Σδu` Uδσ “ µ1 ´ Uσ
or

˜

A I

Σ U

¸˜

δu

δσ

¸

“

˜

f ´Au´ σ

µ1 ´ Uσ

¸

.
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Upon solving this linear system, we can obtain a new iteration. Furthermore, in the above

system, I, Σ, and U are all known diagonal matrices, we only need to solve the Schur complement

problem

pA´ U´1Σqδu “ µU´11 ` f ´Au. (9.26) eqn:IPmethod

Moreover, since σ ă 0 and u ą 0, the above equation is well-defined and the coefficient matrix

is SPD. We can then apply a multilevel iterative method discussed in the previous chapters to

solve it efficiently; see [15] for details.

9.3.3 Monotone multigrid method

Now suppose we hierarchical meshes, tM0
h, . . . ,M

j
hu and let Al, bl, l “ 0, . . . , j are the

stiffness matrices and right-hand-side vectors corresponding to the partition Ml
h, respectively.

As usual, Mj
h is the finest mesh. We denote the linear finite element space by V l

h associated

with mesh Ml
h.

We need two kinds of orthogonal projections onto the finite element space V l
h. The L2-

projections Ql : V
j
h Ñ V l

h are defined by

pQlvh, ϕlq “ pvh, ϕlq, ϕl P V l
h, (9.27) eqn:L2proj

and the energy projections Πl : V
j
h Ñ V l

h by

arΠlvh, ϕls “ arvh, ϕls, ϕl P V l
h. (9.28) eqn:proj

We first define multigrid methods recursively. For a given initial guess w
p0q

j P V j
h

ŞK0. A

coarse grid correction is performed: computing the approximate defect e
p0q

j´1 “ Πj´1pwh´w
p0q

j q P

V j´1
h as the solution of the quadratic programming problem

min
e

p0q

j´1PV j´1
h , w

p0q

j `e
p0q

j´1

ŞK0

1

2
are

p0q

j´1, e
p0q

j´1s ´ xσpw
p0q

j q, e
p0q

j´1y. (9.29) eqn:corrction

Then let w
p1q

j “ w
p0q

j ` e
p0q

j´1. Then we apply m steps of post-smoothing scheme, like projected

SOR to obtain w
pm`1q

j . For the coarse correction step, instead of solving the problem on the

coarser level j ´ 1 exactly, we can solve it by the same multigrid procedure described here. In

this way, we obtain a recursive multigrid V-cycle. If we perform coarse grid correction twice at

each level, then we get a W-cycle.

One problem with this procedure is that ej´1 and wj are in different levels. To avoid this

difficulty, we propose the following coarse grid correction scheme instead of (9.29):

min
d

p0q

j´1PV j´1
h

ŞK0

1

2
ard

p0q

j´1, d
p0q

j´1s ´ xσpw
p0q

j q, d
p0q

j´1y. (9.30) eqn:newcorrction
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And then w
p1q

j “ w
p0q

j ` d
p0q

j´1 which is always in K0 because both w
p0q

j and d
p0q

j´1 are in K0 by

definition. It is easy to check that the local obstacles in this method are monotone in the sense

of Kornhuber [119]. Then we get the similar V-cycle or W-cycle multigrid method as for linear

problems expect we need to add a projection step to project the iterates to K0.

Remark 9.3. This method is shown to be not very good by Tai’s test example. The reason

is that the coarse grid correction only works when the current approximation is less than the

exact solution in the method.

9.4 Constraint decomposition method

It is known the general V-cycle can be written as a successive subspace correction method.

For a sequence of search directions tϕiu
N
i“1 such that V j

h :“ spantϕiu
N
i“1. We can construct

a numerical method for find the minimizer of (9.12) as a sequential quadratic programming

method. Starting from an initial guess w
p0q

j P V j
h

ŞK0, at each iteration, we solve

min
w

p0q

j `αϕ1PV j
h

ŞK0

1

2
arw

p0q

j ` αϕ1, w
p0q

j ` αϕ1s ´ f0pw
p0q

j ` αϕ1q. (9.31) eqn:ssc

Similar to the discussion in the previous section, we need to solve a discrete problem

min
w

p0q

j `αϕ1PV j
h

ŞK0

1

2
arϕ1, ϕ1sα2 ´ xσpw

p0q

j q, ϕ1yα. (9.32) eqn:ssc2

Then the new iterate is obtained by w
p1q

j “ w
p0q

j `αϕ1. Similarly, we start from w
p1q

j and search

in the direction ϕ2 to obtain w
p2q

j , and so on.

If we choose spantϕiu
N
i“1 as the canonical nodal basis of V j

h , then it is just usual nonlinear

or projected Gauss-Seidel method. To take advantage of multilevel basis, it is natural to choose

spantϕiu
N
i“1 “ tϕj1, . . . , ϕ

j
Nj
, ϕj´1

1 , . . . , ϕj´1
Nj´1

, . . . , ϕ11, . . . , ϕ
1
N1

u. It falls into the category of ex-

tended relaxation methods. The problem with this procedure is that ϕi might not be in the finest

level j, which costs extra computation effort to enforce the constraints w
pi´1q

j ` αϕi P V j
h

ŞK0.

We refer to the paper by Tai [176] for details.



Chapter 10

Robustness and Adaptivity

ch:robust

The efficient and robust solution of linear algebraic systems is one of the main bottlenecks

in large-scale numerical simulation. In this report, we review some old and new techniques for

improving the robustness of iterative solvers for large-scale sparse linear equations. In particular,

we will focus on methods based on machine learning to automatically select solver components

in order to get better overall simulation performance. Deep learning techniques, which have

gained popularity in many application areas of machine learning, can also be used to enhance

this automatic selection procedure.

10.1 Robustness of linear solvers
sec:intro

Due to the fact that, for many applications, a significant portion of simulation time for

transient problems is spent in linear solvers, a lot of efforts have been directed to the research on

solution methods for linear systems, which result in plenty of solution algorithms and software

packages [4]. Oftentimes practitioners without “proper” training might find themselves in a very

difficult position to choose a good solver or its parameters from excessive number of options.

More frustratingly, for a complex physical problem, there might not exist a universally best

solver for all linear systems over the course of simulation. Actually, performance of linear solvers

are largely affected by stage of evolution of physics, characteristics of discretization methods,

requirement of accuracy, closeness to solution, limitation in computing resources, and so on.

10.1.1 Why robustness is important

Simulation-based scientific discovery and engineering design have been the main driving

force for developing high-performance computers and algorithms. As we entered the multi-

238
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petaflop1 era, frequency of a single CPU core does not increase beyond certain critical value.

On the other hand, the number of computing cores in supercomputers is growing exponentially,

which results in higher and higher system complexity [3]. More processing cores competing for

various levels of memory resources widens the speed gap between computations and memory

accesses. It has become increasingly important for algorithms to be well-suited to the emerging

parallel hardware architectures of extreme scale. This trend also affects how one would choose

a solver for a particular problem. In this sense, complexity and different choices of hardware

architectures pose more difficulties in the choosing solutions methods for domain scientists. Co-

design of hardware, software, algorithm, and application is crucial to the success of scientific or

engineering computing to achieve exascale2 performance [138, 5, 75].

Direct methods are popular in practice due to their robustness for a large class of problems.

Some specialized direct solvers, like fast Poisson solvers based on FFT, are very efficient and

readily useable at different hardware and software platforms (see [94, 133] for example). But

these methods can only be applied for specific equations or special discretizations, which restricts

their applications in complicated engineering problems. Some direct methods, like general-

purpose sparse direct solvers [167], can be employed as a black-box solver and be plugged into

user-domain simulation programs easily. The sparse direct solvers are robust and effective for a

large class of discrete problems. More importantly, they require little human intervention and

are especially efficient for relatively small problems with around a million unknowns. Larger

problems, on the other hand, tend to require a large amount of memory as well as computational

time.

If applied successfully, direct methods can provide solution to nonsingular systems as accurate

as floating accuracy and condition number allow; see [70, 71] for example. However, this also

means that direct methods might give non-necessarily “high accuracy” for some applications. In

fact, accuracy is rarely the only property we ask for linear algebraic solvers. Efficiency, scalability,

cost-effectiveness, robustness, and reliability are important properties and we need to balance

between them in practice. There is no universal criteria for choosing solution methods and it all

depends on what we want to achieve and what cost we are willing to pay. For example, in order

to accelerate simulation when solving Jacobian systems arsing from Newton linearization, we

might use different types of iterative methods to different levels of accuracy in different stages

of nonlinear iteration [24]. Direct methods usually fail to provide enough flexibility for users to

tune and iterative methods are usually employed in such situations.

Ever increasing practical demand to solve very large linear systems and requirements on ap-

plicability suggest considering iterative methods as an alternative. Iterative methods can be used

11015 floating-point operations per second.
21018 floating-point operations per second.
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as general-purpose or specialized solvers due to their cost-effectiveness and memory-efficiency;

see, for example, [118]. The most successful example of iterative methods is the so-called Krylov

subspace method (KSM), like the conjugate gradient (CG) method and the generalized minimal

residual (GMRES) method [166]. Since properties of linear systems can be very different in a

single simulation run, robustness of solution methods is an important, if not the biggest, con-

cern. However, the biggest weakness of iterative methods is arguably robustness, which refers

to the ability of iterative methods to resist perturbations or changes to the underlying physical

equation. Hence, to design a solver package based on iterative methods as a replacement of the

state-of-the-art direct solvers, the issue of robustness has to be resolved [170]. Indeed, a robust

general iterative solver is still hard to obtain, especially in industrial applications, and might be

the biggest dream for many engineers.

10.1.2 Robustness of linear solvers

Generally speaking, the robustness of a system can be viewed as the property of being strong

and healthy in the constitution. Most iterative solution methods can converge in a timely manner

for a variety of simple model problems, but slow down considerably or even fail to converge when

applied to more complex cases. For solution methods of linear algebraic systems, the definition

of robustness is twofold:

• First of all, the method should be breakdown-free and provide a reliable solution. This

basically says that we would like the simulation to run without unexpected interruptions

caused by the linear solver.

• Secondly, the robustness refers to the ability of solution methods to handle most problems

arising from simulations in a highly efficient manner. That is to say, the performance of the

solution method should be resistant to perturbations of physical as well as discretization

parameters and it gives reasonably accurate solutions in reasonable turn-back time.

def:robust Definition 10.1 (Robustness of a linear solver). A linear solver S is robust for a class of prob-

lems P if and only if the following property

max
PαPP

›

›SpPαq
›

› À ε,

where } ¨ } is a performance measure and ε is acceptance tolerance.

The performance measure and tolerance are usually problem-dependent and can be deter-

mined by the end users. Unfortunately, oftentimes we could not find a single solver good for all

different problem parameters. Hence we can weaken the condition and call a class of solvers S
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is robust if

argmin
SβPS

max
PαPP

›

›SβpPαq
›

› À ε.

10.2 Robustness of Iterative Solvers
sec:pre

Consider the large-scale sparse system of linear algebraic equations arising from a partial

differential equation. As we pointed out earlier, performance of solution methods could be

affected by properties of the physical problem as well as its discretization methods, let alone

parameters of the solution methods. Usually, these properties can be characterized by simple

parameters, like temperature, diffusion coefficient, spatial mesh size, etc. There are also cases

when we can not or would not characterize those properties as parameters for cost concerns,

like heterogenous coefficients, unstructured grids, etc. These properties will eventually enter

the coefficient matrices A and usually handled in a purely algebraic manner. There are several

strategies to improve robustness of iterative solvers and we can categorise them into three types

described in this section.

10.2.1 Constructing preconditioners not sensitive to parameters

Preconditioners based on incomplete factorization of A, like the Incomplete LU (ILU) meth-

ods, are undoubtedly among the most popular methods in engineering [166]. ILU methods are

purely algebraic and are widely applied as subproblem solvers in the domain decomposition

(DD) methods for parallel computing. A related type of methods is the so-called Approximate

Inverse (AINV) preconditioners [21, 18] which is based the approximated factorizations of A´1.

Incomplete factorizations can fail for a general SPD matrix due to the so-called pivot breakdown

and could be improved by shifting or modification of A. A more robust remedy for poorly con-

ditioned linear systems is the breakdown-free versions of ILU [33, 22, 34, 157]. Sometimes, ILU

methods might yield a relatively high complexity in order to obtain good convergence behavior,

especially in 3D.

Algebraic multigrid (AMG) is another type of popular preconditioning technique [55, 56, 165]

and it is, in some sense, more robust compared with GMG methods [164]. Problems with

anisotropic coefficients on regular meshes, or problems with isotropic coefficients on anisotropic

meshes, will cause troubles for geometric multigrid methods. While GMG essentially relies on

the availability of robust smoothers, AMG takes a different approach by focusing on constructing

suitable coarse space. Following the seminar work by Brandt et al. [55, 56, 51] on the convergence

analysis applicable to AMG methods, there have been a lot of discussions on the AMG theory;

see [165, 60, 172, 88, 89, 183] for example. The readers are referred to the recent survey papers on

theoretical development [125, 151, 195] as well as applications and parallelization [199] of AMG
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methods. For the development on non-symmetric problems, we refer to [127, 149, 129, 128]; for

analysis based on aggregation-type AMG algorithms, we refer to [180, 182, 61, 139, 143, 59].

10.2.2 Combining iteration, precondition, and decoupling strategies

It is known that the ILU methods can be employed as smoothers to improve robustness

of the multigrid methods [115, 185, 188]. A simple and transparent framework for combining

preconditioners like ILU or additive Schwarz preconditioners with AMG or any another norm-

convergent iterative method has been proposed by Hu et al. [111] for SPD problems. In such a

combined preconditioner, the component provided by the norm-convergent iterative method need

not be very effective when used alone. Such a framework has been applied to solve the systems

arising from the porous media flow problem [111] and extended to nonsymmetric problems in the

radiation diffusion problem [209, 210]. Another related strategy by combining different methods

to construct a more powerful solver for nonsymmetric problems can be found in [72].

For systems of partial differential equations, besides iterative solvers and preconditioners

and their combinations, it is sometimes beneficiary to apply extra decoupling steps to weaken

the strength of coupling between different physical variables. By combining decoupling methods

with appropriate solution methods, we can improve solver efficiency and robustness for many

complex problems arising from discretization of coupled (nonlinear) PDE systems; for example,

for semiconductor device simulation [11] and for compositional model in reservoir simulation [120,

156]. In particular, Qiao et al. [156] discussed the conditions when a preconditioner is suitable

for a particular decoupling strategy.

For transient problems, it is very often that no single iterative solver, preconditioner, or

decoupling is able to work very well for all linear systems arising during simulation. In order

to minimize solver failure possibility and maximize robustness, a natural idea is to combine

various solvers or preconditioners during simulation. One possible approach is the so-called

poly-iterative method, which applies various solvers or preconditioners with similar structure

simultaneously [17, 101]. An alternative approach is the composite method, which relies on a

composition of multiple iterative solvers to improve reliability [29, 26, 28, 27]. Although these

multi-method solvers are viable approaches to improve robustness in practice, especially for

large-scale problems, they tend to have a non-negligible overhead (i.e., extra computational

work during application); see a summary recently given by Sood [171] for more details.

10.2.3 Empolying an automated solver-selection procedure

Besides the methods mentioned above, an adaptive or automatic solver selection procedure

can be constructed to assist users to choose free parameters (see Figure 10.1) based on the
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Figure 10.1: Different ways of combined multiple solvers to improve robustnessfig:combined

given feature parameters in order to get robust performance; see, for example, [158, 136, 200,

201]. The general algorithm selection problem in an abstract setting has been proposed by

Rice [159]. Since then this problem has discussed by many research groups and a software

package (ASLib) for benchmarking algorithm selection methods has been recently developed [31].

A software framework (SALSA) has been suggested for self-adapting linear algebra and linear

solution algorithms [77, 78, 73, 76, 83]. One may use analytical or empirical information to

design adaptive strategies for selecting solvers or their parameters for different problems; see

Figure 10.2.

Figure 10.2: Typical procedure for constructing adaptive iterative solversfig:adaptive

This approach has been shown to be effective in many fields. In our experience, there are

several key components to make this approach efficient for a particular problem:

1. choosing a general enough solution procedure which is efficient or even optimal for simple

cases and can be adjusted for more difficult cases;

2. providing a small set of feature parameters which affect solver performance the most;
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3. constructing a performance model based on analytical convergence factor estimates or

empirical experiments which can predict how efficient the solver might be;

4. having an efficient procedure to train a performance model based on actually simulation

runs, in case an analytical performance model is hard or not possible to be obtained.

10.3 Robustness of ILU Preconditioners
sec:robustilu

It is well-known that direct solvers have better robustness properties and can be usually

applied as a blackbox solver. In this section, we briefly discuss the robustness of LU and ILU

factorizations. They are not only important general-purpose solvers, but also can be combined

with multilevel iterative methods in various ways.

10.3.1 LU factorization

LU factorization and Gaussian elimination (GE) are well-known methods for solving linear

systems, especially for problems with general dense coefficient matrices. For simplicity, we do

not consider numerical stability and pivoting here. For a nonsingular matrix A P RNˆN , we

need find a lower triangular matrix L P RNˆN and an upper triangular matrix U P RNˆN such

that

A “ LU.

Since we can require the main diagonal of L to an all-one vector, the two factors L and U can

be saved in a compact way in the original matrix A. So we give the GE algorithm implemented

as an in-place algorithm (the i-th row of A is overwritten by the i-th row of L and U).

Listing 10.1: Gaussian elimination – KIJ variant

1 for k “ 1, 2, . . . , N ´ 1

2 for i “ k ` 1, . . . , N

3 aik Ð aik{akk;

4 for j “ k ` 1, . . . , N

5 aij Ð aij ´ aikakj;

6 end

7 end

8 end

The following theorem first proved by Fan [90] is important to analyze the procedure of

Gaussian elimination. This theorem makes sure the procedure can always continue and will not

break down. This is an important robustness property for linear solvers.
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thm:fan Theorem 10.2 (Fan Theorem). Let A be an M-matrix and A1 be the matrix obtained from

the first step of Gaussian elimination. Then A1 is also an M-matrix. The pN ´ 1q ˆ pN ´ 1q

sub-matrix of A1 by removing its first row and first column is also an M-matrix.

Although the above algorithm (the KIJ variant) is usually used to explain the Gaussian elim-

ination algorithm, it is rarely employed in practice due to performance consideration, especially

for sparse problems stored in certain data structures like CSR discussed in §6.5. Next we give a

more useful (or efficient) implementation of the same algorithm, which is referred to as the the

Gaussian – IKJ variant.

Listing 10.2: Gaussian elimination – IKJ variant

1 for i “ 2, . . . , N

2 for k “ 1, . . . , i ´ 1

3 aik Ð aik{akk;

4 for j “ k ` 1, . . . , N

5 aij Ð aij ´ aikakj;

6 end

7 end

8 end

10.3.2 Incomplete LU factorization

Incomplete LU factorization can be viewed as an inaccurate LU factorization and provides

an approximation to LU. In general, we need find a lower triangular matrix L P RNˆN and an

upper triangular matrix U P RNˆN such that

R “ LU ´A, Ã :“ A`R,

in which R P RNˆN has certain static or dynamic zero pattern. For simplicity, we only discuss

methods with static zero pattern. Equivalently, we can specify, for the approximation matrix

Ã, a fixed zero pattern

Z :“
␣

pi, jq | i ‰ j, 1 ď i, j ď N
(

.

Note that, with this definition, we require that the diagonal entries of Ã to be nonzero. Whence

the zero or nonzero pattern of the factorization is given, we can modify the LU methods to the

corresponding ILU (with static zero pattern) methods. For example, ILU(0) is a method with

Z which has the same zero pattern as the coefficient matrix A.

Listing 10.3: ILU with static zero pattern – KIJ variant

1 %% Given a zero pattern Z
2 for pi, jq P Z, aij Ð 0;

3 for k “ 1, 2, . . . , N ´ 1
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4 for i “ k ` 1, . . . , N && pi, jq R Z
5 aik Ð aik{akk;

6 for j “ k ` 1, . . . , N && pi, jq R Z
7 aij Ð aij ´ aikakj;

8 end

9 end

10 end

Similar to the LU methods discussed previously, we can also construct an IKJ variant of the

above ILU method.

Listing 10.4: ILU with static zero pattern – IKJ variant

1 %% Given a zero pattern Z
2 for pi, jq P Z, aij Ð 0;

3 for i “ 2, . . . , N

4 for k “ 1, . . . , i ´ 1 && pi, jq R Z
5 aik Ð aik{akk;

6 for j “ k ` 1, . . . , N && pi, jq R Z
7 aij Ð aij ´ aikakj;

8 end

9 end

10 end

10.3.3 Robustness of ILU factorization

Definition 10.3 (Regular splitting). Let A,M , N be three given matrices satisfying A “ M´N .

The pair of matrices (M , N) is a regular splitting of A, if M is nonsingular and M´1 and N

are nonnegative.

We now consider the factorization method in Algorithm 10.3. Here, we use the subscript k

to denote the k-step of factorization. So A1 P RNˆN is the matrix after first step of the Gauss

elimination. Then

Ã1 “ A1 `R1,

where Ã1 P RNˆN is the result of the first step of ILU. According to the definition of Z, the

dropped entries are nonpositive and R1 is nonnegative.

By Theorem 10.2, we find that A1 is an M-matrix. It can be proved that Ã1 is also an

M-matrix; see HW 10.2. In this sense, the algorithm will not break down and it can further

produce

Ak “ LkÃk´1, Lk :“ I ´
1

a
pkq

kk

«

0k

Ak`1:N,k

ff

eTk .
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Hence, at the k-th step, we obtain that

Ãk “ Ak `Rk “ LkÃk´1 `Rk.

Applying the above relation recursively, we get

ÃN´1 “
`

LN´1LN´2 ¨ ¨ ¨L1

˘

A`
`

LN´1LN´2 ¨ ¨ ¨L2R1 ` ¨ ¨ ¨ ` LN´1RN´2 `RN´1

˘

.

Define

U :“ ÃN´1,

L :“
`

LN´1LN´2 ¨ ¨ ¨L1

˘´1
,

S :“ LN´1LN´2 ¨ ¨ ¨L2R1 ` ¨ ¨ ¨ ` LN´1RN´2 `RN´1.

Notice that, at the k-th step, entries dropped only appear in the pN ´ kq ˆ pN ´ kq lower

sub-matrix of Ak. So the first k rows and columns of Rk are zero. As a result, we have

LN´1LN´2 ¨ ¨ ¨Lk`1Rk “ LN´1LN´2 ¨ ¨ ¨L1Rk.

Then it is easy to see that

S “ LN´1LN´2 ¨ ¨ ¨L1pR1 `R2 ` ¨ ¨ ¨ `RN q “ L´1R,

where R :“ R1 ` R2 ` ¨ ¨ ¨ ` RN . This gives LU “ A ` R and the result can be summarized in

the following theorem.

thm:ilu Theorem 10.4 (Robustness of ILU). Let A be an M-matrix and Z be a given zero pattern.

Then Algorithm 10.3 does not break down and produces an incomplete factorization

A “ LU ´R,

which is a regular splitting of A.

10.4 Workflow for Selecting Solvers
sec:select

Along with the development of machine learning and deep learning theories, data-driven

algorithms have been used in a variety of ways for automatically selecting solvers and their pa-

rameters. Most traditional ML-based methods train a supervised classifier to predict appropriate

parameters for unknown linear systems [109, 24, 84].
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10.4.1 Automatic classifiers for linear solvers

The key point of these methods is very similar. Firstly, one has to create a database and

split it into a training set and a test set (sometimes, a validation set as well). Every entry in

the database consists of

• input parameters:

– feature parameters, e.g., symmetry of the coefficient matrix, size of the coefficient

matrix;

– free parameters, e.g., type of preconditioner, number of computing nodes.

• output labels, e.g., whether the iterative method converges, how many iteration needed.

Secondly, using the training set to train the classifier. Finally, using the test set to verify the

effectiveness of the trained classifier.

In [109], neural networks with a single hidden layer were used as a classifier to divide 260

matrixes which is randomly selected from Florida Sparse Matrix Collection, combining with

72 iterative methods, into two categories (convergent and non-convergent). In [24], alternation

decision trees were applied to do the classification, but the output label is not a simple criteria

to reflect convergence but compared with a specific baseline solver. More specifically, only if the

iterative method is at least ρ time faster than the baseline method (the GMRES method with

block ILU preconditioner), it will be labeled as 1, otherwise ´1. In [84], the authors suggested

that the multi-label classifiers outperform single-label classifiers in almost every simulation. And

in the lighthouse project [137], a variety of classification methods like LibSVM, BayesNet, KNN,

and so on were compared in terms of accuracy.

A common conclusion that can be drawn from the previous studies is that the number of input

parameters is not proportional to the classification effectiveness. This suggests that reducing

the number of parameters can decrease the overhead of computing attributes of matrix without

significantly influencing the accuracy of classification. Bhowmick et al. [30] studied feature set

reduction and ordering; and they demonstrated that the training time could be reduced by a

factor of 125 on average.

10.4.2 General methodology

• The workflow contains two steps: the offline step trains a model for selecting “optimal”

free parameters with human experts; the online step, on the other hand, select parameters

automatically based on the trained model.
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Figure 10.3: Workflow for selecting solver parametersfig:workflow

• The solver and application experts should work together to choose an efficient solution

method which provides enough generality for the simulation problem at hand. Experts

should also choose a reasonable set of free parameters in order to improve performance of

training.

• We focus more on reinforced learning and transfer learning to obtain a better model and

prevent over-fitting.

• Which training algorithm to use is probably of secondary importance as the training is

done offline.

I. Offline step

1. For a given simulation problem, we need to determine what input parameters (including

both feature and free parameters) should be considered based on the given objective; This

step is mainly by human experts.

2. We then select feature and free parameters to obtain an input set with small number

of most important solver parameters; This step can be done by experts with help from

machines.

3. Choose a machine learning model based on the size of input set as well as the amount of

training data we have at hand; This step can be done by experts with help from machines.
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4. Train the model; This step is done by machines.

II. Online step

1. For a specific linear systems during a simulation run, we extract features requested by

Step 2 of the office step.

2. Obtain free parameters based on the trained model.

3. Collect the result data to improve offline model later on.

10.5 Robustness of Multilevel Iterative Methods
sec:robustmg

A lot of effort has been devoted to improve robustness of iterative methods. One particularly

powerful technique is combining various Krylov subspace methods with proper preconditioners.

When combined with suitable preconditioners, Krylov subspace methods are efficient for linear

systems arising from partial differential equations. For example, geometric multigrid (GMG)

methods [107, 65, 179], although by themselves can be used as efficient solution methods, are

usually applied as preconditioners for KSMs. These methods are uniformly efficient with respect

to discretization scales and can be equipped with weighted smoothers (like damped Jacobi and

SOR methods [204]) to yield more robust convergence behavior for some partial differential

equations. On the other hand, such a solver framework also introduces many parameters and

an adaptive selecting procedure to choose solvers and parameters is critical for end users [17,

136, 26, 28, 79].

Machine learning (ML) techniques can naturally be applied to construct an adaptive or

automatic procedure to choose good solver parameters in practice. There are several algo-

rithms based on machine learning for classifying or selecting linear solvers [140]. Some focus

on constructing models or selecting parameters for training [24, 109, 30, 25, 169]; some focus

on learning algorithms to enhance performance [84, 137]; and, more recently, some focus on

automatically constructing iterative methods using machine learning [100, 110, 124, 114]. We

propose a two-step workflow for engineers to build adaptive linear solvers based on multilevel

methods accelerated by KSMs:

• In the offline step, we determine a set of parameters based on simulation goals; select

feature and variable parameters for a suitable machine learning model; and then train an

initial model for selecting appropriate variable parameters.
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• During the online step, we extract feature parameters based available problem information;

obtain input parameters based on trained model and plug them into the solution procedure;

and, finally, collect the resulting data for improving the offline model further.

10.5.1 Adaptive multilevel iterative solvers

Multilevel preconditioners like GMG and AMG might be, sometimes, too costly or, some

other times, not robust with respect to physical parameters. Such solution strategy also intro-

duce several parameters, like KSM method type, smoother type, smoother ordering, coarsening

type, interpolation type, and so on. For a practical simulation problem, there could be many

other parameters for describing underlying physics, mathematical model, discretization method,

solution procedure, and available computing resource.

For the properties that can be parameterized, we can divide them into two groups: feature

parameters and free parameters. Feature parameters or features include task characteristics

(physical, discretization, solver, resource, etc) that are considered fixed for a specific simulation

run. On the other hand, free parameters are the properties that can be adjusted by hand or

automatically for solving different problems. Here the term,free parameters, is a general concept,

which might be restart number of GMRES, type of preconditioner, number of smoothing steps

in AMG, number of CPU cores to used, and so on.

Traditionally, when facing a particular problem, domain scientists need to choose a fixed

preconditioner with an appropriate multigrid method using a-priori information. In some cases,

local Fourier analysis (LFA) or local mode analysis can be applied to predict asymptotic conver-

gence factor of multigrid algorithms [53, 179]. Moreover, approximations of convergence factor

based on LFA can be obtained using automated procedures [187, 117, 113], it makes selecting a

good multigrid method possible. Numerical software packages for carrying out LFA automati-

cally [187, 2, 1] and optimizing multigrid parameters [153, 168, 66] are also available. However,

it is usually difficult, if not impossible, to select the “best” method in advance; especially in the

purely algebraic setting, as in most of the practical applications.

10.5.2 Constructing multigrid based on machine learning

Recently, more advanced deep network models are involved in the process of auto-tuning

the iterative methods. The main feature of these methods is that advanced machine learning

algorithms are applied to construct specific components of some iterative methods, like the

prolongation and smoothing operators in multigrid methods [174, 168, 100, 124]. In [168],

evolutionary algorithms were employed to choose the faster solver by adjusting the type of

smoother, the number of smoothing steps, as well as the relaxation factor in each coarse level.
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Both [124] and [100] focused on the prolongation operator in AMG—The first one used graph

convolution neural networks to learn the weight coefficients in prolongation matrix P and the

second one used ResNet considered previously in [174].

One particularly useful trick demonstrated in these papers is that we do not have to use the

same type of data in the training set and test set. In fact, due to generality of neural networks,

we can use the data with certain properties that is easy to calculate (for example small in size)

in the training set, while using the data from difficult problem in test set. For example, the

error propagation matrix of a two-level AMG with prolongation P and smoother S can be given

by

E “ pI ´ STAqrI ´ P pP TAP q´1P TAspI ´ SAq.

In general, the spectral radius of E is not easy to estimate for large-scale systems and we can

construct, in the training set, matrices A with special structures that are relatively easy to

calculate the spectral radius of the corresponding matrix E.

Furthermore, deep neural networks are also used as optimization techniques. Based on

the existed methods, researchers utilize neural networks to optimize the parameters in those

methods, in order to achieving better performance, and result in new methods which is different

from the methods mentioned above. In [114], steps in GMG are considered as an analogy of

layers in deep neural networks. Since the prolongation matrix P , restriction matrix R and

the damping coefficient ω is differentiable in each step, therefore backpropagation approach in

neural networks can be used to optimize P , R and ω. A method called DMG (Deep MultiGrid

method) is derived after training, but one shortcoming of the method is for every new matrix,

the whole process of training has to be re-run, which may be impractical. In [110], a variant of

Jacobi iterative method generated by CNN(Convolutional Neural Network) [122] or U-Net [163]

is illustrated using 2-D Poisson equation.

10.6 Homework problems

hw:GE HW 10.1. Try to implement the KIJ and IKJ variants of the Gaussian elimination method and

design numerical tests to compare their performance. Are there other implementation strategies?

Please specify.

hw:Saad1.33 HW 10.2. Suppose that M and N are two matrices which satisfy that M ď N and Npi, jq ď 0

for all i ‰ j. If M is an M-matrix, then N is an M-matrix.
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elliptique, voisine de la variationnelle. Annali della Scuola Normale Superiore di Pisa-

Classe di Scienze, 16(4):305–326, 1962.

[145] S. Nepomnyaschikh. Decomposition and fictitious domains methods for elliptic boundary

value problems. In Fifth International Symposium on Domain Decomposition Methods for

Partial Differential Equations, pages 62–72. Philadelphia: SIAM, 1992.

[146] M. Newman. Kantorovich’s inequality. Journal of Research of the National Bureau of

Standards Section B Mathematics and Mathematical Physics, page 33, 1960.

[147] R. Nicolaides. On the ℓ2 convergence of an algorithm for solving finite element equations.

Mathematics of Computation, 31(140):892–906, 1977.

[148] Y. Notay. Convergence analysis of perturbed two-grid and multigrid methods. SIAM

journal on numerical analysis, 45(3):1035–1044, 2007.

[149] Y. Notay. Algebraic analysis of two-grid methods: The nonsymmetric case. Numerical

Linear Algebra with Applications, 17(1):73–96, jan 2010.



BIBLIOGRAPHY 265

[150] Y. Notay. An aggregation-based algebraic multigrid method. Electronic transactions on

numerical analysis, 37(6):123–146, 2010.

[151] Y. Notay. Algebraic theory of two-grid methods. Numerical Mathematics: Theory, Meth-

ods and Applications, 8(2):168–198, 2015.

[152] Y. Notay and P. S. Vassilevski. Recursive Krylov-based multigrid cycles. Numerical Linear

Algebra with Applications, 15(July 2007):473–487, 2008.

[153] C. W. Oosterlee and R. Wienands. A genetic search for optimal multigrid components

within a fourier analysis setting. SIAM Journal on Scientific Computing, 24(3):924–944,

2003.

[154] P. Oswald. On discrete norm estimates related to multilevel preconditioners in the finite

element method. In Constructive Theory of Functions, Proc. Int. Conf. Varna, pages

203–214, 1991.

[155] S. Pissanetzky. Sparse matrix technology. Academic Press Inc. [Harcourt Brace Jovanovich

Publishers], London, 1984.

[156] C. Qiao, S. Wu, J. Xu, and C.-S. C.-S. Zhang. Analytical Decoupling Techniques for Fully

Implicit Reservoir Simulation. Journal of Computational Physics, 336:664–681, 2017.
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