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Some basic equations in CFD

• Non-Newtonian model equations

RE
Du
Dt

− ηs∆u +∇p − divτ = f

−divu = 0

τ +WiδF τ

δF t
= ηp(∇u + (∇u)T )

where δF τ/δF t is the Upper convected maxwell derivative,

δF τ

δF t
=

∂τ

∂t
+ u · ∇τ − τ∇u − (∇u)T τ
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Some basic equations in CFD

The Weissenberg numberWi is the measure of elasticity. For
values larger than 10 − 15, conventional algorithms are known to
start to fail. For the industrial applications, the values of the
Weissenberg number easily reaches 100 and it is considered that
this may not be overcome - SIAM News (2004).

Is the model bad?

We believe that the answer is NO!
• At least, Discrete Model can be designed so that the resulting
system is well-posed (Lee, Xu and Zhang (2010)).

• The model can be solved by Multigrid Method (Lee, Xu and
Zhang (2010) - Could not publish it due to the singular point for
P4-P3).
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Falling Sphere through cylinder
Collage of video image showing the descent of a 3/16
inch-diameter teflon sphere (Left). (Right Top) Velocity profile of the
sphere through CTAB/NASAL in time. (Right bottom) Velocity profile
of the sphere through Newtonian fluids (Numerical simulation). -
Belmonte, Jayaraman (Pritchard Lap in Penn State Univ.) Lee)

Remark
The model can be solved by Multigrid Method (Lee and Zhang (2010) -
Could not publish it due to the nonconvergence in mesh refinement).
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Fast Solution based on Augmented Lagrangian
Uzawa Method I
The time-dependent Stokes equation can be reformulated in the
following equivalent form for any r ≥ 0 : Find u and p such that( RE

∆t I − ηs∆h − r∇div ∇
−div 0

)(
u
p

)
=

(
f
0

)
.

An appropriate scailing, we may consider the following equation:(
A B∗

B 0

)(
u
p

)
=

(
I − ρ2∆h − κ2∇div ∇

−div 0

)(
u
p

)
=

(
f
0

)
.

The application of the Uzawa method for the reformulated system
would read

Auℓ+1 + B∗pℓ = f
pℓ+1 = pℓ + ωBuℓ+1,
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Fast Solution based on Augmented Lagrangian
Uzawa Method II
The application of the Uzawa method for the reformulated system
would read

Auℓ+1 + B∗pℓ = f
pℓ+1 = pℓ + ωBuℓ+1,

where ω should be chosen so that

0 < ω < 2/ρ(Sκ2), with Sκ2 = BA−1B∗

and A = I − ρ2∆h − κ2∇div. It can be shown that by
(Sherman-Morrison-Woodbury formula)

ρ(Sκ2) ≤
1
κ2

and for 0 < ω < 2κ2, the Uzawa method converges.
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Fast Solution based on Augmented Lagrangian
Uzawa Method III
The following estimate holds true :

∥p − pℓ∥0 ≤ 1
(1 + µ0κ2)ℓ

∥p − p0∥0

∥u − uℓ∥A ≤ 1√
κ2

1
(1 + µ0κ2)ℓ

∥p − p0∥0.

Remark
The method converges within one iteration if κ2 ≫ 1.
The cost of the one iteration is to solve the following system:

Au = (I − ρ2∆h − κ2∇div)u = f̃.

It is an example of nearly singular problem.
Young Ju Lee (TXST) LSEC May 16, 2023 8 / 57



Method of Subspace Corrections (Xu and Zikatanov 02,
J.AMS)

• Variational Problem : Find u ∈ V such that

a(u, v) = ⟨f , v⟩, ∀v ∈ V .

• Space decomposition:

V =
J∑

i=1

Vi .

• Approximate subspace problems : ai ≈ a on Vi ×Vi and Ti ≈ Pi :

ai(Tiv , vi) = a(v , vi), v ∈ V , vi ∈ Vi .

with Ti = Pi if ai = a.
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Method of Subspace Corrections (Xu and Zikatanov 02,
J.AMS)

• Algorithm MSC : Let u0 ∈ V be given.
for ℓ = 1,2, · · · ,

uℓ−1
0 = uℓ−1.
for i = 1, ..., J

uℓ
i = uℓ−1

i−1 + Tiei ,
where ei ∈ Vi is such that a(ei , vi) = ⟨f , vi⟩ − a(uℓ−1

i−1 , vi)
endfor
uℓ = uℓ

J .
endfor
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MSC: Error Transfer Operator

• From the relation that u − uℓ
i = (I − Ti)(u − uℓ−1

i−1 ), we obtain

u − uℓ = EJ(u − uℓ−1) = · · · = Eℓ
J(u − u0),

where
EJ = (I − TJ)(I − Tj−1) · · · (I − T1).

• Convergence : ∥EJ∥ = ∥EJ∥a < 1?
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MSC: Error Transfer Operator

Theorem (Xu and Zikatanov 2002, J.AMS)

∥EJ∥2 = ∥(I − TJ) · · · (I − T1)∥2 = 1 − 1
K

where

K = sup
∥v∥=1

inf∑
i vi=v

J∑
i=1

(T̄−1
i (vi + T ∗

i wi), (vi + T ∗
i wi)),

where T̄i = Ti + T ∗
i − T ∗

i Ti and wi =
∑J

j=i+1 vj .

Remark
T̄i is positive definite on Vi ⇒ K > 0, which means ∥EJ∥ < 1. Therefore,
we obtain the convergence.
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MSC: Error Transfer Operator

Lemma
For the case when Ti = Pi , i.e., exact subspace solvers. The convergence
rate identity is given by

∥EJ∥2 = ∥(I − PJ) · · · (I − P1)∥2 = 1 − 1
K
,

where

K = sup
∥v∥=1

inf∑
i vi=v

J∑
i=1

∥Pi
∑
j=i

vi∥2
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On Assumptions

(H1) R(Ti) = Vi and Ti : Vi 7→ Vi is isomorphic for each i = 1 : J .
This is implied by the following inf-sup condition:

inf
ui∈Vi

sup
vi∈Vi

ai(ui , vi)

∥ui∥∥vi∥
= inf

vi∈Vi
sup

ui∈Vi

ai(ui , vi)

∥ui∥∥vi∥
> 0.

(H2) There exists ω ∈ (0,2) such that
(Tivi ,Tivi) ≤ ω(Tivi , vi), ∀vi ∈ Vi for each i = 1 : J .

This is deduced from the requirement that

∥I − Ti∥ ≤ 1 ⇔ (Tivi ,Tivi) ≤ 2(Tivi , vi), ∀vi ∈ Vi .

We note that If I − Ti = −I for all i = 1 : J , then

∥EJ∥ = ∥(−I)J∥ = ∥I∥ = 1.
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On Assumptions (H2)

We consider to solve Ax = f with J = 1, and the matrix A is
decomposed into

A = D − L − Lt ,

where D is the diagonal of A and −L is the strictly lower triangular
of A.
By choosing ai = D, the MSC corresponds to the simple Jacobi
relaxation with T = D−1A. It is then easy to show that

∥x∥2
A − ∥(I − T )x∥2

A = ((D−t + D−1 − D−tAD−1)Ax ,Ax), x ∈ IRn

= (D−t(D + Dt − A)D−1Ax ,Ax), x ∈ IRn

∥I − T∥A < 1 ⇔ D + Dt − A > 0.
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On Assumptions (H2)

Let

A =

 2 1 1
1 2 1
1 1 2


For the Jacobi method, we obtain that

D + Dt − A =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

This is only semidefinite. We can not guarantee the convergence.
In fact, for v = (1,1,1)t ,
we have

(I − T )v = v .
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MSC for Singular Equations

Convergence studies of classic iterative methods : H. Keller (1965)
Consider to solve the following system of equations

Ax = f ,

where A ∈ IRn×n is symmetric and positive semi-definite or singular.
References : Marek and Szyld (2004) and Dax (’90), Berman and
Plemmons (1994)
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MSC for Singular Equations

Theorem (Keller, 1965)
Assume that the splitting A = R − G satisfies the following two
properties :
(a) R is invertible on IRn

(b) R + RT − A is positive difinite on IRn

Then the following iterates converges :

uℓ = uℓ−1 + R−1(f − Auℓ−1), ℓ = 1,2 · · ·

Remark
New observation : For the convergence result, R may not need be
invertible on IRn and (b) can also be weakened! (Lee,Wu,Xu and
Zikatanov, SIMAX (2006))
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MSC for Singular Equations

For a(·, ·) is singular, i.e., symmetric and positive semi-definite,
consider the problem : Find u such that

a(u, v) = ⟨f , v⟩, ∀v ∈ V .

Denote

N = {v ∈ V : a(v ,w) = 0, w ∈ V} and (1)
Ni = {vi ∈ Vi : a(vi ,wi) = 0, wi ∈ Vi} . (2)

• Energy norm convergence :

|EJ |a = sup
v∈N⊥

|EJv |a
|v |a

< 1?
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MSC for Singular Equations : Assumptions

(H1) Local subspace problems are solvable :
a(vi , vi) ≳ ∥vi∥2

Vi/Ni
, ∀vi ∈ Vi .

(H2) There exists ω ∈ (0,2) such that
a(Tivi ,Tivi) ≤ ωa(Tivi , vi), ∀vi ∈ Vi .

(H3) The following holds true a(Tivi ,Tivi) ≳ a(vi , vi), ∀vi ∈ Vi .

• Assumption (H1) is only needed for the infinite dimensional
case

• Assumptions (H2) and (H3) are trivially true for Ti = Pi .
• Assumptions (H2) and (H3) are necessary and sufficient to local
energy norm convergence (Lee, Wu, Xu and Zikatanov, SIMAX
(2006))

• Assumptions (H1), (H2) and (H3) are optimal
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On Assumption (H3)

Consider an iterative solution method to solve Au = f , where
f ∈ R(A) and

A =

(
1 −3
−3 9

)
.

given by

uℓ = uℓ−1 + BA(u − uℓ−1) = uℓ−1 + T (u − uℓ−1),

where
B =

(
1 2/3

−1/3 0

)
.

It is easy to see that R(T ) = N (A). This means that

|(I − T )u|2A = |u|2A, ∀u ∈ V .
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The convergence rate identity

Theorem (Lee,Wu,Xu,Zikatanov 2005)

|EJ |2a = |(I − TJ) · · · (I − T1)|2a = 1 − 1
K
.

where K = sup|v |a=1,v∈N⊥ K (v) with

K (v) = inf
c∈N

inf∑
i vi=v+c

J∑
i=1

(T̄ †
i (vi + T ∗

i wi), (vi + T ∗
i wi))a,

where T̄i = Ti + T ∗
i − T ∗

i Ti and wi =
∑J

j=i+1 vj .

Remark
T̄ †

i = (T̄ 2
i )

×T̄i , where (T̄ 2
i )

× is the Moore-Penrose generalized inverse
of T̄ 2

i . (H.W. Engl, M. Hanke and A. Neubauer (1996))
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Exact subspace solvers Ti = Pi

K = sup
v∈N⊥

inf
c∈N

inf∑
i vi=v+c

∑J
i=1 |Pi(

∑J
j=i vj)|2a

|v |2a
, vi ∈ Vi .

K = sup
v∈N⊥

inf
c∈N

inf∑
i vi=v+c

∑J
i=1 |Pi(

∑J
j=i vj)|2a

|v |2a
, vi ∈ Vi .

In case the decomposition is unique (e.g., Gauss-Seidel method),
we have

K = sup
v∈N⊥

inf
c∈N

∑J
i=1 |Pi(

∑J
j=i vj)|2a

|v |2a
, vi ∈ Vi .

Remark
Another interpretation of the efficiency of MG method can be found in
many redundant representations for any given v ∈ V .
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Example 1
We consider to solve

Au = f ,

where A is symmetric and positive semi-definite with the positive
diagonal. The Gauss-Seidel method based on the matrix splitting

A = D − L − Lt ,

where D is the diagonal and −L is the lower triangular of A and Lt is
the transpose of L. Note that Pi = (Aei , ·)ei/(Aei ,ei). The direct
application of the convergence rate identity leads to

|E |2A = 1 − 1
K
,

where

E = (I−(D−L)−1A) and K = 1+ sup
v∈N⊥

inf
c∈N

(LD−1Lt(v + c), (v + c))
(v , v)A
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Example 1 continues

Note that

|E |2A = sup
v∈N⊥

(AEv ,Ev)
(v , v)A

(3)

= sup
v∈N⊥

((I − BA)v , (I − BA)v)A

(v , v)A
(4)

= sup
v∈N⊥

((I − BA)∗(I − BA)v , v)A

(v , v)A
, (5)

where (I − BA)∗ = I − BtA is the adjoint operator of I − BA with
respect to the semi-inner product (·, ·)A. Note that we have the
relation that

(I − BA)∗(I − BA) = I − (A + S)−1A,

where S = LD−1Lt .
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Therefore, we have

|E |2A = 1 − inf
v∈N⊥

((A + S)−1Av , v)A

(v , v)A
= 1 − 1

K
.

Now, we set M = A1/2(A + S)−1AA1/2, to obtain

K =

(
inf

v∈N⊥

((A + S)−1Av , v)A

(v , v)A

)−1

= sup
v∈N⊥

(v , v)A

((A + S)−1Av , v)A

= sup
v∈N⊥

(v , v)A

(A−1/2MA−1/2v , v)A

= sup
v∈N⊥

(A−1/2MA−1/2v , v)A

(A−1/2MA−1/2v ,A−1/2MA−1/2v)A

= sup
w∈N⊥

inf
c∈N

((A + S)(w + c), (w + c))
(w ,w)A

= 1 + sup
v∈N⊥

inf
c∈N

(S(v + c), (v + c))
(v , v)A

.
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Example 2

Assume Ω is the polygonal domain and consider

−∆u = f in Ω
∂u
∂n

= 0 on ∂Ω,

The finite element discretization via the piecewise linear
conforming element leads to
Find uh ∈ Vh such that

(uh, vh)1 = (f , vh)0, ∀vh ∈ Vh.
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Example 2 continues
(i) Assume that there exists a set of nested sequence of

quasi-uniform triangles Tk = {T i
k}i=1 of the mesh size hk , with

hk = γk and γ ∈ (0,1) for k = 1, · · · , J .
(ii) Associated with each Tk , the finite element space of

continuous piecewise linear functions Vk satisfies the following
trivial relations.

V1 ⊂ · · · ⊂ VJ = Vh.

(iii) We consider the following space decompositions except for
k = 1 : J ,

V = Vh =
J∑

k=1

Vk =
J∑

k=1

nk∑
i=1

V i
k

Remark
Each space Vk contains the null space span{1}. Choose the usual basis
function ϕi

k for each space and set V i
k = span{ϕi

k}.
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Example 2 continues

Theorem (Lee,Wu,Xu and Zikatanov, 2005)
The multigrid method for the above neumann problem converges at a
rate independent of mesh size and the number of levels.

Sketch of Proof: The convergence rate |EJ |a is given by

|EJ |2a = 1 − 1
K
,

where

K = sup
v∈N⊥

inf
c∈N

inf∑J
k=1

∑nk
i=1 v i

k=v+c

∑J
k=1

∑nk
i=1 |P

i
k (
∑

(l,j)≥(k ,i) v j
l )|

2
a

(v , v)a
. (6)
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Main conclusion: The null space should be contained in each
subspace.
This can be seen in the following required estimate:

J∑
k=1

|(Qk − Qk−1)v|21 ≲ |v|21.
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Nearly singular problems

Find u ∈ V such that

Au = (As + ϵAp)u = f ,

• V is the finite dimensional Hilbert space
• As is symmetric and positive semidefinite
• Ap is symmetric and positive definite
• ϵ is a positive parameter such that ϵ ≪ 1.
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Examples of Nearly Singular Problems

• Discretizations of the simple partial differential equations

−∆u + ϵu = f , in Ω,

with the Neumann boundary condition: n · ∇u = 0 on ∂Ω.
• Discretizations of nearly incompressible elasticity problem

−∇(divu)− (1 − 2ν)∆u = f in Ω,

where the Poisson ratio ν ≈ 1/2.
• Finite element Discretizations of H(div) and H(curl) systems

G∗Gu + ϵu = f ,

where G∗ is the adjoint operator of G, G = curl or G = div.
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Difficulty in the solutions

A simple example and considering the Gauss-Seidel method as the
solver. The simple nearly singular system of equations is as follow.

Au = (As + ϵAp)u =

 1 −1 0
−1 2 −1
0 −1 1

+ ϵ

 1 0 0
0 1 0
0 0 1

u = f .

ϵ 1 10−1 10−2 10−3 10−4 10−5 0
# of iterations 14 94 823 7427 66556 588770 2

Table: The number of iterations to obtain the energy norm error
∥u − uℓ∥A < 10−6 for various values of ϵ
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What is happening ?

The energy norm convergence rate of the Gauss-Seidel method for
the system of equation is given as follows,

∥E∥2
A = 1 − 1

K
, (7)

where

K = 1 + sup
v=(v1,v2,v3)t∈IR3

(1 + ϵ)−1v2
2 + (2 + ϵ)−1v2

3
(Av , v)

. (8)

Choose v from the null space of As, namely, the eigenvector of A
that corresponds to the eigenvalue ϵ, say, v = (1,1,1)t to obtain
that

K ≥ 1 +
(1 + ϵ)−1 + (2 + ϵ)−1

3ϵ
→ ∞ as ϵ → 0. (9)
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Remedy : Augmented System

Consider to solve Au = (As + ϵI)u = f , where As ∈ IRn×n is singular
matrix with N being the null space.
• Choose a number of vectors ϕi ’s so that

N ⊂ span{ϕ1, · · · , ϕm} = W ⊂ V .

• Formulate the Augmented matrix system with an operator
Φ = [ϕ1 · · ·ϕm] : W 7→ V ,

Au =

(
ΦtAΦ ΦtA
AΦ A

)(
u1
u2

)
=

(
Φt f
f

)
= f.
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On Augmented System
• The Augmented system is singular
• The range and null spaces of A can be completely
characterized as follows:

R(A) =

{(
Φtv
v

)
: v ∈ V

}
and N (A) =

{(
c

−Φc

)
: c ∈ W

}
.

(10)
• There exist infinitely many solutions to the equation. However,
if u is a solution to the Augmented system of equations given
as

u =

(
u1
u2

)
,

then the solution u to the original system Au = f can be
recovered uniquely as

u = Φu1 + u2.
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Solving Augmented System

Solving the Augmented matrix system by the block Gauss-Seidel
method with blocks

• ΦtAΦ
• each diagonal of A

is equivalent to two grid methods with
• one Gauss-Seidel smoothing for A on V
• exact subspace solve on the space W .

(Xu (1992), M. Griebel (1994) and Lee,Wu,Xu and Zikatanov (2003))
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Convergence Study of Block Gauss-Seidel for
Augmented System

Assume W = span{ξ} and f ∈ R(As). We obtained the following
result:

Theorem (Lee,Wu,Xu and Zikatanov, 2003)
The block Gauss-Seidel method for the system A has the following
energy norm convergence rate:

δ2
A = 1 − 1

K (A)
,

with As = D − L − Lt ,

K (A) → K (As) = 1+ sup
v∈N⊥

inf
c∈N

(LD−1Lt(v + c), (v + c))
(v , v)As

as ϵ → 0.
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Sketch of Proof
The Augmented system for the equation (As + ϵI)u = f is given by

Au =

(
ξtAξ ξtA
Aξ A

)
u = f, (11)

where f = ((ξ, f ), f )t = (0, f )t .
We decompose the matrices A and As into the following:

A = Dϵ − L − Lt ,

and
As = D − L − Lt .

Define Sϵ and S by

Sϵ = LD−1
ϵ Lt and S = LD−1Lt

respectively.
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Proof continues
Since Dϵ = D + ϵI, α(ϵ) such that for any v ∈ V ,

α(ϵ)(Sv , v) ≤ (Sϵv , v) ≤ (Sv , v), and lim
ϵ→0

α(ϵ) = 1. (12)

A decomposition of the augmented matrix A is given as follows:

A = D − L− Lt , and S = LD−1Lt .

The energy norm convergence rate of Gauss-Seidel method for the
augmented system is given as follows:

δ2
A = 1 − 1

K (A)
,

with
K (A) = 1 + sup

v∈N (A)⊥
inf

c∈N (A)

(S(v + c), (v + c))
(v,v)A

.
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Proof continues
Note that a simple calculation yields

K (A) = 1+ sup
v=((ξ,v),v t )t∈N (A)⊥

inf
λ∈IR

(Sϵ(v + λξ), (v + λξ)) + ∥Pξ(v + λξ)∥2
A

∥v∥2
A

,

(13)
where Pξ is the A-orthogonal projection on N (As), namely

Pξ = ξ(ξtAξ)−1ξtA.

Now, for a given v ∈ V , we consider the following orthogonal
decomposition:

v = va + γξ,

where va ∈ N (As)
⊥ and γ ∈ IR. With this decomposition, ∥v∥2

A can
be written as

∥v∥2
A = ∥v + (ξ, v)ξ∥2

A = ∥va∥2
A + ϵ2[γ(1 + ∥ξ∥2)]2∥ξ∥2. (14)
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Proof continues

For v = va + γξ ∈ V , we have

inf
λ∈IR

(Sϵ(v + λξ), (v + λξ)) + ∥Pξ(v + λξ)∥2
A

= inf
λ∈IR

(Sϵ(va + λξ), (va + λξ)) + ∥Pξ(va + λξ)∥2
A.

• (Lower bound)

K (A) ≥ 1 + sup
va∈N (As)⊥

inf
λ∈IR

(Sϵ(va + λξ), (va + λξ))

∥va∥2
A

(15)

≥ 1 + sup
va∈N (As)⊥

inf
λ∈IR

α(ϵ)(S(va + λξ), (va + λξ))

∥va∥2
As

,
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Proof continues
• (Upper bound) We see that K (A) can be written as follows:

K (A) = 1 + sup
v∈χ

inf
λ∈IR

(Sϵ(v + λξ), (v + λξ)) + ∥Pξ(v + λξ)∥2
A

∥va∥2
A + ϵ2|γ + (ξ, v)|2∥ξ∥2

≤ 1 + sup
v∈χ

inf
λ∈IR

(Sϵ(v + λξ), (v + λξ)) + ∥Pξ(v + λξ)∥2
A

∥v∥2
A

,

≤ 1 + sup
va∈N (As)⊥

inf
λ∈IR

(Sϵ(va + λξ), (va + λξ)) + ∥Pξ(va + λξ)∥2
A

∥va∥2
As

.

Finally, it is easy to see that
∥Pξ(va + λξ)∥2

A = ϵ2∥Pξ(va + λξ)∥2. (16)
As a result,

K (A) ≤ K (As) + sup
va∈N (As)⊥

inf
λ∈IR

ϵ2∥Pξ(va + λξ)∥2

∥va∥2
As

. (17)

Taking the limit ϵ → 0, we complete the proof.
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General Convergence Analysis of MSC for Nearly
Singular Systems

For f ∈ V ∗, find u ∈ V such that

a(u, v) = as(u, v) + ϵap(u, v) = ⟨f , v⟩, ∀u, v ∈ V , (18)

where
(i) The constant ϵ is positive.
(ii) as is symmetric and semi-definite.
(iii) ap is symmetric and positive-definite.
(iv) a is the inner product (·, ·) on V .

N = {v ∈ V : as(v ,w) = 0, ∀w ∈ V}

N⊥ is the orthogonal complement of N with respect to the
inner product on V .
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On Assumptions
A0 There exist a number of closed subspaces Vk with

k = 1, · · · , J such that

V =
J∑

k=1

Vk .

A1 The null space N can be represented by sum of
elements in subspaces, namely,

N =
J∑

k=1

(Vk ∩N ) =
J∑

k=1

Nk .

Remark

N =
J∑

k=0

Vi ∩N , Vi = span{ei} for i = 1 : n,N ⊂ V0 = W
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Notations

We introduce several orthogonal projections:
Pk : V 7→ Vk by

a(Pkv , vk ) = a(v , vk ), ∀v ∈ V , vk ∈ Vk (19)

and Pk ,s : V 7→ Vk and Pk ,p : V 7→ Vk by

as(Pk ,sv , vk ) = as(v , vk ), ∀v ∈ V , vk ∈ Vk

ap(Pk ,pv , vk ) = ap(v , vk ), ∀v ∈ V , vk ∈ Vk .
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Cauchy Inequality

Lemma
For each 1 ≤ k ≤ J , the following holds true:

∥Pku∥2
a ≲ ∥Pk ,su∥2

as + ϵ∥Pk ,pu∥2
ap , ∀u ∈ V .

For any u ∈ V ,

a(u,Pku) = as(u,Pku) + ϵap(u,Pku)
= as(Pk ,su,Pku) + ϵap(Pk ,pu,Pku)

≤ 1
2
(
as(Pku,Pku) + as(Pk ,su,Pk ,su)

)
+

ϵ

2
(
ap(Pku,Pku) + ap(Pk ,pu,Pk ,pu)

)
.
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Main result

Theorem
Under the assumptions A0 and A1, the energy norm of the error
transfer operator EJ = (I − PJ) · · · (I − P1) is given by the following:

∥EJ∥2
a = 1 − 1

K
, (20)

K ≲ sup
vs∈N⊥

inf∑J
k=1 vk,s=vs


∑J

k=1

∣∣∣Pk,s
∑

j≥k vj,s

∣∣∣2
as

(vs, vs)as

+

∑J
k=1

∥∥∥Pk,p
∑

j≥k vj,s

∥∥∥2

ap

(vs, vs)ap



+ sup
vc∈N

inf∑J
k=1 vk,c=vc

∑J
k=1

∥∥∥Pk,p
∑

j≥k vj,c

∥∥∥2

ap

(vc , vc)ap

,

where vk ,s ’s belong to Vk and vk ,c ’s are in N for each k = 1, · · · , J .
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Sketch of Proof
Note that

K = sup
v∈V

inf∑J
i=1 vk=v

∑J
k=1 ∥Pk

∑
j≥k vj∥2

a

∥v∥2
a

.

For any given v = vs + vc ∈ V , with vs ∈ N⊥ and vc ∈ N , due to (A1),

v =
J∑

k=1

vk ,s +
J∑

k=1

vk ,c = vs + vc (21)

where vk ,s ∈ Vk , vk ,c ∈ Nk .

∥v∥2 = (vs + vc , vs + vc)as + ϵ(vs + vc , vs + vc)ap

= ∥vs∥2
as + ϵ∥v∥2

ap .

∥∥∥∥∥∥Pk

∑
j≥k

vj

∥∥∥∥∥∥
2

a

≤

∥∥∥∥∥∥Pk,s

∑
j≥k

vk,s + vk,c

∥∥∥∥∥∥
2

as

+ ϵ

∥∥∥∥∥∥Pk,p

∑
j≥k

vk,s + vk,c

∥∥∥∥∥∥
2

ap

≤

∥∥∥∥∥∥Pk,s

∑
j≥k

vk,s

∥∥∥∥∥∥
2

as

+ ϵ

∥∥∥∥∥∥Pk,p

∑
j≥k

vk,s + vk,c

∥∥∥∥∥∥
2

ap
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Sketch of Proof

∥∥∥∥∥∥Pk

∑
j≥k

vj

∥∥∥∥∥∥
2

a

≲

∥∥∥∥∥∥Pk,s

∑
j≥k

vk,s

∥∥∥∥∥∥
2

as

+ ϵ

∥∥∥∥∥∥Pk,p

∑
j≥k

vk,s

∥∥∥∥∥∥
2

ap

+ ϵ

∥∥∥∥∥∥Pk,p

∑
j≥k

vk,c

∥∥∥∥∥∥
2

ap

.

Note that the inequality holds for arbitrary decompositions
{vk ,s}J

k=1 and {vk ,c}J
k=1 that constitute vs and vc respectively.

inf
v=

∑J
k=1 vk

J∑
k=1

∥∥∥∥∥∥Pk

∑
j≥k

vj

∥∥∥∥∥∥
2

a

≲ inf∑J
k=1 vk,s=vs

 J∑
k=1

∥∥∥∥∥∥Pk,s

∑
j≥k

vk,s

∥∥∥∥∥∥
2

as

+ ϵ

J∑
k=1

∥∥∥∥∥∥Pk,p

∑
j≥k

vk,s

∥∥∥∥∥∥
2

ap

+ inf
vc=

∑J
k=1 vk,c

ϵ

J∑
k=1

∥∥∥∥∥∥Pk,p

∑
j≥k

vk,c

∥∥∥∥∥∥
2

ap

.
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Applications
We consider to solve the following problem:

−∆u + ϵu = f , in Ω,

n · ∇u = 0, on ∂Ω.

The variational problem can be given as follows: Find u ∈ H1(Ω)
such that

a(u, v) = as(u, v) + ϵap(u, v) = (f , v), ∀v ∈ H1(Ω),

where

as(u, v) = (u, v)1 and ap(u, v) = (u, v)0

Remark
N = span{1}.
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Toward parameter independent convergence

(i) Assume that there exists a set of nested sequence of
quasi-uniform triangles Tk = {T i

k}i=1 of the mesh size hk , with
hk = γk and γ ∈ (0,1) for k = 1, · · · , J .

(ii) Associated with each Tk , the finite element space of
continuous piecewise linear functions Vk satisfies the following
trivial relations.

V1 ⊂ · · · ⊂ VJ = Vh.

Remark
Note that each space Vk contains the null space span{1}. Choose the
usual basis function ϕi

k for each space and set V i
k = span{ϕi

k} so that

Vk = span
{
ϕ1

k , · · · , ϕ
nk
k

}
=

nk∑
i=1

V i
k .
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Toward parameter independent convergence

• (Space decomposition) Set n1 = 1, N ⊆ V1, i.e., V 1
1 = V1. We

then decompose V in the following manner:

V =
J∑

k=1

nk∑
i=1

V i
k .

• (Subspace correction) We apply the exact local solvers for each
V i

k .

Theorem

∥E∥2 = ∥(I − T1) · · · (I − TJ)∥2 = ∥ΠJ
k=1Π

nk
l=1(I − P l

k )∥2 < δ < 1, (22)

where δ is bounded uniformly with respect to the parameter ϵ, the
number of levels and the mesh size.
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Other Applications
• The point Gauss-Seidel method is well-known to be inefficient
for the system of equations like H(div) or H(curl) - Why?.

• The Nearly incompressible linear elasticity equations:
u − ρ2∇divu − κ2∆u = f.

Bigger subspace definition V ℓ
k is necessary for A1. Thus, the

block Gauss-Seidel method should be used.

τ

τ
τ

τ

τ τ 1

2

3
4

5

a

b
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K-Way CNcut

K-Way CNcut is basically to solve(
A BT

B 0

)(
u
p

)
=

(
f
c

)
, (23)

where A is D−1/2(D − W )D−1/2 is the normalized Graph Laplacian
and B is the long thin matrix, which imposes the constraint.
The Augmented Lagrangian Uzawa requires us to solve

(A + rBT B)u = g. (24)

Remark
We note that BT B is diagonal matrix with one or zero in the diagonal.
But A is not SPD. But, we can still apply the technique if
N(A) ∩ N(BT B) = {0}. Furthermore A + rBT B is M-matrix.
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Concluding Remarks

• Optimal assumptions for the convergence of classic iterative
method have been identified.

• Convergence rate identity for MSC for Singular Equations is
obtained under the optimal assumptions.

• The difficulty in solving Nearly singular equations has been
identified and remedied by introducing Augmented matrix
system.

• A convergence rate estimate for MSC for Nearly Singular
Equations is obtained under a new abstract assumption,
namely, the near null space can be represented by the local
subspaces.

• A simple application is demonstrated to show the use of
abstract convergence theory.
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