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Abstract

Over the last few decades, intensive research has been done on developing efficient parallel

iterative solvers for PDEs. One useful mathematical technique that has drawn a lot of

attention is multilevel iterative solvers and preconditioners. The lecture note is originally

prepared for a semester-long course at LSEC. In this note, we will discuss algorithm, analysis,

and applications of multilevel iterative solvers for partial differential equations. The note

is mainly based on Prof. Jinchao Xu’s short courses at the Peking University in 2013 and

at the Academy of Mathematics and Systems Science in 2016 and Prof. Ludmil Zikatanov’s

summer school lectures at the Academy of Mathematics and Systems Science in 2015.
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Chapter 1

Introduction

ch:intro

Computer simulation has become an important tool in engineering and sciences. Many physical

problems in scientific and engineering computing can be reduced to the numerical solution of

certain partial differential equations (PDEs). Finding a viable solution to underlying discretized

systems is often expensive, generally consuming a significant portion of the overall cost in a

numerical solution procedure of PDEs. Various fast solution techniques, such as adaptive mesh

refinement (AMR), domain decomposition (DD) methods, and multigrid (MG) methods, have

been developed to address this issue.

A	Physical	Problem	

Mathema2cal	Model	

Analysis	 Simula2on	

Existence,	
uniqueness,	
stability,		
regularity,	

conserva2on,		
…	

Lineariza2on,	
mesh	genera2on,	
discre2za2on,	

solu2on,		
paralleliza2on,		

…	

SoAware	
Development	

User	interface,	
code	op2miza2on,	
input/output,	

customer	service,	
…	

Figure 1.1: Numerical simulation of a physical problem.fig:simulation

The above diagram gives a simple illustration of how a physical problem is “solved” via

numerical simulation in general. It is basically an interplay of modeling, mathematical analy-

7



CHAPTER 1. INTRODUCTION 8

sis, numerical analysis, scientific computing, and software engineering. A successful computer

simulation of complicated physical phenomena requires expertise in many scientific subjects.

Hence, nowadays it is difficult for one person to manage all these areas and close collaborations

of experts from different areas become crucial.

Effective linear solvers play a key role in many application areas in scientific computing.

There are many different types of algorithms for solving linear systems. In this lecture, we focus

on studying algorithmic and theoretical aspects of multilevel iterative methods, including GMG

and AMG. The basic problem setting for our discussion is: Given an invertible matrix A : RNˆN

and a vector ~f P RN , find ~u P RN such that A~u “ ~f . There are many features of linear solver

that we desire in practice, including:

• Convergence — The method should converge to somewhere at least.

• Robustness — The method should behave similarly for different conditions.

• Optimality — The method can give a solution with OpNq computational cost.

• Efficiency — The method can give a solution with “reasonably short” wall time.

• Scalability — The method can scale well on modern parallel architectures.

• Reliability — The method should converge to a solution with limited amount of time.

• Usability — The method can be implemented and used relatively easily.

These above features sometimes contradict with each other and we have to find a good

balance in practice. There are many different solution methods available. In this lecture,

including direct solvers and iterative solvers. In this lecture, we will discuss several popular

multilevel iterative methods, including the overlapping domain decomposition methods with

coarse space corrections, two-grid methods, geometric multigrid methods, algebraic multigrid

methods. And we will mainly study the convergence theory of these methods using the subspace

correction framework.

1.1 The model equation

Let Ω Ă Rd be an open and bounded domain with Lipschitz boundary and f P L2pΩq. We

consider solution of the Poisson’s equation with Dirichlet boundary condition

$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.
(1.1) eqn:Poisson
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This equation will be our main model equation in most part of this lecture.

Remark 1.1 (Diffusion equation in various applications). The Poisson’s equation, or more

generally the diffusion equation, appears in many areas of physics, for example, Fick’s law for

chemical concentration, Fourier’s law for temperature, Ohm’s law for electrostatic potential,

Darcy’s law for porous media flow.

Derivation and classical solution ‹

The concept of diffusion is widely used in physics, chemistry, biology, sociology, economics,

and finance. It is the net movement of the object (e.g. molecules or atoms) from a region of

high concentration (or high chemical potential) to a region of low concentration (or low chemical

potential). This is also referred to as the movement of a substance down a concentration gradient.

Let upxq be some diffusive quantity, like pressure, temperature, or concentration of a bio-

logical species. We define the operator ∇ :“ pB1, . . . , Bdq
T . So the gradient of scalar function

u : Ω ÞÑ R can be denoted by ∇u. The Laplace operator can be written as ∆u “ ∇ ¨ ∇u. A

diffusive flux ~F is usually proportional to the gradient of u, i.e.,

~F “ ´κ∇u. (1.2) eqn:flux

where κ is the diffusivity (e.g., heat conductivity or permeability). Note that´∇u is the so-called

steepest descent direction. If a flow is controlled solely by diffusion, then the mass conservation

in any volume ω can be written, in the integral form, as

B

Bt

ż

ω
u dx “ ´

ż

Bω

~F ¨ ~ν dS

or, in the strong form, as
B

Bt
u “ ´∇ ¨ ~F . (1.3) eqn:masscon

This can be seen by applying the Divergence Theorem
ż

ω
∇ ¨ ~F dx “

ż

Bω

~F ¨ ~νdS. (1.4) eqn:divthm

Now, by plugging (1.2) into (7.10), we obtain an equation

B

Bt
u “ ∇ ¨ pκ∇uq. (1.5) eqn:heat1

If we assume κ ” 1 or just a constant and there is a source/sink term f on Ω, then we arrive at

the heat equation
B

Bt
u´∆u “ f. (1.6) eqn:heat

The steady-state solution of equation (1.6) satisfies the well-known Poisson’s equation

´∆u “ f. (1.7) eqn:poisson



CHAPTER 1. INTRODUCTION 10

Remark 1.2 (Laplace equation). In case of the body force or source/sink term is zero, the

equation is usually referred to as the Laplace equation

´∆u “ 0. (1.8) eqn:laplace

If u P C2pΩq and ´∆u “ 0, the u is called a harmonic function.

We have the fundamental solution of the Poisson’s equation

Φpxq :“

$

&

%

´ 1
2π log |x|, d “ 2

1
dpd´2qαpdq |x|

2´d, d ě 3
(1.9) eqn:fsolu

where αpdq is the volume of the unit ball in Rd. It is well-known that

upxq “ Φ ˚ f :“

ż

Rd
Φpx´ yqfpyq dy

satisfies ´∆u “ f in Rd and u P C2pRdq; see Evans [30].

Theorem 1.1 (Strong Maximum Principle). If u P C2pΩq
Ş

CpΩq is harmonic in Ω, then the

maximal value

max
xPΩ

upxq “ max
xPBΩ

upxq.

If the domain Ω is connected, then u ” C if there exist x0 P Ω such that

upx0q “ max
xPΩ

upxq.

Theorem 1.2 (Uniqueness of solution). If f P CpΩq, then there exists at most one solution

u P C2pΩq
Ş

CpΩq.

Sobolev spaces ‹

The standard L8-norm and L2-norm will be denoted by }¨}8 and }¨}0, respectively. The symbol

L2
0pΩq denotes a subspace of L2pΩq consisting of functions that have a zero average. The bilinear

forms p¨, ¨q and x¨, ¨y denote the classical L2-inner product and the duality pair, respectively.

Given a natural number k P N and 1 ď p ď 8, we define the Sobolev spaces

W k
p pΩq :“

 

v : Ω ÞÑ R : ∇αv P LppΩq, for all |α| ď k
(

, (1.10) eqn:W_kp

where α “ rα1, . . . , αds is a multi-index and ∇αv :“ Bα1
x1 ¨ ¨ ¨ B

αd
xd
v is the weak derivative of order

α. The corresponding norm and semi-norm are then defined as follows: for 1 ď p ă 8,

}v}Wk
p pΩq

:“
´

ÿ

|α|ďk

}∇αv}pLppΩq

¯
1
p
, |v|Wk

p pΩq
:“

´

ÿ

|α|“k

}∇αv}pLppΩq

¯
1
p
, (1.11) eqn:wkp_norm

and, for p “ 8,

}v}Wk
8pΩq

:“ sup
|α|ďk

}∇αv}L8pΩq, |v|Wk
8pΩq

:“ sup
|α|“k

}∇αv}L8pΩq. (1.12) eqn:wkinf_norm
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Definition 1.1 (Sobolev number). Consider a change of variables x̂ “ x{h for h ą 0 and all

x P Ω, which transforms the domain Ω to Ω̂. With this transformation, a function vpxq on Ω

becomes v̂px̂q on Ω̂. We notice that

|v̂|Wk
p pΩ̂q

“ hsobpWk
p q|v|Wk

p pΩq
, (1.13) eqn:scaling

where the Sobolev number is defined by

sobpW k
p q :“ k ´

d

p
. (1.14) eqn:sobnum

Remark 1.3 (Natural scaling). There is a natural scaling for the semi-norm | ¨ |Wk
p pΩq

. For

h ą 0, we apply the change of variable x̂ “ x{h : Ω ÞÑ Ω̂. Then the following scaling result holds

ˇ

ˇv̂
ˇ

ˇ

Wk
p pΩ̂q

“ h
k´ d

p
ˇ

ˇv
ˇ

ˇ

Wk
p pΩq

“ hsobpWk
p q
ˇ

ˇv
ˇ

ˇ

Wk
p pΩq

.

This property is useful in scaling argument (or homogeneity argument) for finite element error

estimates.

If p “ 2, the spaces W k
2 pΩq are Hilbert spaces and we denote them by HkpΩq for short. The

inner product is given by

pu, vqk,Ω :“ pu, vqHkpΩq :“
ÿ

|α|ďk

ż

Ω
∇αu∇αv dx.

The induced norm of this scalar product is the W k
2 pΩq-norm. We denote Hk

0 pΩq the completion

of C80 pΩq in HkpΩq. We will also use the fractional Sobolev space Hk`σ
0 pΩq where 0 ă σ ă 1.

It is defined as the completion of C80 pΩq in the fraction norm:

}v}Hk`σpΩq :“
´

}v}2HkpΩq ` |v|
2
Hk`σpΩq

¯
1
2
,

where

|v|Hk`σpΩq :“

ˆ

ÿ

|α|“k

ż

Ω

ż

Ω

|Dαvpxq ´Dαvpyq|2

|x´ y|d`2σ
dx dy

˙
1
2

.

Before we discuss the Poisson’s equation in weak formulation, we introduce a few important

properties of the Sobolev spaces, which will become important in our later analysis for multigrid

methods.

prop:embedding Proposition 1.1 (Sobolev embedding). Let 0 ď k ă m. If sobpWm
p q ą sobpW k

q q, then the

embedding Wm
p pΩq ãÑW k

q pΩq is compact.

prop:P-W Proposition 1.2 (Poincaré-Wirtinger inequality). For any v P H1pΩq, we have

›

›

›
v ´ |Ω|´1

ż

Ω
v dx

›

›

›

0,Ω
ď CpΩq

ˇ

ˇv
ˇ

ˇ

1,Ω
.
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prop:Poincare Proposition 1.3 (Poincaré inequality). For any v P H1
0 pΩq, we have

›

›v
›

›

0,Ω
ď Cd|Ω|

1{d
ˇ

ˇv
ˇ

ˇ

1,Ω
.

It is a special case of the more general Friedrichs’ inequality on W k
p pΩq with zero trace and it is

sometimes referred to as the Friedrichs–Poincaré inequality.

prop:trace Proposition 1.4 (Trace theorem). There exists a unique linear operator trace : H1pΩq ÞÑ

L2pBΩq, such that tracepvq “ v, if v P C0pΩq
Ş

H1pΩq, and
›

› tracepvq
›

›

0,BΩ
ď CpΩq}v}1,Ω, @v P H1pΩq.

Moreover, if g P H
1
2 pBΩq, there exists φ P H1pΩq such that φ|BΩ “ g and

}φ}1,Ω ď C}g} 1
2
,BΩ.

Weak formulation

Now we consider the Poisson’s equation in a weaker sense. A simple motivation is to convert

from a point-wise view to an average view:

upxq “ 0, a.e. ðñ

ż

Ω
uv dx “ 0, @v P C80 pΩq.

Similarly, we can write the Poisson’s equation in the weak form (i.e., the integral form). In the

one-dimensional case, it is easy to see that

´u2 “ f, a.e. ðñ ´

ż

Ω
pu2 ` fqv dx “ 0, @v P C80 pΩq.

Let U be a Hilbert space with an inner product p¨, ¨qU and its induced norm } ¨ }U . Let V

be a Hilbert space with another inner product p¨, ¨qV and its induced norm } ¨ }V . Denote by V 1

the dual space of V equipped with the norm

}f}V 1 :“ sup
vPV

〈f, v〉
}v}V

, @f P V 1.

Definition 1.2 (Continuity). A bilinear form ar¨, ¨s : U ˆ V ÞÑ R is called continuous if and

only if there exists a constant Ca such that

aru, vs ď Ca}u}U }v}V , @u P U , v P V . (1.15) eqn:cont_bilinear

Consider a continuous bilinear form ar¨, ¨s : U ˆ V Ñ R and f P V 1. We formulate a model

problem: Find u P U such that Au “ f in V 1. Or in the weak form, find u P U such that

aru, vs “ 〈f, v〉 , @v P V . (1.16) prob:model

eg:WeakPoisson Example 1.1 (The Poisson equation). The Poisson problem with homogenous Dirichlet bound-

ary was given in (1.1). In this case, we have Au :“ ´∆u and aru, vs :“ p∇u,∇vq. Ap-

parently, the bilinear form ar¨, ¨s is continuous due to the Cauchy–Schwarz inequality and

U “ V “ H1
0 pΩq.
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Well-posedness of the weak problem ‹
ssc:bt

We denote the space of all linear and continuous operators from U to V as L pU ; V q. Here we

review a few results on the inf-sup condition due to Nečas [46].

thm:banach_necas Theorem 1.3 (Banach–Nečas Theorem). Let ar¨, ¨s : U ˆV ÞÑ R be a continuous bilinear form

with a norm defined as
›

›ar¨, ¨s
›

› :“ sup
uPU

sup
vPV

aru, vs

}u}U }v}V
.

(i) Then there exists a unique linear operator A P L pU ; V q such that

pAu, vqV “ aru, vs, @u P U , v P V ,

with the operator norm
›

›A
›

›

L pU ;V q
“

›

›ar¨, ¨s
›

›.

(ii) Moreover, the bilinear form ar¨, ¨s satisfies the inf-sup condition:

Dα ą 0, such that α}u}U ď sup
vPV

aru, vs

}v}V
, @u P U , (1.17) cond:infsup

for any 0 ‰ v P V , there exists u P U , such that aru, vs ‰ 0, (1.18) cond:nonsin

if and only if A : U ÞÑ V is an isomorphism and

}A´1}L pV ;U q ď α´1. (1.19) eqn:AinvBound

Proof. (i) For any fixed u P U , the mapping aru, ¨s belongs to the dual space V 1. By the Riesz

representation theorem, there exists Au P V such that

pAu, vqV “ aru, vs, @ v P V .

Since ar¨, ¨s is continuous, we obtain a bounded operator A P L pU ; V q. Furthermore,

}A}L pU ;V q “ sup
uPU

}Au}V
}u}U

“ sup
uPU

sup
vPV

pAu, vqV
}u}U }v}V

“ sup
uPU

sup
vPV

aru, vs

}u}U }v}V
“

›

›ar¨, ¨s
›

›.

(ii) ùñ The inf-sup condition (1.17) guarantees that there exists α ą 0 such that

α}u}U ď sup
vPV

aru, vs

}v}V
“ sup

vPV

pAu, vqV
}v}V

“ }Au}V , @u P U . (1.20) eqn:ALowerBound

This implies that A is injective. Let
 

uk
(8

k“0
Ă U and vk :“ Auk be a sequence such that

vk Ñ v P V . In order to show the range of A is closed, we need to show v P ApU q. From the

inequality (1.20), we have

α}uk ´ uj}U ď }Apuk ´ ujq}V “ }vk ´ vj}V Ñ 0.
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Hence, tuku
8
k“0 is a Cauchy sequence and uk Ñ u P U . Moreover,

v “ lim
kÑ8

vk “ lim
kÑ8

Auk “ Au P ApU q.

Now we assume that ApU q ‰ V . Since ApU q is closed, we can decompose V as

V “ ApU q ‘ApU qK

and ApU qK is non-trivial. That is to say, there exists 0 ‰ vK P ApU qK, which contradicts the

condition (1.18). Hence the assumption ApU q ‰ V cannot hold, i.e., A is surjective. This, in

turn, shows that A is an isomorphism from U onto V . Moreover, (1.20) shows

α}A´1v}U ď }v}V , @ v P V .

This proves the inequality (1.19).

(ii) ðù We have

inf
uPU

sup
vPV

aru, vs

}u}U }v}V
“ inf

uPU
sup
vPV

pAu, vq
}u}U }v}V

“ inf
uPU

}Au}V
}u}U

“ inf
vPV

}v}V
}A´1v}U

“

´

sup
vPV

}A´1v}U
}v}V

¯´1
“ }A´1}

´1
L pV ;U q ě α.

This is exactly (1.17). Since A is an isomorphism, for any 0 ‰ v P V , there exists 0 ‰ u P U ,

such that Au “ v and

aru, vs “ pAu, vq “ }v}2V ‰ 0,

which is (1.18).

thm:necas Theorem 1.4 (Nečas Theorem). Let ar¨, ¨s : U ˆ V ÞÑ R be a continuous bilinear form. Then

the equation (1.16) admits a unique solution u P U for all f P V 1, if and only if the bilinear

form ar¨, ¨s satisfies one of the equivalent inf-sup conditions:

(1) There exists α ą 0 such that

sup
vPV

arw, vs

}v}V
ě α}w}U , @w P U ; (1.21) eqn:inf_sup_1

and for every 0 ‰ v P V , there exists w P U such that arw, vs ‰ 0.

(2) There holds

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
ą 0 and inf

vPV
sup
wPU

arw, vs

}w}U }v}V
ą 0. (1.22) eqn:inf_sup_2

(3) There exists a positive constant α ą 0 such that

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
“ inf

vPV
sup
wPU

arw, vs

}w}U }v}V
“ α. (1.23) eqn:inf_sup_3
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Furthermore, the solution u satisfies the stability condition

}u}U ď α´1}f}V 1 .

Proof. Let J : V ÞÑ V 1 be the isometric Reisz isomorphism. According to Theorem 1.3, we

have A P L pU ; V q, which is the linear operator corresponding to ar¨, ¨s. In this sense, (1.16) is

equivalent to

u P U : Au “ J ´1f in V .

Assume the condition (1) holds. Then, A is invertible by Theorem 1.3. The other direction is

also easy to see.

Now the interesting part is to show the equivalence of the three conditions, (1), (2), and (3).

From the proof of Theorem 1.3, we have seen that

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
“ }A´1}

´1
L pV ;U q.

Similarly,

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
“ inf

vPV
sup
wPU

pAw, vqV
}w}U }v}V

“ inf
vPV

sup
wPU

pw,A:vqU
}w}U }v}V

“ }A´:}´1
L pU ;V q “ }A´1}

´1
L pV ;U q,

where A: denotes the adjoint operator. Furthermore, if the condition

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
ą 0

holds, then for any v P V , we have

sup
wPU

arw, vs

}w}U }v}V
ą 0.

Hence there exists w P U , such that arw, vs ‰ 0. This completes the equivalence proof.

From the proof of the last two theorems, we have the following observations:

Remark 1.4 (Existence and uniqueness). Solution of the equation (1.16) exists (i.e., A is

surjective or onto) if and only if

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
ą 0. existence or surjective

Solution of (1.16) is unique (i.e., A is injective or one-to-one) if and only if

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
ą 0. uniqueness or injective

That is to say, A is bijective if and only if the inf-sup conditions (1.22) or its equivalent conditions

hold. In finite dimensional spaces, any linear surjective or injective map is also bijective. So we

only need one of the above inf-sup conditions to show well-posedness.
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Remark 1.5 (Optimal constant). The constant α in (1.23) is the largest possible constant in

(1.21). In general, the first condition in Theorem 1.4 is easier to verify than the third condition.

Corollary 1.1 (Well-posedness and inf-sup condition). If the weak formulation (1.16) has a

unique solution u P U for any f P V 1 so that

}u}U ď C}f}V 1 ,

then the bilinear form ar¨, ¨s satisfies the inf-sup condition (1.23) with α ě C´1.

Proof. Since (1.16) has a unique solution for all f P V 1, the operator A : L pU ; V q is invertible

and A´1 : L pV ; U q is bounded. Due to the fact }u}U ď C}f}V 1 , we have }A´1}L pV ;U q ď C.

From the proof of the Nečas theorem, we can immediately see the optimal inf-sup constant

α “ }A´1}
´1
L pV ;U q ě C´1.

A simple model problem

From now on, we consider the simplest case where V “ U and A is coercive.

Definition 1.3 (Coercivity). A continuous bilinear form ar¨, ¨s : V ˆ V ÞÑ R is called coercive

if there exists α ą 0 such that

arv, vs ě α}v}2V , @v P V . (1.24) eqn:coercive

We notice that supwPV
arv,ws
}w}V

ě
arv,vs
}v}V

ě α}v}V , which implies the first inf-sup condition

in Theorem 1.4. Hence, for any f P V 1, the coercive variational problem (1.16) has a unique

solution and the solution u is continuously depends on f , i.e., }u}V ď α´1}f}V 1 . In this case,

Theorem 1.4 is reduced to the well-known Lax-Milgram theorem.

Corollary 1.2 (Lax-Milgram theorem). Let ar¨, ¨s : V ˆ V ÞÑ R be a continuous bilinear form

which satisfies the coercivity condition (1.24). Then (1.16) has a unique solution u P V for any

f P V 1 and }u}V ď α´1}f}V 1.

rem:energynorm Remark 1.6 (Energy norm). If the bilinear form ar¨, ¨s : V ˆ V ÞÑ R is symmetric, then,

apparently, it defines an inner product on V . Its induced norm is also called the energy norm

|||v||| :“ arv, vs1{2.

Coercivity and continuity of the bilinear form ar¨, ¨s imply that

α
›

›v
›

›

2

V
ď |||v|||2 ď

›

›ar¨, ¨s
›

›

›

›v
›

›

2

V
“

›

›A
›

›

L pV ;V q

›

›v
›

›

2

V
,

namely, the energy norm |||¨||| is equivalent to the } ¨ }V -norm. We will denote the dual energy

norm by |||¨|||˚
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rem:well-posed Remark 1.7 (Poisson is “well-conditioned”). We notice that the Poisson’s equation is well-

posed in the sense that ´∆ : V ÞÑ V 1 is an isomorphism with V “ H1
0 pΩq and V 1 “ H´1pΩq.

Furthermore, it is well-conditioned, i.e., there exist constants α (coercivity constant) and Ca

(continuity constant), such that

α
›

›v
›

›

2

V
ď arv, vs “ x´∆v, vy ď Ca

›

›v
›

›

2

V
, @v P V .

Hence we have the “condition number” of the Laplace operator is bounded

κp´∆q “
›

›´∆
›

›

L pV ;V 1q
¨
›

›p´∆q´1
›

›

L pV 1;V q
ď
Ca
α
.

The problem here lies in that we are working on two different spaces V and V 1. If we con-

sider ´∆ : L2pΩq ÞÑ L2pΩq instead, then we lost boundedness. More general theory has been

developed in the seminar work [4].

High-frequency and locality

Consider the eigenvalue problem for one-dimensional Laplace operator with the homogenous

Dirichlet boundary condition, i.e., ´u2pxq “ λupxq for x P p0, 1q and up0q “ up1q “ 0. It is easy

to see that the eigenvalues and the corresponding eigenfunctions are

λk “ pkπq
2 and ukpxq “ sinpkπxq, k “ 1, 2, ¨ ¨ ¨

For other types of boundary conditions, the eigenvalues and eigenfunctions can be obtained

as well. We notice that larger eigenvalues (larger k) correspond to eigenfunctions of higher

frequency. Similar results can be expected for discrete problems which will be discussed later

on.

An important observation comes from the analysis to the local problem

´u2δpxq “ fpxq, x P Bδ :“ px0 ´ δ, x0 ` δq and uδpx0 ´ δq “ uδpx0 ` δq “ 0.

We can obtain the eigenfunctions of this local problem: uδ,kpxq “ sin
`

kπ
2δ px ´ x0 ` δq

˘

, k “

1, 2, ¨ ¨ ¨ . Define the error e :“ u´ uδ in Bδ. Hence e is harmonic in Bδ. It is easy to construct

a cut-off function θ P C80 pBδq, such that it satisfies the following conditions:

(i) θpxq ą 0; (ii) θpxq “ 1, @x P Bδ{2; (iii) |θ1pxq| ď C
δ .

Thus we have
ż

Bδ{2

ˇ

ˇe1pxq
ˇ

ˇ

2
dx ď

ż

Bδ

θ2pxq
ˇ

ˇe1pxq
ˇ

ˇ

2
dx “ ´

ż

Bδ

´

pθ2q1e1 ` θ2e2
¯

e dx

ď
2C

δ

ż

Bδ

ˇ

ˇθe1e
ˇ

ˇ dx ď
2C

δ

´

ż

Bδ

ˇ

ˇθe1
ˇ

ˇ

2
dx

¯
1
2
´

ż

Bδ

|e|2 dx
¯

1
2
.
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The first and last inequalities immediately imply that

´

ż

Bδ{2

ˇ

ˇe1pxq
ˇ

ˇ

2
dx

¯
1
2
ď

´

ż

Bδ

θ2pxq
ˇ

ˇe1pxq
ˇ

ˇ

2
dx

¯
1
2
ď

2C

δ

´

ż

Bδ

|e|2 dx
¯

1
2
. (1.25) eqn:Harnack

If we plug in the eigenfunctions uδ,k to this inequality, we can see that

kπ

2δ
ď

2C

δ
,

which suggests only low-frequency components are left in the error function e and oscillating

components in the distance δ are accurately captured.

rem:GeoHighFreq Remark 1.8 (Geometric high-frequencies). This simple result implies that the high-frequency

part of u can be estimated very well by the local solution uδ for elliptic problems. Singularity

is a particular form of high-frequency. In the numerical treatments, many forms of singularity

can be resolved through local mesh refinement and the reason why this type of methods is able

to work is because of such local behavior of high frequencies. Motived by (1.25), we can define

geometric high-frequency functions uk as those with large }∇uk}0,Ω{}uk}0,Ω ratio.

1.2 Discretization methods
sec:discretizations

Discretization concerns the process of transferring continuous functions, models, or equations

into their discrete counterparts. This process is usually carried out as the first step toward

making them suitable for numerical evaluation and implementation on modern computers.

Let Ω P Rd be an open domain and f P L2pΩq. We consider the following model problem

$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.

Many discretization methods have been developed, such as finite difference (FD) and the finite

element (FE) methods, each with specific approaches to discretization. After discretization, we

usually end up with a linear algebraic system of equations

A~u “ ~f. (1.26) eqn:linear0

Finite difference method

In one-dimensional case, without loss of generality, we can assume Ω “ p0, 1q and the domain is

sub-divided into N`1 equally spaced pieces. So we get a uniform mesh with meshsize h “ 1
N`1 ;

see the following figure for illustration.
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0 1h

x0 x1 x2 x
N
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N+1

1

Figure 1.2: Uniform mesh in 1D.fig:mesh1d

Using the Taylor’s expansion, we can easily obtain that

u2pxiq “
1

h

”

u1pxi` 1
2
q ´ u1pxi´ 1

2
q

ı

`Oph2q

“
1

h2

”

upxi´1q ´ 2upxiq ` upxi`1q

ı

`Oph2q.

Let ui « upxiq be an approximate solution. Then the FD discretization of the Poisson’s equation

is

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1

´1 2 ´1
. . .

. . .
. . .

. . .
. . . ´1

´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

u2

...

uN´1

uN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

fpx1q

fpx2q

...

fpxN´1q

fpxN q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.27) eqn:1DFDA

That is to say,

A :“
1

h2
tridiagp´1, 2,´1q and ~f :“

´

fi

¯N

i“1
“

´

fpxiq
¯N

i“1
.

We need to solve the linear system A~u “ ~f in order to obtain an approximate solution to the

Poisson’s equation. It is worth noticing that the coefficient matrix A is symmetric positive

definite (SPD), sparse, as well as Toeplitz.

Remark 1.9 (An alternative form of the linear system). Sometimes, it is more convenient (for

implementation) to also include the boundary values in ~u and write the linear system as

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

´1 2 ´1
. . .

. . .
. . .

´1 2 ´1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

u0

u1

...

uN

uN`1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

f1

...

fN

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Apparently this form is equivalent to the discrete problem above.

rem:FDevalue Remark 1.10 (Eigenvalues of 1D FD problem). For simplicity we now assume h ” 1. It is

well-known (see HW 1.2) that the eigenvalues of A :“ tridiagp´1, 2,´1q are

λkpAq “ 2´ 2 cos

ˆ

kπ

N ` 1

˙

“ 4 sin2

ˆ

kπ

2pN ` 1q

˙
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and the corresponding eigenvectors are

~ξ k “
´

ξki

¯N

i“1
P RN , with ξki :“ sin

´ ikπ

N ` 1

¯

.

We note that the set of eigenvectors of A, ~ξ k “
`

ξ ki
˘N

i“1
, forms an orthogonal basis of RN .

Therefore, any ~ξ P RN can be expanded in terms of these eigenvectors:

~ξ “
N
ÿ

k“1

αk~ξ
k.

This type of expansion is often called the discrete Fourier expansion. From Figure 1.3, we can

easily see that the eigenvectors are “smooth” with small k and are “oscillatory” with large k.

Hence the smoothness of ~ξ has a lot to do with the relative size of the coefficients αk.
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Figure 1.3: Eigenvectors of 1D finite difference system for the Poisson’s equation.fig:eigenfct1D

For two-dimensional problems, we can partition the domain uniformly in both x and y-

directions into n ` 1 pieces (N “ n2). We denote pxi, yjq “
`

i
n`1 ,

j
n`1

˘

and the Poisson’s

equation is discretize using the five-point stencil

1

h2

”

4ui,j ´
`

ui´1,j ` ui`1,j ` ui,j´1 ` ui,j`1

˘

ı

“ fpxi, yjq, i, j “ 1, . . . , n.

Then we need to assign an order to the grid points in order to write the unknowns as a vector.

There are many ways to order the unknowns for practical purposes. For simplicity, we use the
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Lexicographic ordering, i.e., ppj´1qn`i :“ pxi, yjq. Then we have

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

A1 ´I

´I A2 ´I
. . .

. . .
. . .

´I An´1 ´I

´I An

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

u2

...

...

uN´1

uN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f1

f2

...

...

fN´1

fN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the block diagonal matrices Ai :“ tridiagp´1, 4,´1q, pi “ 1, . . . , nq are tridiagonal. Define

C :“ tridiagp´1, 0,´1q. Then it is clear that

A “
1

h2
tridiagp´I, A1,´Iq “

1

h2
I bA1 `

1

h2
C b I.

Remark 1.11 (Eigenvalues of the 2D FD problem). Again we assume h ” 1. Similar to the

1D problem, we can get the eigenvalues

λi,jpAq “ 4´ 2 cos
iπ

n` 1
´ 2 cos

jπ

n` 1
“ 4 sin2 iπ

2pn` 1q
` 4 sin2 jπ

2pn` 1q
,

with eigenvectors

~ξi,j “

˜

sin
kiπ

n` 1
sin

ljπ

n` 1

¸

k,l“1,...,n

.

Remark 1.12 (Ordering). The shape of the above coefficient matrix A depends on the ordering

of degrees of freedom (DOFs). We will see that the ordering also affects the smoothing properties

of smoothers and parallelization. Finding minimal bandwidth ordering is important for some

methods, like direct solvers. But it is NP-hard.

Finite element method

Finite element method (FEM) is a Galerkin method that uses piecewise polynomial spaces for

approximate test and trial function spaces. The readers are referred to [25, 37, 10, 20] for more

detailed discussion on construction and error analysis of the standard finite element method.

The weak formulation of the model equation can be written as (see Example 1.1): Find

u P H1
0 pΩq, such that

ż

Ω
∇u ¨∇vdx “

ż

Ω
fv dx, @v P H1

0 pΩq.

In 1D, it is easy to explain the main idea of finite element method. Let Pkpτq be the space of

all polynomials of degree less than or equal to k on τ . Let

V “ Vh :“
 

v P CpΩq : v P P1pxi´1, xiq, vp0q “ vp1q “ 0
(

.
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Now we can write the discrete variational problem as: Find uh P Vh, such that

aruh, vhs “ pf, vhq, @vh P Vh.

Furthermore, we use nodal basis functions φi P Vh, i.e. φipxjq “ δi,j . In this way, we can express

a given function uh P Vh as uhpxq “
řN
j“1 ujφjpxq. Hence we arrive at the following equation:

For any i “ 1, . . . , N ,

N
ÿ

j“1

arφj , φisuj “ pf, φiq or
ÿ

j

Ai,juj “ fi.

This is a system of algebraic linear equations

A~u “ ~f, (1.28) eqn:FEM1D

with
`

A
˘

i,j
“ ai,j :“ arφi, φjs, ~u :“

`

ui
˘N

i“1
, and ~f “

`

fi
˘N

i“1
:“

´

xf, φiy
¯N

i“1
.

If we use the uniform mesh in Figure 1.2, then we have (see HW 1.3) that

A :“
1

h
tridiagp´1, 2,´1q and ~f :“

`

hfpxiq
˘N

i“1
.

Upon solving this finite-dimensional problem, we obtain a discrete approximation uh. The finite

element method has several appealing properties and it will be the main underlying discretization

used in this lecture; see §3.1 for more details.

rem:ill Remark 1.13 (Discrete Poisson’s equation is ill-conditioned). Remark 1.7 has shown that the

Poisson’s equation has a bounded condition number. On the other hand, the discrete problems

from FD and FE are both ill-conditioned if meshsize h is small. Later on, we will see that this

will cause problems for many iterative methods. The convergence rate of these methods usually

depend on the spectrum of the coefficient matrix A.

rem:sim Remark 1.14 (A useful notation). We use some notations introduced by Xu [55]. The notation

a À b means: there is a generic constant C independent of meshsize h, such that a ď Cb.

Similarly, we can define “Á” and “–”. This is important because, in our future discussions,

we would like to construct solvers/preconditioners that yield convergence rate independent of

meshsize h.

1.3 Simple iterative solvers
sec:simple

There are many different approaches for solving the linear algebraic equations results from

the finite difference, finite element, and other discretizations for the Poisson’s equation. For

example, sparse direct solvers, FFT, and iterative methods. We only discuss iterative solvers in

this lecture.
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Some examples

Now we give a few well-known examples of simple iterative methods. Consider the linear system

A~u “ ~f . Assume the coefficient matrix A P RNˆN can be partitioned as A “ L`D`U , where

L,D,U P RNˆN are the lower triangular, diagonal, and upper triangular parts of A, respectively

(the rest is set to be zero).

example:R Example 1.2 (Richardson method). The simplest iterative method for solving A~u “ ~f might

be the Richardson method

~unew “ ~u old ` ω
´

~f ´A~u old
¯

. (1.29) eqn:richardson

We can choose an optimal weight ω to improve performance of this method.

example:J Example 1.3 (Weighted Jacobi method). The weighted or damped Jacobi method can be writ-

ten as

~unew “ ~u old ` ωD´1p~f ´A~u oldq. (1.30) eqn:dJacobi

This method solves one equation for one variable at a time, simultaneously. Apparently, it is a

generalization of the above Richardson method. If ω “ 1, then we arrive at the standard Jacobi

method.

example:GS Example 1.4 (Gauss–Seidel method). The Gauss–Seidel (G-S) method can be written as

~unew “ ~u old ` pD ` Lq´1p~f ´A~u oldq.

We rewrite this method as

pD ` Lq~unew “ pD ` Lq~u old ` p~f ´A~u oldq “ ~f ´ U~u old.

Thus we have

~unew “ ~u old `D´1
´

~f ´ L~unew ´ pD ` Uq~u old
¯

. (1.31) eqn:GS

Compared with the Jacobi method (1.30) (ω “ 1), the G-S method uses the most updated

solution in each iteration instead of the previous iteration.

Example 1.5 (Successive over-relaxation method). The successive over-relaxation (SOR) method

can be written as

pD ` ωLq~unew “ ω ~f ´
´

ωU ` pω ´ 1qD
¯

~u old. (1.32) eqn:SOR

The weight ω is usually in p1, 2q. If ω “ 1, then it is the G-S method.
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A simple observation

Many simple iterative methods exhibit different rates of convergence for short and long wave-

length error components, suggesting these different scales should be treated differently. Let λmax

and λmin be the largest eigenvalue and the smallest eigenvalue of A, respectively, and ~ξmax and

~ξmin be the corresponding eigenvectors. One interesting observation many people made is: When

we use the weighted Jacobi method (1.30) with weight ω “ 2{3 to solve the problem A~u “ ~0

with the initial guess just equal to ~ξmax, the convergence is very fast. On the other hand, if the

weighted Jacobi iteration is used to solve the same equation but with a different initial guess

~ξmin, the convergence becomes slow. See Figure 1.4 for a demonstration.
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Figure 1.4: Error decay in } ¨ }8-norm for weighted Jacobi method with initial guess ~ξ k.fig:errorJ

Note that the reason which causes this difference mainly relies on the fact that the error in

the first problem (corresponding to ~ξmax) is oscillatory or of high frequency but the error in the

second problem (corresponding to ~ξmin) is smooth or of low frequency. This makes one speculate

that the weighted Jacobi method can damp the high frequency part of the error rather quickly,

but slowly for the low frequency part; see Remark 1.8.

Smoothing effect ‹

In view of Remark 1.10, based on the understanding of the relation between the smoothness

and the size of Fourier coefficients, we can analyze the smoothing property using the discrete

Fourier expansion. Let ~u be the exact solution of the 1D FD problem on uniform grids and ~u pmq
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the result of m-th iteration from the damped Jacobi method (or equivalently in this case, the

Richardson method). Then

~u´ ~u pmq “ pI ´ ωAqp~u´ ~u pm´1qq “ ¨ ¨ ¨ “ pI ´ ωAqmp~u´ ~u p0qq.

It is straightforward to see that

λkpI ´ ωAq “ 1´ ωλkpAq “ 1´ 4ω sin2

ˆ

kπ

2pN ` 1q

˙

.

Notice that λkpI´ωAq can be viewed as the damping factor for error components corresponding

to Fourier mode k; see Remark 1.10. We would like to choose ω such that λk’s are small.

Consider the Fourier expansion of the initial error:

~u´ ~u p0q “
N
ÿ

k“1

αk~ξ
k.

Then

~u´ ~u pmq “
N
ÿ

k“1

αkpI ´ ωAq
m~ξ k.

Note that, for any polynomial p, we have ppAq~ξ k “ ppλkq~ξ
k. By choosing ω “ 1

4 «
1

λmaxpAq
, we

obtain

~u´ ~u pmq “
N
ÿ

k“1

αkp1´ ωλkq
m~ξ k “

N
ÿ

k“1

α
pmq
k

~ξ k,

where

α
pmq
k “

ˆ

1´ sin2 kπ

2pN ` 1q

˙m

αk.

The above equation implies

α
pmq
k “ αk sin2m

ˆ

N ´ k ` 1

N ` 1

π

2

˙

ď αk

ˆ

N ´ k ` 1

N ` 1

π

2

˙2m

,

which approaches to 0 very rapidly as m Ñ 8, if k is close to N (high-frequencies). This

means that high frequency error can be damped very quickly. This simple analysis justifies the

smoothing property we observed in the beginning of this section.

We can apply the same analysis to the Jacobi method as well and the Fourier coefficient in

front of the highest frequency is as follows:

α
pmq
N “

ˆ

1´ 2 sin2 Nπ

2pN ` 1q

˙m

αN “ cosm
ˆ

Nπ

N ` 1

˙

αN „ p´1qm
ˆ

1´
π2

2pN ` 1q2

˙m

αN .

This suggests that the regular Jacobi method might not have a smoothing property and should

not be used a smoother in general.
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1.4 Multigrid method in 1D
sec:GMG1D

In this section, we first give a simple motivation and sneak-peak of the well-known multigrid

method, which is a representing example of multilevel iterative methods. The observations of

this section will be helpful for our later discussions; see the famous tutorial by Briggs et al. [23]

for a quick introduction to the multigrid methods. Consider the finite difference scheme (1.27)

for the Poisson’s equation in 1D, namely

A~u “ ~f with A “
1

h2
tridiagp´1, 2,´1q, fi “ fpxiq.

Nested grids

Multigrid (MG) methods are a group of algorithms for solving partial differential equations

using a hierarchy of discretizations. They are very useful in problems exhibiting multiple scales

of behavior. In this section, we introduce the simplest multigrid method in 1D.

Suppose there are a hierarchy of L ` 1 grids with mesh sizes hl “ p
1
2q
l`1 (l “ 0, 1, . . . , L);

see Figure 1.5. It is clear that

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h

and N “ 2L`1 ´ 1. We call level L the finest level and level 0 the coarsest level.

l = 0 h0 = (1
2 )1

l = 1 h1 = (1
2 )2

l = 2 h2 = (1
2 )3

...

...

1

Figure 1.5: Hierarchical grids for 1D multigrid method.fig:hiergrid

Smoothers

We consider how to approximate the solution on each level using some local relaxation method.

Assume the 1D Poisson’s equation is discretized using the finite difference scheme discussed in

the previous section. Then, on each level, we have a linear system of equations

Al~ul “ ~fl with Al “ h´2
l tridiagp´1, 2,´1q.
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For each of these equations, we can apply a damped Jacobi method (with damping factor 1{2)

~u
pm`1q
l “ ~u

pmq
l `

1

2
D´1
l

´

~fl ´Al~u
pmq
l

¯

(1.33) eqn:djacobi

to obtain approximate solutions. This method is usually referred as a local relaxation or

smoother, which will be discussed later in this lecture note.

Prolongation and restriction

Another important component of a multigrid method is to define the transfer operators between

different levels. In the 1D case, the transfer operators can be easily given; see Figure 1.6. In

another word, we can also write the transfer operators in the matrix form, i.e.,

Rl,l´1 :“
1

4

¨

˚

˚

˝

1 2 1

1 2 1
. . .

˛

‹

‹

‚

and Pl´1,l :“
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

2

1 1

2

1
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.34) eqn:RandP

We notice that R “ 1
2P

T . It is straight-forward to check that the coefficient matrices of two

× ×

Pl−1,l 1 1
2

1
2 1 1

2
1
2 1

××

Rl,l−1
1
2

1
4

1
4

1
2

1
4

1
4

1
2

1

Figure 1.6: Transfer operators between two consecutive levels (Left: restriction operator; right:
prolongation operator).fig:transfer1d

consecutive levels satisfy

Al´1 “ Rl,l´1AlPl´1,l.

Multigrid algorithm

Now we are ready to give one step of the multigrid algorithm.

alg:1DGMG Algorithm 1.1 (One iteration of multigrid method). ~ul “MGpl, ~fl, ~ulq

(i) Pre-smoothing: ~ul Ð ~ul `
1
2D

´1
l

`

~fl ´Al~ul
˘
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(ii) Restriction: ~rl´1 Ð Rl,l´1

`

~fl ´Al~ul
˘

(iii) Coarse-grid correction: ~el´1 ÐMGpl ´ 1, ~rl´1,~0l´1q

(iv) Prolongation: ~ul Ð ~ul ` Pl´1,l~el´1

(v) Post-smoothing: ~ul Ð ~ul `
1
2D

´1
l

`

~fl ´Al~ul
˘

Remark 1.15 (Coarse-grid correction). Suppose that there is an approximate solution ~u pmq.

Then we have

A
`

~u´ ~u pmq
˘

“ ~r pmq :“ ~f ´A~u pmq

and the error equation can be written

A~e pmq “ ~r pmq. (1.35) eqn:error

If we get ~e pmq or its approximation, we can just update the iterative solution by ~u pm`1q “

~u pmq ` ~e pmq to obtain a better approximation of ~u. This explains the steps (iii) and (iv) in the

above algorithm.

Remark 1.16 (Coarsest-level solver). It is clear that, in our setting, the solution at level l “ 0

is trivial to obtain. In general, we can apply a direct or iterative solver to solve the coarsest-level

problem, which is relatively cheap. Sometimes, we have singular problems at the coarsest level,

which need to be handled with care.

Algorithm 1.1 is one iteration of the multigrid method. We can iterate until the approxima-

tion is “satisfactory”. For example, we iterate until the relative residual }~r}0{ |~f}0 is less than

10´6; we will discuss stopping criteria later in this lecture. This multigrid algorithm is easy to

implement; see HW 1.5. In Table 1.1, we give the numerical results of Algorithm 1.1 for the 1D

Poisson’s equation. From the table, we find that, unlike the classical Jacobi and G-S methods,

this multigrid method converges uniformly with respect to the meshsize h. This is, of course,

a very desirable feature of the multilevel iterative methods, which will be investigated in more

details in this lecture.

Now it is natural to have a few questions on such multilevel methods:

• When does the multigrid method converge?

• How fast the method converges?

• How to find a smoother?

• Why the matrices R and P are given as (1.34)?

• How to generalize the method to other problems?
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#Levels #DOF #Iter Contract factor

5 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table 1.1: Convergence behavior of 1D geometric multigrid method.tab:1DGMG

1.5 Tutorial of FASP ‹

All the numerical examples in this lecture are done using the Fast Auxiliary Space Precondition-

ing (FASP) package. The FASP package provides C source files1 to build a library of iterative

solvers and preconditioners for the solution of large-scale linear systems of equations. The com-

ponents of the FASP basic library include several ready-to-use, modern, and efficient iterative

solvers used in applications ranging from simple examples of discretized scalar partial differential

equations (PDEs) to numerical simulations of complex, multicomponent physical systems.

The main components of the FASP basic library are:

• Basic linear iterative methods;

• Standard Krylov subspace methods;

• Geometric and Algebraic Multigrid (G/AMG) methods;

• Incomplete factorization methods.

The FASP distribution also includes several examples for solving simple benchmark problems.

The basic (kernel) FASP distribution is open-source and is licensed under GNU Lesser General

Public License or LGPL. Other distributions may have different licensing (contact the developer

team for details on this). The most updated version of FASP can be downloaded directly from

http://fasp.sf.net/download/faspsolver.zip

To build the FASP library for these operating systems. Open a terminal window, where you

can issue commands from the command line and do the following: (1) go to the main FASP di-

rectory (we will refer to it as $(faspsolver) from now on); (2) modify the “FASP.mk.example”

file to math your system and save it as “FASP.mk”; (3) then execute:

> make config

> make install

1The code is C99 (ISO/IEC 9899:1999) compatible.

http://fasp.sf.net/download/faspsolver.zip
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These two commands build the FASP library/header files. By default, it installs the library

in $(faspsolver)/lib and the header files in $(faspsolver)/include. It also creates a file

$(faspsolver)/Config.mk which contains few of the configuration variables and can be loaded

by external project Makefiles. If you do not have “FASP.mk” present in the current directory,

default settings will be used for building and installation FASP.

Now, if you would like to try some of the examples that come with FASP, you can build the

“tutorial” target and try out the tutorial examples:

> make tutorial

Equivalently, you may also build the test suite and the tutorial examples by using the “local”

Makefile in $(faspsolver)/tutorial.

> make ´C tutorial

For more information, we refer to the user’s guide and reference manual of FASP2 for techni-

cal details on the usage and implementation of FASP. Since FASP is under heavy development,

please use this guide with caution because the code might have been changed before this docu-

ment is updated.

1.6 Homework problems

hw:UniqueSolutionPoisson HW 1.1. Prove the uniqueness of the Poisson’s equation. Hint: You can argue by the maximum

principle or the energy method.

hw:Evalue1DFD HW 1.2. Prove the eigenvalues and eigenvectors of tridiagpb, a, bq P RNˆN are

λk “ a´ 2b cos
´ kπ

N ` 1

¯

and ~ξ k “
´

sin
` kπ

N ` 1

˘

, . . . , sin
` Nkπ

N ` 1

˘

¯T
,

respectively. Apply this result to give eigenvalues of the 1D FD matrix A. What are the

eigenvalues of tridiagpb, a, cq P RNˆN?

hw:StiffnessFE HW 1.3. Derive the finite element stiffness matrix for 1D Poisson’s equation with homogenous

Dirichlet boundary condition using a uniform mesh.

hw:FDFEHeat HW 1.4. Derive 1D FD and FE discretizations for the heat equation (1.6) using the backward

Euler method for time discretization.

hw:GMGcode HW 1.5. Implementation of multigrid in 1D using Matlab, C, Fortran, or Python. Try to study

the efficiency of your implementation.

2Available online at http://fasp.sourceforge.net. It is also available in “faspsolver/doc/”.

http://fasp.sourceforge.net
faspsolver/doc/


Chapter 2

Iterative Solvers and Preconditioners

ch:iterative

The term “iterative method” refers to a wide range of numerical techniques that use successive

approximations
 

upmq
(

for the exact solution u of a certain problem. In this chapter, we will

discuss two types of iterative methods: (1) Stationary iterative method, which performs in

each iteration the same operations on the current iteration; (2) Nonstationary iterative method,

which has iteration-dependent operations. Stationary methods are simple to understand and

implement, but usually not very effective. On the other hand, nonstationary methods are a

relatively recent development; their analysis is usually more difficult.

2.1 Stationary linear iterative methods
sec:stationary

In this section, we discuss stationary iterative methods; typical examples include the Jacobi

method and the Gauss–Seidel method. We will discuss why they are not efficient in general but

still widely used. Let V be a finite-dimensional linear vector space, A : V ÞÑ V be a non-singular

linear operator, and f P V . We would like to find a u P V , such that

Au “ f. (2.1) eqn:linear

For example, in the finite difference context discussed in §1.2, V “ RN and the linear operator

A becomes a matrix A. We just need to solve a system of linear equations: Find ~u P RN , such

that

A~u “ ~f. (2.2) eqn:linear2

We will discuss the linear systems in both operator and matrix representations. We note that

the notation here in (2.2) might be slightly different when we discuss the discrete problems

arising from the finite element discretizations.

Remark 2.1 (More general setting). In fact, we can consider iterative methods in a more

general setting. For example, let V be a finite-dimensional Hilbert space, V 1 be its dual, and

31
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A : V ÞÑ V 1 be a linear operator and f P V 1. A significant part of this lecture can be generalized

to such a setting easily.

Preliminaries

The most-used inner product in this lecture is the Euclidian inner product pu, vq :“
ş

Ω uv dx;

and if V “ RN , pu, vq :“
řN
i“1 uivi. Once we have the inner product, we can define the concept

of transpose and symmetry on the Hilbert space V . Define the adjoint operator (transpose) of

the linear operator A as AT : V ÞÑ V , such that

pATu, vq :“ pu,Avq, @u, v P V.

rem:nonsingular Remark 2.2 (Non-singularity). We denote the null space and the range of A as

nullpAq :“ tv P V : Av “ 0u , (2.3)

rangepAq :“ tu “ Av : v P V u . (2.4)

We have nullpAT qK “ rangepAq and nullpAT q “ rangepAqK. If nullpAq “ t0u, then A is injective

or one-to-one. Apparently, A : V ÞÑ rangepAq is surjective or onto. If we consider a symmetric

operator A : nullpAqK ÞÑ rangepAq, then A is always non-singular.

A linear bounded operator A on V is symmetric if and only if

pAu, vq “ pu,Avq, @u, v P domainpAq Ď V.

If A is densely defined and AT “ A, then A is called self-adjoint.

Remark 2.3 (Symmetric and self-adjoint operators). A symmetric operator A is self-adjoint

if domainpAq “ V . The difference between symmetric and self-adjoint operators is technical;

see [61] for details.

The set of eigenvalues of A is called the spectrum, denoted as σpAq. The spectrum of any

bounded symmetric matrix is real, i.e., all eigenvalues are real, although a symmetric operator

may have no eigenvalues1. We define the spectral radius ρpAq :“ sup
 

|λ| : λ P σpAq
(

.

An important class of operators for this chapter is symmetric positive definite (SPD) op-

erators. An operator A is called SPD if and only if A is symmetric and pAv, vq ą 0, for any

v P V zt0u. Since A is SPD, all of its eigenvalues are positive; furthermore,

λminpAq “ min
vPV zt0u

pAv, vq
}v}2

and λmaxpAq “ max
vPV zt0u

pAv, vq
}v}2

.

1A bounded linear operator on an infinite-dimensional Hilbert space might not have any eigenvalues.
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We define the condition number κpAq :“ λmaxpAq
λminpAq , which is more convenient, compared with

spectrum, to characterize convergence rate of iterative methods. For the indefinite case, we can

use

κpAq :“
supλPσpAq |λ|

infλPσpAq |λ|
.

More generally, for an isomorphic mapping A P L pV ;V q, we can define

κpAq :“ }A}L pV ;V q}A´1}L pV ;V q.

And all these definitions are consistent for symmetric positive definite problems. If A is a SPD

operator, it induces a new inner product, which will be used heavily in our later discussions

pu, vqA :“ pAu, vq @u, v P V. (2.5) eqn:A-inner

It is easy to check p¨, ¨qA is an inner product on V . For any linear bounded operator B : V ÞÑ V ,

we can define two transposes with respect to the inner products p¨, ¨q and p¨, ¨qA, respectively;

namely,

pBTu, vq “ pu,Bvq,
pB˚u, vqA “ pu,BvqA.

By the above definitions, it is clear (see HW 2.1) that

B˚ “ A´1BTA. (2.6) eqn:BtBstar

Remark 2.4 (Induced norms). The inner products define above also induce norms on V by

}v} :“ pv, vq
1
2 and }v}A :“ pv, vq

1
2
A. These, in turn, define the operator norms for B : V ÞÑ V ,

i.e.,

}B} :“ sup
vPV zt0u

}Bv}
}v}

and }B}A :“ sup
vPV zt0u

}Bv}A
}v}A

.

It is well-known that, for any consistent norm } ¨ }, we have ρpBq ď }B}. Furthermore, we

have the following results:

prop:rho Proposition 2.1 (Spectral radius and norm). Suppose V is Hilbert space with an inner product

p¨, ¨q and induced norm } ¨ }. If A : V ÞÑ V is a bounded linear operator, then

ρpAq “ lim
mÑ`8

}Am}
1
m .

Moreover, if A is self-adjoint, then ρpAq “ }A}.

From this general functional analysis result, we can immediately obtain the following rela-

tions:
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lem:sym Lemma 2.1 (Spectral radius of self-adjoint operators). If BT “ B, then ρpBq “ }B}. Similarly,

if B˚ “ B, then ρpBq “ }B}A.

Symmetry is a concept with respect to the underlying inner product. In this chapter, we

always refers to the p¨, ¨q-inner product for symmetry. By definition, pBAq˚ “ BTA. If BT “ B,

we do not necessarily have pBAqT “ BA. However, we have a key identity:

pBAq˚ “ BTA “ BA;

see HW 2.2 for the first equality. So Lemma 2.1 implies the following identity:

ρpI ´ BAq “ }I ´ BA}A,

where I : V ÞÑ V is the identity operator.

Stationary iterative methods

A linear stationary iterative method (one iteration) can be expressed in the following general

form:

Algorithm 2.1 (Stationary iterative method). unew “ ITERpuoldqalg:iter

(i) Form residual: r “ f ´Auold

(ii) Solve error equation: Ae “ r by ê “ Br

(iii) Correct iteration: unew “ uold ` ê

That is to say, the new iteration is obtained by computing

unew “ uold ` Bpf ´Auoldq. (2.7) eqn:iter

Notice that each iteration only depends on the previous approximate solution uold and does not

involve any information of the older iterations; in each iteration, it basically performs the same

operations over and over again. It is easy to see that

u´ upmq “ pI ´ BAq
`

u´ upm´1q
˘

“ ¨ ¨ ¨ “ pI ´ BAqm
`

u´ up0q
˘

“ Em
`

u´ up0q
˘

,

where the operator E :“ I ´ BA is called the error propagation operator and B is called the

iterator.

We can get the following simple convergence theorem.

thm:rho Theorem 2.1 (Convergence of Algorithm 2.1). The Algorithm 2.1 converges for any initial guess

if the spectral radius ρpI ´ BAq ă 1, which is equivalent to limmÑ`8pI ´ BAqm “ 0. The con-

verse direction is also true.
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This convergence result is simple but difficult to apply. More importantly, it does not

provide any information on how fast the convergence could be if the algorithm converges; see

the following example for further explanation.

Example 2.1 (Spectral radius and convergence speed). Suppose we have an iterative method

with an error propagation matrix

E :“

¨

˚

˚

˚

˚

˚

˝

0 1 ¨ ¨ ¨ 0
...

. . .
. . .

...
...

. . . 1

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‚

P RNˆN

and the initial error is ~e p0q :“ ~u´~u p0q “ p0, . . . , 0, 1qT P RN . Notice that, in this example, ρpEq ”

0. However, if applying this error propagation matrix to form a sequence of approximations, we

will get

}~e p0q}2 “ }~e
p1q}2 “ ¨ ¨ ¨ “ }~e

pN´1q}2 “ 1 and }~e pNq}2 “ 0.

The main question now is to find out whether there is a constant δ P r0, 1q and a convenient

norm } ¨ } on RN , such that }~e pm`1q} ď δ}~e pmq} for any ~e p0q P RN .

Remark 2.5 (Convergence rate of the Richardson method). The simplest iterative method for

solving A~u “ ~f might be B “ ωI, which is the well-known Richardson method in Example 1.2.

In this case, the iteration converges if and only if ρpI´ωAq ă 1, i.e., all eigenvalues of matrix A

are in p0, 2
ω q. Since A is SPD, the iteration converges if ω ă 2λ´1

maxpAq. If we take ω “ λ´1
maxpAq,

then

ρpI ´ λ´1
maxpAqAq “ 1´

λminpAq

λmaxpAq
“ 1´

1

κpAq
.

In fact, the optimal weight is ωopt “
2

λmaxpAq ` λminpAq
and

ρpI ´ ωoptAq “ }I ´ ωoptA} “ 1´
2λminpAq

λmaxpAq ` λminpAq
“
κpAq ´ 1

κpAq ` 1
.

We can see that the convergence is very slow if A is ill-conditioned.

Remark 2.6 (Richardson and steepest descent method). If A is a SPD matrix, then A~u “ ~f is

equivalent to the unconstrained quadratic minimization problem

argmin
~uPRN

1

2
~uTA~u´ ~f T~u.

We immediately notice that the search direction in the Richardson method is exactly the same

as the steepest decent method for the above minimization problem; see §2.2.
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Symmetrization

In general, the iterator B might not be symmetric and it is more convenient to work with

symmetric problems. We can apply a simple symmetrization step:

upm`
1
2
q “ upmq ` B

´

f ´Aupmq
¯

, (2.8)

upm`1q “ upm`
1
2
q ` BT

´

f ´Aupm` 1
2
q
¯

, (2.9)

to obtain a new iterative method

u´ upm`1q “ pI ´ BTAqpI ´ BAqpu´ upmqq “ pI ´ BAq˚pI ´ BAqpu´ upmqq.

This new method satisfies the relation

u´ upm`1q “ pI ´ BAqpu´ upmqq

and it has a symmetric iteration operator

B :“ BT ` B ´ BTAB “ BT pB´T ` B´1 ´AqB “: BTKB. (2.10) eqn:Bsym

lem:decay Lemma 2.2 (Error decay property). We have, for any v P V , that

›

›v
›

›

2

A ´
›

›pI ´ BAqv
›

›

2

A “
`

BAv, v
˘

A,

or equivalently,
`

pI ´ BAqv, v
˘

A “
›

›pI ´ BAqv
›

›

2

A.

Proof. Notice that, by the definition of symmetrization,

BA “ BT pB´T ` B´1 ´AqBA.

This immediately gives

pBAv, vqA “
`

pB´T ` B´1 ´AqBAv,BAv
˘

“ pBAv,Avq ` pAv,BAvq ´ pABAv,BAvq
“

`

p2I ´ BAqv,BAv
˘

A

and the first equality follows. The second equality is trivial.

eqn:BAcontraction Remark 2.7 (Contraction property). The stationary iterative method defined by B is a con-

traction if }I ´ BA}A ď δ0 ă 1. Apparently, it is equivalent to say

›

›e
›

›

2

A ´
›

›pI ´ BAqe
›

›

2

A ě p1´ δ
2
0q
›

›e
›

›

2

A ą 0, @e ‰ 0.

Lemma 2.2 indicates that δ :“ }I ´ BA}A ă 1 if and only if B is SPD. The constant δ is

called the contraction factor of the iterative method. In the later discussions, we can assume the

iterator B is SPD; in fact, if the iterator is not symmetric, we can consider its symmetrization.
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Remark 2.8 (Effect of symmetrization). We notice that BT “ B and pI ´ BAq˚ “ I ´ BA.

Furthermore, Lemma 2.2 implies that
`

pI ´ BAqv, v
˘

A “ }pI ´ BAqv}2A, @v P V . Since I ´ BA
is self-adjoint w.r.t. p¨, ¨qA, we have }I ´ BA}A “ ρpI ´ BAq. And as a consequence,

}I ´ BA}A “ sup
}v}A“1

`

pI ´ BAqv, v
˘

A “ sup
}v}A“1

}pI ´ BAqv}2A “ }I ´ BA}2A. (2.11) eqn:Bsym_B

This immediately gives

ρpI ´ BAq “ }I ´ BA}A “ }I ´ BA}2A ě ρpI ´ BAq2.

Hence, if the symmetrized method (2.8)–(2.9) converges, then the original method (2.7) also

converges. Furthermore, we can obtain the following identity:

}I ´ BA}A “ ρpI ´ BAq “ sup
vPV zt0u

`

pI ´ BAqv, v
˘

A
}v}2A

. (2.12) eqn:rate1

Convergence rate of stationary iterative methods

Since σpI´BAq “ t1´λ : λ P σpBAqu, the convergence of the symmetrized method (2.8)–(2.9)

is equivalent to ρpI ´BAq ă 1. Up to a constant scaling, it is equivalent to σpBAq Ă p0, 1s, i.e.,

BA is SPD w.r.t. p¨, ¨qA. It is equivalent to say that B is SPD w.r.t. p¨, ¨q. We summarize the

convergence conditions in the following theorem.

thm:symconv Theorem 2.2 (Convergence of Symmetrized Algorithm). The symmetrized iteration (2.8)–(2.9)

(with appropriate scaling) converges if and only if B is SPD.

ex:dJacobi Example 2.2 (Jacobi and weighted Jacobi methods). If A P RNˆN is SPD and it can be parti-

tioned as A “ L`D`U , where L,D,U P RNˆN are lower triangular, diagonal, upper triangular

parts of A, respectively. We can immediately see that B “ D´1 yields the Jacobi method. In

this case, we have

B “ BT pB´T `B´1 ´AqB “ D´T pD ´ L´ UqD´1.

If KJacobi :“ D´L´U “ 2D´A is SPD, the Jacobi method converges. In general, it might not

converge, but we can apply an appropriate scaling (i.e., the damped Jacobi method) Bω “ ωD´1.

We then derive

B´Tω `B´1
ω ´A “ 2ω´1D ´A.

The damping factor should satisfy that ω ă 2
ρpD´1Aq

in order to guarantee convergence. For

the 1D finite difference problem of the Poisson’s equation, we should use a damping factor

0 ă ω ă 1.
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Based on the identity (2.12), we can prove the convergence rate estimate:

thm:rate Theorem 2.3 (Convergence rate). The convergence rate of the stationary iterative method (or

its symmetrization) is

}I ´ BA}2A “ }I ´ BA}A “ 1´
1

c1
, with c1 :“ sup

}v}A“1
pB´1

v, vq.

Proof. The first equality is directly from (2.11). Since ppI ´BAqv, vqA “ }v}2A´pBAv, vqA, the

identity (2.12) yields

}I ´ BA}2A “ 1´ inf
}v}A“1

pBAv, vqA “ 1´ λminpBAq “ 1´
1

c1
,

where

c1 “ λmaxppBAq´1q “ sup
}v}A“1

`

pBAq´1v, v
˘

A “ sup
}v}A“1

`

B´1
v, v

˘

.

An example: modified G-S method ‹

Similar to the weighted Jacobi method (see Example 2.2), we define the weighted G-S method

Bω “ pω
´1D ` Lq´1. We have

B´Tω `B´1
ω ´A “ pω´1D ` LqT ` pω´1D ` Lq ´ pD ` L` Uq “ p2ω´1 ´ 1qD.

The weighted G-S method converges if and only if 0 ă ω ă 2. In fact, ω “ 1 yields the standard

G-S method; 0 ă ω ă 1 yields the SUR method; 1 ă ω ă 2 yields the SOR method. One

can select optimal weights for different problems to achieve good convergence result, which is

beyond the scope of this lecture.

Motived by the weighted G-S methods, we assume there is an invertible smoother or a local

relaxation method S for the equation A~u “ ~f , like the damped Jacobi smoother S “ ωD´1

(0 ă ω ă 1). We can define a general or modified G-S method:

B :“
`

S´1 ` L
˘´1

. (2.13) eqn:MGS

This method seems abstract and not very interesting now; but we will employ this idea on block

matrices for multilevel iterative methods later on.

We can analyze the convergence rate of this modified G-S method using the same technique

discussed above. Since K “ B´T ` B´1 ´ A is a symmetric operator and we can write (2.10)

as B “ BTKB. If B is the iteration operator defined by (2.13), we have

K “ pS´T ` Uq ` pS´1 ` Lq ´ pD ` L` Uq “ S´T ` S´1 ´D.
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Furthermore, from the definition of K, we find that B´1 “ K ` A ´ B´T . Hence we get an

explicit form of B
´1

by simple calculations:

B
´1
“ pK `A´B´T qK´1pK `A´B´1q “ A` pA´B´T qK´1pA´B´1q.

This identity and the definition of B yield:
´

B
´1
~v,~v

¯

“ pA~v,~vq `
´

K´1pD ` U ´ S´1q~v, pD ` U ´ S´1q~v
¯

, @~v P RN .

Now we apply Theorem 2.3 and get the following identity for the convergence rate:

thm:rateGS Corollary 2.1 (Convergence rate of Modified G-S). If K “ S´T ` S´1 ´D is SPD, then the

modified G-S method converges and

}I ´BA}2A “ }I ´BA}A “ 1´
1

1` c0
, with c0 :“ sup

}~v}A“1

›

›

›
K´ 1

2

`

D ` U ´ S´1
˘

~v
›

›

›

2
.

This simple result will motivate our later analysis for subspace correction methods in Chap-

ter 4.

ex:FDGS Example 2.3 (Solving 1D FD equation using G-S). If we apply the G-S method to the 1D FD

system (1.27) for the Poisson’s equation discussion in §1.2. For simplicity, we first multiply the

both sides of the equation by h2, namely, A :“ tridiagp´1, 2,´1q and ~f :“
`

h2fpxiq
˘N

i“1
. In this

case, S “ D´1 and K “ D. Corollary 2.1 shows that the convergence rate of the G-S iteration

satisfies that

}I ´BA}2A “ 1´
1

1` c0
, with c0 “ sup

~vPRN zt0u

pLD´1U~v,~vq

}~v}2A
.

The positive constant can be further written

c0 “ sup
~vPRN zt0u

`

D´1U~v, U~v
˘

pA~v,~vq
“ sup

~vPRN zt0u

1
2

`

U~v, U~v
˘

pA~v,~vq
“ sup

~vPRN zt0u

1
2

řN
i“2 v

2
i

pA~v,~vq
.

Because we have the eigenvalues of this discrete coefficient matrix A of FD (see Remark 1.10),

we can estimate the denominator

pA~v,~vq ě λminpAq}~v}
2 “ 4 sin2

´ π

2pN ` 1q

¯

}~v}2.

Hence, asymptotically, we have the following estimate

c0 ď sup
~vPRN zt0u

1
2}~v}

2

4 sin2
´

π
2pN`1q

¯

}~v}2
„ pN ` 1q2 “ h´2.

Hence

}I ´BA}A „
a

1´ C̃h2 „ 1´ Ch2.

Similarly, for the FE equation, the condition number also likes Oph´2q and convergence rate will

deteriorate as the meshsize decreases.
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2.2 Krylov subspace methods
sec:KSM

Nonstationary iterative methods are more popular for standard-alone usage. Krylov subspace

method (KSM) is a well-known class of nonstationary methods [35]. Let A : V ÞÑ V be an

invertible operator. By the Cayley–Hamilton theorem (see HW 2.3), there exists a polynomial

of degree no more than N ´ 1, qN´1pλq P PN´1, such that A´1 “ qN´1pAq. Hence the solution

of the linear system has the form u “ qN´1pAqf . Krylov subspace methods construct iterative

approximations to u in

Km :“ spantf,Af,A2f, . . . ,Am´1fu, m “ 1, 2, . . .

Gradient descent method

Let A : V ÞÑ V be an SPD operator. Consider the following convex minimization problem:

min
uPV

Fpuq :“
1

2
pAu, uq ´ pf, uq. (2.14) eqn:min

Suppose we have an initial approximation uold and construct a new approximation

unew “ uold ` αp

with a fixed search direction p P V and a stepsize α. In order to find the “best possible” stepsize,

we can solve an one-dimensional problem (i.e., the exact line-search method):

min
αPR

Fpαq :“
1

2

`

uold ` αp, uold ` αp
˘

A ´ pf, u
old ` αpq.

By simple calculation (HW 2.4), we obtain

Fpαq :“
1

2
α2pAp, pq ´ αpf ´Auold, pq `

1

2

`

Auold, uold
˘

´ pf, uoldq,

and the optimal stepsize is

α “
pf ´Auold, pq

pAp, pq “
prold, pq

pAp, pq , with rold “ f ´Auold. (2.15) eqn:optimalstep

In the previous chapter, we have discussed the Richardson method. A nonstationary version

of the Richardson method can be given as:

upm`1q “ upmq ` αm
`

f ´Aupmq
˘

,

which can be viewed as the gradient descent or steepest descent (SD) method with exact line-

search for the above convex minimization problem. This method is easy to implement and

cheap in computation (each step only requires 1 matrix-vector multiplication and 2 inner prod-

ucts). Unfortunately, the SD method usually converges very slowly. See the following algorithm

description of the SD method:
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Listing 2.1: Steepest descent method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´Au;
3 while }r} ą ε

4 αÐ pr, rq{pAr, rq;
5 uÐ u` α r;

6 r Ð r ´ αAr;
7 end

ex:relax Example 2.4 (Line-search and the G-S method). Let V “ RN , A “ pai,jq P RNˆN . Suppose

we choose the natural basis as the search directions, i.e., ~p “ ~ei :“ p0, . . . , 0, 1, 0, . . . , 0qT P V .

Let ~u old “ ~u p0q be an initial guess. Then the above method yields the iteration:

~u piq “ ~u pi´1q ` α~p “ ~u pi´1q `
p~r pi´1q, ~pq

pA~p, ~pq
~p “ ~u pi´1q `

p~r pi´1q, ~eiq

pA~ei, ~eiq
~ei.

So we get

~u piq “ ~u pi´1q `
fi ´

řN
j“1 ai,j u

pi´1q
j

ai,i
~ei.

This means that only one entry is updated in each iteration:

u new
i “ u

pi´1q
i `

fi ´
řN
j“1 ai,j u

pi´1q
j

ai,i
“

1

ai,i

´

fi ´
ÿ

jăi

ai,ju
new
j ´

ÿ

jąi

ai,ju
old
j

¯

. (2.16) eqn:GSiter

After N steps (i “ 1, 2, . . . , N), we obtain a new iteration ~unew, which is exactly the G-S

iteration. Based on (2.16), we can write the G-S error propagation matrix in a different form

I ´BA “ pI ´ INa
´1
N,NI

T
NAq ¨ ¨ ¨ pI ´ I1a

´1
1,1I

T
1 Aq “ pI ´ΠN q ¨ ¨ ¨ pI ´Π1q, (2.17) eqn:GSoper

where Ii is the natural embedding from spant~eiu to RN and Πi “ IiA
´1
i ITi A. This form of G-S

will be further discussed later in the framework of Schwarz method and subspace correction

method.

Theorem 2.4 (Convergence rate of steepest descent method). If we apply the exact line-search

using the stepsize

αm :“

`

rpmq, rpmq
˘

`

rpmq, rpmq
˘

A
,

then the convergence rate of the SD method satisfies that

›

›u´ upmq
›

›

A ď
ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›u´ up0q
›

›

A. (2.18) eqn:rateSD
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Proof. The exact line-search stepsize is easy to obtain by 1D quadratic programming. At the

m-th iteration, the energy satisfies that

Fpupm`1qq “ Fpupmq ` αmrpmqq “ Fpupmqq ´ αmprpmq, rpmqq `
1

2
α2
mpArpmq, rpmqq.

By plugging the expression of αm into the right-had side of the above equality, we obtain that

Fpupm`1qq “ Fpupmqq ´ 1

2

prpmq, rpmqq2

pArpmq, rpmqq .

This implies that

Fpupm`1qq ´ Fpuq
Fpupmqq ´ Fpuq “

Fpupmqq ´ prpmq, rpmqq2

2pArpmq, rpmqq ´ Fpuq

Fpupmqq ´ Fpuq

“ 1´
prpmq, rpmqq2

pArpmq, rpmqqpA´1rpmq, rpmqq
“: 1´

1

β

By the Kantorovich inequality, we know β ď pλmax`λminq
2

4λmaxλmin
. So it follows

Fpupm`1qq ´ Fpuq
Fpupmqq ´ Fpuq “ 1´

1

β
ď 1´

4λmaxλmin

pλmax ` λminq
2
“
pλmax ´ λminq

2

pλmax ` λminq
2
“

ˆ

κpAq ´ 1

κpAq ` 1

˙2

.

Hence the result.

Conjugate gradient method

Now we consider a descent direction method with search direction ppmq, i.e.

upm`1q “ upmq ` αmp
pmq. (2.19) eqn:descent

In this case, the “optimal” stepsize from the exact line-search is

αm :“

`

rpmq, ppmq
˘

`

ppmq, ppmq
˘

A
. (2.20) eqn:alpha

We notice that the residual after one iteration is

rpm`1q “ rpmq ´ αmAppmq.

In order to keep the iteration going, we wish to construct a new search direction which is

orthogonal to the previous search directions. This motives us to define

ppm`1q :“ rpm`1q ` βmp
pmq, such that

`

ppmq, ppm`1q
˘

A “ 0.

By simple calculations, we get the weight

βm :“ ´

`

Arpm`1q, ppmq
˘

`

Appmq, ppmq
˘ . (2.21) eqn:beta

This is basically the so-called conjugate gradient (CG) method.
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lem:cg1 Lemma 2.3 (Properties of conjugate directions). For any conjugate gradient step i, we have

following identities:

1.
`

rpiq, ppiq
˘

“
`

rpiq, rpiq
˘

;

2.
`

rpjq, ppiq
˘

“ 0, j ą i;

3.
`

ppjq, ppiq
˘

A “ 0, j ‰ i;

4.
`

rpjq, rpiq
˘

“ 0, j ‰ i.

This lemma is very simple but important; see HW 2.5. It guarantees we can apply a short

recurrence iteration procedure while keep all directions are orthogonal to each other.

lem:cg2 Lemma 2.4 (Stepsizes for CG). For the conjugate gradient method, we have following identi-

ties:

1. αm “

`

rpmq, rpmq
˘

`

Appmq, ppmq
˘ ;

2. βm “

`

rpm`1q, rpm`1q
˘

`

rpmq, rpmq
˘ .

The previous lemma may look like some trivial transformations, but it is essential for CG

implementation, which is described as follows:

Listing 2.2: Conjugate gradient method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´Au, pÐ r;

3 while }r} ą ε

4 αÐ pr, rq{pAp, pq;
5 ũÐ u` αp;

6 r̃ Ð r ´ αAp;
7 β Ð pr̃, r̃q{pr, rq;

8 p̃Ð r̃ ` β p;

9 Update: uÐ ũ, r Ð r̃, pÐ p̃;

10 end

The CG method converges much faster than the steepest descent. In fact, we have the following

theorem

Theorem 2.5 (Convergence rate of CG). The convergence rate of the CG iteration satisfies the

following estimate:
›

›u´ upmq
›

›

A ď 2

˜

a

κpAq ´ 1
a

κpAq ` 1

¸m
›

›u´ up0q
›

›

A. (2.22) eqn:rateCG
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Proof. We only give a sketch of proof here. From Lemma 2.3, the residual rpmq is orthogonal to

Km “ spantrp0q,Arp0q, . . . ,Am´1rp0qu,

namely

pApu´ upmqq, vq “ prpmq, vq “ 0, @v P Km.

This implies
`

pu´ up0qq ´ pupmq ´ up0qq, v
˘

A “ 0, @v P Km.

The above A-orthogonality gives

›

›

›
u´ upmq

›

›

›

A
“ min

wPKm

›

›

›
u´ up0q ´ w

›

›

›

A
“ min

qm´1

›

›

›
u´ up0q ´ qm´1pAqrp0q

›

›

›

A

“ min
qm´1

›

›

›

`

I ´ qm´1pAqA
˘

pu´ up0qq
›

›

›

A
“ min

qmp0q“1

›

›

›
qmpAqpu´ up0qq

›

›

›

A
.

The desired estimate can then be obtained by choosing appropriate Chebyshev polynomials; see

HW 2.6 as a guideline to complete the proof.

If the spectrum of A is uniformly distributed in the interval rλmin, λmaxs, then the upper

bound in (2.22) is sharp. In fact a few “bad eigenvalues” have almost no effect on the asymptotic

convergence of the method. In this case, the bound is not sharp. The asymptotic convergence

rate can be estimated by the effective condition number [2, 3].

Remark 2.9 (Computational complexity of CG). We find that, in each iteration of the CG

method, the complexity is only 1 matrix-vector multiplication and 2 inner products, with a few

vector additions.

Remark 2.10 (MINRES method). If A : V ÞÑ V is a symmetric isomorphism mapping and it

is indefinite, we can apply the minimum residual (MINRES) method characterized by

upmq “ argmin
vPKm

}f ´Av}20.

We can derive analytically that (see, for example, [35])

›

›rpmq
›

›

0
ď min

qmp0q“1
max
λPσpAq

|qmpλq|
›

›rp0q
›

›

0

In this case, the following crude convergence estimate holds

›

›rpmq
›

›

0
“

›

›Apu´ upmqq
›

›

0
ď 2

ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›Apu´ up0qq
›

›

0
“ 2

ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›rp0q
›

›

0
. (2.23) eqn:rateMINRES

If all the eigenvalues are positive, we can get sharp convergence estimate using Chebyshev

polynomials. Unfortunately, it is not easy to get a general yet sharp estimate for indefinite

problems.
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Generalization to Hilbert spaces

It is important to note that the above convergence estimates (2.22) and (2.23) do not depend

on the finite dimensionality N . Hence the Krylov subspace methods (KSMs) can be applied for

operators A : V ÞÑ V . In view of Remark 1.7, we have

}A}L pV ;V q “ sup
vPV

pAv, vq
}v}2V

“ sup
vPV

arv, vs

}v}2V
ď Ca

and the inf-sup condition (1.17) gives

}A´1}
´1
L pV ;V q “ inf

vPV

}Av}V
}v}V

“ inf
vPV

sup
uPV

pAv, uq
}v}V }u}V

“ inf
vPV

sup
uPV

arv, us

}v}V }u}V
ě α.

Hence the condition number κpAq ď Ca{α, which is bounded.

However, in order to employ KSMs for the continuous equations that we are interested in, like

the Poisson’s equation, we have to consider A : V ÞÑ W , where V and W are separable Hilbert

spaces. Typically, W Ą V and most likely W “ V 1. The following discussion directly follows

the work by Mardal and Winther [45]. For simplicity, we consider a symmetric isomorphism

A P L pV ; V 1q, i.e.,

xAu, vy “ xAv, uy, u, v P V ,

where x¨, ¨y is the duality pair. Since V 1 Ć V , KSMs are not well-defined in this case.

We need to construct an isomorphism B mapping V 1 back to V . We assume that the map B
is symmetric and positive definite, namely x¨,B¨y defines an inner product in V 1. We immediately

notice that B could be a Riesz operator2: For any given f P V 1,

pBf, vqV “ xf, vy, @v P V .

As a consequence, xB´1¨, ¨y is an inner product on V , with associated norm equivalent to } ¨ }V .

This leads to a so-called preconditioned system

BAu “ Bf

and BA is an isomorphism from V to itself. The Krylov subspace methods can be applied to

this preconditioned system and B is called a preconditioner.

Note that BA : V ÞÑ V is symmetric with respect to p¨, ¨qV , i.e.,

pBAu, vqV “ xAu, vy “ aru, vs “ pu,BAvqV , u, v P V .

The last equality follows from the symmetry of the bilinear form ar¨, ¨s. Furthermore, due to the

continuity of ar¨, ¨s (1.15), we obtain

}BA}L pV ;V q “ sup
vPV

|pBAv, vqV |
}v}2V

“ sup
vPV

arv, vs

}v}2V
ď Ca

2We note that B is inner product dependent.
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and the inf-sup condition (1.17) gives

}pBAq´1}
´1
L pV ;V q “ inf

vPV

}BAv}V
}v}V

“ inf
vPV

sup
uPV

pBAv, uqV
}v}V }u}V

“ inf
vPV

sup
uPV

arv, us

}v}V }u}V
ě α.

Example 2.5 (Poisson solver as a preconditioner). As an example, we consider a second-order

elliptic operator A : H1
0 pΩq ÞÑ H´1pΩq. We need to define

pBf, vqH1
0 pΩq

:“ p∇Bf,∇vq0,Ω “ xf, vy.

In this sense, we can choose B “ p´∆q´1 as a preconditioner. We note that other inner products

can be used, which will yield different preconditioners. As long as the above continuity condition

and the inf-sup condition hold, the preconditioned system is well-conditioned.

Now we summarize the above discussion on how to construct a “natural” preconditioner:

1. Define an appropriate inner product p¨, ¨qV ;

2. Establish the inf-sup condition supvPV
aru, vs
}v}V

ě α}u}V for any u P V ;

3. Define B as the Reisz operator, i.e., pBf, vqV “ xf, vy for any v P V ;

4. The preconditioned system BA is symmetric with respect to p¨, ¨qV and well-conditioned;

5. Construct a discretization which satisfies the corresponding discrete inf-sup condition;

6. Define a spectrally equivalent Bh as a preconditioner.

2.3 Condition number and preconditioning

The convergence rate of an iterative method depends greatly on the spectrum of the coefficient

matrix. Hence, iterative methods usually involve a second matrix that transforms the coef-

ficient matrix into one with a more favorable spectrum. The transformation matrix is called

a preconditioner. A good preconditioner B improves the convergence of the iterative method

sufficiently and is relatively cheap to compute, in order to overcome the overhead (extra cost) of

constructing and applying the preconditioner. There are a few ways to apply preconditioners,

for example:

BAu “ Bf Left preconditioning

ABv “ f u “ Bv Right preconditioning

BLABRv “ BLf u “ BRv Split preconditioning
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Construction of preconditioners

We first introduce a few simple facts that could be helpful when we need to estimate the condition

number κpBAq. Although convergence behavior of iterative methods is not governed by the

condition number alone, it provides useful information for a variety of methods. For example,

we would hope that κpBAq ! κpAq, if we apply the steepest descent method or the CG method

to solve a linear system.

It is desirable to have an optimal preconditioner which satisfy most of, if not all, the following

properties:

• The preconditioned linear systems have improved convergence behavior. Furthermore,

the spectral condition number of BA should be bounded independently of the size of the

problem.

• The preconditioner is relatively easy to setup and cheap to apply. The computational cost

of Br should be proportional to the size of the problem.

• The preconditioner should be robust on different domain shapes, mesh types, jumps in

coefficients, etc.

• The preconditioner can be parallelized easily and efficiently.

lem:condnum Lemma 2.5 (Estimation of condition number). If µ0 and µ1 are positive constants satisfying

µ0

`

Au, u
˘

ď
`

B´1u, u
˘

ď µ1

`

Au, u
˘

, @u P V, (2.24) eqn:condnum1

then the condition number

κpBAq ď µ1

µ0
.

Proof. By change of variable u “ A´ 1
2 v, we have σ

`

A´ 1
2B´1A´ 1

2

˘

Ď
“

µ0, µ1

‰

and, hence,

σ
`

pBAq´1
˘

Ď
“

µ0, µ1

‰

.

Sometimes, it is more convenient to use the following equivalent conditions of (2.24):

lem:equiv-condnum Lemma 2.6 (Some equivalent conditions). If A and B are symmetric positive definite operators

on a finite-dimensional space V , then we have the inequalities (2.24) are equivalent to

µ0pBu, uq ď pA´1u, uq ď µ1pBu, uq, @u P V, (2.25) eqn:condnum2

or

µ´1
1 pAu, uq ď pABAu, uq ď µ´1

0 pAu, uq, @u P V, (2.26) eqn:condnum3

or

µ´1
1 pBu, uq ď pBABu, uq ď µ´1

0 pBu, uq, @u P V. (2.27) eqn:condnum4
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Proof of this lemma is left to the readers as an exercise; see HW 2.7.

rem:AmABA Remark 2.11 (Another equivalent condition). If A and B are symmetric positive definite op-

erators on a finite-dimensional space V , α ą 0 and 0 ă δ ă 1, then it is easy to verify the

following two conditions are equivalent:

´αpAu, uq ď pApI ´ BAqu, uq ď δpAu, uq, @u P V (2.28) eqn:condnum5

and

p1` αq´1pAu, uq ď pB´1u, uq ď p1´ δq´1pAu, uq, @u P V. (2.29) eqn:condnum6

Let B be a symmetric iterator of the SPD operator A. We have seen that a sufficient

condition for the iterative method to be convergent is that

ρpI ´ BAq ă 1.

In this case, ρ :“ }I ´ BA}A ă 1. The method is not only converging but also a contraction,

i.e., }u ´ upmq}A ď ρm}u ´ up0q}A Ñ 0 as m Ñ `8. Similar argument as Theorem 2.2 shows

that B must be SPD. Furthermore, by definition, we have

´

`

A´ 2ABA`ABABA
˘

u, u
¯

ď ρ2pu, uqA.

Changing variable v “ A1{2u, we obtain

´

`

I ´A1{2BA1{2
˘2
v, v

¯

ď ρ2pv, vq ùñ

ˇ

ˇ

ˇ

`

pI ´A1{2BA1{2qv, v
˘

ˇ

ˇ

ˇ
ď ρpv, vq

ùñ

ˇ

ˇ

ˇ

`

pA´ABAqu, u
˘

ˇ

ˇ

ˇ
ď ρpAu, uq, @u P V.

Hence Remark 2.11 shows (see HW 2.9) that the condition number is uniformly bounded, i.e.,

κpBAq ď 1` ρ

1´ ρ
.

In fact, the above estimate can also be easily obtained from ρpI ´ BAq “ ρ ă 1.

Preconditioned conjugate gradient method

The first question to answer is whether and how CG can still be applied to the preconditioned

system BAu “ Bf . As we mentioned BA is not symmetric w.r.t. p¨, ¨q but symmetric w.r.t. p¨, ¨qA.

Similarly, we can define a new inner product p¨, ¨qB´1 :“ pB´1¨, ¨q. Then

pBA¨, ¨qB´1 “ pA¨, ¨q ùñ BA is SPD w.r.t. p¨, ¨qB´1 ,

which means CG can be applied to BAu “ Bf with the new inner product.



CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 49

lem:pcg2 Lemma 2.7 (Stepsizes of PCG). For the preconditioned conjugate gradient method, we have

the following identities:

1. αm “

`

Brpmq, rpmq
˘

`

Appmq, ppmq
˘ ,

2. βm “

`

Brpm`1q, rpm`1q
˘

`

Brpmq, rpmq
˘ .

We notice that B´1 is cancelled out in the above inner products. With the help of this

lemma, we can write the pseudo-code of PCG with left preconditioner (compared with regular

CG, it just requires one more matrix-vector multiplication):

Listing 2.3: Preconditioned conjugate gradient method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´Au, pÐ Br;
3 while }r} ą ε

4 αÐ pBr, rq{pAp, pq;
5 ũÐ u` αp;

6 r̃ Ð r ´ αAp;
7 β Ð pBr̃, r̃q{pBr, rq;
8 p̃Ð Br̃ ` β p;
9 Update: uÐ ũ, r Ð r̃, pÐ p̃;

10 end

Remark 2.12 (Iterator and preconditioner). We use the same notation B for the preconditioner

and the iterator, apparently for a reason. Indeed, the convergence rate of the preconditioned

CG method (2.22) is equal to

δCG “

a

κpBAq ´ 1
a

κpBAq ` 1
ď

b

1`ρ
1´ρ ´ 1

b

1`ρ
1´ρ ` 1

“
1´

a

1´ ρ2

ρ
ă ρ.

The last inequality holds true when 0 ă ρ ă 1. Hence, for any convergent stationary linear

iterative method, a preconditioner can be found and its convergence can be accelerated by

PCG. Of course, it comes with the extra cost of applying the preconditioners. Preconditioning

is so important for practical problems and KSMs are sometimes referred as accelerators.

Stopping criteria ‹

When an iterative method is employed, sometimes it is hard to determine when to stop the

iteration process. Ultimately we would like to have the error epmq “ u ´ upmq in certain norm

(e.g. the energy norm) to be small enough, i.e.,
`

epmq, epmq
˘

1
2
A ă ε. However, the error is not

usually computable. Norms of the residual rpmq “ f ´Aupmq, which is not only computable but
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also naturally available in the iterative process, are used instead. According to the standard

perturbation analysis, we have

›

›u´ upmq
›

›

}u}
ď κpAq

›

›rpmq
›

›

}f}
. (2.30) eqn:ResErr

In fact, Apu´ upmqq “ f ´Aupmq “ rpmq. Hence }u´ upmq} ď }A´1}}rpmq}. On the other hand,

it is easy to see that }f} ď }A}}u}. By combining the last two inequalities, we can obtain the

desired estimate (2.30). We notice that the right-hand side of (2.30) is the relative residual (with

initial guess equals zero) and the left-hand side is just the relative error. Hence this inequality

shows that, even if the relative residual is small, the relative error could be still very large,

especially for the ill-conditioned problems.

Although L2-norm of rpmq is usually used in practice,
`

rpmq, rpmq
˘

1
2
B is a better quantity to

monitor for convergence. We notice that

prpmq, rpmqqB “
`

Aepmq,Aepmq
˘

B “
`

ABAepmq, epmq
˘

.

According to Lemma 2.6,
`

rpmq, rpmq
˘

1
2
B is equivalent to

`

epmq, epmq
˘

1
2
A, if B is a good precondi-

tioner. In practice, there might be situations that left part of the preconditioner changes the

residual of the equation a lot, which will cause trouble for users to design stopping criteria. The

preconditioned equation has a residual rB “ Br “ Bpf ´Auq and }rB} might be a lot different

than }r}. Thus it is usually not good to use rB instead of r.

2.4 Domain decomposition methods
sec:DDM

In the field of numerical methods for partial differential equations, domain decomposition meth-

ods (DDMs) make use of divide and conquer techniques by iteratively solving subproblems

defined on smaller subdomains. It is a convenient framework for the solution and, more im-

portantly, preconditioning of heterogeneous or multiphysics problems. It can be used in the

framework of many discretization methods (e.g., FD and FE) to make their algebraic solution

efficient, especially on parallel computers. Roughly speaking, there are two ways of subdividing

the computational domain, overlapping and non-overlapping. We will only discuss overlapping

domain decomposition methods here.

Divide and conquer

We consider the model boundary value problem

#

Au “ f in Ω

u “ 0 on BΩ
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Overlapping domain decomposition algorithms are based on a decomposition of the domain Ω

into a number of overlapping subdomains. To introduce the main ideas of DDMs, we consider

the case of two overlapping subdomains Ω1 and Ω2, which form a covering of Ω and Ω1
Ş

Ω2 ‰ Ø;

see Figure 1. We let Γi (i “ 1, 2) denote the part of the boundary of Ωi, which is in the interior

of Ω.
Overlapping Domain Decomposition Methods 3

ΩΩ1 2

Γ

Γ2

1

Fig. 1. Solution domain for the classical alternating Schwarz method.

Then, we solve the Poisson equation within the rectangle ≠2, using the latest
solution un

1 on the artificial internal boundary °2:

°r2un
2 = f2 in ≠2,

un
2 = g on @≠2\°2,

un
2 = un

1 |°2 on °2.

The two local Poisson equations in ≠1 and ≠2 are coupled together in the
following way: the artificial Dirichlet condition on the internal boundary °1

of subdomain ≠1 is provided by subdomain ≠2 in form of un°1
2 |°1 , and vice

versa. It is clear that un°1
2 |°1 and un

1 |°2 may change from iteration to itera-
tion, while converging towards the true solution. Therefore, in each Schwarz
iteration, the two Poisson equations need to update the artificial Dirichlet
conditions on °1 and °2 by exchanging some data. Note also that the classi-
cal alternating Schwarz method is sequential by nature, meaning that the two
Poisson solves within each iteration must be carried out in a predetermined
sequence, first in ≠1 then in ≠2. Of course, the above alternating Schwarz
method can equally well choose the rectangle as ≠1 and the circle as ≠2,
without any noticeable effects on the convergence.

2.2 The Multiplicative Schwarz Method

We now extend the classical alternating Schwarz method to more than two
subdomains. To this end, assume that we want to solve a linear elliptic PDE
of the form:

Lu = f in ≠, (1)

u = g on @≠, (2)

Figure 2.1: Overlapping domain partition with two sub-domains.fig:ddm

If we already have an approximate solution upmq, we can construct a new approximation by

solving the following two equations:

$

’

’

&

’

’

%

Aupm`1q
1 “ f in Ω1,

u
pm`1q
1 “ upmq on Γ1,

u
pm`1q
1 “ 0 on BΩ1zΓ1,

and
$

’

’

&

’

’

%

Aupm`1q
2 “ f in Ω2,

u
pm`1q
2 “ gpmq on Γ2,

u
pm`1q
2 “ 0 on BΩ2zΓ2.

There are two approaches to apply these two subdomain corrections—the additive approach and

the multiplicative approach. In the additive approach, we take gpmq “ upmq and carry out the

two corrections simultaneously. In the multiplicative approach, we take gpmq “ u
pm`1q
1 and use

the most up-to-date iterative information. We then define the new iteration as

upm`1qpxq :“

#

u
pm`1q
2 , if x P Ω2;

u
pm`1q
1 , if x P ΩzΩ2.

Overlapping DD methods

With the above motivation in mind, we are ready to introduce the standard overlapping domain

decomposition method in matrix form:

A~u “ ~f, V “ RN .
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Suppose we have an one-dimensional domain partitioning of Ω; see Figure 2.2. Of course, we

can use more general partitioning strategies as well.

Ω̂2

ΩΩ1 Ω2 Ω3 Ω4

βH

Figure 2.2: Overlapping domain partition with four sub-domains.fig:overlapping

Denote the set of grid point indices as G :“ t1, 2, . . . , Nu and it is partitioned into n subdo-

mains. Let Ĝi be the index set of the interior points of Ω̂i, and Ni :“ |Ĝi| be the cardinality of

Ĝi. Apparently, we have

G “ Ĝ1

ď

Ĝ2

ď

¨ ¨ ¨
ď

Ĝn and N ă N1 `N2 ` ¨ ¨ ¨ `Nn.

In the matrix form, the injection matrix (natural embedding) Ii P RNˆNi is defined as

pIi~viqk “

#

p~viqk, if k P Ĝi;

0, if k P GzĜi.
(2.31) eqn:restriction

It is natural to define sub-problems as Ai :“ ITi AIi (i “ 1, . . . , n). If we solve each sub-problem

exactly, then we have Bi :“ IiA
´1
i ITi .

We can define an additive Schwarz method (ASM) as

Bas :“
n
ÿ

i“1

Bi “
n
ÿ

i“1

IiA
´1
i ITi , (2.32) eqn:ASM

which generalizes the block Jacobi method. Similarly, a multiplicative Schwarz method (MSM)

is then defined by the following error propagation operator

I ´BmsA :“ pI ´BnAq ¨ ¨ ¨ pI ´B1Aq “
1
ź

i“n

pI ´BiAq. (2.33) eqn:MSM

This is a generalization of the block G-S method (with overlapping blocks). In practice, the

sub-problem solver A´1
i could be replaced by an approximation, like the ILU method.

Classical convergence results of overlapping DDMs ‹

These DD methods, especially the ASM version, are usually applied as preconditioners for

parallel computing. Its convergence has been analyzed in [27, 28] and we only show the results

for the additive version here.
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Theorem 2.6 (ASM DD preconditioner). The condition number of ASM domain decomposition

method is independent of the mesh size h and satisfies

κpBasAq À H´2p1` β´2q,

where H is size of domain partitions and βH characterizes size of the overlaps.

The DD preconditioner (2.32) performs very well in practice. But the convergence rate still

depends on H and the condition number could be large if H is very small. A simple approach

to get rid of this dependence on H is to introduce a coarse space V0 Ă V and a corresponding

coarse-level solver, i.e.

Bas,2 :“ I0A
´1
0 IT0 `

n
ÿ

i“1

IiA
´1
i ITi ,

where I0 : V0 ÞÑ V is the injection matrix and A0 is the coarse space problem. We then have

the following estimate on the condition number:

Theorem 2.7 (Two-level ASM DD preconditioner). The condition number of ASM domain

decomposition method is independent of the mesh size h and satisfies

κpBas,2Aq À 1` β´1.

The above theorem shows the dependence on meshsize can be removed by introducing an

appropriate coarse-level correction. We will construct and analyze two-level and, more generally,

multilevel iterative methods in the following chapters.

2.5 Homework problems

hw:BtBstar HW 2.1. Show the identity (2.6).

hw:A-transpose HW 2.2. If BT “ B, show that pBAq˚ “ BTA “ BA.

hw:CHThm HW 2.3. Let A P RNˆN and qpλq :“
ˇ

ˇλI ´A
ˇ

ˇ be the characteristic polynomial of A. Show the

Cayley-Hamilton theorem, i.e., qpAq “ 0.

hw:SDalpha HW 2.4. Show the optimal stepsize (2.15) for general descent direction method.

hw:ConjugateDirections HW 2.5. Prove Lemmas 2.3 and 2.4.

hw:Cheb HW 2.6. The Chebyshev (or Tchebycheff) polynomial of first kind on r´1, 1s can be defined

recursively as

T0pxq “ 1, T1pxq “ x, Tn`1pxq “ 2xTnpxq ´ Tn´1pxq.
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Show that

Tnpxq “
1

2

´

`

x`
a

x2 ´ 1
˘n
`
`

x´
a

x2 ´ 1
˘n
¯

and
ˇ

ˇTnpxq
ˇ

ˇ ď 1 for any x P r´1, 1s. Let 0 ă λmin ď λmax. Define

Snpλq :“

„

Tn

´λmax ` λmin

λmax ´ λmin

¯

´1

Tn

´λmax ` λmin ´ 2λ

λmax ´ λmin

¯

and we have

ˇ

ˇ

ˇ

ˇ

Tn

´λmax ` λmin

λmax ´ λmin

¯

ˇ

ˇ

ˇ

ˇ

´1

“
›

›Sn
›

›

8,rλmin,λmaxs
“ min

pPPn; pp0q“1

›

›p
›

›

8,rλmin,λmaxs
,

where Pn is the set of polynomials of degree less than or equal to n.

hw:equiv-condnum HW 2.7. Prove Lemma 2.6.

hw:equiv-condnum2 HW 2.8. Show that (2.28) and (2.29) are equivalent to each.

hw:condBA HW 2.9. Let A be SPD and B be a symmetric iterator. If ρ “ }I ´ BA}A ă 1, then B is also

SPD and

κpBAq ď 1` ρ

1´ ρ
.



Chapter 3

Two-grid Methods

ch:twogrid

In the previous chapter, we have seen several simple iterative solvers and preconditioners for

solving the linear algebraic system (2.1). However, the convergence rate of most methods dis-

cussed in the previous chapter deteriorates when meshsize h goes to zero, except the overlapping

domain decomposition method with coarse-grid correction. In this chapter, we discuss the two-

grid (or more generally, two-level) method for the discrete Poisson’s equation:
$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.
ùñ A~u “ ~f.

In Chapter 1, we have briefly discussed the finite element approximation for this model problem.

From now on, we will mainly discuss in the context of finite element discretizations.

Throughout this chapter, we use the standard notations for Sobolev spaces introduced in

Chapter 1: HkpΩq denotes the classical Sobolev space of scalar functions on a bounded domain

Ω Ă Rd whose derivatives up to order k are square integrable, with the full norm } ¨ }k and the

corresponding semi-norm | ¨ |k. The symbol H1
0 pΩq denotes the subspace of H1pΩq whose trace

vanishes on the boundary BΩ. We will also discuss the corresponding spaces restricted to the

subdomain of Ω.

3.1 Finite element methods
sec:FEM

We now take a little detour and say a few more words about finite element discretizations;

see [20] for details. The linear operator A : V ÞÑ V 1 is defined by

pAu, vq :“ aru, vs “

ż

Ω
∇u∇v dx, @v P V

and f P V 1 is a function or distribution. Suppose that A is bounded (1.15), i.e.,

aru, vs ď Ca}u}V }v}V , @u, v P V

55
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and coercive (1.24), i.e.,

arv, vs ě α}v}2V , @v P V .

We would like to find u P V such that Au “ f , which is well-posed; see Remark 1.7.

Galerkin approximation

The Galerkin method exploits the weak formulation and replaces the underlying function space

by appropriate finite dimensional subspaces. We choose a finite dimensional space VN (trial/test

space), which is an approximation to the space V with dimpVN q “ N . When it causes no

confusion, we shall just drop the subscript and denote V “ VN . Then we arrive at the Galerkin

discretization:

Find uN P V : aruN , vN s “ 〈f, vN 〉 , @ vN P V. (3.1) eq:ell_d

Equation (3.1) yields the so-called Galerkin discretization. If the bilinear form ar¨, ¨s is symmetric

and coercive, it is called the Ritz–Galerkin discretization. In the finite-dimensional setting, we

can identify the dual space V 1 and V ; this way, the duality pair x¨, ¨y becomes the l2-inner

product p¨, ¨q.

For conforming discretizations, the bilinear form ar¨, ¨s is well-defined on V ˆ V . If the

bilinear form ar¨, ¨s is coercive, then we have

arvN , vN s ě αN }vN}
2
V , @ vN P V.

Since coercivity is inherited from V to V , we can see that the constants αN is bounded from

below, i.e.,

αN ě α, @N

As a consequence, the inf-sup condition holds1. It is easy to show the following simple optimality

approximation properties.

rem:GO Remark 3.1 (Galerkin Orthogonality). Assume V Ă V . The weak formulations of the exact

and discrete solutions satisfy

$

&

%

aru, vs “ 〈f, v〉 , @ v P V ;

aruN , vN s “ 〈f, vN 〉 , @ vN P V.

Taking v “ vN in the first equation and simply subtracting the two equations gives the Galerkin

orthogonality, i.e.,

aru´ uN , vN s “ 0, @ vN P V. (3.2) eqn:GO

1In general, the continuous inf-sup condition does not imply the discrete one.
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If ar¨, ¨s is symmetric and coercive, then (3.2) means the error u´ uN is orthogonal to V in the

induced inner product from the bilinear form ar¨, ¨s. Apparently, ΠNu :“ uN is a projection

from V to V with respect to p¨, ¨qA-inner product. It is oftentimes called the Ritz projection.

lem:Cea Lemma 3.1 (Céa’s Lemma). If the bilinear form ar¨, ¨s is continuous and coercive, then the

Galerkin approximation uN satisfies

}u´ uN}V ď
Ca
α
}u´ vN}V , @ vN P V.

More generally, we have the following quasi-optimality or quasi-best-approximation of the

finite-dimensional Galerkin approximation.

prop:optimal Proposition 3.1 (Quasi-Optimality). Suppose ar¨, ¨s : V ˆ V ÞÑ R is continuous. The fi-

nite dimensional subspace V in the Galerkin approximation satisfies the discrete inf-sup condi-

tion (1.23) with αN ą 0. Let u and uN be the exact solution of (1.16) and the Galerkin solution

of (3.1), respectively. Then the error

}u´ uN}V ď
}A}
αN

min
wNPV

}u´ wN}V .

Proof. For all wN P V , applying (1.21) and (3.2), we have

αN }uN ´ wN}V ď sup
vNPV

aruN ´ wN , vN s

}vN}V
“ sup

vNPV

aru´ wN , vN s

}vN}V
ď }A} }u´ wN}V .

Then simply applying the triangular inequality gives the estimate.

}u´ uN}V ď
}A} ` αN

αN
min
wNPV

}u´ wN}V .

This constant in the upper bound is not sharp. The desired constant is obtained by Xu and

Zikatanov [59].

rem:PGstab Remark 3.2 (Stability). In view of Theorem 1.4, we can see that the Galerkin solution depends

on the data continuously, i.e.,

}uN}V ď
1

α
}f}V 1 .

Finite element ‹

The finite element method (FEM) has a long history in practical use and is widely applied

to lots of problems in physics and engineering. It has been proved to be very successful in

many areas, like structural mechanics. After decades of extensive development, the subject of

classical (conforming) finite element method has become a well-understood and successful area in

scientific computation. The most attractive feature of the FEM is its ability to handle complex

geometries, boundaries, and operators with relative ease.
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def:fe Definition 3.1 (Finite element). A triple pK,P,N q is called a finite element if and only if

(i) K Ď Rd be a bounded closed set with nonempty interior and piecewise smooth boundary;

(ii) P be a finite-dimensional space of functions on K;

(iii) N “ tN1, . . . ,Nku be a basis of P 1.

We usually call K the element domain, P the space of shape functions, and N the set of

nodal variables.

def:nodal_basis Definition 3.2 (Nodal basis). Let pK,P,N q be a finite element. The basis tφjuj“1,...,k of P
dual to N , i.e., Nipφjq “ δi,j is called the nodal basis of P.

Example 3.1 (1D Lagrange element). Let K “ r0, 1s, P be the set of linear polynomials, and

N “ tN1,N2u where N1pvq “ vp0q and N2pvq “ vp1q. Then pK,P,N q is a finite element and it

is the well-known P1 Lagrange finite element discussed in Chapter 1. The nodal basis functions

are φ1pxq “ 1´ x and φ2pxq “ x.

Remark 3.3 (Set of nodal variables). If P is a k-dimensional space and tN1, . . . ,Nku Ă P 1.
Then condition piiiq in Definition 3.1 is equivalent to the unisolvence: For any v P P,

Nipvq “ 0, i “ 1, . . . , k ùñ v ” 0.

Now we describe the main steps of discretization using the pK,P,N q-finite element:

Step 1. Domain partitioning: Suppose K is simplex in Rd. We first partition the physical

domain into small subdomains. We discretize a polygonal domain Ω into small triangles or

tetrahedrons τ . Let hτ :“ |τ |
1
d be the diameter of τ PM and hpxq be the local meshsize, that

is the piecewise constant function with h|τ :“ hτ for all τ PM. The collection M of elements

is called a mesh or triangulation. We call Mh :“M quasi-uniform if there exists a constant h

independent of τ such that

h À hτ À h, @ τ PM.

We will only consider conforming meshes, i.e., the intersection of any two elements in M is

either an edge (d “ 2) / a face (d “ 3), vertex, or empty (see Figure 3.1 for an example). We

denote by GpMq the set of all grid points (vertices) in the mesh M. And G̊pMq Ď GpMq

is the set of vertices except those on the Dirichlet boundary. Here we use the subscript h to

describe the discrete nature and this does not imply the underlying meshes are quasi-uniform

with meshsize h. In the future discussions, we will focus on uniform conforming meshes only.
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Figure 3.1: A polygonal domain Ω with conforming partition.fig:domain

Step 2. Finite-dimensional approximation: Let Vh Ă V be the space of continuous

piecewise polynomials over a quasi-uniform conforming mesh Mh, which satisfies appropriate

conditions on the boundary Γ :“ ΩzΩ, i.e.,

Vh :“
 

v P CpΩq : v|τ P Pτ , for all τ PMh

(

č

V . (3.3) eq:u_h

We notice that there are many ways to approximate the continuous test function space. Different

choices will then result in different numerical methods. In this section, we shall focus on the

simplest case—linear finite element method on triangles or tetrahedrons, i.e., v|τ is a linear

polynomial on each τ P Mh. The weak form of the finite element approximation reads: Find

uh P Vh such that

aruh, vhs “ xf, vhy, @ vh P Vh, (3.4) eq:ell_w

or, equivalently,

Ahuh “ fh. (3.5) eq:ell_s

Step 3. Assembling the finite-dimensional problem: Using the finite element definition

pK,P,N q, we can give a basis of the finite dimensional approximation space Vh. Suppose tφiu
N
i“1

be a basis of the N -dimensional space Vh. Then (3.5) can be written as an linear algebraic

equation

Âhuh “ ~fh. (3.6) eq:ell_dis

We are going to discuss this notation later in §3.2.

Some properties of finite element methods ‹

There are a few important properties of finite element space and method that will become crucial

for our later analysis for multilevel iterative methods.
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prop:interp Proposition 3.2 (Interpolation error). Let Mh be a uniform mesh and Vh be a Cα pα ě 0q

finite element space on Mh. The interpolant Jh : Wm
p pΩq ÞÑ Vh satisfies

›

›v ´ Jhv
›

›

Wk
p pΩq

À hm´k
›

›v
›

›

Wm
p pΩq

, @ v PWm
p pΩq, 0 ď k ď mintm,α` 1u.

prop:inverse Proposition 3.3 (Inverse estimate). Let Mh be a uniform mesh and P Ď W k
p pKq

Ş

Wm
q pKq

and 0 ď m ď k. If Vh is a finite element space for pK,P,N q on Mh, then we have

´

ÿ

τPMh

›

›v
›

›

p

Wk
p pτq

¯
1
p
À h

m´k`mint0, d
p
´ d
q
u
´

ÿ

τPMh

›

›v
›

›

q

Wm
q pτq

¯
1
q
, @ v P Vh.

rem:rho-FE Remark 3.4 (Spectral radius and condition number of Ah). Suppose that we have a uniform

partition with meshsize h. It is clear, from the Poincaré inequality and the inverse inequality,

that

}v}20 À pAhv, vq “ p∇v,∇vq “ |||v|||2 À h´2}v}20, @v P Vh.

In fact, we have ρpAhq – h´2 and κpAhq – h´2.

Using Proposition 3.3, we can easily see that, for any v P Vh,

}v}L8pΩq À h
´ d
p }v}LppΩq, p P r1,8q;

}v}HspΩq À h´s}v}L2pΩq, s P r0, 1s;

}v}H1`σpΩq À h´σ}v}H1pΩq, σ P p0, 1
2q.

Moreover, there is a discrete Sobolev inequality at the bottom-line case (when d “ 2) which is

worthy for special attention.

prop:Linfty-estimate Proposition 3.4 (Discrete Sobolev inequality [15]). The following inequality holds

}v}L8pΩq À Cdphq}v}H1pΩq, @ v P Vh,

where C1phq ” 1, C2phq “ | log h|1{2, and C3phq “ h´
1
2 .

prop:L2proj Proposition 3.5 (L2-projection [15]). Define Qh : L2pΩq ÞÑ Vh by

pQhv, wq “ pv, wq, @ v P L2pΩq, w P Vh.

Then we have the following weighted L2-estimate

›

›v ´Qhv
›

›

0
` h

›

›Qhv
›

›

1
À h

›

›v
›

›

1
.
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Error analysis ‹

We now briefly introduce standard error estimates for the continuous linear finite element;

see [25, 20] for details. For standard finite element approximation of elliptic equations, the most

important property is the following Galerkin orthogonality property (see Remark 3.1)

aru´ uh, vhs “ 0, @ vh P V.

Using the definition of the energy norm |||¨||| :“ ar¨, ¨s1{2, the Galerkin orthogonality (3.2),

and the Cauchy-Schwarz inequality, we have

|||u´ uh|||
2
“ aru´ uh, u´ uhs “ aru´ uh, u´ vhs ď |||u´ uh||| |||u´ vh||| , @vh P V.

Hence, we obtain the optimality of the finite element approximation, i.e.,

|||u´ uh||| ď inf
vhPV

|||u´ vh||| . (3.7) eqn:optimal

This means uh is the best approximation of u in the subspace V . In general, it is not true for

finite element approximations.

thm:H1error Theorem 3.1 (H1-error estimate). If u P Hm
0 pΩq p1 ă m ď 2q, its P1 Lagrange finite element

approximation uh P Vh Ă V “ H1
0 pΩq satisfies

›

›u´ uh
›

›

1,Ω
À hm´1

ˇ

ˇu
ˇ

ˇ

m,Ω
.

If m “ 2, then we have }u´ uh}1,Ω À h
›

›f
›

›

0,Ω
.

thm:L2error Theorem 3.2 (L2-error estimate). If u P H2
0 pΩq, its P1 Lagrange finite element approximation

uh P Vh Ă V “ H1
0 pΩq satisfies

›

›u´ uh
›

›

0,Ω
À h

ˇ

ˇu´ uh
ˇ

ˇ

1,Ω
À h2

ˇ

ˇu
ˇ

ˇ

2,Ω
À h2

›

›f
›

›

0,Ω
.

Remark 3.5 (A posteriori error analysis). A posteriori error estimation relies on the following

error equation (or residual equation):

aru´ uh, vs “ aru, vs ´ aruh, vs “ 〈f, v〉´ aruh, vs “ 〈f ´Auh, v〉 , @v P V .

Hence, by the Cauchy-Schwarz inequality, we obtain (see HW 3.1)

|||f ´Auh|||˚ À |||u´ uh||| À |||f ´Auh|||˚ . (3.8) eqn:err-res-eq

Here |||¨|||˚ is the dual norm of |||¨|||. Notice that, on the right-hand side, we only have the data

f and the discrete solution uh. This upper bound does not depend on the unknown solution u.

Of course, to make the upper bound useful in adaptive algorithms, we need it to be local and

computable.
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3.2 Matrix representations
sec:matrixform

In the previous chapters, we have written the discrete problem simply as

A~u “ ~f,

which is actually abuse of notation. Now we would like to clarify (especially for finite element

methods) the relation between the general operator form Ahuh “ fh and its often-used matrix

form (3.6), i.e., Âhuh “ ~fh.

Vector and matrix representations

Assume that tφiui“1,...,N is a basis of V . Any function v P V can be represented as

v “
N
ÿ

i“1

viφi

and the vector representation (coefficient vector) of v is defined as

v :“

¨

˚

˚

˝

v1
...

vN

˛

‹

‹

‚

P RN . (3.9) eqn:v-matrix

It is not hard to notice that there is another natural and easier-to-compute vector representation

~v :“

¨

˚

˚

˚

˚

˚

˝

pv, φ1q

pv, φ2q

...

pv, φN q

˛

‹

‹

‹

‹

‹

‚

and ~v “Mv, (3.10) eqn:v-matrix2

where M P RNˆN with Mi,j :“ pφj , φiq “ pφi, φjq is the mass matrix. v and ~v are sometimes

called the primal and dual vector representations of v, respectively. Apparently, we have

pu,~v ql2 “ uTMv “ pu, vqV .

Suppose W is another finite-dimensional linear space with a basis tψiui“1,...,N 1 . In general, W

could be of different dimension than V , namely, N 1 ‰ N . For any linear operator A : V ÞÑ W ,

we give a matrix representation (the so-called primal representation), A P RN 1ˆN , such that it

satisfies that
řN 1

i“1

`

A
˘

i,j
ψi “ Aφj pj “ 1, . . . , N), i.e.,

Apφ1, . . . , φN q “ pψ1, . . . , ψN 1qA. (3.11) eqn:A-matrix

On the other hand, the dual representation (the stiffness matrix ) corresponding to A is denoted

by Â P RNˆN with entries
`

Â
˘

i,j
:“ pAφj , φiq.

It is not difficult to check the statements in the following identities; see HW 3.2.
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lem:mat-form Lemma 3.2 (Matrix representations). If A,B : V ÞÑ V and v, u P V , we have the following

results:

1. AB “ AB;

2. Av “ A v;

3. σpAq “ σpAq, κpAq “ κpAq;

4.
ÝÑAv “ Â v, ~v “M v;

5. Â “M A;

6. pu, vq “ pMu, vq.

ex:identity Example 3.2 (Identity operator). Let I : V ÞÑ V be the identity operator. Its stiffness matrix

and mass matrix are equal to each other, i.e., Î “M . Hence I “M´1Î “ I. As a consequence,

we have

I “ I “ AA´1 “ AA´1,

which shows A´1 “ A´1.

Example 3.3 (Finite difference matrices). For the finite difference methods, we can simply let

A : RN ÞÑ RN be a matrix and the basis φi “ ~ei :“ p0, . . . , 1, . . . , 0qT P RN , then we have

A “ A “ Â “ A.

Remark 3.6 (Matrix representation with orthonormal basis). More generally speaking, if A :

V ÞÑ V and tφiu
N
i“1 is an orthonormal basis of V , then we have M “ I and Â “ A.

Finite element matrices

We now use a few simple examples to demonstrate how to apply these notations. Suppose

that V “ Vh is the piecewise linear finite element space and tφiui“1,...,N are the canonical basis

functions. Let A be the resulting coefficient matrix of (3.1) with pAqi,j “ ai,j :“ arφi, φjs. By

definition, A “ Â P RNˆN is the stiffness matrix corresponding to A. Let u “
`

ui
˘N

i“1
P RN

be the vector of coefficients of uh. Let ~f “
`

fi
˘N

i“1
:“

 

xf, φiy
(N

i“1
. Then u satisfies the linear

system of equations:

Âu “ ~f or Au “ ~f.

Since we are going to focus on the finite element discretization from now on, we denote A :“ Â,
when there is no ambiguity arises. Upon solving this finite-dimensional problem, we obtain a

discrete approximation uh “
řN
i“1 uiφi.
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The main algebraic properties for the stiffness matrix is that: A is sparse with OpNq nonze-

ros, symmetric positive definite (for Dirichlet or mixed boundary condition problems) or sym-

metric positive semi-definite (for Neumann boundary condition problems). We now summarize

this brief introduction of finite element methods with a few comments. The following results

are valid for a large class of finite elements for second-order elliptic boundary value problems in

general domains.

rem:SpecMass Remark 3.7 (Spectrum of mass matrix). Another often used matrix is the mass matrix M P

RNˆN , in which Mi,j “ pφi, φjq. It is well-known that the mass matrix is also SPD and well-

conditioned, i.e.,

hd}ξ}20 À ξ TM ξ À hd}ξ}20, @ ξ P RN .

In fact, we know that

pMv, vq “
ÿ

i,j

vi vj pφi, φjq “ pv, vq “

ż

Ω
v2pxq dx – hd

ÿ

i

v2
i – hdpv, vq. (3.12) eqn:spec-M

rem:SpecStiff Remark 3.8 (Spectrum of stiffness matrix). Suppose that we have a uniform partition with

meshsize h. It is well-known that the stiffness matrix A is SPD and, from Remark 3.4,

hd}ξ}20 À ξ TAξ À hd´2}ξ}20, @ ξ P RN .

Hence the condition number κpAq – h´2 and the CG method becomes very slow when h de-

creases.

Simple iterators in matrix form

Now we consider the solution of the standard P1 Lagrange finite element for the Poisson’s

equation, i.e., Âu “ ~f . The simplest iterative solver for this finite element equation is probably

the well-known Richardson method:

unew “ uold ` ω
´

~f ´ Âuold
¯

. (3.13) eqn:Richardson-Matrix

It is equivalent to

unew “ uold ` ω
´

Mf ´MAuold
¯

“ uold ` ωM
´

f ´Auold
¯

.

That is to say, the Richardson method, in the operator form, can be written as

unew “ uold ` Bω
´

f ´Auold
¯

with an iterator Bω, whose matrix representation is Bω “ ωM . Therefore, it is easy to check

(HW 3.3) that the operator form of the Richardson method is

Bωv :“ ω
N
ÿ

i“1

pv, φiqφi, @v P V ðñ Bω “ ωM. (3.14) eqn:RichardsonOp
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If we choose ω “ 1 in the Richardson method, then we get B1v “
řN
i“1pv, φiqφi. This implies

pB1v, vq “
N
ÿ

i“1

pv, φiq
2 “

N
ÿ

i“1

pMvq2i “ pMv,Mvq “ pM2v, vq.

Since M is SPD, we get

pM2v, vq “ pMM
1
2 v, M

1
2 vq – hdpM

1
2 v, M

1
2 vq “ hdpMv, vq.

The estimate (3.12) implies that

pB1v, vq – hdpv, vq. (3.15) eqn:Richardson1

In general, a smoother or local relaxation is just a stationary iterative method

unew “ uold ` Spf ´Auoldq

and its matrix representation is

unew “ uold ` SpM´1 ~f ´M´1Âuoldq “ uold ` SM´1p~f ´ Âuoldq. (3.16) eqn:MatS

The above equality indicates that, in the matrix form, we shall define a smoother as

S :“ SM´1. (3.17) eqn:MatRepSmoother

Example 3.4 (Matrix form of the Richardson iteration). For example, if we consider the above

Richardson method (3.14) as an example, then

SR “ SRM
´1 “ BωM´1 “ ωI.

This coincides with the algebraic form of the Richardson method (3.13).

Let w :“ STu. Then we have

~w “
´

`

STu, φi
˘

¯N

i“1
“

´

ÿ

j

uj
`

STφj , φi
˘

¯N

i“1
“

´

ÿ

j

uj
`

φj ,Sφi
˘

¯N

i“1
“

`

Ŝ
˘T
u.

This immediately gives

ST u “ STu “ w “M´1 ~w “M´1
`

Ŝ
˘T
u “M´1

`

MS
˘T
u.

In turn, it shows

ST “M´1
`

MS
˘T
“M´1STM “ STM. (3.18) eqn:MatST

By definition of the primal matrix representation of an operator, we have

Spφ1, . . . , φN q “ pφ1, . . . , φN qS and S´1pφ1, . . . , φN q “ pφ1, . . . , φN qS´1.
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Using Example 3.2, it is easy to see that

S´1 “
`

S
˘´1

“
`

SM
˘´1

“M´1S´1. (3.19) eqn:MatSinv

Using (3.17)–(3.19) and the definition of symmetrized operator (2.10), we can obtain the

matrix form of the symmetrization

S “ SM´1 “ STM
`

M´1S´T `M´1S´1 ´M´1Â
˘

SMM´1

“ ST
`

S´T ` S´1 ´A
˘

S, (3.20)

which is consistently with the definition of symmetrization.

3.3 Smoothers and smoothing effect
sec:smoother

The methods discussed by far, for example the damped Jacobi and Gauss–Seidel methods, are

mostly local relaxation methods. Other similar methods include the SOR method and incomplete

LU factorizations. The name “local relaxation” comes from the fact that these methods just

correct the residual vector locally at one nodal point at a time; see Example 2.4. Although these

methods are not very efficient as a solver by themselves, they are still key ingredients of modern

multilevel iterative methods. These methods can be applied to reduce high-frequency error

components. In this section, we analyze their smoothing effect in several different approaches.

A numerical example

The damped Jacobi and Gauss–Seidel methods are often called local relaxations. This relaxation

procedure is effective to the error components that are local in nature. Therefore, it is not

surprising both the damped Jacobi and the Gauss–Seidel methods can damp out non-smooth

components more easily. These methods are very inefficient for relatively smoother components

in the error since a smoother function is more globally related.

We have observed that the basic stationary linear iterative schemes converge rather fast in

the very beginning but then slows down after a few step; see Figure 1.4 for the convergence

behavior of the damped Jacobi method. Moreover, these methods not only converges fast in

the first few steps, but also smooth out the error function very quickly. In other words, the

error becomes a much smoother function after a few iterations. This property of the iterative

scheme is naturally called smoothing property and an iterative scheme having this smoothing

property is called a smoother. Figure 3.2 is a pictorial example for applying multiplicative

overlapping domain decomposition method with four subdomains. We can see that, after one

iteration, the method smoothes out the high frequency part and leaves the lower frequency part
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(a) Initial Guess (b) A quarter of the domain relaxed

(c) First half relaxed (d) After smoothing

Figure 3.2: Iterative method in the viewpoint of subdomain relaxation.fig:basiciteration

behind. In fact, basic linear relaxation schemes, such as the Richardson, Jacobi, and Gauss–

Seidel iterations, are local and can only capture high frequency (local) part of the error, but do

not work well on low frequency (global) part.

Local Fourier analysis ‹

In order to analyze the local behavior of iterative methods, we consider the 2D Poisson’s equation

with homogenous Dirichlet boundary condition on the unit square discretized with a uniform

triangulation; see §1.2.

We first analyze the damped Jacobi method. Using the local Fourier analysis [17], we have

the following steps:

1. The standard FD stencil can be written as

4ui,j ´
`

ui´1,j ` ui`1,j ` ui,j´1 ` ui,j`1

˘

“ h2fi,j , i, j “ 1, . . . , n

and the damped Jacobi (or Richardson) method for the above equation reads

unew
i,j “ p1´ ωquold

i,j `
ω

4

`

uold
i´1,j ` u

old
i`1,j ` u

old
i,j´1 ` u

old
i,j`1

˘

`
ω

4
h2fi,j , i, j “ 1, . . . , n.
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2. Define the discrete error function enew
i,j :“ ui,j ´ unew

i,j and eold
i,j :“ ui,j ´ uold

i,j , for i, j “

1, . . . , n. It is clear that the error function satisfies the local error equation

enew
i,j “ p1´ ωqeold

i,j `
ω

4

`

eold
i´1,j ` e

old
i`1,j ` e

old
i,j´1 ` e

old
i,j`1

˘

, i, j “ 1, . . . , n.

3. Apply the discrete Fourier transformation:

ei,j “
ÿ

θPΘn

αθe
?
´1piθ1`jθ2q and Θn :“

!

pθ1, θ2q : θ1 “
2kπ

n
, θ2 “

2lπ

n
, k, l P r´m1,m2s

)

,

where m1 “ n{2´1,m2 “ n{2, if n is even and m1 “ m2 “ pn´1q{2, if n is odd. Plugging

the discrete Fourier transforms of enew
i,j and eold

i,j to the above error equation, we get the

amplification factor of the local mode e
?
´1piθ1`jθ2q

λpθq :“
αnew
θ

αold
θ

“ 1´ ω
´

1´
cospθ1q ` cospθ2q

2

¯

ď 1.

Furthermore, λpθq Ñ 1 when |θ| Ñ 0 (low-frequency components).

4. Asymptoticly, m1 « m2 «
n
2 . So we can define a smoothing factor (i.e. maximal amplifi-

cation factor corresponding to high-frequency local modes) by

ρ̄ :“ sup
θ

!

ˇ

ˇλpθq
ˇ

ˇ :
π

2
ď |θk| ď π, k “ 1, 2

)

.

By plugging in the end points, we get the the smoothing factor for the damped Jacobi

method is

ρ̄
Jacobi

:“ max
!ˇ

ˇ

ˇ
1´ 2ω

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
1´

1

2
ω
ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
1´

3

2
ω
ˇ

ˇ

ˇ

)

.

Remark 3.9 (Optimal damping factor for smoothing). We notice that, if ω “ 1 (the Jacobi

method), then ρ̄
Jacobi

“ 1. This confirms the result we obtained in the previous subsection.

Apparently, the “best” weight that minimizes the smoothing factor is ω “ 4{5, which leads to

ρ̄
Jacobi

“ 3{5.

It is not hard to imagine that the G-S method should have better smoothing property than

the Jacobi method. Using the same steps as above, we have:

1. The G-S method in lexicographical order reads

unew
i,j “

1

4

`

unew
i´1,j ` u

old
i`1,j ` u

new
i,j´1 ` u

old
i,j`1

˘

`
1

4
h2fi,j , i, j “ 1, . . . , n.

2. The discrete error function satisfies

enew
i,j “

1

4

`

enew
i´1,j ` e

old
i`1,j ` e

new
i,j´1 ` e

old
i,j`1

˘

, i, j “ 1, . . . , n.
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3. Apply the discrete Fourier transform and compute the amplification factor

λpθq :“
αnew
θ

αold
θ

“
e
?
´1θ1 ` e

?
´1θ2

4´ e´
?
´1θ1 ´ e´

?
´1θ2

.

4. One can show the smoothing factor for the G-S method is

ρ̄GS :“
ˇ

ˇ

ˇ
λ
´π

2
, arccosp4{5q

¯ˇ

ˇ

ˇ
“

1

2
.

Remark 3.10 (Anisotropic problems and smoothing effect). Notice that the above analysis only

works for uniform partition and isotropic coefficients. When we solve an anisotropic problem,

it is important to note that the G-S method (and other point relaxation methods) yields not as

good smoothing factor as the isotropic case. In fact, the smoothing factor goes to 1 when ratio

between small and large coefficients goes to 0; see Chapter 6 for details.

Remark 3.11 (Ordering and smoothing effect). For the G-S method, ordering is important.

When using the red-black ordering, one can show the smoothing factor is ρ̄RBGS “
1
4 . This

means the smoothing effect of the red-black ordering is better.

Smoother analysis

Consider the Richardson method (3.14) with weight ω “ h2´d, i.e.,

SRv :“ h2´d
N
ÿ

i“1

pv, φiqφi, @v P V. (3.21) eqn:RichardsonOpLevel

In view of (3.15) and using the fact that the spectral radius of the FE operator is ρpAq – h´2

(see Remark 3.4), we find

pSRv, vq “ h2´dp~v,~vq – h2pv, vq –
1

ρpAqpv, vq. (3.22) eqn:smoothing

This is the property we will ask for a smoother later on. Roughly speaking, SR behaves like A´1

in the high-frequency part.

Apparently, the damped Jacobi method also satisfies this condition. In fact, using the

standard scaling argument on each element, we can see that

hd´2pξ, ξq À pDξ, ξq À hd´2pξ, ξq.

Hence, we have the Jacobi smoother

pSJv, vq “ pMSJv, vq “ pMD´1Mv, vq – hd`2pv, vq – h2pv, vq –
1

ρpAqpv, vq.
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Remark 3.12 (Smoother v.s. preconditioner). From the property (3.25) of these popular

smoothers, we can easily see that

ρ´1
A pv, vq À pSv, vq À ρ´1

A pv, vq, (3.23) eqn:smoothing1

where ρA :“ ρpAq. Thus we have a lower bound for the minimal eigenvalue ρ´1
A À λminpSq.

With simple manipulations, we also get

ρ´1
A pv, vqA À ρ´1

A pAv,Avq À pSAv, vqA À ρ´1
A pAv,Avq ď pv, vqA. (3.24) eqn:smoothing2

Due to Lemmas 2.5 and 2.6, (3.24) indicates that κpSAq À ρpAq – κpAq, which means these

smoothers might not improve the condition number by themselves.

Next, we shall show that the G-S method behaves in a similar way.

lem:GS-algebraic Lemma 3.3 (Smoothing property of G-S in matrix form). Let Â be the stiffness matrix and

Â “ A “ D ` L` U . Then the G-S method satisfies

›

›pD ` Lqξ
›

›

0
–

›

›Dξ
›

›

0
– hd´2}ξ}0, @ξ P RN .

Proof. Locality of the nodal basis functions leads to sparse matrix L; in turn, this gives

›

›pD ` Lqξ
›

›

0
À

›

›Dξ
›

›

0
À hd´2}ξ}0.

The other direction follows from

hd´2}ξ}20 À
`

Dξ, ξ
˘

ď
`

pD `Aqξ, ξ
˘

“ 2
`

pD ` Lqξ, ξ
˘

À }pD ` Lqξ}0 }ξ}0.

We then get the desired estimates with simple manipulations.

lem:SGS-operator Lemma 3.4 (Smoothing property of SGS). Let S : V ÞÑ V be the symmetrized G-S (SGS)

iterator. Then we have
`

Sv, v
˘

– h2pv, vq –
1

ρpAqpv, vq. (3.25) eqn:smoother-property

Proof. The matrix form of SGS is

S “ SM “ pD ` Uq´1DpD ` Lq´1M.

Let v be the vector representation of v P V . Then we have

pSv, vq “ pMSv, vq “ pMS v, vq “
›

›D
1
2 pD ` Lq´1Mv

›

›

2

0
.

Hence to show the lemma is equivalent to prove that

›

›D
1
2 pD ` Lq´1Mv

›

›

2

0
– h2pMv, vq.
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By changing of variable ξ :“ pD ` Lq´1Mv P RN and the fact M – hd, we reduce the above

equality to

hd´2pDξ, ξq – h2pd´2q}ξ}20 –
›

›pD ` Lqξ
›

›

2

0
“ pMv,Mvq, @ ξ P RN ,

which is true due to Lemma 3.3.

3.4 A two-grid method
sec:twogrid-algorithm

From the analysis in §3.3, we have found that local relaxation methods (smoothers) can damp

the oscillatory components of the error quickly. Motivated by the two-level DD method in

§2.4, we can introduce coarser levels to take care of the smooth components. A natural idea is

then, after a few smoothing steps, to approximate the resulting problem on a coarser grid and

continue the iteration with a “coarse version” of the problem. The main idea is to resolve the

high frequency part of the error with relaxation schemes and leave the low frequency part to the

coarse levels. Before we discuss multilevel methods, we first investigate a much simpler case,

the two-grid method.

General two-grid methods

Let Vh be fine grid finite element space and VH be the coarse gird space (usually it is a subspace

of Vh.) The two-grid method for equation (3.1) can be described as

alg:atwogrid Algorithm 3.1 (General two-grid method). Given an initial guess up0q P Vh.

(i) Pre-smoothing: Apply a few relaxation steps to smooth up0q on the fine grid to obtain a

new approximation up1q P Vh;

(ii) Coarse-grid Correction: Find eH P VH by solving or approximating the error equation

pAeH , vHq “ pf ´Aup1q, vHq

on the coarse gird, and then set up2q “ up1q ` eH ;

(iii) Post-smoothing: Apply relaxation to smooth up2q on fine grid to obtain up3q P Vh.

Remark 3.13 (Low frequency error). A simple observation is that smooth functions can be

represented on coarse grids rather accurately. For example, suppose uh and uH are the finite

element solutions on Vh and VH Ă Vh, respectively. Then we immediately have

aruh ´ uH , vHs “ 0, @ vH P VH .
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Using the Aubin-Nitsche’s argument, we consider a boundary value problem

´∆v “ uh ´ uH in Ω and v “ 0 on BΩ.

If we have full elliptic regularity, then }v}2 ď C}uh´uH}0 is bounded. For any vH P VH , we get

}uh ´ uH}
2
0 “ arv, uh ´ uHs “ arv ´ vH , uh ´ uHs ď |||v ´ vH ||| |||uh ´ uH ||| À H|v|2 |||uh ´ uH ||| .

Hence the following inequality holds

}uh ´ uH}0 À H |||uh ´ uH ||| À H |||uh||| . (3.26) eqn:SmoothPart

That is to say, if uh is relatively smooth (small first derivatives), then uh can be well approxi-

mated by uH .

A more concrete algorithm based on the abstract algorithm above can be introduced. Let

V be the fine space associated with meshsize h and Vc Ă V be the coarse space associated with

meshsize H. Let Ic : Vc ÞÑ V be the natural embedding (injection), i.e., Icvc “ vc, @vc P Vc.

Remark 3.14 (Embedding and projection). By the definition of embedding Ic : Vc ÞÑ V and

the fact

pITc v, wcq “ pv, Icwcq “ pv, wcq, @v P V,wc P Vc,

it is easy to see that ITc “ Qc is the p¨, ¨q-projection from V to Vc. And the coarse-level operator

can be defined by the Galerkin relation

Ac “ ITc AIc “ QcAIc.

Suppose that S is a smoother and Bc is a solver (iterator) for the coarse-grid problem.

alg:twogrid Algorithm 3.2 (Two-grid method). Given an initial guess up0q P V .

(i) Pre-smoothing: up1q “ up0q ` Spf ´Aup0qq;

(ii) Coarse-grid Correction: up2q “ up1q ` pIcBcITc qpf ´Aup1qq;

(iii) Post-smoothing: up3q “ up2q ` ST pf ´Aup2qq.

We note that this algorithm is very similar to the multigrid algorithm discussed in Chapter 1.

We can choose S, Vc, and Bc to make the method efficient for the equation. The two-grid method

is defined in the hope of capturing the high-frequency components of error on the fine grid, and

leaving the low-frequency components to the coarser grid. The effect of coarse grid correction

is illustrated in Figure 3.3. Note that these two pictures have different scales.
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Figure 3.3: After coarse-grid correction, global low frequency is replaced by local high frequency.fig:coarsecorrection

Convergence analysis of TG

In this section, we will estimate convergence rate of two-grid methods. We first give two simple

lemmas. Proof to these two simple lemmas are straightforward and left to the readers; see

HW 3.4.

lem:TGiter Lemma 3.5 (Iterator of two-grid method). The two-grid method has a corresponding iterator

BTG : V 1 Ñ V defined as

BTG “ S `
`

I ´ STA
˘

IcBcITc pI ´ASq , (3.27) B_Inv

where S “ ST ` S ´ STAS is the symmetrization of the smoother S.

lem:TGerror Lemma 3.6 (Error propagation of two-grid method). The error propagation operator ETG “

I ´ BTGA for two-grid method is

ETG “ pI ´ STAqpI ´ BcAcΠcqpI ´ SAq, (3.28) E_op

where Πc is the p¨, ¨qA-orthogonal projection onto Vc. If the coarse-level solver is exact, namely,

Bc “ A´1
c , then we have

ETG “ pI ´ STAqpI ´ΠcqpI ´ SAq. (3.29) E_op1

Notice that Πc is the A-projection from V to Vc. So there is an implicit natural embedding

operator Ic in front of Πc in the above equality.

We now present a theorem which gives the convergence rate of a simplified two-grid method

(Algorithm 3.3) in terms of approximability of the coarser space Vc.



CHAPTER 3. TWO-GRID METHODS 74

alg:twogrid2 Algorithm 3.3 (Simplified two-grid method). Given an initial guess up0q P V .

(i) Coarse-grid Correction: up1q “ up0q ` pIcBcITc qpf ´Aup0qq;

(ii) Post-smoothing: up2q “ up1q ` Spf ´Aup1qq.

Assume that S is SPD. In the two-grid method analysis below, we need the following notation

T “ TS :“ SA : V ÞÑ V. (3.30) eqn:SA

With the above notation, the inner product

`

u, v
˘

S´1 :“
`

T ´1u, v
˘

A,

the accompanying norm } ¨ }S´1 , and p¨, ¨qS´1-orthogonal projection QS´1 : V ÞÑ Vc. The

convergence rate of the two-grid method is obtained in the following theorem; compare this

result with the convergence rate of stationary iterative method in Theorem 2.3.

thm:two-grid-convergence Theorem 3.3 (Convergence rate of the two-grid method). The convergence rate of the two-grid

method (3.27) with the exact coarse-level solver is given by

}ETG}
2
A “ 1´

1

c1pVcq
, (3.31) eq:two-grid-convergence

where

c1pVcq :“ sup
vPV

›

›pI ´QS´1qv
›

›

2

S´1

}v}2A
“ sup

vPV
inf
vcPVc

›

›v ´ vc
›

›

2

S´1

}v}2A
. (3.32) KVc

Sketch of the proof. (1) It follows from (3.28) that

ETG “ pI ´ SAqpI ´Πcq.

Hence, we can immediately obtain

}ETG}
2
A “ sup

vPV

}pI ´ SAqpI ´Πcqv}
2
A

}v}2A
“ sup

vPV
KA
c

}pI ´ SAqv}2A
}v}2A

.

Using the definition of p¨, ¨qA-projection Πc, we can show that

}ETG}
2
A “ sup

vPV
KA
c

`

pI ´ T qv, v
˘

A
}v}2A

“ 1´ inf
vPV

KA
c

`

T v, v
˘

A
pv, vqA

“ 1´ inf
vPV

KA
c

`

pI ´ΠcqT v, v
˘

A
pv, vqA

.

(2) Define a new operator

X :“ pI ´ΠcqT : V KA
c ÞÑ V KA

c (3.33) eqn:Xdef
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and it is easy to check that X is self-adjoint with respect to p¨, ¨qA. A key observation is that

the inverse of X can be explicitly written as

Z “ T ´1pI ´QS´1q.

Since
`

ΠcT ´1pI ´ QS´1qu, v
˘

A “
`

T ´1pI ´ QS´1qu, v
˘

A “
`

pI ´ QS´1qu, v
˘

S´1 “ 0 for any

u P V KA
c and v P Vc, we have ΠcZ “ 0, which implies that Z : V KA

c ÞÑ V KA
c . Furthermore, by

the definition of projections, we get

XZ “ pI ´ΠcqpI ´QS´1q “ I ´Πc “ I on V KA
c .

(3) Consequently λmin pX q “ λmax pZq´1. Finally,

λmax pZq “ sup
vPV

KA
c

pT ´1pI ´QS´1qv, vqA
pv, vqA

“ sup
vPV

KA
c

`

pI ´QS´1qv, v
˘

S´1

pv, vqA

“ sup
vPV

KA
c

}pI ´QS´1qv}2
S´1

pv, vqA
“ sup

vPV

›

›pI ´QS´1qv
›

›

2

S´1

}v}2A
“: c1pVcq.

The last identity holds because I ´ QS´1 “ pI ´ QS´1qpI ´ Πcq and we can then take the

supremum back over all v P V (similar to the argument in the very beginning of this proof).

Optimal coarse space

Now we discuss how to choose the coarse space to maximize the convergence speed, which will

become handy later for developing algebraic multigrid methods (AMGs). We will show that the

space spanned by the eigenvectors of SA corresponding to small eigenvalues gives the “best”

coarse space. Here “best” refers to this coarse space minimizes the convergence rate.

Theorem 3.3 provides an estimate on the convergence rate of a two-grid method in terms of

c1pVcq. For a given method, a smaller bound on c1pVcq means faster convergence. In particular,

the two-grid method is uniformly convergent if c1pVcq is uniformly bounded with respect to

meshsize. However, one problem for applying Theorem 3.3 is that it is sometimes difficult to

work with S´1
.

A natural approach to overcome such a difficulty is to introduce a simpler but spectrally

equivalent SPD operator D, such that

CL
›

›v
›

›

2

D ď
›

›v
›

›

2

S´1 ď CU
›

›v
›

›

2

D, @ v P V.

Similar to the definition of c1pVcq, we can introduce the quantity

c1pVc,Dq “ sup
vPV

›

›pI ´QDqv
›

›

2

D
}v}2A

“ sup
vPV

inf
vcPVc

›

›v ´ vc
›

›

2

D
}v}2A

,
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where QD : V ÞÑ Vc is the p¨, ¨qD-orthogonal projection. Hence

CL c1pVc,Dq ď c1pVcq ď CU c1pVc,Dq.

It is straight-forward to derive the following estimates:

thm:two-grid-convergence2 Theorem 3.4 (An estimate of convergence rate of TG). The convergence rate of the two-grid

method (3.27) with exact coarse-level solver is given by

1´
1

CL c1pVc,Dq
ď }ETG}A ď 1´

1

CU c1pVc,Dq
ď 1´

1

CUC
, (3.34) eq:two-grid-convergence2

where C is an upper bound of c1pVc,Dq, i.e.,

inf
vcPVc

›

›v ´ vc
›

›

2

D ď C}v}2A, @ v P V. (3.35) KVc1

The following theorem characterizes the optimal choice of coarse space Vc with a fixed

smoother S:

thm:two-grid-optimal Theorem 3.5 (Optimal coarse space). Given a smoother S, the best coarse space of dimension

Nc is given by

V opt
c :“ argmin

dimVc“Nc

}ETGpVcq}A “ span
 

ξk
(Nc
k“1

, (3.36) optVH

where
 

ξk
(Nc
k“1

are the eigenfunctions corresponding to the smallest eigenvalues λk of SA.

Proof. Recall that ETG “ pI ´ STAqpI ´ ΠcqpI ´ SAq. Since ETG depends on Vc we write

ETGpVcq and using the same argument as in the proof of Theorem 3.3, we have

}ETGpVcq}A “ 1´ min
vPV

KA
c

pSAv, vqA
}v}2A

.

Thus,

min
dimVc“Nc

}ETGpVcq}A “ 1´ max
dimVc“Nc

min
vPV

KA
c

pSAv, vqA
}v}2A

.

By the well-known Courant minimax principle [26], we have

max
dimVc“Nc

min
vPV

KA
c

`

SAv, v
˘

A
}v}2A

“ λNc`1

and the equality holds if Vc “ V opt
c as given in (3.36).

Remark 3.15 (Lower bound of contraction factor). Since the coarse space which minimizes

the convergence rate is the coarse space which minimizes also c1pVcq, we have the following

inequalities

c1pVcq “
1

1´ }ETG}A
ě

1

λNc`1
or }ETG}A ě 1´ λNc`1,

which is a lower bound of the contraction factor in terms of size of the small eigenvalues (low

frequencies) of SA.
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Since the eigenvalues of SA are expensive to compute, the practical value of Theorem 3.5 is

limited. But it will provide useful guidance in the design practical algebraic multilevel methods

in §6.3.

3.5 Matrix representation of the two-grid method
sec:MatrixFromTG

In practice, we have to understand the matrix representation of an abstract algorithm before we

can actually implement it. We now explain the matrix representation of the two-grid method

in the finite element context.

Grid transfer operators in matrix form

Let tφiu be the basis of a finite element space V on the fine-grid, then the stiffness matrix Â
reads

`

Â
˘

i,j
“ arφi, φjs.

Let tφcl u be the basis functions of the coarse-grid subspace Vc Ă V and the stiffness matrix on

the coarser space is denote by Âc with
`

Âc

˘

k,l
“ arφck, φ

c
l s. Then φcl can be expressed as

φcl “
N
ÿ

i“1

`

P
˘

i,l
φi

or

pφc1, . . . , φ
c
Ncq “ pφ1, . . . , φN qP,

which defines a prolongation matrix P P RNˆNc . By definition, this implies that P “ Ic.

rem:PreserveConst Remark 3.16 (Cannonical prolongation operator). Let 1N :“ p1, 1, . . . , 1qT . Since the basis

functions form the partition of unity, it follows that

pφ1, ¨ ¨ ¨ , φN q1N “
N
ÿ

i“1

φi “ 1 “
Nc
ÿ

l“1

φcl “ pφ
c
1, ¨ ¨ ¨ , φ

c
Ncq1Nc “ pφ1, ¨ ¨ ¨ , φN qP 1Nc .

Hence we have that the prolongation matrix preserves constant away from the boundary, i.e.,

P 1Nc “ 1N .

It is important to note that ITc “ Qc ‰ IcT , i.e., the matrix representation of adjoint

operator is not equal to the transpose of the matrix representation. If we take any v P V , then

we have

vc :“ Qcv and vc “ pφ
c
1, . . . , φ

c
Ncqvc.
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On the other hand, with straightforward calculations, we obtain that

~vc “
´

pvc, φ
c
kq

¯Nc

k“1
“

´

pv, φckq
¯Nc

k“1
“

˜

N
ÿ

j“1

vjpφj , φ
c
kq

¸Nc

k“1

“

˜

N
ÿ

j“1

vj

´

IcTM
¯

k,j

¸Nc

k“1

“ IcTMv.

In turn, we can obtain the matrix representation of the L2-projection

Qcv “ vc “M´1
c ~vc “M´1

c IcTMv ùñ ITc “ Qc “M´1
c IcTM “M´1

c P TM. (3.37) eqn:MatQ

Coarse problem in matrix form

Since the coarse-level operator is defined as Ac “ ITc AIc, we obtain its matrix representation

Ac “ QcAIc ùñ Âc “McAc “McQcAIc “ P TMAP “ P T ÂP. (3.38) eqn:Ac-PtAP

Then the coarse stiffness matrix satisfies

Âc “ P T ÂP. (3.39) eqn:PtAP

Therefore, the algebraic form (3.39) of the coarse level problem is equivalent to the matrix

representation of the operator form.

In the above equality, we observe that, the L2-projection Qc is not needed for implementation.

Instead, we only need to use a restriction matrix R :“ P T .

Remark 3.17 (Finite difference case). Notice that, here, for the finite element stiffness matrices,

the restriction matrix is just R “ P T . However, we have already noticed that R ‰ P T for the

finite difference method in (1.34). In fact, many books (see [23] for example) states R “ cP T .

This difference comes from the scaling effect caused by h. In the 1D FD example, the coefficient

matrices on fine and coarse levels are A “ h´1Â and Ac “ H´1Âc, respectively. Hence we get

Âc “ P T ÂP ùñ Ac “

ˆ

h

H
P T

˙

AP “: RAP.

This remark explains how we can obtain such the constant c in general.

Two-grid iterator in matrix form

From (3.27), we have that the two-grid method with exact coarse solver is

BTG “ S `
`

I ´ STA
˘

IcA´1
c ITc pI ´ASq .

We can then write the above equation in matrix form

BTG “ S `
`

I ´ STA
˘

IcA´1
c ITc

`

I ´AS
˘

.
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So we define

BTG :“ BTGM
´1 “ SM´1 `

`

I ´ STA
˘

IcA´1
c ITc

`

I ´AS
˘

M´1.

Using the matrix form the symmetrization, inversion, and transpose derived earlier, we can

easily get

BTG “ S ` pI ´ STAqPA´1
c P T pI ´ASq “ S ` pI ´ STAqP

`

P TAP
˘´1

P T pI ´ASq.

Now we are ready to introduce the matrix representation of the two-grid method for solving

the linear system Au “ ~f . We describe the two-grid method as a preconditioner action BTGp¨q.

For any given vector (usually it is the residual vector) ~r P RN , we can compute BTGp~rq in the

following steps:

Listing 3.1: A two-grid method

1 %% Given any vector ~r;

2 Pre´smoothing: ~v Ð S~r;

3 Coarse´grid correction: ~w Ð ~v ` P pPTAP q´1PT p~r ´A~vq;

4 Post´smoothing: BTG~r Ð ~w ` ST p~r ´A~wq;

3.6 Homework problems

hw:ApostBound HW 3.1. Show the a posteriori error bounds (3.8).

hw:matrix-rep HW 3.2. Prove the statements in Lemma 3.2.

hw:Richardson HW 3.3. Show the operator form and matrix form (3.14) of the Richardson method.

hw:TG HW 3.4. Prove Lemma 3.5 and Lemma 3.6.

hw:MGTG HW 3.5. Write the 1D multigrid method in §1.4 as a two-grid method (Algorithm 3.2) called

recursively.

hw:ETG HW 3.6. Give the detailed proof of Theorem 3.3. Hint: First show that

sup
vPV

}pI ´ SAqpI ´Πcqv}
2
A

}v}2A
“ sup

vPV

}pI ´ SAqpI ´Πcqv}
2
A

}pI ´Πcqv}2A ` }Πcv}2A
“ sup

vPV
KA
c

}pI ´ SAqv}2A
}v}2A

;

Then prove that X defined in (3.33) is self-adjoint with respect to p¨, ¨qA-inner product.



Chapter 4

Subspace Correction Methods

ch:subspace

In the previous chapters, we have been considering the linear equation

Au “ f, (4.1) eqn:original

where A : V ÞÑ V is SPD. A linear stationary iterative method can be written as

unew “ uold ` Bpf ´Auoldq. (4.2) eqn:original-iter

If B is an SPD operator, with proper scaling, the above iterative method converges. Furthermore,

B can be applied as a preconditioner of Krylov subspace methods.

In this chapter, we present a framework for analyzing linear iterative methods and/or pre-

conditioners obtained by the concept of space decomposition and subspace corrections. This

general framework can be used to establish convergence theory for various methods, including

the multigrid method and domain decomposition method discussed in the previous chapters.

4.1 Successive and parallel subspace corrections

Suppose we have a subspace decomposition of the solution space

V “
J
ÿ

j“1

Vj and Vj Ă V pj “ 1, . . . , Jq.

For any v P V , we can write it as v “
řJ
j“1 vj with vj P Vj . Notice that this representation

is not unique as there could be redundancy in the subspace decomposition. Furthermore, such

redundancy is crucial for optimality of multilevel methods.

Abstract framework for subspace corrections

We first define a few operators which have already been used at different places in the previous

chapters.

80
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def:subproblems Definition 4.1. Let V be a Hilbert space with inner product p¨, ¨q and Vj Ă V be a subspace.

We define
$

’

’

&

’

’

%

subspace problem Aj : Vj ÞÑ Vj , pAjvj , wjq “ pAvj , wjq, @ vj , wj P Vj ;

p¨, ¨q-projection Qj : V ÞÑ Vj , pQjv, wjq “ pv, wjq, @wj P Vj ;

p¨, ¨qA-projection Πj : V ÞÑ Vj , pΠjv, wjqA “ pv, wjqA, @wj P Vj .

Remark 4.1 (Matrix representation of the A-projection). Let uc :“ Πcu. Since Πc : V ÞÑ Vc Ă

V is the A-orthogonal projection operator, for any u P V , we have

aruc, vcs “ arΠcu, vcs “ aru, vcs, @ vc P Vc.

Using the matrix representation notations introduced in §3.2, we have, for any vc P Vc, that

aruc, vcs “ pAuc, vcq “ vc
T Âc uc, @uc P Vc; (4.3)

aru, vcs “ pAu, vcq “ pIcvcqT Âu “ vc
TP T Âu, @u P V. (4.4)

From (4.3) and (4.4), we can derive the matrix representation of the Galerkin projection on the

coarse grid

Âcuc “ P T Âu ùñ Πc u “ Πcu “ uc “ Â´1
c P T Âu.

Hence, we obtain the matrix representation of the A-projection operator

Πc “ Â´1
c P T Â. (4.5)

Using Definition 4.1, we have the following elementary results (the proof is left to the readers;

see HW 4.2):

lem:projections Lemma 4.1 (Relation between projections). The following equalities hold:

1. ITj “ Qj , I˚j “ Πj;

2. QjA “ AjΠj.

Remark 4.2 (Subspace problems). From the definition of Aj , we get

Aj “ ITj AIj “ QjAIj “ QjAQT
j .

With the help of Lemma 4.1 and simple calculations, we obtain the error equation on each

subspace Vj :

Ae “ r ùñ QjAe “ Qjr ùñ AjΠje “ Qjr ùñ Ajej “ rj ,

where rj “ Qjr and ej “ Πje.
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The idea of method of subspace corrections (MSC) is motivated by Algorithm 2.11 and the

idea of divide and conquer. We can describe the idea of subspace correction in the following

abstract algorithm2, which is a just generalization of Algorithm 2.1:

alg:msc Algorithm 4.1 (Method of subspace corrections). unew “ SCpuoldq

(i) Form residual: r “ f ´Auold

(ii) Solve error equation on Vj : Ajej “ rj by ej « êj “ Sjrj

(iii) Correct iteration: unew “ uold ` êj

Notice that, instead of constructing an iterator for the whole system, Algorithm 4.1 only con-

siders subproblems on subspaces.

rem:subsolvers Remark 4.3 (Subspace solvers). It is well-known that

uj “ argmin
vPVj

Fpvq :“
1

2
pAv, vq ´ pf, vq

is equivalent to

uj “ argmin
vPVj

›

›u´ v
›

›

A.

We notice that the solution of the subspace problem Ajej “ rj “ Qjr
old satisfies that

Fpuold ` ejq “ min
ePVj

Fpuold ` eq.

SSC and PSC methods

Algorithm 4.1 does not specify how to combine the corrections êj ’s from different subspaces.

There are basically two approaches: the successive subspace correction (SSC) and the parallel

subspace correction (PSC). SSC can be viewed as the multiplicative Schwarz method (2.33) and

PSC can be viewed as the additive Schwarz method (2.32). We now give description of the SSC

and PSC algorithms.

Algorithm 4.2 (Successive subspace corrections). unew “ SSCpuoldqalg:ssc

(i) v “ uold

(ii) v “ v ` SjQjpf ´Avq, j “ 1, . . . , J

1The corresponding operator form is just (4.2).
2Note that this procedure is not really an algorithm as it does not specify how to combine the corrections êj ’s

from different subspaces.
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(iii) unew “ v

Algorithm 4.3 (Parallel subspace corrections). unew “ PSCpuoldqalg:psc

(i) r “ f ´Auold

(ii) êj “ SjQjr, j “ 1, . . . , J

(iii) unew “ uold `
řJ
j“1 êj

From the above algorithms, it is immediately clear why they are named as PSC and SSC,

respectively. As in (3.30), we define an operator

Tj “ TSj :“ SjQjA “ SjAjΠj : V ÞÑ Vj .

Apparently, if we restrict the domain to Vj , then we have

Tj “ TSj “ SjAj : Vj ÞÑ Vj .

We shall now assume all the subspace solvers (smoothers) Sj are SPD operators. As STj “ Sj ,
the operator Tj “ SjAj : Vj ÞÑ Vj is symmetric and positive definite with respect to p¨, ¨qA. If

Sj “ A´1
j , i.e., the smoother is the exact solver on each subspace, then we have Tj “ Πj .

• The SSC method satisfies:

u´ unew “ pI ´ BAqpu´ uoldq “ pI ´ TJq ¨ ¨ ¨ pI ´ T1qpu´ u
oldq. (4.6) eqn:SSC

If J “ N and each subspace Vj “ spantφju (j “ 1, . . . , N) and Sj “ A´1
j , then the

corresponding SSC method is exactly the G-S method; see (2.17).

• For the PSC method, the iterator (or, more often, the preconditioner) satisfies

B “
J
ÿ

j“1

SjQj “

J
ÿ

j“1

IjSjQj and BA “
J
ÿ

j“1

SjQjA “
J
ÿ

j“1

Tj . (4.7) eqn:PSC

If Sj ’s (j “ 1, . . . , J) are all SPD, then the preconditioner B is also SPD; see HW 4.3. If

each subspace Vj “ spantφju (j “ 1, . . . , N), then the PSC methods with Sj “ ωp¨, φjqφj

and Sj “ A´1
j correspond to the Richardson method and the Jacobi method, respectively.

4.2 Expanded system and block solvers

Back in §2.1, we have discussed a modified block Gauss–Seidel method. In this section, we

discuss an expanded system of (4.1) and its block iterative solvers. Moreover, we will show

how these block solvers are related to the subspace correction methods for the original linear

system (4.1). This relation will become important in the next section for deriving the X-Z

identity, which gives the convergence rate of SSC.
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Expansion of the original problem

Suppose that the finite dimensional vector space V can be decomposed as the summation of

linear vector subspaces (might not be linearly independent), V1, V2, . . . , VJ , i.e., V “
řJ
j“1 Vj .

We define a new vector space

V :“ V1 ˆ V2 ˆ ¨ ¨ ¨ ˆ VJ .

Define an operator Π : V ÞÑ V such that Πu “
řJ
j“1 uj , where u “ pu1, . . . , uJq

T P V with each

component uj “ uj P Vj . From the definition, Π is surjective. This operator can be formally

interpreted as

Π “ pI1, . . . , IJq,

where Ij : Vj ÞÑ V is the natural embedding. Hence, we obtain

Πu “ pI1, . . . , IJq

¨

˚

˚

˝

u1

...

uJ

˛

‹

‹

‚

“

J
ÿ

j“1

Ijuj “
J
ÿ

j“1

uj .

So we have

ΠT “

¨

˚

˚

˝

IT1
...

ITJ

˛

‹

‹

‚

“

¨

˚

˚

˝

Q1

...

QJ

˛

‹

‹

‚

.

Define A : V ÞÑ V such that Ai,j “ Ai,j :“ ITi AIj : Vj ÞÑ Vi. And we denote Aj :“ Aj,j .

Hence we can write the operator A in a matrix form

A :“ ΠTAΠ “

´

Ai,j

¯

JˆJ
“

¨

˚

˚

˝

A1,1 ¨ ¨ ¨ A1,J

...
. . .

...

AJ,1 ¨ ¨ ¨ AJ,J

˛

‹

‹

‚

.

Given any right hand side function f P V , we define

f :“ ΠT f “

¨

˚

˚

˝

IT1 f
...

ITJ f

˛

‹

‹

‚

P V.

In this setting, we can consider the following problem: Find u P V, such that

Au “ f . (4.8) eqn:expanded

This system is called the expanded equation of the original linear equation (4.1). We will see

how the solution of these two problems are related.



CHAPTER 4. SUBSPACE CORRECTION METHODS 85

If A is SPD, then A is a symmetric positive semidefinite (SPSD) operator. Note that

A could be singular due to nontrivial null space, nullpΠq. However, its diagonal entries Aj

(j “ 1, 2, . . . , J) are non-singular. We can define a semi-norm for B : V ÞÑ V

}B}A :“ sup
}v}A‰0

}Bv}A
}v}A

.

Block solvers for expanded equation

As before, we denote the lower, upper, and diagonal part of A as L, U, and D, respectively.

We can immediately see that the stationary iterative methods discussed in §1.3 can be easily

adapted to solve (4.8). The linear stationary iterative methods for (4.8) can be written in the

following abstract form

unew “ uold `Bpf ´Auoldq, (4.9) eqn:iterEx

where the iterator B : V ÞÑ V. If B “ D´1, then we have the block Jacobi method for (4.8); if

B “ pD` Lq´1, then we have the block Gauss–Seidel method.

Motivated by (2.13), we can generalize the block Jacobi and G-S methods a little bit. Assume

there is a non-singular block diagonal smoother (or relaxation operator) S : V ÞÑ V, i.e.,

S “ diagpS1,S2, . . . ,SJq, with Sj : Vj ÞÑ Vj , j “ 1, 2, . . . , J.

We define modified block Jacobi method by B “ S and the modified block Gauss–Seidel method

by B “ pS´1 ` Lq´1.

thm:equivalence Theorem 4.1 (Solution of expanded and original systems). The linear stationary iteration (4.9)

for the equation (4.8) reduces to an equivalent stationary iteration (4.2) with the iterator B “
Π B ΠT for the original equation (4.1). Moreover, these two methods have the same convergence

rate, i.e.,

}I ´ BA}A “ }I´BA}A.

Proof. The linear stationary iterative method

unew “ uold `Bpf ´Auoldq

is equivalent to

unew
j “ uold

j `
ÿ

k

Bj,k

´

ITk f ´
ÿ

i

Ak,iu
old
i

¯

“ uold
j `

ÿ

k

Bj,kITk
´

f ´
ÿ

i

AIiuold
i

¯

“ uold
j `

ÿ

k

Bj,kITk
´

f ´Auold
¯

.
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Therefore, we have

unew “
ÿ

j

Ijunew
j “ uold `

ÿ

j,k

IjBj,kITk
´

f ´Auold
¯

“ uold ` B
´

f ´Auold
¯

.

This proves the equivalence of (4.9) and (4.2).

A key observation is that

pBAv,vqA “ pABAv,vq “ pΠTAΠ B ΠTAΠv,vq “ pABAΠv,Πvq “ pBAΠv,ΠvqA.

The contraction factor can be written

}I ´ BA}2A “ sup
v‰0

}pI ´ BAqv}2A
}v}2A

“ sup
v‰0

pv, vqA ´
`

pBT ` B ´ BTABqAv, v
˘

A
pv, vqA

“ sup
Πv‰0

pΠv,ΠvqA ´
`

pBT ` B ´ BTABqAΠv,Πv
˘

A
pΠv,ΠvqA

“ sup
}v}A‰0

pv,vqA ´
`

pBT `B´BTABqAv,v
˘

A

}v}2A

“ }I´BA}2A.

Hence we get the desired result.

Example 4.1 (Block Jacobi method and PSC). We now apply the block Jacobi method for the

expanded system (4.8), i.e.,

unew “ uold `D´1pf ´Auoldq.

We notice that D´1A “ D´1ΠTAΠ, which is spectrally equivalent3 to ΠD´1ΠTA. In fact,

from Theorem 4.1, we can see that the above iterative method is equivalent to

unew “ uold `ΠD´1ΠT pf ´Auoldq “ uold `

J
ÿ

j“1

IjA´1
j ITj

`

f ´Auold
˘

.

We immediately recognize that this is the PSC method or the additive Schwarz method with

exact subspace solvers.

Example 4.2 (Block G-S method and SSC). Similar to the above example, we can get the

block G-S method is just the SSC method or the multiplicative Schwarz method for the original

problem. We now apply the block G-S method for the expanded system (4.8), i.e.,

unew “ uold ` pD` Lq´1pf ´Auoldq.

We can rewrite this method as

pD` Lqunew “ pD` Lquold ` pf ´Auoldq.

3Note that σpBAqzt0u “ σpABqzt0u.
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Hence we have

Dunew “ Duold ` f ´ Lunew ´ pD`Uquold;

in turn, we get

unew “ uold `D´1
´

f ´ Lunew ´ pD`Uquold
¯

.

For j “ 1, . . . , J , the block G-S method can be written as

unew
j “ uold

j `A´1
j

´

ITj f ´
ÿ

iăj

ITj AIiunew
i ´

ÿ

iěj

ITj AIiuold
i

¯

.

We define iteration

u
j
J :“

ÿ

iăj

unew
i `

ÿ

iěj

uold
i “

ÿ

iăj

Iiunew
i `

ÿ

iěj

Iiuold
i , j “ 1, . . . , J.

By this definition, we can see that

u
j`1
J “ u

j
J ` Ijunew

j ´ Ijuold
j “ u

j
J ` IjA´1

j ITj pf ´Au j
J q.

Here the term f ´ Au j
J is sometimes called the dynamic residual, which is the residual at an

inner iteration of the G-S method. From the above equation, we notice that the block G-S

method is just the SSC method with exact subspace solvers Sj “ A´1
j for the original linear

equation (4.1).

Convergence of block solvers

Motived by the weighted Jacobi and G-S methods, we assume that there is an invertible smoother

or local relaxation S for solving Au “ f . Similar to the method presented in §2.1, we define a

general or modified block G-S method:

B :“
`

S´1 ` L
˘´1

. (4.10) eqn:blockMGS

We analyze the convergence rate of this method. Let K :“ B´T ` B´1 ´ A be a symmetric

operator and the symmetrization operator as B “ BTKB. Then we get

´

B
´1

v,v
¯

“

´

B´1K´1B´Tv,v
¯

“

´

`

S´1 ` L
˘

K´1
`

S´T `U
˘

v, v
¯

, @v P V (4.11) eqn:invBbar1

By the definition of K, it is clear that K is diagonal and

K “ pS´T `Uq ` pS´1 ` Lq ´ pD` L`Uq “ S´T ` S´1 ´D “ S´TSS´1,

where S :“ ST ` S´ STDS. Hence, we get

K´1 “
`

S´T ` S´1 ´D
˘´1

“ SS
´1

ST . (4.12) eqn:invK
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We can also obtain B´1 “ K `A ´ B´T . Hence we have a representation of B
´1

by simple

manipulations:

B
´1
“ pK`A´B´T qK´1pK`A´B´1q “ A` pA´B´T qK´1pA´B´1q.

This identity and the definition of B immediately yield another important identity:

´

B
´1

v,v
¯

“ pAv,vq `
´

K´1pD`U´ S´1qv, pD`U´ S´1qv
¯

, @v P V. (4.13) eqn:invBbar0

Now we apply a modification of Theorem 2.3 (i.e., general convergence rate estimate for SPD

problems4) and get the following convergence result:

thm:MBGS Theorem 4.2 (Convergence rate of modified block G-S). If S :“ ST ` S ´ STDS (or K :“

S´T ` S´1 ´D) is SPD, then the modified block G-S method converges and

}I´BA}2A “ 1´
1

1` c0
, with c0 :“ sup

}v}A“1

›

›

›
K´ 1

2

`

D`U´ S´1
˘

v
›

›

›

2
.

4.3 Convergence analysis of SSC
sec:XZ

In the previous section, we have found that the SSC method for the original equation is equivalent

to the block G-S method for the expanded equation using the same subspaces
 

Vj
(J

j“1
. Now

we use the same argument discussed in Chapter 2 to analyze the convergence rate of the block

G-S method for the expanded system. In this way, we can give a convergence analysis for the

successive subspace correction method. The proof here follows the discussion in [24].

A technical lemma

Suppose V “
řJ
j“1 Vj . It is clear that Π : V ÞÑ V is surjective and Πu “

řJ
j“1 Ijuj . We have

the following simple but useful lemma:

lemma:equiv Lemma 4.2. If the iterator B in (4.9) is SPD, then B “ Π B ΠT is also SPD and

pB´1v, vq “ inf
vPV

Πv“v

pB´1v,vq, @v P V.

Proof. It is clear that pBv, vq ě 0 for any v P V due to positive definiteness of B. Furthermore,

we have

0 “ pBv, vq “ pBΠT v,ΠT vq ùñ ΠT v “ 0 ùñ v P nullpΠT q “ rangepΠqK.

4In order to apply the convergence rate estimate Theorem 2.3 for stationary iterative methods to a symmetric
positive semi-definite problem, we can restrict the domain of operator A inside the subspace rangepAq. This way
the operator A is still non-singular.
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Since Π is surjective, we have v “ 0. This proves the iterator B is SPD.

Define v˚ :“ BΠTB´1v. It is easy to see that

Πv˚ “ ΠBΠTB´1v “ BB´1v “ v, @v P V,

and

pB´1v˚,wq “ pΠ
TB´1v,wq “ pB´1v,Πwq.

If w P nullpΠq, then pB´1v˚,wq “ 0. This ensures that, for any vector v P V, there exists a

B´1-orthogonal decomposition v “ v˚ `w with w P nullpΠq. Hence, we get

pB´1v,vq “
`

B´1pv˚ `wq,v˚ `w
˘

“
`

B´1v˚,v˚
˘

`
`

B´1w,w
˘

.

Thus

inf
vPV

Πv“v

pB´1v,vq “
`

B´1v˚,v˚
˘

` inf
wPnullpΠq

`

B´1w,w
˘

“
`

B´1v˚,v˚
˘

“
`

ΠTB´1v,BΠTB´1v
˘

“
`

B´1v, v
˘

.

Hence the result.

Remark 4.4 (Minimizer for the expanded problem). From the above proof, we can easily see

v˚ “ BΠTB´1v is the minimizer.

Remark 4.5 (Auxiliary space problem). The above lemma for relation between the expanded

problem and the original problem can also be extended to the auxiliary space method: For two

vector spaces V and Ṽ and a surjective Π : Ṽ ÞÑ V , if the iterator B̃ : Ṽ 1 ÞÑ Ṽ is SPD, then

B “ Π B̃ ΠT is also SPD and

pB´1v, vq “ inf
ṽPṼ

Πṽ“v

pB̃´1ṽ, ṽq, @v P V.

The X-Z identity

We now give the well-known X-Z identity originally proved by Xu and Zikatanov [58] which

gives the exact convergence rate of the SSC method.

th:xzidentityc0 Theorem 4.3 (X-Z Identity). Assume that B is defined by Algorithm 4.2 and, for j “ 1, . . . , J ,

wj :“ AjΠj
ř

iěj vi ´ S´1
j vj. If S´Tj ` S´1

j ´Aj are SPD’s for j “ 1, . . . , J , then

}I ´ BA}2A “ 1´
1

1` c0
“ 1´

1

c1
, (4.14) eq:xzidentityc0

where

c0 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

}STj wj}
2

S´1
j

(4.15) eq:xzc0
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and

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
SjS´1

j vj ` STj wj

›

›

›

2

S´1
j

. (4.16) eq:xzc1

Proof. By applying Theorem 2.3 and Lemma 4.2, we know

}I ´ BA}2A “ 1´

ˆ

sup
}v}A“1

`

B´1
v, v

˘

˙´1

“ 1´

ˆ

sup
}v}A“1

inf
Πv“v

`

B
´1

v,v
˘

˙´1

.

From (4.13) and (4.12), we have, for any v P V, that

´

B
´1

v,v
¯

“ pAv,vq `
´

K´1
`

D`U´ S´1
˘

v,
`

D`U´ S´1
˘

v
¯

.

By simple calculation, we get

`

D`U
˘

v “

´

ÿ

jě1

Q1AQT
j vj ,

ÿ

jě2

Q2AQT
j vj , ¨ ¨ ¨

¯T

“

´

ÿ

jě1

A1Π1Ijvj ,
ÿ

jě2

A2Π2Ijvj , ¨ ¨ ¨
¯T

“

´

A1Π1

ÿ

jě1

vj , A2Π2

ÿ

jě2

vj , ¨ ¨ ¨
¯T
.

We then have

`

D`U´ S´1
˘

v “ pw1,w2, . . . ,wJq
T , with wj :“ AjΠj

ÿ

iěj

vi ´ S´1
j vj .

Due to the fact that K is diagonal, we have

´

K´1
`

D`U´S´1
˘

v,
`

D`U´S´1
˘

v
¯

“

J
ÿ

j“1

´

`

S´Tj `S´1
j ´Aj

˘´1
wj ,wj

¯

“

J
ÿ

j“1

›

›

›
STj wj

›

›

›

2

S´1
j

,

where Sj :“ STj
`

S´Tj `S´1
j ´Aj

˘

Sj is the symmetrization of Sj . We then obtain, for any v P V ,

that

sup
}v}A“1

inf
Πv“v

´

B
´1

v,v
¯

“ 1` sup
}v}A“1

inf
Πv“v

J
ÿ

j“1

›

›

›
STj wj

›

›

›

2

S´1
j

.

This gives the desired estimate for the constant c0.

On the other hand, from (4.11), we have

´

B
´1

v,v
¯

“

´

K´1
`

S´T `U
˘

v,
`

S´T `U
˘

v
¯

“

J
ÿ

j“1

›

›

›

`

S´1
j ` S´Tj ´Aj

˘´ 1
2
`

S´Tj vj `
ÿ

iąj

QjAIivi
˘

›

›

›

2
. (4.17)
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We notice that

S´Tj vj `
ÿ

iąj

QjAIivi “ S´Tj vj `AjΠj

ÿ

iąj

vi “
`

S´Tj ` S´1
j ´Aj

˘

vj `wj

“ S´Tj SjS´1
j vj `wj “ S´Tj

´

SjS´1
j vj ` STj wj

¯

.

Plug this into the previous identity, we get

´

B
´1

v,v
¯

“

J
ÿ

j“1

›

›

›

›

`

S´1
j ` S´Tj ´Aj

˘´ 1
2
`

S´Tj vj `
ÿ

iąj

QjAIivi
˘

›

›

›

›

2

“

J
ÿ

j“1

›

›

›

›

SjS´1
j vj ` STj wj

›

›

›

›

2

S´1
j

.

Hence the estimate for the constant c1.

Remark 4.6 (An equivalent form). We have introduced operators Tj :“ SjAj : Vj ÞÑ Vj . Hence

TSj :“ SjAj “ Tj`T ˚j ´T ˚j Tj and we can rewrite the above estimate (4.16) in a slightly different

form. Notice that, in (4.17),

S´Tj vj `
ÿ

iąj

QjAIivi “ Aj

`

STj Aj

˘´1
vj `AjΠj

ÿ

iąj

vi “ Aj

”

`

T ˚j
˘´1

vj `Πj

ÿ

iąj

vi

ı

and
`

S´1
j ` S´Tj ´Aj

˘´1Aj “
`

T ´1
j ` pT ˚j q´1 ´ Ij

˘´1
“ TjT ´1

Sj
T ˚j .

Thus we have

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›

›

T ´
1
2

Sj

´

vj ` T ˚j Πj

ÿ

iąj

vi

¯

›

›

›

›

2

A
. (4.18) eq:xzc1T

Example 4.3 (Simple stationary iterative method). One-level linear stationary iterative method

unew “ uold ` Spf ´Auoldq,

can be viewed as a special subspace correction method with only one subspace V . Hence,

using (4.18), we immediately have

c1 “ sup
}v}A“1

›

›T ´
1
2

S v
›

›

2

A “ sup
}v}A“1

`

pSAq´1v, v
˘

A “ sup
}v}A“1

`

S´1
v, v

˘

,

which is exactly the convergence rate derived in Theorem 2.3.

Example 4.4 (Two-grid method). Theorem 3.3 can be viewed as a special case of the X-Z

identity in the case of space decomposition with two subspaces, i.e., V “ Vc ` V . Suppose we

use A´1
c and S as subspace solvers, respectively. According to (4.18), we get

c1 “ sup
}w}A“1

inf
w“vc`v
vcPVc,vPV

}vc `Πcv}
2
A ` }pSAq´

1
2 v}2A.
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We can prove that

c1 “ sup
}v}A“1

inf
vPV

KA
c

}pSAq´ 1
2 v}2A “ sup

}v}A“1
inf

vPV
KA
c

`

S´1
v, v

˘

.

Hence, we immediately obtain

c1 “ sup
}v}A“1

›

›pI ´QS´1qv
›

›

2

S´1 “ sup
}v}A“1

›

›T ´
1
2

S pI ´QS´1qv
›

›

2

A,

which is consistent with the X-Z identity.

cor:XZ-exact Corollary 4.1 (SSC with exact subspace solvers). If an exact subspace solver Sj “ A´1
j for

each subspace is used, then we have, in (4.14), that

c0 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
Πj

ÿ

iąj

vi

›

›

›

2

Aj
(4.19) eq:c0p

and

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
Πj

ÿ

iěj

vi

›

›

›

2

Aj
. (4.20) eq:c1p

4.4 Convergence analysis of PSC
sec:ConvPSC

In this section, we estimate the condition number of the PSC method.

Condition number of PSC

To obtain estimates on the condition number of the preconditioned problems, we first give the

following assumptions:

Assump:MSC Assumption 4.1 (Convergence assumptions for MSC). We assume that

1. For any v P V , there exists a decomposition v “
řJ
j“1 vj with vj P Vj such that

J
ÿ

j“1

`

S´1
j vj , vj

˘

ď K1pAv, vq; (4.21) assump:MSC1

2. For any u, v P V ,

ÿ

pi,jq

`

Tiu, Tjv
˘

A ď K2

˜

J
ÿ

i“1

pTiu, uqA
¸

1
2
˜

J
ÿ

j“1

pTjv, vqA
¸

1
2

. (4.22) assump:MSC2

thm:PSC Theorem 4.4 (Condition number of PSC). If Assumption 4.1 holds true, the PSC method (4.7)

satisfies

κpBAq ď K1K2.
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Proof. For any v P V , suppose that v “
řJ
j“1 vj is a decomposition satisfies the first condition

of Assumption 4.1. It is easy to see that

pv, vqA “

J
ÿ

j“1

pvj , vqA “

J
ÿ

j“1

pvj ,ΠjvqA “

J
ÿ

j“1

pvj ,AjΠjvq “

J
ÿ

j“1

`

S´
1
2

j vj ,S
1
2
j AjΠjv

˘

ď

J
ÿ

j“1

`

S´1
j vj , vj

˘
1
2
`

SjAjΠjv,AjΠjv
˘

1
2 “

J
ÿ

j“1

`

S´1
j vj , vj

˘
1
2
`

SjAjΠjv, v
˘

1
2
A

ď

˜

J
ÿ

j“1

`

S´1
j vj , vj

˘

¸

1
2
˜

J
ÿ

j“1

`

Tjv, v
˘

A

¸

1
2

ď
a

K1

›

›v
›

›

A pBAv, vq
1
2
A.

Consequently, we have the lower bound

1

K1
pv, vqA ď pBAv, vqA, @ v P V.

From the second assumption, we have

}BAv}2A “
J
ÿ

i,j“1

`

Tiv, Tjv
˘

A ď K2pBAv, vqA ď K2}BAv}A}v}A.

So we obtain the upper bound

pBAv, vqA ď K2pv, vqA, @ v P V.

Thus Lemmas 2.5 and 2.6 yield the desired estimate.

According to Theorem 4.4, if we can find a space decomposition and corresponding smoothers

with uniform constants K1 and K2, then we are able to construct a uniformly convergent pre-

conditioner using the PSC framework.

Remark 4.7 (Similar estimate for SSC). In fact, with the same assumptions (Assumption 4.1),

we can also show that the SSC method also converges with

}I ´ BA}2A ď 1´
2´ ω1

K1p1`K2q
2

and ω1 :“ max
j
ρpSjAjq “ max

j
ρpTjq.

Because a sharp result has been given in §4.3, we will just leave the proof to the readers (cf., for

example, [55]).

Estimates of K1 and K2

Assumption 4.1 is not easy to verify directly. So we now give a few useful estimates for the

constants in these conditions. We first give a straight-forward estimate of K1, which clearly

separates the condition on space decomposition part and smoother part. We leave the proof of

the following lemma to the readers; see HW 4.5.
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lem:K1 Lemma 4.3 (Estimates of K1). Assume that, for any v P V , there is a decomposition v “
řJ
j“1 vj with vj P Vj:

(i) If the decomposition satisfies that

J
ÿ

j“1

pvj , vjqA ď C1pv, vqA,

then we have

K1 ď C1{ω0, where ω0 :“ min
j“1,...,J

 

λminpSjAjq
(

;

(ii) If ρj :“ ρpAjq and
J
ÿ

j“1

ρjpvj , vjq ď Ĉ1pv, vqA,

then we have

K1 ď Ĉ1{ω̂0, where ω̂0 :“ min
j“1,...,J

 

ρjλminpSjq
(

.

We introduce a nonnegative symmetric matrix

Σ “
`

σi,j
˘

P RJˆJ , (4.23) eqn:Sigma

where each entry σi,j is the smallest constant such that

`

Tiu, Tjv
˘

A ď ω1σi,j
`

Tiu, u
˘

1
2
A
`

Tjv, v
˘

1
2
A, @u, v P V. (4.24) eqn:StrengthenedCS

It is clear that 0 ď σi,j ď 1. Moreover, σi,j “ 0, if ΠiΠj “ 0.

lem:K2 Lemma 4.4 (Estimate of K2). The constant K2 ď ω1ρpΣq. Furthermore, if σi,j À γ|i´j| holds

for some parameter 0 ă γ ă 1, then ρpΣq À p1´ γq´1; in this case, the inequality (4.22) is the

well-known strengthened Cauchy-Schwarz inequality.

Proof. From the definition of Σ as in (4.23), it is immediately clear that K2 ď ω1ρpΣq. Fur-

thermore, because the matrix Σ is a real symmetric matrix and ρpΣq ď maxj“1,...,J
řJ
i“1 σi,j , we

have

ρpΣq ď max
1ďjďJ

J
ÿ

i“1

σi,j À
J
ÿ

i“1

γi´1 ď
1

1´ γ
.

Hence the result.
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Auxiliary space method ‹

Sometimes, we cannot apply subspace correction methods directly due to difficulties in obtaining

an appropriate space decomposition. In this case, we can introduce an auxiliary or fictitious

space Ṽ for assistance. If Π : Ṽ ÞÑ V is surjective and satisfies the following two conditions:

Firstly,

}Πṽ}A ď µ1}ṽ}Ã, @ ṽ P Ṽ .

Secondly, for any v P V , there exists ṽ P Ṽ such that Πṽ “ v and

µ0}ṽ}Ã ď }v}A, @ ṽ P Ṽ .

Under the above assumptions, if B̃ is a SPD preconditioner for Ã, then B “ ΠB̃ΠT is SPD and

κpBAq ď
ˆ

µ1

µ0

˙2

κpB̃Ãq.

This suggests that we can construct a subspace correction method on Ṽ instead of the original

space V . This simple result is sometimes called the Fictitious Space Lemma; see [47, 56].

4.5 Homework problems

HW 4.1. Prove the statements in Remark 4.3.

hw:projections HW 4.2. Prove Lemma 4.1.

hw:B-spd HW 4.3. If Sj (j “ 1, . . . , J) are all SPD, then the preconditioner B “ řJ
j“1 SjQj is also SPD.

hw:bGS HW 4.4. Show that the block G-S method for the expanded system is just the SSC method

for the original problem.

hw:lemK1 HW 4.5. Prove the estimates in Lemma 4.3.
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Chapter 5

Multilevel Subspace Correction

Preconditioners

ch:examples

In Chapter 4, we have discussed stationary iterative methods in the framework of method of

subspace correction (MSC). In this chapter, we give a few examples of multilevel methods and

their convergence analysis based on the framework of subspace corrections.

5.1 Two-grid overlapping DDM ‹

In this section, we will investigate the two-level overlapping domain decomposition method in

Chapter 2 using the MSC framework.

Two-level space decomposition

Based on the previous discussions, it is now easy to understand that the additive and multi-

plicative Schwarz domain decomposition methods can be considered as PSC and SSC, respec-

tively. For proof-of-concept, we use the Poisson’s equation on Ω as an example. In this case,

V “ H1
0 pΩq, Ω “

ŤJ
j“1 Ωj , and Vj :“ tv P V : supp v Ă Ω̂ju Ă V ; see Figure 2.2. We define a

finite-dimensional coarse space V0 Ă V of meshsize H “ diampΩjq. Apparently, we have a space

decomposition

V “ V0 ` V1 ` ¨ ¨ ¨ ` VJ .

The SSC method based on this space decomposition with exact sub-problem solvers for each

sub-domain as well as the coarse space gives an abstract multiplicative Schwarz DDM method.

We give a partition of unity θj P C
1pΩq (j “ 1, . . . , J) such that

(1) 0 ď θj ď 1 and
řJ
j“1 θj “ 1;

97
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(2) supp θj Ă Ω̂j ;

(3) max |∇θj | ď Cβ{H, where Cβ depends on the relative overlap size β.

This way, for any function v P V , we have a decomposition

v “ v0 ` v1 ` ¨ ¨ ¨ ` vJ ,

where

v0 P V0 and vj :“ θjpv ´ v0q P Vj , j “ 1, . . . , J.

Thus
řJ
j“1 vj “ v ´ v0 and

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
“

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1

“

ˇ

ˇ

ˇ
Π0pv ´ v0q

ˇ

ˇ

ˇ

2

1
`

J
ÿ

j“1

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
.

Convergence analysis of DDM

Since Πj : V ÞÑ Vj is a A-projection for j “ 1, . . . , J , it is easy to see that |Πjpv´v0q|1 ď |v´v0|1.

Furthermore,

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
“

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1,Ω̂j
ď

ˇ

ˇ

ˇ

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1,Ω̂j

ď

›

›

›
p
ÿ

iąj

θiq∇pv ´ v0q

›

›

›

2

0,Ω̂j
`

›

›

›
∇p

ÿ

iąj

θiqpv ´ v0q

›

›

›

2

0,Ω̂j

ď
ˇ

ˇv ´ v0

ˇ

ˇ

2

1,Ω̂j
`
Cβ
H

›

›v ´ v0

›

›

2

0,Ω̂j
.

Summing up all the terms, we have

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
ď

ˇ

ˇv ´ v0

ˇ

ˇ

2

1
`

J
ÿ

j“1

ˇ

ˇv ´ v0

ˇ

ˇ

2

1,Ω̂j
` C2

βH
´2

J
ÿ

j“1

›

›v ´ v0

›

›

2

0,Ω̂j

À
ˇ

ˇv ´ v0

ˇ

ˇ

2

1
` C2

βH
´2
›

›v ´ v0

›

›

2

0
,

where the constant in the last inequality depends on the maximal number of overlaps in domain

decomposition. Because v0 could be any function in V0, we can choose v0 “ Q0v and, in view

of Proposition 3.5, obtain
J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
À |v|21.

Using the X-Z identity (Corollary 4.1), we get the following result. We leave the full proof to

the readers; see HW 5.1.
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prop:ConvDDM Proposition 5.1 (Uniform convergence of two-level DDM). The abstract domain decomposition

method with coarse space correction converges uniformly.

rem:DDM-onelevel Remark 5.1 (DDM without coarse space). From the above analysis, we immediately see the

importance of having the coarse space V0. With the same proof, one can show that the conver-

gence rate depends on H´2 if without the coarse space correction.

5.2 HB preconditioner
sec:HB

In the previous section, we have seen a two-level domain decomposition method in the setting

of subspace correction. Now we investigate a multilevel example.

Nested space decomposition

We consider the Poisson’s equation on a sequence of nested meshes Ml (l “ 0, . . . , L) generated

from an initial mesh M0 by uniform regular refinements. Hence meshsize hl of Ml is proportional

to γ2l with γ P p0, 1q. For example, in Figure 1.5, there is a hierarchy of grids with hl “ p1{2q
l`1

(l “ 0, 1, . . . , L). Clearly,

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h.

Define continuous piecewise linear finite element spaces on each mesh as

Vl :“
 

v P V : v|τ P P1pτq, @ τ PMl

(

. (5.1) eqn:SpaceV

This way, we build a nested subspaces

V0 Ă V1 Ă ¨ ¨ ¨ Ă VL “: V Ă V “ H1
0 pΩq.

The set of interior grid points on the l-th level is denoted as xl,i P G̊pMlq (i “ 1, . . . , nl). The

subspace Vl is assigned with a nodal basis tφl,iu
nl
i“1, where nl :“

ˇ

ˇG̊pMlq
ˇ

ˇ. The space Vl can be

further decomposed as the sum of the one-dimensional subspaces spanned with the nodal basis

Vl,i :“ spantφl,iu (i “ 1, . . . , nl). In this way, we obtain a natural multilevel space decomposition

V “
L
ÿ

l“0

Vl “
L
ÿ

l“0

nl
ÿ

i“1

Vl,i. (5.2) eqn:MGdecomp

We can also define

Wl :“
 

v P Vl : vpxq “ 0, @x P G̊pMl´1q
(

(5.3) eqn:SpaceW

and obtain a decomposition

V “W0 ‘W1 ‘ ¨ ¨ ¨ ‘WL. (5.4) eqn:DecompW



CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 100

Let Jl : V ÞÑ Vl be the interpolation operator and define J´1 :“ 0. It is easy to see that

Wl “ pJl ´ Jl´1qV “ pI ´ Jl´1qVl, l “ 0, . . . , L.

Notice that the decomposition (5.4) is a direct sum and there is no redundancy in this decom-

position at all.

For level l “ 0, . . . , L, we define a nodal basis

ψl,ipxq “ φl,ipxq, for xl,i P G̊pMlqzG̊pMl´1q, i “ 1, . . . ,ml :“ nl ´ nl´1.

Apparently,
řL
l“0ml “ nL “ N and this basis

tψl,ipxq : i “ 1, . . . ,ml, l “ 0, . . . , Lu (5.5) eqn:HB

is called hierarchical basis.

Hierarchical basis preconditioner

We now use the Richardson iteration discussed in §3.3 as the subspace solver, i.e.,

Sl,iQl,iv “ h2´d
l

`

Ql,iv, ψl,i
˘

ψl,i “ h2´d
l

`

v, ψl,i
˘

ψl,i.

The PSC method based on the space decomposition (5.4) can then be written

BHBr “
N
ÿ

j“1

SjQjr “
L
ÿ

l“0

˜

h2´d
l

ml
ÿ

i“1

pr, ψl,iqψl,i

¸

. (5.6) eqn:HBprecond

And this is the explicit form of the well-known hierarchical basis (HB) preconditioner proposed

by Yserentant [62].

We shall now analyze this preconditioner in the framework of PSC in §4.4. In order to do

that, we need a few important estimates.

lem:StableInterp Lemma 5.1 (Stability of interpolation in H1). We have

›

›pJl ´ Jl´1qv
›

›

2

0
` h2

l

ˇ

ˇJlv
ˇ

ˇ

2

1
À cdplqh

2
l |v|

2
1, @v P V,

where c1plq ” 1, c2plq “ L´ l, and c3plq “ γ´2pL´lq.

Proof. Using Proposition 3.2, we have

}pJl ´ Jl´1qv}0 “ }Jlv ´ Jl´1Jlv}0 À hl|Jlv|1.
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Let τ P Ml and vτ :“ |τ |´1
ş

τ v dx be the average of v on τ . Using the standard scaling

argument for | ¨ |1,τ , the discrete Sobolev inequality Proposition 3.4, and the Poincaré inequality

Proposition 1.2, we can obtain that

|Jlv|1,τ “ |Jlv ´ vτ |1,τ À }Jlv ´ vτ }8,τ ď }v ´ vτ }8,τ À Cd}v ´ vτ }1,τ À Cd|v|1,τ .

Hence the desired result follows by summing up terms on all elements in Ml.

Remark 5.2 (Condition number in hierarchical basis). The above lemma suggests that, if

v PWl for any 0 ď l ď L, we have

c´1
d plqh

´2
l pv, vq À arv, vs.

Compare this with the general Poincaré inequality in Proposition 1.3. Furthermore, from the

inverse inequality Proposition 3.3, we always have

arv, vs “ |v|21 À h´2
l }v}

2
0 “ h´2

l pv, vq.

Hence the operator Al is “well-conditioned” up to a constant cdplq; compare this property with

the standard Lagrangian finite element basis case in Remark 3.4.

Strengthened Cauchy-Schwarz inequality

lem:SCS1 Lemma 5.2 (Inner product between two levels). Let i ď j; then we have

aru, vs À γj´ih´1
j |u|1}v}0, @u P Vi, v P Vj .

Proof. We first restrict our attention to an element τi P Mi. For v P Mj , there is a unique

function v1 P V , such that v1 vanishes on Bτi and equals to v at all other grid points. Let

v0 :“ v ´ v1. Because u PWi is a linear function on τi, we have
ş

τi
∇u∇v1 “ 0.

Define T :“
Ť

τjPMj ,τ j
Ş

Bτi‰Ø τj . Then |T | –
`

hi
hj

˘d´1
hdj “ hd´1

i hj and supp v0 Ă T . We

have
›

›∇v0

›

›

2

0,τi
À

ÿ

xPG̊pMjq
Ş

Bτi

hdjh
´2
j v2

0pxq “
ÿ

xPG̊pMjq
Ş

Bτi

hd´2
j v2pxq À h´2

j

›

›v
›

›

2

0,τi
.

Since ∇u is a constant on τi, we have

›

›∇u
›

›

0,T
“
|T |1{2

|τi|1{2

›

›∇u
›

›

0,τi
À

˜

hd´1
i hj

hdi

¸1{2
›

›∇u
›

›

0,τi
À γj´i

ˇ

ˇu
ˇ

ˇ

1,τi
.

Combining the above two inequalities, we have
ż

τi

∇u ¨∇v “
ż

τi

∇u ¨∇v0 À γj´ih´1
j

ˇ

ˇu
ˇ

ˇ

1,τi

›

›v
›

›

0,τi
, @τi PMi.
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By the Cauchy-Schwarz inequality, we obtain the estimate:

aru, vs “
ÿ

τiPMi

ż

τi

∇u ¨∇v À γj´ih´1
j

ÿ

τiPMi

ˇ

ˇu
ˇ

ˇ

1,τi

›

›v
›

›

0,τi

ď γj´ih´1
j

´

ÿ

τiPMi

ˇ

ˇu
ˇ

ˇ

1,τi

¯1{2´ ÿ

τiPMi

›

›v
›

›

0,τi

¯1{2
“ γj´ih´1

j

ˇ

ˇu
ˇ

ˇ

1

›

›v
›

›

0
.

Hence the result.

lem:SCS2 Lemma 5.3 (Strengthened Cauchy-Schwarz inequality for interpolation). If u, v P V , let ui :“

pJi ´ Ji´1qu, and vj :“ pJj ´ Jj´1qv, then we have

arui, vjs À γ|i´j|
›

›ui
›

›

A
›

›vj
›

›

A.

Proof. If j ě i, we have vj “ vj ´ Jj´1vj . So }vj}0 “ }vj ´ Jj´1vj}0 À hj}vj}A follows from

Proposition 3.2. If i ě j, we can argue in a similar way. Hence the result follows directly from

Lemma 5.2.

lem:SCS3 Lemma 5.4 (Estimating K2). Assume that Tj “ SjAjΠj and the subspace smoother Sj : Vj ÞÑ

Vj satisfies
›

›SjAjv
›

›

2

0
À ρ´1

j

`

Ajv, v
˘

, @ v P Vj ,

where ρj :“ ρpAjq. Then, if i ă j, we have

pui, TjvqA À γj´i}ui}A}v}A, @ui P Vi, v P V. (5.7) eqn:SCSIneq1

For 0 ď i, j ď L, we have the strengthened Cauchy-Schwarz inequality

pTiu, TjvqA À γ|j´i|{2pTiu, uq
1
2
A pTjv, vq

1
2
A, @u, v P V. (5.8) eqn:SCSIneq2

Proof. By applying Lemma 5.2, we get

pui, TjvqA “ arui, Tjvs À γj´ih´1
j }ui}A}Tjv}0.

Furthermore, we have

}Tjv}0 “ }SjAjΠjv}0 À hj}A1{2
j Πjv}0 ď hj}Πjv}A ď hj}v}A.

This proves the first inequality (5.7).

First consider the case when j ě i. By the Cauchy-Schwarz inequality and the inequal-

ity (5.7), we get

pTiu, TjvqA ď pTjTiu, Tiuq
1
2
A pTjv, vq

1
2
A À γpj´iq{2}Tiu}A pTjv, vq

1
2
A.

Also observe that pTiu, TiuqA À }Tiu}ApTiu, uq
1
2
A and the second inequality (5.8) follows imme-

diately.
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Convergence analysis of HB preconditioner ‹

thm:rateHB Theorem 5.1 (Convergence of HB preconditioner). The multilevel PSC preconditioner BHB de-

fined in (5.6) satisfies

κpBHBAq À Cdphq,

where C1phq ” 1, C2phq “ | log h|2, and C3phq “ h´1.

Proof. We choose a decomposition v “
řL
l“0 vl :“

řL
l“0pJl ´ Jl´1qv, where J´1 “ 0. With

careful calculations, Proposition 3.3 and Lemma 5.1 (Jl “ Πl in 1D) yield

L
ÿ

l“0

}vl}
2
A À

L
ÿ

l“0

h´2
l }vl}

2
0 –

L
ÿ

l“0

ρl}vl}
2
0 À Cdphq}v}

2
A. (5.9) HB:lowerbd

On the other hand, we know ω̂0 “ minl ρlλminpSlq À 1. Therefore K1 À Cdphq due to Lemma 4.3.

The strengthened Cauchy-Schwarz inequality (5.8) and Lemma 4.4 give that K2 À 1. The

convergence result then follows directly from the general theory in Theorem 4.4.

Define an operator H : V ÞÑ V such that

pHv, wq :“
L
ÿ

l“0

ÿ

xiPG̊pMlqzG̊pMl´1q

hd´2
l

´

pJlv ´ Jl´1vqpxiq, pJlw ´ Jl´1wqpxiq
¯

.

Hence we get

pHv, vq “
L
ÿ

l“0

ÿ

xiPG̊pMlqzG̊pMl´1q

hd´2
l

ˇ

ˇ

ˇ
pJlv ´ Jl´1vqpxiq

ˇ

ˇ

ˇ

2
, @ v P V.

This operator is in fact the inverse of the HB preconditioner, i.e., H “ B´1
HB; see [63]. In fact, in

the proof of Theorem 5.1, we have shown the following norm equivalence result:

}v}2A À pHv, vq “
L
ÿ

l“0

h´2
l }pJl ´ Jl´1qv}

2
0 À Cdphq}v}

2
A. (5.10) eqn:HBYser

Let Πl be the p¨, ¨qA-projection from V to Vl. It is easy to check that

a
“

pΠi ´Πi´1qv, pΠj ´Πj´1qv
‰

“ 0, @i ‰ j.

We can easily obtain that

}v}2A “

›

›

›

L
ÿ

l“0

pΠl ´Πl´1qv
›

›

›

2

A
“

ÿ

0ďi,jďL

a
“

pΠi ´Πi´1qv, pΠj ´Πj´1qv
‰

“

L
ÿ

l“0

a
“

pΠl ´Πl´1qv, pΠl ´Πl´1qv
‰

“

L
ÿ

l“0

ˇ

ˇ

ˇ
pΠl ´Πl´1qv

ˇ

ˇ

ˇ

2

1
.
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Motivated by the above norm equivalence and (5.10), we can construct a multilevel PSC method

B “
J
ÿ

j“1

SjΠj .

However, Πj is not good for computation in general. In the next section, we explore the idea of

telescope expansion using L2-projection instead of interpolation or Ritz-projection.

5.3 BPX preconditioner

Using the same multilevel space decomposition setting in the previous section, we can give

parallel (PSC) versions of multilevel subspace correction method. The most prominent (multi-

level) example of PSC methods is the BPX preconditioner [14] based on the multilevel subspace

decomposition (5.2):

B “
J
ÿ

j“1

SjQj , (5.11) eqn:MultilevelPSC

which is computationally more appealing and converges uniformly; see §3.2 for details. The HB

and BPX preconditioners belong to the class of multilevel nodal basis preconditioners.

Telescope expansion of L2-projections

Using notations in Definition 4.1, we have

$

’

’

&

’

’

%

Al : Vl ÞÑ Vl pAlul, vlq “ arul, vls, @ul, vl P Vl;

Ql : L2 ÞÑ Vl pQlu, vlq “ pu, vlq, @ vl P Vl;

Πl : V ÞÑ Vl pΠlu, vlq “ aru, vls, @ vl P Vl.

(5.12)

We introduce a new notation i^ j :“ minpi, jq. It is trivial to see

QiQj “ Qi^j , ΠiΠj “ Πi^j , (5.13) eqn:proj1

and

pQi ´Qi´1qpQj ´Qj´1q “ pΠi ´Πi´1qpΠj ´Πj´1q “ 0, @ i ‰ j. (5.14) eqn:proj2

If we define Q´1 “ Π´1 “ 0, we can give space decomposition

v “
L
ÿ

l“0

pQl ´Ql´1qv “
L
ÿ

l“0

pΠl ´Πl´1qv. (5.15) eqn:decomp2
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Norm equivalence

lem:telescope Lemma 5.5 (Norm equivalence for L2-projection telescope sum). For all v P V , we have

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

1
– h´1

l

›

›pQl ´Ql´1qv
›

›

0
.

Proof. Using the inverse inequality, Proposition 3.3, we get

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

1
À h´1

l

›

›pQl ´Ql´1qv
›

›

0
.

Proposition 3.5, together with the trivial equality

pQl ´Ql´1qv “ pI ´Ql´1qpQl ´Ql´1qv,

gives the other direction.

lem:SCS4 Lemma 5.6 (Strengthened Cauchy-Schwarz inequality for L2-projection). If u, v P V , let ui :“

pQi ´Qi´1qu, and vj :“ pQj ´Qj´1qv, then we have

arui, vjs À γ|i´j|}ui}A}vj}A.

Proof. If j ě i, Lemma 5.5 shows }vj}0 À hj}vj}A and the result follows directly from Lemma 5.2.

If i ě j, we can argue in a similar way.

lem:norm-equiv Lemma 5.7 (Norm equivalences). For all v P V , we have

L
ÿ

l“0

›

›pQl ´Ql´1qv
›

›

2

1
– }v}21.

Proof. Due to that Πl : V ÞÑ Vl is the standard H1-projection, the finite element approximation

theory gives
›

›v ´Πlv
›

›

1´α
À hαl

›

›v
›

›

1
, @ v P V . (5.16) eqn:GalerkinError

Since Ql is a L2-projection, we have }Qlv}0 ď }v}0, @ v P L
2pΩq. Furthermore, using Proposi-

tion 3.5, we obtain

}Qlv}1 ď }v}1, @ v P V .

By space interpolation, we have, for any σ P p0, 1
2q, that

}Qlv}σ ď }v}σ, @ v P V .

Let vi :“ pΠi ´ Πi´1qv. Note that ρl “ ρpAlq – h´2
l . It is easy to show, with help from

Proposition 3.3 and (5.16), that

›

›pQl ´Ql´1qvi
›

›

2

1
À ραl

›

›pQl ´Ql´1qvi
›

›

2

1´α
À ραl

›

›vi
›

›

2

1´α
À ραl h

2α
i

›

›vi
›

›

2

1
.
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Using this inequality and the Cauchy-Schwarz inequality, we can derive that

ÿ

l

ÿ

i,j

`

∇pQl ´Ql´1qvi,∇pQl ´Ql´1qvj
˘

“
ÿ

i,j

i^j
ÿ

l“1

`

∇pQl ´Ql´1qvi,∇pQl ´Ql´1qvj
˘

À
ÿ

i,j

i^j
ÿ

l“1

ραl h
α
i h

α
j }vi}1}vj}1 À

ÿ

i,j

ραi^jh
α
i h

α
j }vi}1}vj}1 À

ÿ

i,j

γα|i´j|}vi}1}vj}1.

We have shown that
ř

i,j γ
α|i´j|}vi}1}vj}1 À

ř

i }vi}
2
1 “ }v}

2
1, which shows

ÿ

l

›

›pQl ´Ql´1qv
›

›

2

1
À }v}21.

On the other hand, using Lemma 5.6, we obtain

|v|21 “
ÿ

i,j

`

∇pQi ´Qi´1qv,∇pQj ´Qj´1qv
˘

À
ÿ

i,j

γ|i´j|
›

›pQi ´Qi´1qv
›

›

1

›

›pQj ´Qj´1qv
›

›

1
À

ÿ

i

›

›pQi ´Qi´1qv
›

›

2

1
.

Hence we get the norm equivalence using Proposition 1.3.

Remark 5.3 (Fractional norm). We have shown the norm equivalence in H1-norm. In fact,

similar results also hold for HαpΩq with 1
2 ă α ă 3

2 .

BPX preconditioner and its convergence

All subspace problems are one-dimensional and, thus, very easy to solve. We can write the

subspace solver (exact solver on each one-dimensional subspace) as follows:

S0
l v :“

nl
ÿ

i“1

pAφl,i, φl,iq´1 pv, φl,iqφl,i “
nl
ÿ

i“1

p∇φl,i,∇φl,iq´1 pv, φl,iqφl,i.

Since we are now considering the uniform refinement for the linear finite element discretization,

we can use an approximation of S0
l , for example a local relaxation method:

Slv :“
nl
ÿ

i“1

h2´d
l pv, φl,iqφl,i p« S0

l vq.

This simplification helps to reduce the cost of computation and implementation. Apparently,

we have

pSlv, vq “ h2´d
l p~v,~vq “ h2

l pv, vq.

We have seen that the Richardson method, the damped Jacobi method, and the G-S method

all satisfy such a condition; see (3.22).
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rem:RichardsonRequirement Remark 5.4 (Behavior of the smoother). Note that this “new” method is just the Richardson

method with a weight ω “ h2´d
l on level l.

Using the above space decomposition and subspace solvers Sl, the PSC method yields the

well-known BPX preconditioner

B “
L
ÿ

l“0

SlQl “

L
ÿ

l“0

IlSlQl “

L
ÿ

l“0

IlSlITl (5.17) eqn:BPX

in operator form [14].

thm:BPX Theorem 5.2 (Uniform convergence of BPX). The BPX preconditioner (5.17) is uniformly con-

vergent, i.e., κpBAq À 1.

Proof. We take a decomposition v “
řL
l“0 vl :“

řL
l“0pQl ´ Ql´1qv, where Q´1 “ 0. Then we

can obtain, from Lemmas 5.7 and 5.5, that

pAv, vq –
L
ÿ

l“0

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

2

1
–

L
ÿ

l“0

h´2
l }pQl ´Ql´1qv}

2
0 “

`

L
ÿ

l“0

h´2
l pQl ´Ql´1qv, v

˘

.

Define Ã :“
řL
l“0 h

´2
l pQl ´ Ql´1q. Apparently, pAv, vq – pÃv, vq, @v P V . Using (5.13) and

(5.14), we can easily verify that

Ã´1 “

L
ÿ

l“0

h2
l pQl ´Ql´1q.

Hence

pÃ´1v, vq “
L
ÿ

l“0

h2
l pQlv, vq ´

L
ÿ

l“0

h2
l pQl´1v, vq “ h2

LpQLv, vq `
L´1
ÿ

l“0

p1´ γ2qh2
l pQlv, vq.

Namely, pÃ´1v, vq – pBv, vq ùñ pAv, vq – pÃv, vq – pB´1v, vq. Then Lemma 2.5 gives the

uniform convergence result.

Remark 5.5 (Multilevel decomposition according to frequencies). From the above analysis, we

find that, for any v P V

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

1
– h´1

l

›

›pQl ´Ql´1qv
›

›

0
ùñ }∇vl}0 „ }h´1

l vl}0.

This fact draws close comparison with the Fourier expansion. That is to say v “
řL
l“0 vl is a

multilevel decomposition to different frequencies. Hence Ã can be viewed as a multi-resolution

expansion of A and κpÃ´1Aq À 1.
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Matrix representation of BPX

Using the matrix representation notations introduced in §3.2 and §3.5, the equation (3.37) in

particular, we immediately obtain the matrix representation of the BPX method:

B u “ Bu “
L
ÿ

l“0

Il SlQl u “
L
ÿ

l“0

Pl ph
2´d
l Mlq pM

´1
l P Tl Mqu “

L
ÿ

l“0

h2´d
l Pl P

T
l M u.

In view of (3.16), we get the matrix form of the BPX preconditioner

B :“ BM´1 “

L
ÿ

l“0

h2´d
l Pl P

T
l . (5.18) eqn:MatBPX

This is the matrix form of the BPX preconditioner when we implement it.

To improve efficiency, we can use prolongation between two consecutive levels to obtain Pl.

5.4 Homework problems

hw:ConvDDM Problem 5.1. Give the complete proof of the uniform convergence of the two-level domain

decomposition method (Proposition 5.1). What will happen if we do not include the coarse-

level correction (Remark 5.1)?

hw:BPX Problem 5.2. Implement the BPX preconditioner for the Poisson’s equation on a uniform grid.

You can choose your favorite discretization method.



Chapter 6

Multigrid Methods

ch:mg

Multigrid (MG) methods are a group of algorithms for solving differential equations using a

hierarchy of discretizations. The method has been proposed initially by Fedorenko [31] for

2D finite difference systems from the Poisson’s equation. Its main idea is to accelerate the

convergence of a basic iterative method (known as relaxation) by a global correction from time to

time, accomplished by solving a coarse problem approximately. The coarse problem is “similar”

to the fine grid problem, while cheaper to solve. This recursive process is repeated until a grid

is reached where the cost of direct solution is negligible compared to the cost of one relaxation

sweep on the finest grid. Later on Brandt [16] noticed that this method was considerably

faster than standard relaxation methods and brought it to attention of the western scientific

community.

6.1 Geometric multigrid method
sec:GMG

Geometric multigrid (GMG) method is an optimal iterative solver for linear algebraic sys-

tem (2.1) arising from discretizations of elliptic partial differential equations such as the Poisson’s

equation. It is based on two important observations we made earlier in Chapter 3:

• A local relaxation method damps out non-smooth (high-frequency) components of the

error and the residual becomes a relatively smooth vector after a few relaxation sweeps;

• A smooth (low-frequency) vector can be well approximated on coarse grids.

MG establishes and makes use of hierarchical structures. It is a good example of the idea of

divide and conquer. MG can be used as a preconditioner for specific problems. This idea has

been applied in two-grid methods; see §3.4. However, for large-scale problems in scientific and

engineering computation, the coarse grid problem might be still too large to be solved quickly.

109
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This makes introducing multiple grids a natural idea. The key steps in the multigrid method

(see Figure 6.1) are as follows:

• Relaxation/Smoothing: Reduce high-frequency errors using one or more smoothing

steps based on a simple iterative method;

• Restriction: Restrict the residual on a finer grid to a coarser grid;

• Coarse correction: Solve an approximate problem on a coarse grid;

• Prolongation: Represent the correction computed on a coarser grid to a finer grid.

✻

P
ro

lo
n
ga

ti
on

❄

R
estriction

Coarse Grid

Fine Grid

Figure 6.1: Pictorial representation of a multigrid method with three grid levels.fig_multigrid

V-cycle multigrid method

Now we will explain the multigrid algorithms using the P1 finite element method for the Poisson’s

equation on Ω Ă Rd as an example. Suppose we have a sequence of meshes Ml (l “ 0, . . . , L)

generated from an initial mesh M0 by (uniform) regular refinements. Hence meshsize hl of Ml

is proportional to γ2l with γ P p0, 1q. Clearly,

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h.

It is easy to see that a multigrid method can be viewed a recursive two-grid method. So

we only need to introduce how to do the iteration on two consecutive levels. We denote Il´1,l :

Vl´1 ÞÑ Vl pl “ 1, ¨ ¨ ¨ , Lq as the natural embedding and Ql,l´1 “ ITl´1,l : Vl ÞÑ Vl´1 as the

p¨, ¨q-projection. Define Al pl “ 1, ¨ ¨ ¨ , Lq as the operator form of A on the subspace Vl in (5.1).

Then a V-cycle multigrid method is given as follows:
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alg:V-cycle Algorithm 6.1 (One iteration of MG V-cycle). Assume that Bl´1 : Vl´1 ÞÑ Vl´1 is defined and

the coarsest level solver B0 “ A´1
0 is exact. We shall recursively define Bl : Vl ÞÑ Vl which is an

iterator for the equation Alvl “ rl. Let vl be the initial guess on each level, i.e., vL “ up0q and

vl “ 0 for 0 ă l ă L. Do the following steps:

(1) Pre-smoothing: For k “ 1, 2, . . . ,m, compute

vl Ð vl ` Sl
`

rl ´Alvl
˘

;

(2) Coarse-grid correction: Find an approximate solution el´1 P Vl´1 of the residual equation

on level l ´ 1, i.e., Al´1el´1 “ Ql,l´1

`

rl ´Alvl
˘

, by an iterative method:

el´1 Ð Bl´1Ql,l´1prl ´Alvlq, vl Ð vl ` Il´1,lel´1;

(3) Post-smoothing: For k “ 1, 2, . . . ,m, compute

vl Ð vl ` STl
`

rl ´Alvl
˘

.

From this algorithm, we can see this MG V-cycle method is just a generalization of Algo-

rithm 3.2 (the abstract two-grid method). Clearly, this geometric multigrid method (with one

G-S iteration as pre-smoothing and one backward G-S iteration as post-smoothing) is just a

special successive subspace correction (SSC) method based on the following multilevel space

decomposition

V “
J
ÿ

j“1

Ṽj “
ÿ

l“L:´1:1

ÿ

i“1:nl

Vl,i ` V0 `
ÿ

l“1:L

ÿ

i“nl:´1:1

Vl,i,

which is a modification of (5.2). Furthermore, on each one-dimensional subspace Ṽj , the subspace

problem is solved exactly.

According to Lemma 3.6, the error transfer operator of MG V-cycle on the l-th level can be

written as

El :“ I ´ BlAl “
`

I ´ STl Al

˘

pI ´ Bl´1Al´1Πl´1q
`

I ´ SlAl

˘

,

where Πl´1 is the Ritz-projection from V to Vl´1. By applying this operator recursively, we

obtain the error transfer operator for the MG V-cycle:

EL “ I ´ BLALΠL “
`

I ´ STLAL

˘

¨ ¨ ¨
`

I ´ ST1 A1

˘`

I ´Π0

˘`

I ´ S1A1

˘

¨ ¨ ¨
`

I ´ SLAL

˘

.
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Matrix representation of GMG

Similar to the matrix representation of two-grid method discussed in §3.4, we can write the

matrix representation of multigrid method. By definition, we have

pAlul, vlq “ pAul, vlq, @ul, vl P Vl.

Hence,

pAlQlu,Qlvq “ pITl AIlQlu,Qlvq “ pAIlQlu, IlQlvq, @u, v P V.

It is easy to see that

QT
l AlQl “ QT

l ITl AIlQl ùñ Al “ ITl AIl “ ITl AIl.

This and (3.37), in turn, give the inter-grid transformations:

Âl “MlAl “Ml ITl AIl “MlQlM
´1Â Il “ IlT Â Il, 0 ď l ă L.

Hence we get the dual matrix form of the coarse level operator

Âl “ P Tl ÂPl, 0 ď l ă L.

Convergence analysis of GMG method ‹

Now we show the MG {-cycle (i.e., half of the MG V-cycle) method converges uniformly using

the X-Z identity. For simplicity, we show the proof in 1D here. For general analysis in Rd, see

HW 6.1. The multidimensional cases and other MG methods can be analyzed in a similar way,

but much more technically involved.

Assume the subspace problems are solved exactly, i.e., Sl,i “ A´1
l,i , for i “ 1, . . . , nl and

l “ 0, . . . , L. We denote the operators Jl : V ÞÑ Vl, i.e., for any function v P V ,

`

Jlv
˘

pxq “
nl
ÿ

i“1

vpxliqφ
l
ipxq, @ l “ 0, . . . , L.

Let J´1v :“ 0, v0 :“ J0v, and vl :“ pJl ´ Jl´1qv, l “ 1, . . . , L. Using the interpolants in

multilevel spaces, we can write

v “ JLv “
L
ÿ

l“0

`

Jl ´ Jl´1

˘

v “
L
ÿ

l“0

vl. (6.1) eqn:HBdecomp

We also have

v “
L
ÿ

l“0

vl “
L
ÿ

l“0

nl
ÿ

i“1

vpxliqφ
l
ipxq “:

L
ÿ

l“0

nl
ÿ

i“1

vl,i.
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It is easy to check that

pI ´ Jkqv “
L
ÿ

l“k`1

vl “
L
ÿ

l“k`1

nl
ÿ

i“1

vl,i

To estimate the convergence rate, in view of Corollary 4.1, we only need to estimate the

quantity:

c1 :“ sup
|v|1“1

inf
ř

l,i vl,i“v

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇ

ˇ
Πl,i

ÿ

pk,jqěpl,iq

vk,j

ˇ

ˇ

ˇ

2

1
.

We now define and estimate

c1pvq :“
L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇ

ˇ
Πl,i

´

nl
ÿ

j“i

vl,j `
L
ÿ

k“l`1

nl
ÿ

j“1

vk,j

¯ˇ

ˇ

ˇ

2

1
.

We use the same notations introduced in Chapter 4 for projections, Πl,i : V ÞÑ Vl,i is the

p¨, ¨qA-projection. For one-dimensional problems, it is easy to see that Πl “ Jl; see HW 6.2.

This leads to the following identity

Πl,ipI ´ Jlq “ 0, @ 1 ď i ď nl, 0 ď l ď L.

Furthermore, we also have Πl,ip
ř

jěi vl,jq “ Πl,i

`

vl,i ` vl,i`1

˘

. Using these properties, we have

c1pvq “

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇΠl,i

`

vl,i ` vl,i`1

˘

`Πl,ipI ´ Jlqv
ˇ

ˇ

2

1
“

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇΠl,i

`

vl,i ` vl,i`1

˘ˇ

ˇ

2

1

À

L
ÿ

l“0

nl
ÿ

i“1

|vl,i|
2
1 “

L
ÿ

l“0

h´2
l

›

›pJl ´ Jl´1qv
›

›

2

0
À

L
ÿ

l“0

|vl|
2
1 “ |v|21.

The last equality is easy to check; see HW 6.3. This estimate shows the convergence rate of MG

is uniformly bounded.

rem:HB Remark 6.1 (Relation with the HB preconditioner). Note that several places in the above anal-

ysis depend on the one-dimensional (d “ 1) assumption. In fact, the decomposition (6.1) used

in this proof is the hierarchical basis (HB) decomposition in §5.2 and convergence rate of the

HB method is not optimal in multidimensional cases (d ą 1). So the proof must be changed in

higher dimensions.

Problems with anisotropic coefficients ‹

For GMG, smoothness of error is in the usual geometric sense. But it is not always easy to do

so. A representative example is the second-order elliptic problem

´εuxx ´ uyy “ fpx, yq, @ px, yq P Ω, (6.2) eqn:aniso
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where ε ą 0 is usually small. Other examples include problems with high-contrast coefficients,

problems on anisotropic meshes, etc.

If we apply the standard finite different discretization in §1.2 on uniform nˆn tensor-product

grid for this problem, or equivalently the P1 finite element discretization on uniform triangular

grid from regular refinements, then the coefficient matrix for (6.2) is

Aε “ I bA1,ε ` C b I, with A1,ε “ tridiagp´ε, 2` 2ε,´εq, C “ tridiagp´1, 0,´1q.

The eigenvalues of A are given

λi,jpAεq “ 2p1` εq ´ 2ε cos
iπ

n` 1
´ 2 cos

jπ

n` 1
“ 4ε sin2 iπ

2pn` 1q
` 4 sin2 jπ

2pn` 1q
,

with eigenvectors

~ξi,j “
´

sin
kiπ

n` 1
sin

ljπ

n` 1

¯

k,l“1,...,n
.

If ε ! 1, then λ1,1 ă λ2,1 ă ¨ ¨ ¨ ă λn,1 ă λ1,2 ă λ2,2 ă ¨ ¨ ¨ . We notice that, unlike the

Poisson’s equation, these eigenvalues are ordered in a different pattern. The geometric low

frequencies can be highly oscillatory in x-direction. It is natural to expect such a behavior

from the PDE itself as the x-direction is much less diffusive than the y-direction. We call the

x-direction (with small coefficient) the weak direction and the y-direction the strong direction.

We can also view this problem from a different perspective. Using the analysis in §3.3, we

obtain that the error of the G-S method satisfies

p2` 2εqenew
i,j “ εenew

i´1,j ` εe
old
i`1,j ` e

new
i,j´1 ` e

old
i,j`1, i, j “ 1, . . . , n.

According to the local Fourier analysis, we can obtain that

λpθq :“
αnew
θ

αold
θ

“
εe
?
´1θ1 ` e

?
´1θ2

2` 2ε´ εe´
?
´1θ1 ´ e´

?
´1θ2

.

In this case, the smoothing factor of the G-S method is

ρ̄GS “ λ

ˆ

π

2
, arctan

´ εp1´ ρ̄2
GS
q

2pε` 1qρ̄2
GS

¯

˙

“

?
5ε2 ´ 2ε` 1` 2

5ε` 3
ÝÑ 1, as εÑ 0.

This means the standard G-S method does not have smoothing effect on the anisotropic problem

when ε is small.

On the other hand, if we apply the line G-S smoother, things will be a lot different. Suppose

we apply the line smoother in natural ordering (from left to right), namely,

p2` 2εqunew
i,j “ εunew

i´1,j ` εu
old
i`1,j ` u

new
i,j´1 ` u

new
i,j`1, j “ 1, . . . , n, i “ 1, . . . , n.

Then the error satisfies

p2` 2εqenew
i,j “ εenew

i´1,j ` εe
old
i`1,j ` e

new
i,j´1 ` e

new
i,j`1, j “ 1, . . . , n, i “ 1, . . . , n.
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And we get

λpθq :“
αnew
θ

αold
θ

“
εe
?
´1θ1

2` 2ε´ εe´
?
´1θ1 ´ 2e´

?
´1θ2

.

The maximal smoothing factor is then

ρ̄LGS “ max
! ε

2` ε
,

?
5

5

)

.

If 0 ă ε ď 1, we always have ρ̄LGS “
?

5{5 ă 1 independent of ε.

In multigrid methods setting, one could handle such an equation using special techniques like:

(1) an line smoother (group all y-variables corresponding to the same x-coordinate together),

or (2) semi-coarsening (only coarse in y-direction), or (3) operator-dependent interpolations.

Later in this chapter, we will turn our attention to the third approach, which leads to algebraic

multigrid methods for solving such difficult problems.

General procedure of multigrid methods

From our discussions above, we observe that a typical MG algorithm contains two phases—

the “setup” phase and the “solve” phase. The setup phase initializes a hierarchical structure,

including coarse spaces, prolongations and restrictions, coarse problem solvers for multilevel

iterations. Notice that the setup phase only needs to be called once before iterations; some-

times, the same setup phase can be used at different time levels for time-dependent problems.

For geometric multigrid (GMG) methods, the setup phase is trivial using the hierarchical grid

structure. However, GMG methods are difficult to apply for equations on general domains with

unstructured grids. Algebraic multigrid (AMG) methods can be viewed as a generalization of

geometric multigrid methods; see [60] and references therein for more details.

We now explain how to perform multigrid setup phase in a relatively general setting. Once

the setup is done, an appropriate nested iteration scheme should be chosen for the solve phase; see

§6.2. It is immediately clear that we only need to discuss how to setup hierarchical information

in two consecutive grids/levels for multigrid methods. We can summarize a general multigrid

setup procedure as the following steps:

Step 1. Selecting a smoother: Choose a smoother S for Au “ f .

Step 2. Coarsening: Identify a coarser space Vc Ă V , which contains smooth vectors.

Step 3. Constructing a prolongation: Construct a prolongation P in two steps:

3a. Decide, for each fine variable, which coarse variables will be used for interpolation;
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3b. Determine the weights for prolongation P .

Step 4. Recursion or nested iteration: Define Ac “ P TAP and fc “ P T f ; then apply the

algorithm for the coarse problem Acuc “ fc.

For GMG methods discussed by far, Steps 2–4 are determined by the information of nested

grids and the users can only find an appropriate smoother S. For example, in §1.4, we have

presented a 1D GMG method in a purely algebraic fashion. We have observed that:

(1) GMG coarsening explores the topology of the graph representing the stiffness matrices on

different levels are explicitly clear from the geometric refinement procedure;

(2) Prolongation and restriction for GMG usually depend only on the topological structure of

the graph without knowing the grid coordinates;

(3) For GMG, smoothness of error is in the geometric sense and, in the algebraic setting,

smooth error can be geometrically non-smooth.

6.2 Nested iterations
sec:cycles

The solve phase approximates corresponding problems by calling a two-grid algorithm recur-

sively. There are different approaches for the solve phase; for example, we have seen the V-cycle

method in §6.1. In this section, we discuss a few popular methods for the solve phase.

V-cycle and its generalizations

The multigrid V-cycle iterator B, Algorithm 6.1, is a two-grid method with an inexact coarse-

level solver defined recursively, i.e., the coarse-level iterator Bc is just B on the coarse-grid. On

the coarse level, we start from the initial guess uold
c “ 0 and then iterate

unew
c “ uold

c ` Bc
`

fc ´Acu
old
c

˘

, where Bc is the two-grid method for Ac.

In the the V-cycle, we only apply the above iteration once on the coarse-level. Apparently, this

procedure can be generalized. For example, we can iterate multiple steps:

up0qc “ 0, upkqc “ upk´1q
c ` Bc

`

fc ´Acu
pk´1q
c

˘

, k “ 1, . . . , ν.

This gives an estimate

upνqc “ Bcfc ` pI ´ BcAcqu
pν´1q
c “ Bcfc ` Ecupν´1q

c “ ¨ ¨ ¨ “
`

I ` Ec ` ¨ ¨ ¨ ` Eν´1
c

˘

Bcfc,
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where Ec :“ I ´ BcAc. We can define a new iterator Bc,ν such that

Bc,νfc :“
`

I ´ Eνc
˘`

I ´ Ec
˘´1Bcfc “

`

I ´ Eνc
˘

A´1
c fc. (6.3) eqn:nu-cycle

Motivated by (6.3), we can introduce a polynomial qνptq :“ p1´ tqν P Pν and let

Bc,ν :“
´

I ´ qν
`

BcAc

˘

¯

A´1
c .

Then ν “ 1 yields the V-cycle. And the first non-trivial example is the well-known W-cycle

(ν “ 2), which is a simple extension of the V-cycle algorithm; see Figure 6.2. By iterate twice

as in (6.4), we can obtain Bc,2 (the W-cycle); see HW 6.4.

alg:W-cycle Algorithm 6.2 (One iteration of MG W-cycle). Assume that Bl´1 : Vl´1 ÞÑ Vl´1 is defined

and the coarsest level solver B0 “ A´1
0 is exact. We shall recursively define Bl : Vl ÞÑ Vl which

is an iterator for the equation Alv “ rl. Let v “ vp0q be the initial guess.

(1) Pre-smoothing: For k “ 1, 2, . . . ,m, compute

v Ð v ` Sl
`

rl ´Alv
˘

;

(2) Coarse-grid correction: Find an approximate solution el´1 P Vl´1 of the residual equation

on level l ´ 1, i.e., Al´1el´1 “ Ql,l´1

`

rl ´ Alv
˘

using the iteration: Let el´1 “ 0 initially.

For k “ 1, 2,

el´1 Ð el´1 ` Bl´1

´

Ql,l´1prl ´Alvq ´Al´1el´1

¯

; (6.4) eqn:W-cycle

Update the solution with

v Ð v ` Il´1,lel´1;

(3) Post-smoothing: For k “ 1, 2, . . . ,m,

v Ð v ` STl
`

rl ´Alv
˘

.

Some schematic description of MG-cycle

Chunsheng Feng

March 24, 2016
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Figure 1: A schematic description of the V-cycle.
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Figure 2: A schematic description of the full multigrid algorithm.
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Figure 6.2: Multigrid V-cycle (left) and W-cycle (right).fig:VW-cycle
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In V-cycle and W-cycle, the iterators on all the coarser levels are the same. We can also

use variable polynomial orders νl on level l (0 ă l ă L). From the above discussion, we also

have a lot of freedom in the choice of qνptq. For example, we can use a polynomial qνptq such

that qνp0q “ 1 and 0 ď qνptq ă 1 on the spectrum of BcAc. This type of methods are referred

to as the AMLI-cycle (Algebraic Multi-Level Iteration cycle1); see [1] and references therein for

details.

Example 6.1 (A simple AMLI-cycle). A simple AMLI-cycle method is to give l0 ě 1, µ1 ě

µ2 ě 1, and use the following polynomial orders

νl :“

#

µ1, if l “ kl0;

µ2, otherwise.

It is clear that, if l0 “ µ1 “ µ2 “ 1, then this method is just the V-cycle.

Now we turn our attention to the work estimate of nested cycles. For simplicity, we consider

the AMLI-cycle with µ2 ” 1 only. Denote the work needed by Bl is Wl. Assume the each

smoothing sweep costs OpNlq operations and Nl „ h´dl „ γ´2ld. Then it requires 2m OpNlq

operations for the pre- and post-smoothing on level l. The prolongation and restriction also

requires OpNlq operations. Hence, for the AMLI-cycle, we have

Wpk`1ql0 “ O
`

Nkl0`1 ` ¨ ¨ ¨ `Nkl0`l0

˘

` µ1OpNkl0q ` µ1Wkl0

“ O
`

Npk`1ql0

˘

` µ1OpNkl0q ` µ1Wkl0

“ O
`

Npk`1ql0

˘

` 2µ1OpNkl0q ` µ
2
1Wpk´1ql0

“ ¨ ¨ ¨ ¨ ¨ ¨

“ µk1Wl0 `O
´

k`1
ÿ

j“2

µk`1´j
1 Njl0

¯

“ O
´

k`1
ÿ

j“1

µk`1´j
1 Njl0

¯

“ O
`

Npk`1ql0

˘

k
ÿ

j“0

`

µ1γ
2dl0

˘j
.

Hence, this AMLI method costs OpNq operations in each cycle, if µ1γ
2dl0 ă 1. Here N “ NL

is the number of unknowns on the finest grid. This analysis also yields the complexity of the

standard V-cycle method quickly.

Indeed, we can choose some optimal polynomial qνptq like the Chebyshev polynomials. This

reminds us about the Krylov subspace methods discussed in §2.2. Inspired by this similarity, we

1Here “algebraic” stands for the fact that certain inner polynomial iterations are used in the definition of the
multilevel cycle.
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can apply a preconditioned Krylov methods (like Flexible CG or GCR methods) on some of the

coarse levels to improve convergence. This type of methods are called Krylov-cycle (K-cycle)

methods or Nonlinear AMLI methods [49].

The previous multigrid methods converge uniformly with respect to the meshsize h and requires

OpNq operations in each cycle. This means the computation cost is OpNq to reach a fixed

tolerance. On the other hand, when we solve a discrete partial differential equation, we usually

need to use smaller tolerances for finer meshsizes. This means, in order to reach the discretization

accuracy, the V-cycle multigrid method requires OpN logNq operations.

Full multigrid method

One way to improve the multigrid method is to provide good initial guesses using coarse approx-

imation (cheap in computation). This idea leads to the so-called full multigrid (FMG) cycle; see

Figure 6.3. From this figure, we can see the full multigrid method is a sequence of V-cycles on

Some schematic description of MG-cycle

Chunsheng Feng

March 24, 2016

Fine

Coarse

Relaxation

Exact solving

Restriction

Prolongation

Figure 1: A schematic description of the V-cycle.
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Restriction
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FMG prolongation

Figure 2: A schematic description of the full multigrid algorithm.
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Prolongation

1

Figure 6.3: Full multigrid cycle.fig:F-cycle

different levels. We can write the concrete algorithm as follows:

Listing 6.1: Full multigrid method

1 ũ0 Ð A´1
0 f0;

2 for l “ 1, . . . , L

3 u
p0q
l Ð Il´1,lũl´1;

4 u
pkq
l Ð V-cyclepl, fl, u

pk´1q
l q, k “ 1, . . . , ν;

5 ũl Ð u
pνq
l ;

6 end

thm:FMG Theorem 6.1 (Full multigrid convergence). Assume that the l-th level iteration is a contraction

with a contraction factor 0 ă δ ă 1 independent of level l. If ν is large enough, then we have

|||ul ´ ũl||| À hl
ˇ

ˇu
ˇ

ˇ

2,Ω
,

where ul is the exact solution of finite element problem on level l and ũl is the approximation

solution on l-th level.
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Proof. Let el :“ ul ´ ũl. Apparently, on the coarsest level, we have e0 “ 0. On the l-th level

(0 ă l ď L), we have

|||el||| ď δν |||ul ´ ũl´1||| ď δν
´

|||ul ´ u||| ` |||ul´1 ´ u||| ` |||ul´1 ´ ũl´1|||

¯

ď δν
´

Chl
ˇ

ˇu
ˇ

ˇ

2,Ω
` |||el´1|||

¯

.

By iteration, if δν ă γ2, we obtain that

|||el||| ď C
´

δνhl ` δ
2νhl´1 ` ¨ ¨ ¨ ` δ

lνh1

¯

ˇ

ˇu
ˇ

ˇ

2,Ω
ď

Cδνhl
1´ γ´2δν

ˇ

ˇu
ˇ

ˇ

2,Ω
À hl

ˇ

ˇu
ˇ

ˇ

2,Ω
.

Hence the result.

The theorem indicates that, if we do enough V-cycles on each level, we can obtain an approximate

solution within the accuracy of discretization error. This result shows that FMG can reach

discretization error tolerance using OpNq operations.

6.3 From geometric to algebraic multigrid
sec:AMG

Consider the system of equations arising form the Poisson’s equation on unstructured meshes

or the second-order elliptic equation with anisotropic coefficients

Au “ f, where A P RNˆN and u, f P RN .

Problems with anisotropic coefficients on regular meshes, or problems with isotropic coefficients

but on anisotropic meshes, will cause troubles for geometric multigrid methods. While geomet-

ric multigrid essentially relies on the availability of robust smoothers, AMG takes a different

approach. AMG assumes a simple relaxation process to be given (typically point-wise relax-

ations) and then attempts to construct a suitable operator-dependent interpolation using the

algebraic information of the coefficient matrix A. In §6.1, we have already found that the G-S

method is not a good smoother in the usual geometric sense for (6.2) if the coefficient ε is small.

However, we can choose coarse spaces adapted to such a smoother by mimicking the idea of

semi-coarsening.

Sparse matrices and graphs ‹

A sparse matrix can be represented as a graph. As the sparse matrices that we consider are

mainly symmetric in the following we only discuss undirected graphs here. We first introduce a

few elementary concepts from the graph theory. An undirected graph (or simply a graph) G is a

pair pV,Eq, where V is a finite set of points called vertices and E is a finite set of edges. As set
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of vertices we always consider subsets of t1, . . . , Nu. An edge in E is an unordered pair pj, kq

with j, k P V. A graph G0 “ pV0,E0q is called a subgraph of G “ pV,Eq, if V0 Ă V and E0 Ă E.

If pj, kq P E is an edge in an undirected graph G “ pV, Eq, vertices j and k are said to be

adjacent. The set of neighboring vertices of i is the set of all vertices that are adjacent to i;

and it is denoted as Ni Ď V. A path from a vertex i to another vertex j is a sequence of

edges
 

pi, j1q, pj1, j2q, . . . , pjl´2, jl´1q, pjl´1, jq
(

Ď E and the number of edges l is called the

length of this path. A vertex j is connected to a vertex k if there is a path from j to k. The

distance between j and k is defined as the length of the shortest path between these two vertices.

Apparently, the distance between two vertices is equal to 1 if they are adjacent and is set to 8

if they are not connected.

An undirected graph G “ pV, Eq is connected if any pair of vertices are connected by a path,

otherwise G is said to be disconnected. An independent set of V is a set of vertices of G, no two

of which are adjacent. A maximal independent set (MIS) is an independent set such that adding

any other vertex to the set will introduce at least one adjacent pair.

Let A P RNˆN be a sparse matrix. The adjacency graph of A, denoted by GpAq, is a graph

G “ pV, Eq with V :“ t1, 2, . . . , Nu and

E :“
 

pj, kq : aj,k ‰ 0
(

.

As a general rule, sparse matrices do not provide any geometric information for the underlying

graph and only the combinatorial/topological properties of GpAq or its subgraphs; see Figure 6.4.

We note that two different discretizations on different meshes could lead to same sparse coefficient

matrix A and, in turn, same graph GpAq.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

7

8

9

4 5 6

1

2

3

1

Figure 6.4: Finite element grid (left), difference grid (middle), and graph of their corresponding
stiffness matrices (right).fig:graph

Let A be the coefficient matrix corresponding to the finite element discretization of the

second-order elliptic equation with Neumann boundary condition. Apparently A has zero row
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sum. Hence we can write

pAu, vq “
ÿ

pi,jqPE
iăj

´ai,jpui ´ ujqpvi ´ vjq. (6.5) eqn:Auv-Neumann

On the other hand, we can easily derive the corresponding equality for the Dirichlet boundary

condition or the mixed boundary condition:

pAu, vq “
ÿ

pi,jqPE
iăj

´ai,jpui ´ ujqpvi ´ vjq and uj “ vj “ 0, @xj P ΓD. (6.6) eqn:Auv-Dirichlet

M-matrix and Delaunay triangulation ‹

We first introduce the concept of M-matrix. We call A an M-matrix if it is irreducible (i.e., the

graph GpAq is connected) and

ai,i ą 0, ai,j ď 0 pi ‰ jq, aj,j ě
ÿ

i‰j

ˇ

ˇai,j
ˇ

ˇ, aj,j ą
ÿ

i‰j

ˇ

ˇai,j
ˇ

ˇ for at least one j.

Apparently, the stiffness matrix in (1.28) is an M-matrix. It is in general not the case for the

stiffness matrices from finite element discretizations. In fact, whether a stiffness matrix is an

M-matrix depends on the underlying mesh M.

First we introduce a few notations using Figure 6.5. In any give simplicial element τ in R3;

similar definitions can be introduced in Rd for d ě 2. An edge pi, jq has two vertices xi and xj

and denote this edge as E. Let κEpτq :“ Fi
Ş

Fj and θEpτq be the angle between faces Fi and

Fj . Define a quantity

ωEpτq :“
1

dpd´ 1q

ˇ

ˇκEpτq
ˇ

ˇ cot θEpτq. (6.7) eqn:OET

We then have the following result; see [57] for details.

prop:M-matrix Proposition 6.1 (Condition for M-matrix). The stiffness matrix for the Poisson’s equation is

an M-matrix if and only if, for any edge E,
ř

τĄE ωEpτq ě 0 with ωEpτq defined in (6.7).

Remark 6.2 (Delaunay triangulation and M-matrix). In R2, the above proposition simply

means the sum of the angle opposite to any edge is less than or equal to π, which means the

underlying triangulation must be Delaunay. Hence the stiffness matrix for the Poisson’s equation

is an M-matrix if the triangulation is Delaunay. And the condition is almost sharp2.

For a given mesh Mh, the stiffness matrix of P1-finite element method for the Poisson’s

equation is not necessarily an M-matrix. However, it can be estimated by an M-matrix. More

2The opposite direction is true with a few possible exceptions near the boundary
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xi

xj

E

Fi

Fj

θE

κE

1

Figure 6.5: Definition of θE and κE in a simplex in 3D.fig:simplex

specifically, if we keep all the vertices of Mh and swap internal edges, we can obtain a Delaunay

triangulation MD
h . We have

`

AMD
h
v, v

˘

ď
`

AMh
v, v

˘

, @ v P RN ;

moreover, the equality in the above inequality holds if and only if Mh is Delaunay. We refer

the interested readers to [50] for details. Let φMh
P Vh is a piecewise linear function and

φMh
pxq “

řN
i“1 viφi,Mh

pxq. Then we have

ˇ

ˇφMD
h

ˇ

ˇ

2

1
ď

ˇ

ˇφMh

ˇ

ˇ

2

1
, @ v P RN .

This means the Delaunay triangulation results in lower roughness of finite element functions

among all possible triangulations on a fixed set of vertices.

Algebraic smooth error

Based on the two-level convergence theory discussed in §3.4 (Theorem 3.5, in particular), we

have the following result: For a given smoother S, the best coarse space V opt
c of dimension Nc

is given by

V opt
c “ spantφku

Nc
k“1, (6.8) eqn:optVH

where tφku
Nc
k“1 are the eigenfunctions corresponding to the smallest eigenvalues λkpSAq. How-

ever, it is difficult to find small eigenvalues of SA in practice.

Hence it is important to give a practical characterization of the smooth error. A good

interpretation of smooth error in algebraic sense could lead to an efficient AMG method. In

view of (3.24), we know that the standard point-wise relaxation methods, like the Richardson,

weighted Jacobi, and Gauss–Seidel methods, satisfy that

ρ´1
A

`

v, v
˘

A
À

`

SAv, v
˘

A
ď ω1

`

v, v
˘

A
.
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And Theorem 3.5 indicates the lower end of the spectrum of SA are low frequencies. This

motives the following definition of the algebraic smooth vector:

Definition 6.1 (Algebraic smoothness). Let ε P p0, 1q be a small parameter. If v P V satisfies

`

SAv, v
˘

A
ď ε2

`

v, v
˘

A
,

then v is called algebraically ε-smooth.

Since S is SPD, the algebraically smooth vectors satisfy

›

›v
›

›

2

A
“

`

SAv, S
´1
v
˘

ď
`

SAv,Av
˘1{2 `

S
´1
v, v

˘1{2
ď ε

`

S
´1
v, v

˘1{2›
›v
›

›

A
.

Then we can derive an estimate
›

›v
›

›

A
ď ε

›

›v
›

›

S
´1 , (6.9) eqn:algsmooth

which can be also viewed as an alternative characterisation of algebraically smooth vectors. By

adding and subtraction and (2.10), we have

´

`

I ´ SA
˘

v, v
¯

A
ě p1´ ε2q

`

v, v
˘

A
ùñ

›

›pI ´ SAqv
›

›

2

A
›

›v
›

›

2

A

ě 1´ ε2.

Apparently, the contraction factor for this vector v is close 1 if ε is small. Basically, this means

the algebraically smooth error components are those which the smoother cannot damp efficiently;

that is to say, an error not eliminated by the smoother is a smooth error; see Remark 1.8 for

geometric smooth error.

Remark 6.3 (Local adaptation of AMG). In AMG methods, it is not important whether S

smooths the error in any geometric sense or not. On the contrary, the key point is that the error

after smoothing sweeps can be characterized algebraically to a degree which makes it possible

to construct coarse levels and define interpolations which are locally adapted to the properties

of the given smoother.

Remark 6.4 (Smooth error and the Classical AMG). A simple characterization of smooth error

is used in methods like the Classical AMG. If e corresponds to the low-end of eigenvalues, then

we have Ae ! 1. According to (6.5), this is equivalent to say that

pAe, eq “
ÿ

iăj

´ai,jpei ´ ejq
2 ! 1. (6.10) eqn:CAMG-smooth

This inequality provides an important motivation for the Classical AMG: Smooth error varies

slowly in the direction of relatively large (negative) coefficients of the matrix.
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Construction of coarse spaces

From Theorem 3.3, the convergence rate of the two-grid method depends on effectiveness of the

smoother S and approximability of the coarse space rangepP q. Now we discuss a few guidelines

on how to construct coarse spaces and prolongation matrices.

In §6.1, we discussed a general procedure of multigrid setup phase. The coarsening algorithms

are methods for determining the coarse level variables. Such algorithms are usually based on

selecting or combining vertices in the adjacency graph corresponding to the (filtered) coefficient

matrix A. We shall discuss concrete examples of coarsening algorithms in the following sections.

Now we present two assumptions on the coarse space Vc and prolongation P .

A natural choice of the coarse DOFs is to use a subset of fine-grid DOFs. Under proper

re-ordering (coarse variables first and then fine variables) R “ pI, 0q P RNcˆN . According to

Theorem 3.4, we can use the diagonal matrix D P RNˆN of A (i.e., the Jacobi method) to analyze

the smoother S defined by the point-wise Gauss–Seidel method. Motivated by Lemma 3.4, we

can further simplify it and just choose D :“ }A}0I, for example. This result motivates that we

should construct a coarse space, such that

›

›v ´QDv
›

›

2

D
“ inf

vcPVc

›

›v ´ vc
›

›

2

D
ď C

›

›v
›

›

2

A
, @ v P V,

where the constant C should be small and uniform with respect to interested parameters like h.

This condition is a sufficient condition for the convergence of the two-grid method.

asmp2 Assumption 6.1 (Weak approximability).
›

›pI ´ PRqv
›

›

D
ď α}v}A, @ v P V.

The matrix PR can be viewed as an approximation of QD “ P pP TDP q´1P TD “: PR˚.

Heuristically, the numerical error becomes quite smooth after a few relaxation steps and we

can expect the coarse-grid space can approximate v rather accurately if the coarse-grid space is

appropriately chosen. Motivated by Theorem 3.3, we have Assumption 6.1, which is equivalent

to that Vc reproduces local constant. This condition is equivalent to that Vc has locally supported

basis and Assumption 6.2. If v is smooth, i.e., }∇v} is small, then v can be approximated well

in the coarse space Vc.

In view of Remark 3.16, we assume that the prolongation operator preserves the constant

(Assumption 6.2). In fact, from the weak approximation property (Assumption 6.1) and let

D :“ }A}I, we have

}A}1{2
›

›v ´ PRv
›

› ď α}v}A.

If v is in the near-null space of A, i.e., }v}A « 0, then PRv « v. Hence we get the following

simplified assumption:

asmp1 Assumption 6.2 (Constant preserving). P1Nc “ 1N .
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rem:OpComplexity Remark 6.5 (Operator complexity). When constructing the prolongation P , we must control

the sparsity of the coarse level matrices. For efficient overall performance, convergence speed

is only one aspect. An equally important aspect is the complexity (sparsity) of the coarser

level matrices produced by AMG. We now define a measurement of sparsity, i.e., the operator

complexity

CA :“

řL
l“0 nnzpAlq

nnzpAq
,

where nnzp¨q is the number of nonzeros of a matrix. Apparently, CA ě 1 is always true and

CA “ 1 corresponds to the one-level methods. During constructing the interpolation operator,

we would like to make CA as close to 1 as possible while keeping good convergence performance.

6.4 Classical algebraic multigrid methods

The original AMG [19] idea (the classical AMG) was developed under the assumption that such

a problem with A being an M-matrix was solved. The multilevel hierarchy is constructed based

on the coefficient matrix only. Later, the AMG algorithm was further generalized using many

heuristics that served to extend its applicability to more general problems. For simplicity, we

suppose A “ pai,jq P RNˆN be a SPD M-matrix and G “ pV,Eq be its corresponding graph.

Strength of connections

In coarsening, we need to find coarse level variables. This is usually done based on heuristics

from properties of M-matrices in AMG methods. Let θstr P p0, 1q be a given real number, usually

called relative strength parameter. If a pair of indices pi, jq satisfies that

´ai,j ě θstr

ˇ

ˇmin
k
ai,k

ˇ

ˇ,

then this pair is called strongly negatively-coupled. Note that, by this definition, pi, jq and pj, iq

are two different pairs by this definition. Of course, there are many different ways to define

strongly coupled pairs. For example, we can call i and j strongly negatively- coupled,

if ai,j ă 0 and |ai,j | ą θstr
?
ai,iaj,j .

We can easily generalize the concept by considering the positive coupling by removing “nega-

tively”.

Denote further

Si :“
 

j P Ni : j strongly coupled to i
(

and STi :“
 

j P V : i P Sj
(

.
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So Si is the set of indices which affects i and STi is the ones which are affected by i. After finding

the strongly coupled variables, we can filter the coefficient matrix and obtain AS by removing

non-strongly coupled connections.

The above definition strongly coupled variables applies to the direct connections. Sometimes

we also need to consider long-range connections; for example, in aggressive coarsening. A variable

i is said strongly connected to another variable j along a path of length l if there exists a sequence

of edges
 

pi, j1q, pj1, j2q, . . . , pjl´2, jl´1q, pjl´1, jq
(

Ď E such that jk`1 P Sjk . If there exist at

least one path of length less than or equal to l such that i strongly connects to j, then we say

that i is l-strongly connects to j and denoted by j P Sli.

We note that, based on the nonzero pattern of the original matrix Al or a filtered ma-

trix AlS, one can tell whether there are paths between i and j of length l or not. For ex-

ample, if we consider five-point stencil finite difference scheme on the mesh given in Fig-

ure 6.6 (left). Consider the vertex at the center, the point 13. Then S13 “ t12, 8, 14, 18u and

S2
13 “ t12, 8, 14, 18, 11, 3, 15, 23, 7, 17, 9, 19u. And we give the weights of A and A2 in Figure 6.6.
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Figure 6.6: Finite difference grid (left), strong connections and weights inA of vertex 13 (middle),
and 2-strong connections and weights in A2 of 13 (right).fig:strongconnections

C/F splitting

The classical Ruge-Stüben method is to split the set of vertices V to a sum of two non-intersecting

sets, the fine variables F and the coarse variables C, such that all the indices in F will be affected

by some index in C, while C is expected to contain as few entries as possible. Then F will be

chosen as the set of indices of finer grid nodes, and C will be chosen as the set of indices of coarse

grid nodes. The indices of nodes are assigned to be coarse or fine successively. Denote by U the
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set of indices of nodes that have not been assigned yet, and we summarize the algorithm in the

following subroutine:

Listing 6.2: Classical C/F splitting method

1 UÐ V, CÐ Ø, FÐ Ø;

2 while U ‰ Ø

3 λi Ð 2|STi
Ş

F| ` |STi
Ş

U|, i P U;

4 k Ð arg maxtλi, i P Uu;

5 CÐ C
Ť

tku, UÐ Uztku;

6 FÐ F
Ť

STk , UÐ UzSTk ;

7 end

Note that λi is a measure of importance—It is a measurement about how many points are

affected by i. If λi is big, we would like to include this point in C; in this way, we can make C

contains less points to get bigger coarsening ratio. We weight more on |STi
Ş

F| than |STi
Ş

U|

due to the first part is already determined to be on the fine-grid. In the early stage of coarsening

procedure, F does not contain many points, the above algorithm selects a coarse point with as

many as neighbors that strongly coupled to it. In the later stage, vertices that strongly coupled

to many F-variables are preferred to be selected. We need to add them as F-variables and

interpolate indirectly through the F-variables that they are strongly coupled to.

There are a few special cases which require careful treatment during the C/F splitting pro-

cedure. We now summarize them in the following remarks:

Remark 6.6 (Isolated points). Before we start the above algorithm, we need to filter out those

isolated points (like the Dirichlet boundary points) and define them as F-variables. Similarly,

if a point has very strong diagonal dominance, we should also move them to F. These are the

trivial cases.

Remark 6.7 (Termination of C/F splitting). If successfully terminated, the set C is an inde-

pendent set of vertices of the underlying graph G. All F-variables have at least one strongly

negatively coupled C-variable, except the trivial ones in the previous remark. However, there

might be some U-variables left (with measure λi “ 0). They are not strongly negatively coupled

to any C-variables or themselves. Furthermore, there are no F-variables are strongly negatively

coupled to these points.

Remark 6.8 (Aggressive coarsening). In practice, the standard C/F splitting scheme given

above usually results in high operator complexity (refer to Remark 6.5), which leads high com-

putational and storage demands; see Table 6.1. In such cases, we can apply the so-called

aggressive coarsening by considering strong connections of length l. Oftentimes l “ 2 is used.

However, A2
S is expensive to compute and we can apply the regular C/F splitting twice. At
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the first pass, find C-variables among all variables using AS; at the second pass, apply the C/F

splitting on C-variables using A2
S but on C only.

Coarsening method Standard Aggressive

Operator complexity 2.889 1.606
Setup time (sec) 1.536 1.036
Number of iterations 6 38
Solve time (sec) 0.791 3.293

Table 6.1: Solving 2D five-point stencil finite difference of the Poisson’s equation with 1 million
DOF using different coarsening methods (stopping criteria for PCG is the relative residual
smaller than 10´6).tab:coarsening

Example 6.2 (Anisotropic elliptic PDE). To illustrate the effect of the above C/F splitting

algorithm, we consider an anisotropic diffusion example in §6.1. The computational domain

is a unit square. Let us consider the anisotropic diffusion equation ´εuxx ´ uyy “ 0 pε ą 0q.

Roughly speaking, we have ε}uxx} « }uyy}. This means the solution is smooth in y-direction

(low-frequencies); but rough in x direction (high-frequencies). We consider the five-point stencil.

The difference equation at the node pxi, yjq is

´ε
2ui,j ´ ui`1,j ´ ui´1,j

h2
x

´
2ui,j ´ ui,j´1 ´ ui,j`1

h2
y

“ 0.

If ε
h2x
! 1

h2y
, then ui,j depends on ui,j`1 and ui,j´1 only. Thus if we process the C/F procedure,
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Figure 6.7: C/F splitting for the 2D elliptic problem with ε “ 1 (left) and ε ! 1 (right), where
the red points are C-variables and the black points are F-variables.fig:coarsening

the coarsening will take place indeed in one direction only (semi-coarsening); see Figure 6.7.

Construction of prolongation

After obtaining a C/F splitting, upon a reordering or indices, we can always assume the indices

of the nodes in C is from 1 to Nc, and those in F are from Nc`1 to N . We can write the stiffness
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matrix in the following block structure

˜

AC,C AC,F

AF,C AF,F

¸˜

uC

uF

¸

“

˜

fC

fF

¸

Let eH P RNc correspond to the variable on coarse grid. We now consider how to prolongate

it to eh P RN corresponding to a variable on fine grid. We use geometric multigrid method for

linear finite element method on uniform grids for the 1D Poisson’s equation as an example. Let

tφhi u
N
i“1 be the basis of the fine space V and tφHj u

Nc
j“1 be the basis of the coarse space Vc. From

the geometrical multigrid point of view, it is natural to expect

apφHj , φ
h
i q “ 0, j P C, i P F. (6.11) eqn:CFcondition

In fact, the main idea is that the fine-grid (high-frequency) part should be captured by fine

grid, i.e., apuh ´ΠHu
h, φhq “ apuh, φhq, if φh is a basis function corresponding to the difference

between fine and coarse grid functions.

It is trivial to see that pPeHqj “ eHj , if j P C. Define

P :“

˜

I

Q

¸

,

where I P RNcˆNc is the identity matrix and Q P RpN´NcqˆNc . In matrix form, (6.11) can be

written as
˜

0 0

0 IF,F

¸˜

AC,C AC,F

AF,C AF,F

¸˜

IC,C

Q

¸

“ 0.

That is to say, AF,C ` AF,FQ “ 0 or Q “ ´A´1
F,FAF,C. It is easy to check that this prolongation

P “ pI, QqT satisfies Assumption 6.2 if the row-sum of A is zero. However this prolongation is

too expensive to compute in practice and there are many different ways to approximate Q by a

simpler matrix W .

1) Direct interpolation scheme

For the error eh P RN , we have

AF,Fe
h
F `AF,Ce

h
C ! 1 ùñ

N
ÿ

j“1

ai,je
h
j « 0, i P F.

Motived by the above observation, we can assume

ai,ie
h
i `

ÿ

jPNi

ai,je
h
j “ 0, i P F. (6.12) eqn:GInterp
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This would be an interpolation scheme itself if all points in Ni are C-variables. Of course, it is

not always the case. Alternatively, we can throw out the ones that are not strongly negatively

coupled and obtain

ai,ie
h
i `

ÿ

jPSi

ai,je
h
j “ 0, i P F. (6.13) eqn:SInterp

We approximate the above equation

ai,ie
h
i ` αi

ÿ

jPNi
Ş

C

ai,je
h
j “ 0, αi “

ř

kPNi
ai,k

ř

kPNi
Ş

C ai,k
, i P F.

If row-sum of the i-th row is zero, then αi “ ´
ai,i

ř

kPPi
ai,k

and we get an interpolation method

ehi “
ÿ

jPNi
Ş

C

wi,je
H
j and wi,j “

ai,j
ř

kPNi
Ş

C ai,k
. (6.14) eqn:direct-interp2

In this case, the matrix form is just W “
`

diagpAF,C1q
˘´1

AF,C. It is straightforward to show

that Assumption 6.2 holds in this case.

We can also make W more sparse by shrinking the support slightly. Define an interpolation

set Pi :“ Si
Ş

C for i P F. After further sparsifying the interpolation (by keeping the strongly

negatively coupled C-variables only), we get

ai,ie
h
i ` αi

ÿ

jPPi

ai,je
h
j “ 0, αi “

ř

kPNi
ai,k

ř

kPPi
ai,k

, @ i P F.

If row-sum of the i-th row is zero, then this gives the well-known direct interpolation

ehi “
ÿ

jPPi

wi,je
H
j and wi,j “

ai,j
ř

kPPi
ai,k

. (6.15) eqn:direct-interp

2) Standard interpolation scheme

We first eliminate all ehj for j P Si
Ş

F by

ehj :“ ´
ÿ

kPNj

aj,ke
h
k{aj,j .

This results in

âi,ie
h
i `

ÿ

jPN̂i

âi,je
h
j “ 0, @ i P F,

with N̂i “ tj ‰ i : âi,j ‰ 0u and define a new interpolation set P̂i “ p
Ť

jPSi
Ş

F Sjq
Ť

Si
Ş

C.

Then we apply the above direct interpolation for this new equation and arrive at the so-called

standard interpolation scheme.
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3) Jacobi interpolation scheme

We can rewrite the equation (6.13) as

ai,ie
h
i `

ÿ

jPPi

ai,je
H
j `

ÿ

jPSizPi

ai,je
h
j “ 0, i P F.

Therefore, in order to obtain an interpolation matrix Q, we just need to approximately solve

the above equations for ehi pi P Fq. For example, we can just apply one Jacobi iteration using

ehj «

ř

kPPi
ai,ke

h
k

ř

kPPi
ai,k

as the initial guess of, j ě Nc ` 1, j ‰ i. Then the prolongation can be defined

as
$

’

&

’

%

ehi “ eHi , i P C

ai,ie
h
i `

ř

jPPi
ai,je

h
j `

ř

jPSizPi
ai,j

ř

kPPi
ai,ke

h
k

ř

kPPi
ai,k

“ 0, i P F.
(6.16) intprol

This is the so-called Jacobi interpolation method.

Remark 6.9 (Some simple alternatives). The biggest advantage of the above approach is that

it is simple and local: For the i-th entry, we only need the information on the i-th row of the

matrix. We can improve this prolongation matrix P using some straightforward modifications.

A few more steps of Jacobi iteration might improve the accuracy. Moreover, the initial guess

for the same entry is not the same at the relaxations for different entries. For example, an

alternative initial guess could be

ehj «

ř

kPPj
aj,ke

h
k

ř

kPPj
aj,k

, j P F.

Remark 6.10 (Initial guess of W ). If the initial guess W p0q preserves constants, then we get

Q´W pkq “

´

I ´D´1
F,FAF,F

¯k
`

Q´W p0q
˘

.

Since both Q and W p0q preserves constants, all improved weights W pkq also preserve constants.

6.5 Aggregation-based algebraic multigrid methods

In this section, we consider the aggregation-base AMG methods whose easy-to-implement feature

has drawn quite some attention recently. The idea is to sub-divide the set of vertices into non-

intersecting sets (aggregates), i.e., V “
Ť

j“1,...,Nc
Cj . Each aggregate Cj corresponds to a coarser

variable.
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Unsmoothed aggregation AMG

There are several different sophisticated ways to form aggregates. In principle, any combinatorial

graph partitioning algorithms can be applied to form aggregation. We now give a simple greedy

algorithm to form such an aggregation.

Listing 6.3: A greedy aggregation method

1 Nc Ð 0, UÐ V;

2 for i P U

3 if Ni Ď U

4 Nc Ð Nc ` 1;

5 CNc Ð tiu
Ť

Ni, UÐ UzCNc;

6 end

7 end

It is possible to have some “left-over” vertices which do not belong to any aggregate after the

above procedure. We can, for example, add them to their neighboring aggregates with least

points.

C1 C2 C3 C4

1 2 3 4 5 6 7

1

Figure 6.8: Aggregates and prolongation corresponding to (6.17).fig:aggregates

Whence an aggregation is given, it is easy to define the prolongation matrix, for 1 ď i ď N

and 1 ď j ď Nc, by

`

P
˘

i,j
“

#

1, if i P Cj ;

0, if i R Cj .

With this interpolation, it is straight-forward to see that P1Nc “ 1N . We now give an example
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to explain P in one dimension. Let

P “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RNˆNc . (6.17) eqP

Figure 6.8 shows the aggregation defined by prolongation P in (6.17).

Of course, there are different ways to form aggregates and we now give another approach.

The algorithm to construct coarse grid and prolongation is

Listing 6.4: Another aggregation method

1 UÐ V;

2 for i P U

3 Si Ð tj P U : j is strongly coupled with iu;

4 construct a column of prolongation P based on Si;

5 UÐ Uz
`

tiu
Ť

Si
˘

;

6 end

Smoothed aggregation AMG

The unsmoothed aggregation methods are very simple but usually converge slowly. There are

two ways to improve their convergence behavior. One way is to employ a more complicated

nested iteration, like the K-cycle multigrid method discussed in §6.2. And the other way is

to enlarge the aggregates and smooth out the basis functions. The latter approach gives the

smoothed aggregation AMG methods.

Assume that all variables are partitioned into non-overlapping subsets
 

Ci
(Nc
i“1

. We further

assume that each Ci has at least one interior point, i.e., there exists an index ki P Ci such that
`

A
˘

ki,j
“ 0 for any j R Ci. Suppose that 1 is in the null space of A, namely, A1 “ 0. Define

1ipxjq :“

#

1pxjq, if j P Ci;

0, otherwise.

Apparently,
ř

i 1i “ 1 and
`

A1i
˘

ki
“ 0. We now smooth out these piecewise basis functions by,

for example, one step of weighted Jacobi iteration

ψi “ pI ´ ωD
´1Aq1i.
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Hence we have the partition of unity

ÿ

i

ψi “ pI ´ ωD
´1Aq

ÿ

i

1i “ pI ´ ωD
´1Aq1 “ 1.

Thus we can obtain

1pxkiq “
ÿ

j

ψjpxkiq “
ÿ

j

pI ´ ωD´1Aq1ipxkiq “ 1ipxkiq ´ ωD
´1A1ipxkiq,

which implies that D´1A1ipxkiq “ 0 and ψipxkiq “ 1. We can define the prolongation

PSA :“
`

ψ1, ψ2, . . . , ψNc
˘

.

Define 1c :“ p1, . . . , 1qT P RNc . Hence we have PSA1c “ 1. Furthermore, the coarse level matrix

Ac “ P TSAAPSA satisfies that

Ac1c “ P TSAA
ÿ

i

ψi “ P TSAA1 “ 0.

By applying this definition recursively, we can finish the AMG setup for the smoothed aggrega-

tion method.

Listing 6.5: Smoothed aggregation method

1 UÐ V;

2 for i P U

3 Si Ð tj P U : j is strongly coupled with iu;

4 construct a column of prolongation P based on Si;

5 UÐ Uz
`

tiu
Ť

Si
˘

;

6 end

7 Smooth the basis functions using the weighted Jacobi method PSA “ pI ´ ωD
´1AqP;

We have mentioned in the previous subsection that there are different ways to form aggre-

gates. After forming aggregates one can apply UA or SA to give prolongation. Now we do

preliminary tests on aggregation methods for solving the 2D Poisson’s equation using the five-

point stencil; see Table 6.2. The AMG methods are applied as preconditioners of PCG. Note

that, for the SA method, we use the standard V-cycle multigrid in the solve phase; on the other

hand, for the UA methods, we use the K-cycle multigrid.

6.6 Homework problems

prob:GMGconv HW 6.1. Show the geometric multigrid V-cycle (Algorithm 6.1) is uniformly convergent in Rd.

prob:interp-proj HW 6.2. If A “ ´∆, show that the interpolant Jl : V ÞÑ Vl is equal to the p¨, ¨qA-projection

Πl : V ÞÑ Vl.
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Aggregation method SA [53] UA [53] Pairwise UA [48]

Number of levels 5 5 7
Operator complexity 1.364 1.264 1.332
Setup time (sec) 0.557 0.171 0.277
Number of iterations 16 21 12
Solve time (sec) 1.223 1.696 1.336

Table 6.2: Solving 2D five-point stencil finite difference of the Poisson’s equation with 1 million
DOF using different aggregation methods (stopping criteria for PCG is the relative residual
smaller than 10´6).tab:aggregation

prob:decompH1 HW 6.3. Let Ω “ p0, 1q and v P Vh be a P1 Lagrange finite element function. Show that

|v|21 “
řL
l“l |vl|

2
1.

prob:W-cycle HW 6.4. Let qptq “ p1´ tq2. Show that Bc,2 “ pI ´ qpBcAcqqA´1
c can be obtained by (6.4).

prob:FMG HW 6.5. Show the work estimate of the full multigrid method is OpNq.



Chapter 7

Fluid Problems

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis

and algorithms to solve and analyze fluid problems. Computers are used to perform the calcu-

lations required to simulate liquids or/and gases with surfaces defined by boundary conditions.

The fundamental basis of most CFD problems are the Navier–Stokes (NS) equations, which

define single-phase fluid flows. These equations can be simplified by removing terms describing

viscous actions to yield the Euler equations. These equations can be simplified by dropping the

nonlinear convection term to yield the Stokes equation. In this chapter, we discuss multilevel

iterative methods suitable for problems arising from CFD.

7.1 The Navier–Stokes equations ‹

The Navier–Stokes equations describe the motion of viscous fluid substances. These balance

equations arise from applying the Newton’s second law to fluid motion, together with the as-

sumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the

gradient of velocity) and a pressure term.

Flow map

Let Ω0 be an open bounded set in Rd (d “ 2, 3). As a convention, we denote the location of a

particle in Ω0 by X “ pX1, . . . , Xdq. This is the configuration at time t “ 0, which is also called

the initial configuration. To describe movement of particles, we denote the current configuration

as Ωt at any time t ě 0. The position of a particle at time t is denoted by x “ px1, . . . , xdq; see

Figure 7.1. The Lagrangian specification of the flow field is a way of looking at particle motion

where the observer follows an individual particle as it moves through space and time; see the

right figure in Figure 7.1. The Eulerian specification of the flow field is a way of looking at

137
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Figure 7.1: From initial configuration Ω0 to current configuration Ωt.fig:configuration

particle motion that focuses on specific locations in the space through which the fluid flows as

time passes; see the left figure in Figure 7.1.

For a vector-valued function f : Ωt ÞÑ Rd, the divergence operator can then be written as

∇ ¨ f :“
řd
i“1 Bifi. The gradient tensor ∇f with p∇fqi,j “ Bjfi. Let a P Rd be a constant

vector field and pa ¨ ∇qf “ přd
i“1 aiBiqf . We define an inner product of two gradient matrices

∇f : ∇g “
řd
i“1 ∇fi ¨ ∇gi. Let up¨, tq : Ωt ÞÑ Rd be the velocity field at a fixed time t. The

gradient of u is denoted by ∇u “ pBjuiqi,j . Furthermore, ∇u is often divided into the symmetric

part and the anti-symmetric part. The symmetric gradient is denoted as εpuq :“ 1
2p∇u`∇uT q

and it is the so-called strain rate.

We are ready to introduce an important concept to describe trajectory of particles, namely,

the flow map xpX, tq, which is the trajectory of a particle X along time. We define that

9x “
dxpX, tq

dt
“ upx, tq and xpX, 0q “ X. (7.1) eqn:flowmap

This simple one-dimensional ordinary differential equation (ODE) is called the characteristic

equation. Hence xp¨, tq is a mapping from the initial configuration Ω0 to the current configuration

Ωt, or deformation. The deformation gradient and its determinant are then defined as

F :“
Bx

BX
and J :“ |F | “ detpF q, (7.2) eqn:defgrad

respectively. F is also called the Jacobian matrix.

For any function fp¨, tq : Ωt ÞÑ R, we can easily derive that

9f :“
dfpx, tq

dt
“ ∇f ¨ dx

dt
` ft “ ft ` u ¨∇f, (7.3) eqn:fdot
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which is usually called the material derivative of f . Apparently, F and J are functions of t.

Using the well-known Jacobi’s formula in matrix calculus, we can show that

9J “ J trpF´1 9F q. (7.4) eqn:JacobiFormula

Hence we can immediately obtain

9J “ J trp
BX

Bx

B 9x

BX
q “ J trp∇uq “ Jp∇ ¨ uq. (7.5) eqn:Jdot

This way, we get an ODE for J , i.e.

9J “ p∇ ¨ uqJ and Jp0q “ 1. (7.6) eqn:Jode

In fact, we can also obtain the variation of the determinant of F ,

δ|F | “ |F | trpF´1δF q.

We can also derive similar results for the deformation gradient F itself:

9F “
d

dt
p
Bx

BX
q “

B 9x

BX
“
Bu

BX
“ ∇uF. (7.7) eqn:Fdot

We can easily immediately see that

Ft ` u ¨∇F “ ∇uF and F p0q “ I. (7.8) eqn:F

Volume and mass conservation

A very useful trick for doing calculus in continuum mechanics is the pull-back (from Ωt to Ω0)

and push-forward (from Ω0 to Ωt) argument. We first give an example:

d

dt

ż

Ωt

fpx, tq dx “
d

dt

ż

Ω0

fpxpX, tq, tqJ dX

“

ż

Ω0

d

dt
fpxpX, tq, tqJ dX `

ż

Ω0

fpxpX, tq, tq 9J dX

“

ż

Ω0

pft ` u ¨∇f ` f∇ ¨ uqJ dX

“

ż

Ωt

9f ` f∇ ¨ u dx “
ż

Ωt

ft `∇ ¨ pfuq dx. (7.9)

This identity is often called the transport formula.

lem:transport Lemma 7.1 (Transport formula). For a function f : Ωt ÞÑ R and upx, tq :“ dxpX,tq
dt , we have

d

dt

ż

Ωt

fpx, tq dx “

ż

Ωt

ft `∇ ¨ pfuq dx “

ż

Ω0

pft ` u ¨∇f ` f∇ ¨ uqJ dX.
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For a domain Ω Ă Rd, we denote its volume (or area) as |Ω|. We then find that

|Ωt| “

ż

Ωt

1 dx “

ż

Ω0

J dX “ J |Ω0|

For incompressible fluids, we have that the volume preserving property

|Ωt| ” |Ω0| or Jptq ” 1.

From the equation (7.6), we can derive that ∇ ¨ u “ 0. This is the so-called divergence-free

condition.

Denote the density of the material occupying Ωt by ρpx, tq. According to the equation (7.9),

for any region ωt Ă Ωt, we have that

d

dt

ż

ωt

ρpx, tq dx “

ż

ωt

ρt `∇ ¨ pρuq dx

Since this identity holds for any ω, we immediately see that

ρt `∇ ¨ pρuq “ 0 and 9ρ` ρ∇ ¨ u “ 0, (7.10) eqn:masscon

which is called the equation of mass conservation or the continuity equation.

It is clear that integrating the density over any domain ωt gives the mass. Due to mass

conservation, we have that
ż

ω0

ρ0pXq dX “

ż

ωt

ρpx, tq dx “

ż

ω0

ρpxpX, tq, tqJ dX.

Hence, we have the relation

ρpxpX, tq, tq “
ρ0pXq

J
. (7.11) eqn:rhoratio

If the incompressible condition ∇ ¨ u “ 0 holds, we obtain that ρpxpX, tq, tq “ ρ0pXq.

If ρ ” ρ0 is a constant, then (7.10) gives the divergence-free condition immediately. On the

other hand, if we assume incompressibility, we can get a simplified equation:

ρt ` pu ¨∇qρ “ 0 or 9ρ “ 0. (7.12) eqn:masscon1

Together with ρpX, 0q “ ρ0 being a constant, we can get ρ ” ρ0 for all time t P r0, T s.

Balance of momentum

Now we consider the incompressible Newtonian fluids. Due to the Newton’s Second Law, we

have the balance of momentum

d

dt

ż

Ωt

ρu dx “ ForcepΩtq. (7.13) eqn:Newton2
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The left-hand side of the above equation is the rate of change for the momentum. Using the

transport formula (Lemma 7.1), we derive that

d

dt

ż

Ωt

ρu dx “

ż

Ω0

pρt ` u ¨∇ρqu` ρput ` u ¨∇uq dX.

Due to the mass conservation and incompressibility (7.12), we then have

d

dt

ż

Ωt

ρu dx “

ż

Ωt

ρput ` u ¨∇uq dx. (7.14) eqn:momentumLHS

On the other hand, the right-hand side of the Newton’s Second Law is the total force acting on

Ωt. We have, from the divergence theorem, that

ForcepΩtq :“

ż

Ωt

f dx`

ż

BΩt

T ¨ n dS “

ż

Ωt

f `∇ ¨T dx,

where f is the total external body force (like gravity), T is the traction tensor on the boundary

of Ωt, and n is the outer normal direction on the boundary BΩt. The exact form of T depends

on the underlying constitutive laws. For Newtonian fluids, the traction can be defined as

T :“ ´pI ` 2µεpuq, (7.15) eqn:T

where p is the pressure and µ is the viscosity.

For incompressible fluids, we have ∇ ¨ u “ 0. In turn, we can obtain (see HW 7.1) that

`

∇ ¨ p2εpuqq
˘

j
“

d
ÿ

i“1

Bipui,j ` uj,iq “
d
ÿ

i“1

Bjui,i `
d
ÿ

i“1

Biuj,i “ ∆uj ,

which means

2∇ ¨ εpuq “ ∆u. (7.16) eqn:div_Laplace

This way we can get the momentum equation (balance of force) for incompressible Newtonian

fluids:

ρput ` u ¨∇uq “ ´∇p` µ∆u. (7.17) eqn:momentum

If the density ρ is a constant, we further simplify the above equation (by modifying the definition

of p and µ) to give

ut ` u ¨∇u “ ´∇p` µ∆u. (7.18) eqn:momentum1
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Mathematical models
ssc:model

To summarize, we have derived the mathematical model for incompressible Newtonian fluids,

i.e., the Navier–Stokes (NS) equations:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ρput ` u ¨∇uq ´ µ∆u`∇p “ f , Ωt balance of momentum;

ρt `∇ ¨ pρuq “ 0, Ωt conservation of mass;

∇ ¨ u “ 0, Ωt incompressibility;

u “ 0, BΩt no-slip boundary;

u|t“0 “ u0, Ωt initial condition.

(7.19) eqn:NS

If we assume the density ρ is a constant, then we can write (7.19) as follows:

$

’

’

’

’

’

&

’

’

’

’

’

%

ut ` u ¨∇u´ µ∆u`∇p “ f , Ωt momentum equation;

∇ ¨ u “ 0, Ωt continuity equation;

u “ 0, BΩt no-slip boundary;

u|t“0 “ u0, Ωt initial condition.

(7.20) eqn:NS1

Now we have the mathematical model for incompressible viscous Newtonian fluids. If we

consider ideal fluids (viscosity µ “ 0) and assume that there is no external body force (f “ 0),

then we get the incompressible Euler equations:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ρput ` u ¨∇uq `∇p “ 0, Ωt balance of momentum;

ρt `∇ ¨ pρuq “ 0, Ωt conservation of mass;

∇ ¨ u “ 0, Ωt incompressibility;

u ¨ n “ 0, BΩt no-flow boundary;

u|t“0 “ u0, Ωt initial condition.

(7.21) eqn:Euler

If the density ρ is a constant, then we have the following simplified form:

$

’

’

’

’

’

&

’

’

’

’

’

%

ut ` u ¨∇u`∇p “ 0, Ωt momentum equation;

∇ ¨ u “ 0, Ωt continuity equation;

u ¨ n “ 0, BΩt no-flow boundary;

u|t“0 “ u0, Ωt initial condition.

(7.22) eqn:Euler1

For numerical simulation of the Navier–Stokes and Euler equations, there are several tech-

nical difficulties. First of all, the incompressibility condition is a constraint on the velocity field

and appropriate finite element spaces need to be selected to discretize this mixed problem. Sec-

ondly, these equations have a nonlinear convection term; when the viscosity coefficient µ is small

(corresponding to high Reynolds number), the convection is essentially dominant.
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7.2 The Stokes equations

For simplicity, we now focus on a linearized problem of the Navier–Stokes equation, namely the

Stokes equation.

The time-dependent Stokes equation

On an open bounded set Ω Ă Rd, we consider
$

’

’

’

’

’

&

’

’

’

’

’

%

ut ´ µ∆u`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ;

u|t“0 “ u0, Ω.

(7.23) eqn:Stokes

This set of equations is usually referred to as the time-dependent Stokes equations. After time

discretization, we need to solve the Stokes-like equations
$

’

’

&

’

’

%

pI ´ ε2∆qu`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(7.24) eqn:Stokes1time

We can further simplify the discussion and only consider the following steady-state Stokes

equations, i.e.,
$

’

’

&

’

’

%

´∆u`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(7.25) eqn:Stokes1

Let V :“
“

H1
0 pΩq

‰d
and Q :“ L2

0pΩq “
 

q P L2pΩq :
ş

Ω q “ 0
(

. The weak form of the Stokes

equation (7.25) can be written as: Find u P V and p P Q, such that
$

’

&

’

%

2

ż

Ω
εpuq : εpvq dx` pp, ∇ ¨ vq “ pf ,vq, @v P V ;

p∇ ¨ u, qq “ 0, @ q P Q.

(7.26) eqn:Stokes1w

The derivation is straightforward and hence leave to the readers; see HW 7.2.

Remark 7.1 (Constrained energy minimization). We can view the Stokes equations as a con-

strained energy minimization problem

min
vPZ

ż

Ω
εpvq : εpvq dx´

ż

Ω
f ¨ v dx,

where Z :“ tv P V : ∇ ¨ v “ 0u is the subspace of divergence-free functions. The equation

(7.26) is the first-order optimality condition of this constrained minimization problem and p is

the Lagrange multiplier.
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The Brezzi theory

Let V 1 and Q1 be the dual spaces of V and Q, respectively. Generally speaking, we can put the

Stokes problem in an abstract framework and consider the following saddle-point problem: For

any given pf, gq P V 1 ˆQ1, find a pair pu, pq P V ˆQ, such that the following system holds

$

&

%

aru, vs ` brv, ps “ 〈f, v〉 , @v P V ;

bru, qs “ 〈g, q〉 , @q P Q.
(7.27) eqn:saddle

Here ar¨, ¨s : V ˆ V ÞÑ R and br¨, ¨s : V ˆQ ÞÑ R are continuous bilinear forms, i.e.,

aru, vs ď Ca}u}V }v}V , @u, v P V ,

bru, ps ď Cb}u}V }p}Q, @u P V , p P Q.

We can identify a linear operator A : V ÞÑ V 1 such that

〈Au, v〉 “ aru, vs, @u P V , v P V

and another linear operator B : V ÞÑ Q1 (or its adjoint BT : Q ÞÑ V 1) such that

〈Bu, p〉 “
〈
u,BT p

〉
“ bru, ps, @u P V , p P Q.

Hence (7.27) can be written in the following operator form

$

&

%

Au` BT p “ f,

Bu “ g.

We now analyze under what condition(s) the weak formulation (7.27) is well-posed. We

define the kernel space of B as

Z :“ nullpBq “
 

v P V : brv, qs “ 0, @q P Q
(

Ă V .

Because br¨, ¨s is continuous, Z is closed. Hence we can give an orthogonal decomposition

V “ Z ‘Z K “ nullpBq ‘ nullpBqK.

For any u P V , we have u “ u0 ` uK, with u0 P nullpBq and uK P nullpBqK.

In order to solve Bu “ g, we only need to solve BuK “ g. Using the inf-sup theory discussed

in §1.1, we can see that, if B is surjective, namely,

inf
qPQ

sup
vPV

brv, qs

}v}V }q}Q
“ β ą 0, (7.28) eqn:infsupB
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then uK exists. Furthermore, it is easy to see that uK is also unique1. Hence we have B : Z K ÞÑ

Q1 and BT : Q ÞÑ pZ Kq1 are isomorphisms.

Now we only need to show the existence and uniqueness of the following problem: Find

u0 P Z , such that

aru0, vs “ 〈f, v〉´ aruK, vs, @ v P Z .

According to the Nečas Theorem 1.4, we know that the existence and uniqueness of u0 is

equivalent to the following inf-sup conditions

inf
uPZ

sup
vPZ

aru, vs

}u}V }v}V
“ inf

vPZ
sup
uPZ

aru, vs

}u}V }v}V
“ α ą 0. (7.29) eqn:infsupA

With the conditions (7.29) and (7.28), we obtain a unique solution u “ u0 ` uK.

We can find the solution for the pressure variable by solving

BT p “ f ´Au. (7.30) eqn:Bp

For any v P Z “ nullpBq, it is easy to see that

〈f ´Au, v〉 “
〈
BT p, v

〉
“ 〈p,Bv〉 “ 0.

Hence, f ´ Au P pZ Kq1 “ tw P V 1 : 〈w, v〉 “ 0, @v P Z u. Because BT : Q ÞÑ pZ Kq1 is an

isomorphism, there is a unique solution to (7.30).

Hence we obtain the following well-posedness result [21, Theorem 1.1]:

thm:Brezzi Theorem 7.1 (Brezzi Theorem). For continuous bilinear forms ar¨, ¨s and br¨, ¨s, the saddle-

point problem (7.27) is well-posed if and only if (7.29) and (7.28) hold. Furthermore, the

solution pu, pq satisfies the stability condition

}u}V ` }p}Q À }f}V 1 ` }g}Q1 .

rem:mixed-inf-sup Remark 7.2 (Inf-sup condition of the mixed formulation). Let X :“ V ˆQ. We define a new

bilinear form ã : X ˆX ÞÑ R

ãrpu, pq, pv, qqs :“ aru, vs ` brv, ps ` bru, qs.

Then the saddle-point problem (7.27) is equivalent to finding pu, pq PX such that

ãrpu, pq, pv, qqs “ 〈f, v〉` 〈g, q〉 , @pv, qq PX . (7.31) eqn:saddle2

If both ar¨, ¨s and br¨, ¨s are continuous, then ãr¨, ¨s is also continuous. If ar¨, ¨s and br¨, ¨s satisfy

the standard Brezzi conditions (7.29) and (7.28), respectively, then ãr¨, ¨s satisfies the inf-sup

condition as well.

1Suppose there is another solution ũK, then BpuK ´ ũKq “ 0. In turn, we have uK ´ ũK is in nullpBq. Due to
uK ´ ũK P nullpBqK, we find uK ´ ũK “ 0.
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Well-posedness of the Stokes problem

In view of the general theory developed in the previous subsection, we can define

aru,vs :“ 2

ż

Ω
εpuq : εpvq dx A :“ ´∆ (7.32)

brv, qs :“ ´

ż

Ω
∇ ¨ v q dx B :“ ´∇¨, BT :“ ∇ (7.33)

In this case, the inf-sup condition (7.29) is trivial since the coercive condition holds, i.e.,
ż

Ω
εpuq : εpuq ě α}u}21, @u P rH1

0 pΩqs
d.

Hence we only need to check the inf-sup condition for br¨, ¨s.

Lemma 7.2 (Inf-sup condition for divergence operator). For any q P Q “ L2
0pΩq, there exists

v P V “ rH1
0 pΩqs

d such that

∇ ¨ v “ q and }v}1 À }q}0.

So the inf-sup condition (7.28) holds.

Proof. This non-trivial result goes back to Nečas and a proof can be found in [33, III.3.1].

Remark 7.3 (Existence of solution). It has been shown in the above lemma that rangepBq “
L2pΩq{R – Q. Or equivalently, we have nullpBT qŞQ “ t0u.

Using the previous lemma and the Brezzi theorem, we can easily get the following result:

thm:Stokes_wellposed Theorem 7.2 (Well-posedness of the Stokes equations). There exists a unique solution pu, pq P

rH1
0 pΩqs

d ˆ L2
0pΩq to the weak form of the Stokes equation (7.26) and

}u}1 ` }p}0 À }f}´1.

Penalty method for the Stokes problem ‹

In general, there are two approaches to approximate the Stokes problem. The first one is to

approximate (7.26) directly. An alternative method is to formulate the original problem using

a penalty method as

Find u P V : 2

ż

Ω
εpuq : εpvq dx` γp∇ ¨ u, ∇ ¨ vq “ pf ,vq, @v P V . (7.34) eqn:Stokes2w

The above equation can also be seen in the linear elasticity problems and it is known for

causing the locking phenomena2 for many finite element methods when γ is big. This is usually

caused by overly constraint on the velocity space. To cure such a problem, penalty methods

introduce selective or reduced integration procedures. It has been shown that penalty methods

are sometimes equivalent to mixed methods [42].
2The computed velocity is vanishing or unnaturally small for big λ.
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7.3 Mixed finite element methods

In this section, we consider conforming mixed finite element methods for the Stokes equations.

Let Vh Ă V “ rH1
0 pΩqs

d and Qh Ă Q “ L2
0pΩq be finite dimensional spaces. Find uh P Vh and

ph P Qh, such that
$

’

&

’

%

2

ż

Ω
εpuhq : εpvhq dx´ pph, ∇ ¨ vhq “ pf ,vhq, @vh P Vh,

p∇ ¨ uh, qhq “ 0, @ qh P Qh.

(7.35) eqn:Stokes1d

The existence of the discrete solution puh, phq is straightforward due to the conformity of the

approximation spaces.

Well-posedness and convergence

Let Zh “ nullpBhq be the kernel of the discrete divergence operator. In fact, the coercivity of

ar¨, ¨s yields that

inf
uhPZh

sup
vhPZh

aruh,vhs

}uh}1}vh}1
“ αh ą 0. (7.36) eqn:inf_sup_Ah

If Zh Ă Z and the coercivity condition holds, we have the following optimal approximation

property by the Céa’s lemma (Lemma 3.1):

}u´ uh}V ď
Ca
αh

inf
vhPZh

}u´ vh}V .

However, it is not easy to make the finite element kernel space Zh Ă Z . A sufficient condition

for this inclusion property is BpVhq Ă Qh, which suggests Qh should be large enough for a fixed

space Vh. In fact, we have

Bhuh “ 0, in Q1h ðñ pBuh, qhq “ 0, @qh P Qh.

Furthermore, we also have

Buh “ 0, in Q1 ðñ pBuh, qq “ 0, @q P Q.

If uh P Zh and q P Q, then pBuh, qq “ pBuh, q0 ` qKq “ pBuh, q0q ` pBuh, qKq “ 0, where

q “ q0`qK with q0 P Qh. Notice that pBuh, qKq “ 0 because the inclusion condition BpVhq Ă Qh.

If Zh Ć Z , then there is a variational crime and we have following estimate:

}u´ uh}V ď
´

1`
Ca
αh

¯

inf
vPZh

}u´ v}V `
1

αh
sup

wPZhzt0u

ˇ

ˇaru´ uh,ws
ˇ

ˇ

}w}V
.

For w P Zh, we have

aru´ uh,ws “ aru,ws ´ pf ,vq “ ´brw, ps “ ´brw, p´ qs,
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for any q P Qh. Because br¨, ¨s is continues, we find that

ˇ

ˇaru´ uh,ws
ˇ

ˇ ď Cb}w}V }p´ q}Q.

We can then conclude with the following best approximation result:

Lemma 7.3 (Quasi-optimality for velocity). Let Vh Ă V and Qh Ă Q. If the bilinear form

ar¨, ¨s is coercive, then we have

}u´ uh}V ď
´

1`
Ca
αh

¯

inf
vPZh

}u´ v}V `
Cb
αh

inf
qPQh

}p´ q}Q.

We have the identity

pBhuh, qhq “ bruh, qhs “ pBuh, qhq, @qh P Qh.

In the other words, Bhuh is the L2-projection of Buh onto Qh. If nullpBTh q is not trivial, then

rangepBhq is strictly included in Qh. This could lead to ill-posed problems. For a fixed Qh, the

velocity approximation space Vh should be rich enough in order to guarantee the discrete inf-sup

condition:

inf
qhPQh

sup
vhPVh

bpvh, qhq

}vh}1}qh}0
“ βh ą 0. (7.37) eqn:inf_sup_Bh

The condition nullpBTh q “ t0u is necessary for the inf-sup condition above. If nullpBTh q is non-

trivial, then the numerical solution ph is not unique, namely, ph ` sh is also a solution when

sh P nullpBTh q. In this case, we usually find the computed pressure is oscillatory and, hence,

nullpBTh q is often referred to as the space of spurious pressure modes.

Theorem 7.3 (Quasi-optimality). Let Vh Ă V and Qh Ă Q. If the bilinear form ar¨, ¨s is

coercive and the inf-sup condition (7.37) holds with βh ě β0 ą 0, then we have

}u´ uh}V ` }p´ ph}Q À inf
vPZh

}u´ v}V ` inf
qPQh

}p´ q}Q.

Some stable finite element pairs ‹

From the above discussions, we conclude that: To balance computational efforts and convergence

rates for the velocity in rH1
0 pΩqs

d and the pressure in L2
0pΩq, it is better to use pk` 1q-th degree

of polynomials for Vh and k-th degree of polynomials for Qh.

Remark 7.4 (Constraint ratio). An empirical approach has been used to check the balance

between velocity and pressure approximation spaces. The so-called constraint ratio is defined as

Cr :“ dimQh{dimVh.

Apparently, if Cr ą 1 then number of constraints exceeds the number of variables, which will

usually cause locking. On the other hand, if Cr is too small, then divergence free condition is

not approximated accurately enough.
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The easiest and seemingly natural choice for the mixed finite element spaces is the pair of the

lowest order polynomials P 1,0
h –P 0

h . Unfortunately, this pair does not satisfy the discrete inf-sup

condition and we have to either enlarge velocity field finite element space or restrict the pressure

space. There are many possible stable pairs; see the survey paper [9] and references therein for

more details. Here we just name a few:

•
“

P k,0h

‰d
–P k´1,0

h for k ě 2, Taylor–Hood

•
“

Qk,0h
‰d

–Qk´1,0
h for k ě 2, Taylor–Hood

•
“

P 1,0
h ‘ B3

τ

‰2
–P 0

h , where B3
τ are cubic bubble functions, MINI

•
“

P 1,0
h{2

‰2
–P 0

h

•
“

P 2,0
h

‰d
–P 0

h , important theoretically, but degree not matching

•
“

P 2,0
h ‘ B3

τ

‰2
–P 1,´1, Crouzeix–Raviart

•
“

P 2,0
h ‘ B4

τ

‰3
–P 1,´1, Crouzeix–Raviart

•
“

P 1,NC
h

‰d
–P 0

h , non-conforming Crouzeix–Raviart

•
“

P k,0h

‰2
–P k´1,´1

h for k ě 4, Scott–Vogelius

•
“

Qk,0h
‰d

–P k´1,´1
h for k ě 2

Constructing stable finite difference schemes for the Stokes equation lacks of theoretical

guidance like the Babuška–Brezzi condition discussed above. However we can expect that the

standard five-point stencil does not work for the Stokes equation. This is because the five-point

stencil can be viewed as Q1,0
h ´Q1,0

h finite element with a specific quadrature rule. If we change

the pressure discretization to the center of cells, then it yields Q1,0
h ´ Q0,´1

h . And, apparently,

both finite element pairs are not stable. The main idea of the Marker-and-Cell (MAC) scheme is

to place the degrees of freedom for velocity and pressure at different locations. More specifically,

the pressure p is defined at the cell centers, the velocity component u1 is defined at the middle

points of vertical edges, and the velocity component u2 defined at the middle points of horizontal

edges; see Figure 7.2. This method is same as the RT0 finite element on rectangular grids.

Mixed methods for the Poisson’s equation ‹
sec:MixedPoisson

Mixed finite element methods have been applied to our model problem, the Poisson’s equa-

tion, as well. In this section, we use this model problem to further explain how to construct

preconditioners arising from the saddle-point problems.
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Figure 7.2: A sample discretization using the MAC schemefig:mac

1○ Sometimes the mixed formulation of the Poisson’s equation is used for numerical treat-

ment: Find pu, pq P H0pdiv,Ωq ˆ L2
0pΩq such that

$

&

%

pu,vq ` pp, ∇ ¨ vq “ xf ,vy, @v P H0pdiv,Ωq;

p∇ ¨ u, qq “ xg, qy, @ q P L2
0pΩq.

(7.38) eqn:PoissonMixed1

Here Hpdiv,Ωq consists of all functions in rL2pΩqsd with divergence in L2pΩq and H0pdiv,Ωq

contains the Hpdiv,Ωq-functions with vanishing normal components on the boundary BΩ. Define

an inner product

pu,vqH0pdiv,Ωq :“ pu,vq ` p∇ ¨ u,∇ ¨ vq. (7.39) eqn:Hdiv-inner

This problem corresponds to the mixed formulation of the Poisson’s equation with the Neumann

boundary condition.

If u P Z is divergence free, then }u}H0pdiv,Ωq “ }u}0,Ω. Hence we can easily verify the Brezzi

conditions hold for this problem. As a consequence, the operator

Ã0 “

˜

I ´ grad

div 0

¸

: H0pdiv,Ωq ˆ L2
0pΩq ÞÑ H0pdiv,Ωq1 ˆ L2

0pΩq

is an isomorphism. The canonical preconditioner is a block diagonal isomorphism

D̃p1q0 “

˜

pI ´ grad divq´1 0

0 I

¸

: H0pdiv,Ωq1 ˆ L2
0pΩq ÞÑ H0pdiv,Ωq ˆ L2

0pΩq.
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2○ There is an alternative mixed formulation for the Poisson’s equation: Find pu, pq P

rL2pΩqsd ˆ
`

H1pΩq
Ş

L2
0pΩq

˘

such that

$

&

%

pu,vq ´ p∇p,vq “ xf ,vy, @v P rL2pΩqsd;

´pu,∇qq “ xg, qy, @ q P H1pΩq
Ş

L2
0pΩq.

(7.40) eqn:PoissonMixed1

The Brezzi conditions can be verified using the Poincaré’s inequality. Hence Ã is also well-defined

on rL2pΩqsd ˆ
`

H1pΩq
Ş

L2
0pΩq

˘

. And in this case, the canonical preconditioner is

D̃p2q0 “

˜

I 0

0 p´∆q´1

¸

: rL2pΩqsd ˆ
`

H1pΩq
č

L2
0pΩq

˘1
ÞÑ rL2pΩqsd ˆ

`

H1pΩq
č

L2
0pΩq

˘

.

Apparently, this preconditioner is significantly different than the one given in the previous

subsection. As a result, different choices of approximation space and its norm can yield very

different solution methods.

7.4 Canonical preconditioners

In this section, we discuss how to construct canonical preconditioners for the saddle-point prob-

lems, like the Stokes equation and the time-dependent Stokes equation. The basic idea follows

the discussion in §2.2.

Preconditioning the Stokes problem

We notice that the corresponding operator of the Stokes system

Ã :“

˜

´∆ ´ grad

div 0

¸

is an isomorphism mapping from rH1
0 pΩqs

dˆL2
0pΩq onto rH´1pΩqsdˆL2

0pΩq. A natural precon-

ditioner would be the classical block diagonal preconditioner

D̃ “
˜

p´∆q´1 0

0 I

¸

.

This observation immediately motivates the classical block diagonal preconditioner [13].

Similar to the continuous case, we can construct natural preconditioners based on the map-

ping properties. Let tXhu be a family of finite element spaces and it is conforming in the sense

that Xh Ă X :“ rH1
0 pΩqs

d ˆ L2
0pΩq. Consider the discrete Stokes problem: Find puh, phq P Xh

such that

ãrpuh, phq, pvh, qhqs “ 〈f,vh〉 , @pvh, qhq P Xh.
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The corresponding linear map Ãh : Xh ÞÑ X 1h is given by

xÃhx, yy “ ãrx, ys, @x, y P Xh.

Note that, in this case, ã is not positive definite and the system Ãh can be singular.

According to Remark 7.2, the stable discretizations can be characterized by a discrete inf-sup

condition: There exists a constant α0, independent of h, such that

inf
xPXh

sup
yPXh

ãrx, ys

}x}X }y}X
ě α0 ą 0. (7.41) eqn:dis-mixed-inf-sup

This condition does not follow from the corresponding continuous inf-sup condition. Similar to

the continuous case, we can define a preconditioner D̃h : X 1h ÞÑ Xh by

pD̃hf, yqX “ xf, yy, @y P Xh.

That is to say

D̃h :“

˜

p´∆hq
´1 0

0 I´1
h

¸

. (7.42) eqn:Stokes-precond

Apparently, if Ãh is symmetric, D̃hÃh is symmetric with respect to p¨, ¨qX and

}D̃hÃh}L pXh;Xhq ď Ca, }pD̃hÃhq
´1}L pXh;Xhq ď α´1

0 .

Hence the condition number κpD̃hÃhq is uniformly bounded.

Preconditioning the time-dependent Stokes problem ‹

We now consider preconditioner for the time-dependent Stokes problem (7.24) where the coeffi-

cient operator is defined as

Ãε :“

˜

I ´ ε2∆ ´ grad

div 0

¸

For this problem, we shall construct a preconditioner which is uniformly convergent with respect

to both h and ε.

We first consider how to construct a preconditioner for Aε “ I ´ ε2∆ corresponding to the

reaction-diffusion equation. In order to study the reaction-diffusion equation Aεu “ f in Ω and

u|BΩ “ 0, we can easily see the natural norm is

}u}L2
Ş

εH1
0

:“
´

}u}20 ` ε
2}∇u}20

¯
1
2
“

´

}u}20 ` ε
2

d
ÿ

i“1

}∇ui}
2
0

¯
1
2
.

The question is what would be the appropriate norm for f .
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Using the classical theory of intersections and sums of Hilbert spaces [8], we can introduce

the norms for X1
Ş

X2 and X1 `X2 as

}u}X1
Ş

X2
:“

´

}u}2X1
` }u}2X2

¯
1
2

and

}u}X1`X2 :“ inf
u“u1`u2

u1PX1,u2PX2

´

}u1}
2
X1
` }u2}

2
X2

¯
1
2
.

If X1
Ş

X2 is dense in both X1 and X2, then

pX1

č

X2q
1 “ X 1

1 `X 1
2 and pX1 `X2q

1 “ X 1
1

č

X 1
2 .

If F P L pX1; Y1q
Ş

L pX2; Y2q, then

F P L pX1

č

X2; Y1

č

Y2q
č

L pX1 `X2; Y1 ` Y2q.

For our purpose, we assume that X1 and X2 are real separable Hilbert spaces and X2 Ă X1.

Hence it is natural to assume }u}X1 ď }u}X2 . For ε ą 0, we consider the norm for spaces

X1
Ş

εX2 by

}u}X1
Ş

εX2
:“

´

}u}2X1
` ε2}u}2X2

¯
1
2
, }f}X 1

1`ε
´1X 1

2
:“ inf

f“f1`f2
f1PX 1

1 ,f2PX
1
2

´

}f1}
2
X 1

1
` ε´2}f2}

2
X 1

2

¯
1
2
.

Apparently, Xε :“ X1
Ş

εX2 and X 1
ε :“ X1 ` ε´1X2 are the same as X1 as sets. As ε tends

to zero, the norms for Xε and X 1
ε approaches the norms } ¨ }X1 and } ¨ }X 1

1
, respectively. In

particular, for the reaction-diffusion problem, we have

Xε “ L2pΩq
č

εH1
0 pΩq and X 1

ε “ L2pΩq ` ε´1H´1pΩq.

As ε goes to zero, both norms approaches the L2-norm. Furthermore, }f}2X 1
ε

is equivalent to

xf, pI ´ ε2∆q´1fy “ xpI ´ ε2∆qu, uy.

Now we are in position to develop preconditioners for the time-dependent Stokes prob-

lem (7.23):

1○ In view of §7.3, we know that Ã0 is bounded from H0pdiv,ΩqˆL2
0pΩq into its dual space.

Hence we consider the operator Ãε on

Xε :“
´

H0pdiv,Ωq
č

εrH1
0 pΩqs

d
¯

ˆL2
0pΩq and X 1

ε :“
´

H0pdiv,Ωq1`ε´1rH´1pΩqsd
¯

ˆL2
0pΩq.

In this case, the two Brezzi conditions holds and Ãε is an isomorphism. In turn, the canonical

preconditioner is of the form

D̃p1qε “

˜

pI ´ grad div´ε2∆q´1 0

0 I

¸

.
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2○ We have seen that Ã0 is also bounded on rL2pΩqsdˆ
`

H1pΩq
Ş

L2
0pΩq

˘

into its dual space.

Furthermore, in order to guarantee the inf-sup condition, the proper norm for the pressure

unknown is [43, 44]:

sup
vPrH1

0 pΩqs
d

pq,∇ ¨ vq
}v}L2

Ş

εH1

“ }∇q}L2`ε´1H´1 „ }q}H1`ε´1L2 .

Motivated by these observations, we can consider

Xε :“
”

L2pΩq
č

εH1
0 pΩq

ıd
ˆ

´

H1pΩq
č

L2
0pΩq ` ε

´1L2
0pΩq

¯

and

X 1
ε :“

”

L2pΩq ` ε´1H´1pΩq
ıd
ˆ

´

pH1pΩq
č

L2
0pΩqq

1
č

εL2
0pΩq

¯

.

This choice of spaces gives a preconditioner of the form

D̃p2qε “

˜

pI ´ ε2∆q´1 0

0 p´∆q´1 ` ε2I

¸

.

Along this line, we can construct discrete block diagonal preconditioners for the time-

dependent Stokes problem [29, 12].

7.5 Block preconditioners

In the previous section, we discussed how to construct canonical (natural) preconditioners based

on the mapping property of the continuous Stokes equation. Now we shall consider the discrete

Stokes problem arising in the mixed finite element method (such as the Taylor–Hood finite

element method) in algebraic setting, i.e.,

Ã

˜

u

p

¸

“

˜

f

g

¸

and Ã :“

˜

A BT

B 0

¸

. (7.43) eqn:dis-saddle

Suppose A P Rnˆn, B P Rmˆn, u P Rn, and p P Rn. Let N “ n `m. Assume that A is SPD

and B has full rank. It is well-known that the coupled system Ã is symmetric, indefinite, and

non-singular.

Block diagonal and lower triangular method

If we consider the block diagonal preconditioner given in the previous section, the preconditioner

can be written as

D̃ :“

˜

A´1 0

0 M´1
p

¸

, (7.44) eqn:diag-precond
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where Mp is the mass matrix corresponding to the pressure approximation space and, hence, it

is well-conditioned; see Remark 3.7. It is easy to check that (7.44) is exactly the algebraic form

of (7.42). Because both A and Mp are symmetric positive definite matrices, the preconditioner

is well-defined.

rem:factorization Remark 7.5 (Block factorizations). We can apply the following block factorizations to the ma-

trix Ã such that

˜

A BT

B 0

¸

“

˜

Iu 0

BA´1 Ip

¸˜

A 0

0 S

¸˜

Iu A´1BT

0 ´Ip

¸

“

˜

A 0

B S

¸˜

Iu A´1BT

0 ´Ip

¸

“

˜

Iu 0

BA´1 ´Ip

¸˜

A BT

0 S

¸

,

where the matrix S :“ BA´1BT is the Schur complement. In fact, D̃ in (7.44) can be viewed

as an approximation of diagpA´1, S´1q.

rem:Schur Remark 7.6 (Schur complement). Since the A is SPD, the Schur complement S “ BA´1BT

is symmetric and positive semi-definite. Moreover, if B has full rank, S is also SPD and we can

apply the CG method to solve the Schur complement equation. However, generally speaking,

S´1p cannot be computed efficiently with acceptable computational cost. Hence the Schur

complement S should be approximated by some approximation Ŝ. There are many different

ways based on approximation of the Schur complement; see the survey paper [6].

We can also use the block lower triangular matrix to construct a preconditioner

T̃ :“

˜

A 0

B Ŝ

¸´1

. (7.45) eqn:lowertrig-precond

In particular, if we replace A by its diagonal part D in the LU decomposition of Remark 7.5,

then we get the so-called SIMPLE preconditioner

T̃SIMPLE :“

˜

Iu D´1BT

0 ´Ip

¸´1 ˜

A 0

B BD´1BT

¸´1

. (7.46) eqn:simple-precond

The name comes from the widely-used SIMPLE method for fluid problems.

Augmented Lagrangian method

One of the most well-known iterative method for solving (7.43) is probably the Uzawa method.

As the last decomposition in Remark 7.5, we can factorize the coefficient matrix as
˜

A BT

B 0

¸

“

˜

Iu 0

BA´1 ´Ip

¸˜

A BT

0 S

¸

.
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This means the original linear system can be rewritten as

˜

A BT

0 S

¸˜

u

p

¸

“

˜

f

BA´1f ´ g

¸

.

As discussed in Remark 7.6, the pressure Schur complement equation might be too expensive

to be solved exactly. We can apply an iterative method to solve it. For example, we can apply

the Richardson’s iteration for the second equation in the above system, i.e.,

pnew “ pold ` ω
´

BA´1f ´ g ´ Spold
¯

“ pold ´ ω
´

g ´BA´1f `BA´1BT pold
¯

.

Hence we can write the above iteration as an alternative direction method

Aunew “ f ´BT pold, pnew “ pold ´ ωpg ´Bunewq. (7.47) eqn:uzawa

The method (7.47) is called the Uzawa iteration and it is just the Richardson iteration for

the Schur complement equation. As we have discussed in §2.1, the method converges with an

appropriate scaling factor ω but the convergence rate is usually very slow. One way to speedup

the convergence is to apply the Augmented Lagrangian method (cf., for example, [32]):

pA` ε´1BTBqunew “ f ` ε´1BT g ´BT pold, pnew “ pold ´ ε´1pg ´Bunewq. (7.48) eqn:AL

rem:UzawaAL Remark 7.7 (Uzawa method and Augmented Lagrangian method). It is easy to see that the

Augmented Lagrangian (AL) method is just the Uzawa method for the modified equation

Ãε

˜

u

p

¸

“

˜

f ` ε´1BT g

g

¸

, where Ãε :“

˜

A` ε´1BTB BT

B 0

¸

. (7.49) eqn:dis-saddle-mod

Furthermore, the damping factor ω is chosen to be ε´1.

thm:AL Theorem 7.4 (Convergence rate of Augmented Lagrangian method). Let pup0q, pp0qq be a given

initial guess and pupmq, ppmqq be the iterates obtained via the Augmented Lagrangian method (7.48).

Then we have

›

›p´ ppmq
›

›

0
ď

´ ε

ε` λ1

¯m›
›p´ pp0q

›

›

0
,

›

›u´ upmq
›

›

A
ď

?
ε
›

›p´ ppm´1q
›

›

0
ď
?
ε
´ ε

ε` λ1

¯m´1›
›p´ pp0q

›

›

0
,

where λ1 is the minimal eigenvalue of S “ BA´1BT .

Sketch of proof. From (7.48) and (7.49), we have

pA` ε´1BTBq
`

u´ upmq
˘

“ ´BT
`

p´ ppm´1q
˘
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and

p´ ppmq “
´

I ´BpεA`BTBq´1BT
¯

`

p´ ppm´1q
˘

.

By the Shermann–Morrison–Woodburry formula, we have

Z :“ BpεA`BTBq´1BT “ Sε ´ SεpI ` Sεq
´1Sε, Sε :“ ε´1BA´1BT .

It is easy to verify that

I ´BpεA`BTBq´1BT “ I ´ Sε ` SεpI ` Sεq
´1Sε “ pI ` Sεq

´1.

The above equality shows ρpZq ď 1 and p´ ppmq “ pI `Sεq
´1
`

p´ ppm´1q
˘

. So the first estimate

follows immediately. The second estimate is obtained by observing

›

›u´ upmq
›

›

2

A
“

´

pA` ε´1BTB ´ ε´1BTBq
`

u´ upmq
˘

, u´ upmq
¯

ď ε
`

Zpp´ ppm´1qq, p´ ppm´1q
˘

and then applying the first estimate.

According to Theorem 7.4, we can make the convergence as fast as we want by adjusting

the parameter ε. However, the price to pay is that, in each iteration, we have to solve a nearly-

singular system with coefficient matrix A` ε´1BTB, which was discussed in [41]. We can also

apply the Augmented Lagrangian method as a preconditioner

T̃AL :“

˜

A` ε´1BTB 0

B εI

¸´1

, (7.50) eqn:AL-precond

which is often referred to as the AL preconditioner [7].

The method is closely related to the grad-div stabilization [22] of the Stokes (or Navier–

Stokes) problem:
$

’

’

&

’

’

%

pI ´ µ∆qu´ ε´1∇∇ ¨ u`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(7.51) eqn:Stokes2

In this modified problem, the coercivity condition automatically holds on the discrete level for

the H0pdivq-norm defined by (7.39). After discrezation by some mixed finite element method, we

obtain discrete systems in the form of (7.48). We can apply the block preconditioners discussed

in the previous subsection to solve the resulting discrete problems; see the survey and numerical

experiments by He and Vuik [36].
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7.6 Multigrid methods for Stokes equation

We can construct coupled multigrid methods for the saddle-point problem (7.43) as well. For the

transfer operators, by applying the similar ideas as in multigrid methods for scalar equations,

we can construct prolongations and restrictions for velocity and pressure variables separately.

Coarse level solvers can also apply the same nested iterations as in §6.2. So we only discuss

smoothers for the Stokes system. Analysis and numerical experiments using different smoothers

have been reviewed in the survey by Larin and Reusken [40]. Apparently, the block precondi-

tioners discussed in the previous section can also be applied as smoothers for coupled multigrid

methods. In this section, we discuss two other widely-used smoothers in practice.

Braess–Sarazin smoother

The Braess–Sarazin smoother is introduced in [11] and can be written as

˜

upm`1q

ppm`1q

¸

“

˜

upmq

ppmq

¸

`

˜

ωD BT

B 0

¸´1 «˜

f

0

¸

´

˜

A BT

B 0

¸˜

upmq

ppmq

¸ff

, (7.52) eqn:Braess

where ω is a positive parameter. This method mimics the damped Jacobi smoother for the

Poisson’s equation.

We need to solve, in each smoothing step, the following the linear system

˜

ωD BT

B 0

¸˜

δupmq

δppmq

¸

“

˜

f ´Aupmq ´BT ppmq

´Bupmq

¸

.

The second equation ensures the discrete divergence free condition, i.e.,

Bupm`1q “ B
`

upmq ` δupmq
˘

“ 0, m “ 1, 2, . . .

Apparently, the Braess–Sarazin smoother can be reduced to an auxiliary pressure equation

`

BD´1BT
˘

δppmq “ ωBupmq `BD´1
`

f ´Aupmq ´BT ppmq
˘

.

The coefficient matrix Ŝ :“ BD´1BT is similar to a scaled discrete Laplace operator on the

pressure space. In practice, we can solve it approximately using an iterative method.

Vanka smoother

Next we introduce a smoother originally proposed by Vanka [54]. In the context of finite element

methods, the Vanka-type smoothers are just block Gauss–Seidel (or Jacobi) methods. Each block

contains degrees of freedom in an element or a set of elements. One of the popular variant of
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Vanka-type smoothers is the so-called pressure-oriented Vanka smoother for continuous pressure

approximations. We only discuss this special case of Vanka smoother here.

For each pressure variable indexed by i (1 ď i ď m), let the set of velocity indices that are

“connected” to i as

Si :“ t1 ď j ď n : bi,j ‰ 0u,

where bi,j is the pi, jq-entry of the matrix B. So we can define an injection to the set of variables

tuj pj P Siq, piu, i.e.,

Ii “

˜

Iu,i 0

0 Ip,i

¸

P Rp|Si|`1qˆpn`mq,

where Ip,ip “ pi and Iu,iu “ pujqjPSi are the corresponding injection matrices for velocity and

pressure, respectively.

We can then apply a multiplicative Schwarz method (or the so-called Full Vanka smoother):

I ´ T̃FVankaÃ “
m
ź

i“1

´

I ´ ITi Ã
´1
i IiÃ

¯

, (7.53) eqn:FVanka

where

Ãi “ IiÃI
T
i “

˜

Ai BT
i

Bi 0

¸

P Rp|Si|`1qˆp|Si|`1q.

We can also use a simplified version (i.e., the Diagonal Vanka smoother):

I ´ T̃DVankaÃ “
m
ź

i“1

´

I ´ ITi D̃
´1
i IiÃ

¯

, (7.54) eqn:DVanka

where

D̃i “

˜

Di BT
i

Bi 0

¸

P Rp|Si|`1qˆp|Si|`1q.

In this case, due to the special nonzero pattern of D̃i, it can be solved very efficiently.

7.7 Homework problems

hw:div-eps HW 7.1. Show the equation (7.16). Hint: In R2, taking divergence of the symmetric gradient,

we get

∇ ¨ εpuq “

¨

˝

B2
1u1 `

1
2B2pB2u1 ` B1u2q

B2
2u2 `

1
2B1pB1u2 ` B2u1q

˛

‚

“

¨

˝

1
2pB

2
1u1 ` B

2
2u1q `

1
2B1pB1u1 ` B2u2q

1
2pB

2
1u2 ` B

2
2u2q `

1
2B2pB1u1 ` B2u2q

˛

‚“
1

2
∆u`

1

2
∇∇ ¨ u.
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hw:Stokes_weak HW 7.2. Derive the weak form (7.26) of the Stokes equations (7.25).

hw:AL HW 7.3. Give the complete proof of Theorem 7.4.



Chapter 8

Optimization Problems

Mathematical optimization (mathematical programming or optimization) is the selection of a

“best” element (with regard to certain criterion) from some set of available alternatives. Many

optimization problems can be written as variational inequalities (VIs); for example, many prob-

lems in economics, operations research, and transportation equilibrium problems. In this chap-

ter, we discuss multilevel iterative methods for solving finite-dimensional variational inequalities.

8.1 Model problems
sec:vi

VIs arise from a wide range of application areas, like mechanics, control theory, engineering,

and finance. After several decades of development, this subject has become very rich on both

theory and numerics. For a general discussion on the existence and regularity, we refer the

interested readers to [38]. For a comprehensive discussion on numerical methods for VIs, we

refer to Glowinski [34].

A model variational inequality

Let ar¨, ¨s and fp¨q be a symmetric bilinear form and a linear form, respectively, and χ P H1
0 pΩq

be an admissible obstacle (for simplicity, we assume the zero boundary condition). Consider the

following elliptic variational inequality (or the obstacle problem): Find u P Kχ :“ tv P H1
0 pΩq :

v ě χu, such that

aru, v ´ us ě fpv ´ uq, @ v P Kχ. (8.1) eqn:evi1

After transformation w :“ u´χ, we arrive at a new problem with a simple inequality constraint:

Find w P K0 :“ tv P H1
0 pΩq : v ě 0u, such that

arw, v ´ ws ě f0pv ´ wq :“ fpv ´ wq ´ arχ, v ´ ws, @ v P K0. (8.2) eqn:evi2

161
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For problem (8.1), the Lagrange multiplier can be defined as σ1 such that

〈σ1puq, ϕ〉 :“ fpϕq ´ aru, ϕs, @ ϕ P H1
0 pΩq. (8.3) eqn:sigma

On the other hand, for (8.2), notice, for any ϕ P H1
0 pΩq, that

〈σ2pwq, ϕ〉 “ f0pϕq ´ arw,ϕs “ fpϕq ´ aru, ϕs “ 〈σ1puq, ϕ〉 .

It is easy to see that

〈σ1puq, v ´ u〉 ď 0, @ v P Kχ, (8.4) eqn:nonpos

or

〈σ2pwq, v ´ w〉 ď 0, @ v P K0.

On the other hand, if σ is the Lagrange multiplier of (8.1), we have

〈σpvq ´ σpuq, ϕ〉 “ ´arv ´ u, ϕs, @ ϕ P H1
0 pΩq.

Hence,

〈σpvq ´ σpuq, v ´ u〉 “ ´arv ´ u, v ´ us “ ´ |||v ´ u|||2 , @ v, u P H1
0 pΩq. (8.5) eqn:mono

Hence, we have 〈σpvq ´ σpuq, v ´ u〉 ď 0, for any v, u P H1
0 pΩq, i.e., σ is a monotone operator.

Remark 8.1 (Uniqueness of solution). Notice that if both u1 and u2 are solutions of the

variational inequality (8.1), by the monotonicity of σ, |||u1 ´ u2||| “ 0 and then we obtain the

uniqueness.

As before, we assume that A : H1
0 pΩq ÞÑ H´1pΩq be the operator corresponding to ar¨, ¨s.

An frequently equivalent formulation of (8.1) is the so-called linear complementarity problem

(LCP): Find a solution u P H1
0 pΩq such that

$

’

’

’

&

’

’

’

%

Au´ f ě 0

u´ χ ě 0

〈Au´ f, u´ χ〉 “ 0.

(8.6) eqn:lcp

The last equation is the so-called complementarity condition.

Proof. If u is a solution of LCP (8.6), then for any v P H1
0 pΩq and v ě χ we have

〈Au´ f, u´ v〉 “ 〈Au´ f, χ´ v〉 ď 0,

in view of the complementarity condition and the sign condition of Au´ f . On the other hand,

if u is solution of (8.1), it is trivial to see that u satisfies the first two conditions of LCP. The

complementarity condition is obtained by taking v “ u` pu´ χq and v “ χ.
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Finite element discretization for VIs

As discussed in §3.1, the domain Ω is partitioned into a quasi-uniform simplexes of size h; this

mesh is denoted by Mh. Let Vh Ă W 1,8
0 pΩq be the continuous piecewise linear finite element

space associated with Mh. The obstacle problem (8.2) can be approximated by a finite element

function uh P K0
Ş

Vh satisfying:

aruh, vh ´ uhs ě f0pvh ´ uhq, @ vh P K0

č

Vh. (8.7) eqn:fem2

As before, we denote all the interior nodes of the partition Mh by G̊pMhq. Let tφzuzPG̊pMhq

be the canonical linear finite element basis of the mesh Mh. Let u “ uh :“
ř

zPG̊pMhq
uzφz

and u “ puzqzPG̊pMhq
, the discrete solution and its nodal value vector (primal vector form),

respectively. Hence we have the following linear system

pv ´ uqT pAu´ ~f0q ě 0, @ v ě 0, (8.8) eqn:dis2

where A is the corresponding stiffness matrix of the bilinear form and ~f0 is the dual vector form

of f0.

Remark 8.2. One can prove (see for example [18]) that the l2-error between the exact solution

u of (8.8) and any approximation solution v satisfies that

}v ´ u}0 À }p~f0 ´Avq`}0,

where the vector p~f0 ´Avq` is defined element-wise by

p~f0 ´Avq`,i “

#

p~f0 ´Avqi if vi ą 0

mintp~f0 ´Avqi, 0u if vi “ 0.

Error and residual
ssc:residual

As usual, we define the energy functional as following

Fpvq :“
1

2
arv, vs ´ fpvq.

Then it follows that

Fpvq ´ Fpuq “ 1

2
|||v ´ u|||2 ´ 〈σ, v ´ u〉 , @ v P Kχ. (8.9) eqn:Idiff

Consider finite element solutions, uh and wh for problems (8.1) and (8.2), respectively. The

differences, in terms of energy, between the finite element solutions and the exact solutions can

be written as

Fpuhq ´ Fpuq “ 1

2
|||uh ´ u|||

2
´ 〈σ, uh ´ u〉

Fpwhq ´ Fpwq “ 1

2
|||wh ´ w|||

2
´ 〈σ,wh ´ w〉 .

(8.10) eqn:diff



CHAPTER 8. OPTIMIZATION PROBLEMS 164

It is easy to see that the variational inequality (8.2) can be written as the following quadratic

minimization problem:

min
wPK0

1

2
arw,ws ´ f0pwq. (8.11) eqn:min2

For finite element approximation, we compute the finite dimensional minimization problem

min
whPVh

ŞK0

1

2
arwh, whs ´ f0pwhq. (8.12) eqn:femmin2

Suppose ŵh is an approximate solution of the above minimization problem. Then the defect

eh :“ wh ´ ŵh satisfies

min
ŵh`ehPVh

ŞK0

1

2
arŵh ` eh, ŵh ` ehs ´ f0pŵh ` ehq “

1

2
areh, ehs ´ f0pehq ` arŵh, ehs ` C,

i.e.,

min
ŵh`ehPVh

ŞK0

1

2
areh, ehs ´ 〈σpŵhq, eh〉 . (8.13) eqn:ErrVI

Notice that it is in the same form as (8.12) but replacing f0 by σpŵhq. Hence the above problem

can be viewed as the error problem; compare this with the error equation in the linear case (1.35).

Whence we have eh, we can update wh “ ŵh ` eh as in the linear case.

8.2 Nonlinear equation and unconstrained minimization

We first consider the unconstrained optimization problem

u “ argmin
vPV

Fpvq. (8.14) eqn:min

If F : V ÞÑ R is a convex function, then the problem is called a convex optimization (or

convex programming). If F is differentiable, a minimizer satisfies the well-known first-order

optimization condition

Gpuq :“ F 1puq “ 0, (8.15) eqn:1st-cond

where G : V ÞÑ R is the Frechet derivative of F . If F is convex, then (8.14) is equivalent

for solving the nonlinear equation (8.15). In particular, if F is quadratic, then the problem is

called a quadratic optimization. Apparently, if F is a convex quadratic functional, then the

problem (8.14) is equivalent to our model problem (2.1), Au “ f , with an SPD operator A “ G1.

Nonlinear solvers

In general, the problem (8.14) is much more difficult to solve than (2.1) due to its nonlinearity.

We can employ a nonlinear iterative solver to linearize (8.15) to obtain a linear (differential) equa-

tion, i.e., linearization then discretization. For example, we may use the standard approaches,
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like the Picard method or the Newton–Raphson method. Another strategy is to discretize the

continuous problem (8.14) or (8.15) in order to obtain a nonlinear algebraic problem

u “ argmin
vPRN

Fpvq (8.16) eqn:dmin

or

Gpuq “ 0. (8.17) eqn:d1st-cond

The idea of coarse-grid correction used in Algorithm 3.1 does not apply any more here because the

classical residual equation is linear. There are basically two approaches to apply the multilevel

idea on this problem—The first approach is to linearize the problem and then apply multigrid

methods to linear problems; The second one is to apply multigrid directly to the nonlinear

problem using the so-called Full Approximation Scheme (FAS).

Newton–Raphson method

There are different ways to linearize a nonlinear problem like (8.15). For simplicity, we now

only consider discrete version of the nonlinear equation, i.e., V “ RN . The most popular

approach is the so-called Newton–Raphson (or Newton) linearization. We apply second-order

Taylor expansion to approximate the objective function near the current iteration upkq P RN ,

i.e.,

Fpupkq ` eq « Fpupkqq ` p∇Fpupkqq, eq ` 1

2
p∇2Fpupkqqe, eq.

In order to find a good incremental correction step, we can consider

epkq “ argmin
ePRN

1

2
p∇2Fpupkqqe, eq ` p∇Fpupkqq, eq “ ´

“

∇2Fpupkqq
‰´1∇Fpupkqq.

This is the Newton–Raphson iteration

upk`1q “ upkq ´
“

∇2Fpupkqq
‰´1∇Fpupkqq. (8.18) eqn:Newton

In the above iteration step, we need to solve a linear system, the Jacobian equation:

Aepkq :“
“

∇2Fpupkqq
‰

epkq “ ´∇Fpupkqq “: rpkq. (8.19) eqn:Jeqn

We can employ the methods discussed in the previous chapters to solve such equations.

Listing 8.1: Newton–Raphson method

1 Given an initial guess u P V and set r Ð ´∇Fpuq;
2 while }r} ą ε

3 solve the Jacobian equation ∇2Fpuqe “ r;

4 find a good stepsize α ą 0;

5 uÐ u` α e; r Ð ´∇Fpuq;
6 end
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The Newton-Raphson method converges very fast (second-order convergence) if the initial

guess is close enough to the exact solution. So if a good initial guess is available, the main

computation cost of the above algorithm is assembling the Jacobian systems and solving it to

acceptable accuracy. If we apply a multigrid algorithm to solve the Jacobian systems, then this

method is usually called Newton-Multigrid method. Similarly, another wide-used approach to

apply a domain decomposition preconditioned Krylov method to solve the Jacobian systems,

then this method is called Newton-Schwarz-Krylov method. Note that we might not need to

assemble the Jacobian system explicitly; instead, we can use a Jacobian-free scheme.

Full approximation scheme

For the nonlinear equation (8.15), the residual corresponding to an approximate solution v can

be defined as

r :“ ´Gpvq “ Gpuq ´ Gpvq (8.20) eqn:nonlinear-res

However, because G is not linear, r ‰ Gpu ´ vq. In FAS, instead of considering the residual

equation as in the linear case, the full equation is solved on the coarse grids.

We now use the following two-grid method to demonstrate the basic idea of FAS. Let up1q

be an approximate solution on the fine grid after several steps of relaxation. On the coarse grid,

according to (8.20), we need to solve the following nonlinear equation

Gc
`

up1qc
˘

´ Gc
`

ITc up1q
˘

“ rc “ ITc r “ ´ITc G
`

up1q
˘

. (8.21) eqn:nonlinear-coarse

This means, on the coarse level, a problem similar to the original problem (with different right-

hand side) should be solved

Gc
`

up1qc
˘

“ Gc
`

ITc up1q
˘

´ ITc G
`

up1q
˘

. (8.22) eqn:nonlinear-coarse1

Usually the right-hand side of the above equation is denoted as τcpu
p1qq and is called the tau

correction. Note that the coarse-level equation Gc can be obtained from the discretization on

the coarse grid. We can also use the Galerkin method

Gcpucq :“ ITc GpIcucq.

Once the problem (8.22) is solved, we correct the approximation as

up2q “ up1q ` Ic
`

up1qc ´ ITc up1q
˘

. (8.23) eqn:nonlinear-correction

Apparently the above idea can be applied recursively as we discussed in §6.2. Because the

coarse-grid problem is solved for the full approximation, rather than the error, the method is

named as the Full Approximation Scheme. In this algorithm, evaluating the nonlinear function

is usually the most expensive part computationally. We summarize the two-grid FAS algorithm

as follows:
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Listing 8.2: Full Approximation Scheme

1 Given an initial guess u P V ;

2 Solve the nonlinear equation Gcpucq “ GcpITc uq ´ ITc Gpuq;
3 uÐ u` Icpuc ´ ITc uq;

Subspace correction methods for convex minimization

Apparently, the idea of subspace correction methods can be easily extended to unconstrained

convex minimization problems here. The convergence analysis of SSC and PSC methods has

been given by Tai and Xu [52].

8.3 Constrained minimization

In this section, we consider multilevel solvers for constrained minimization problems

u “ argmin
vPK0

Fpvq :“
1

2
arv, vs ´ fpvq, (8.24) eqn:EVI2

which is equivalent to the variational inequality (8.2).

Projected full approximation method

Since the the above problem is nonlinear, we can apply the Full Approximation Scheme intro-

duced in the previous section to solve this problem. And this is the so-called Projected Fully

Approximation Scheme (PFAS) by Brandt and Cryer [18].

As we have discussed in the previous chapters, we first need to find a relatively simple iterative

procedure which is able to dump the high-frequency part of the error quickly. In order to obtain

a smoother for (8.24), we can employ the simple iterative methods discussed in §2.1 and then

apply a projection step to ensure the new iteration stays in the feasible set. For example, if uold

is the previous iteration and uGS is the iteration after one or several Gauss-Seidel sweeps, then

unew :“ maxt0, uGSu P K0 is the new iteration. This method is naturally called the Projected

Gauss-Seidel (PGS) method.

At some point PGS will not reduce error efficiently any more, we then apply FAS to approx-

imate the error on a coarser level and continue this procedure until the coarsest level where the

nonlinear problem can be solved quickly and accurately. To ease the notation, we explain the

idea using a two-grid algorithm for now. We first solve the general LCP problem on a fine level

with a given right-hand side fl
$

’

’

’

&

’

’

’

%

Au ě f

u ě 0

〈Au´ f, u〉 “ 0.
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using the PGS method or some other smoother to obtain an approximate solution up1q. Then

we solve the above LCP on a coarse level with the right-hand side

fc :“ ITc
`

f ´Aup1q
˘

`Ac ITc up1q

to obtain an approximation u
p1q
c . In turn, an improved approximation is given by

up2q “ up1q ` Ic
`

up1qc ´ ITc up1q
˘

.

Interior point method

For simplicity, we now consider the constrained minimization problem (8.2) on the finite dimen-

sional space RN , that is to say

u “ argmin
vě0, vPRN

Fpvq :“
1

2
vTAv ´ fT v. (8.25) eqn:disEVI2

In this case, the Lagrange multiplier σ P RN satisfies that σ “ ´Gpuq. Then we have the

first-order optimality condition

σ ` Gpuq “ 0, σ ď 0,

Uσ “ 0, u ě 0.

Here we use a convention often employed in the literature U :“ diagtu1, . . . , uNu; similarly, we

will denote Σ :“ diagtσ1, . . . , σNu.

The condition Uσ “ 0 (or equivalently, uiσi “ 0 for any i “ 1, . . . , N) is usually called the

complementarity condition. We now try to relax this condition such that Uσ “ µ1, where µ is

a positive penalty parameter and 1 is an all-one vector. At the same time, we try to maintain

the iterative solution pu, σq strictly in the primal-dual feasible set, i.e., u ą 0 and σ ă 0. Hence

we need to solve a system of nonlinear equations:
#

σ ` Gpuq “ 0,

Uσ ´ µ1 “ 0.

We apply the Newton’s method for this system and obtain an iterative method
#

Aδu` δσ “ ´σ ´ Gpuq
Σδu` Uδσ “ µ1´ Uσ

or

˜

A I

Σ U

¸˜

δu

δσ

¸

“

˜

f ´Au´ σ

µ1´ Uσ

¸

.

Upon solving this linear system, we can obtain a new iteration. Furthermore, in the above

system, I, Σ, and U are all known diagonal matrices, we only need to solve the Schur complement

problem

pA´ U´1Σqδu “ µU´11` f ´Au. (8.26) eqn:IPmethod

Moreover, since σ ă 0 and u ą 0, the above equation is well-defined and the coefficient matrix

is SPD. We can then apply a multilevel iterative method discussed in the previous chapters to

solve it efficiently; see [5] for details.
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Monotone multigrid method

Now suppose we hierarchical meshes, tM0
h, . . . ,M

j
hu and let Al, bl, l “ 0, . . . , j are the stiffness

matrices and right-hand-side vectors corresponding to the partition Ml
h, respectively. As usual,

Mj
h is the finest mesh. We denote the linear finite element space by V l

h associated with mesh

Ml
h.

We need two kinds of orthogonal projections onto the finite element space V l
h. The L2-

projections Ql : V j
h Ñ V l

h are defined by

pQlvh, φlq “ pvh, φlq, φl P V
l
h, (8.27) eqn:L2proj

and the energy projections Πl : V j
h Ñ V l

h by

arΠlvh, φls “ arvh, φls, φl P V
l
h. (8.28) eqn:proj

We first define multigrid methods recursively. For a given initial guess w
p0q
j P V j

h

ŞK0. A

coarse grid correction is performed: computing the approximate defect e
p0q
j´1 “ Πj´1pwh´w

p0q
j q P

V j´1
h as the solution of the quadratic programming problem

min
e
p0q
j´1PV

j´1
h , w

p0q
j `e

p0q
j´1

ŞK0

1

2
are

p0q
j´1, e

p0q
j´1s ´ xσpw

p0q
j q, e

p0q
j´1y. (8.29) eqn:corrction

Then let w
p1q
j “ w

p0q
j ` e

p0q
j´1. Then we apply m steps of post-smoothing scheme, like projected

SOR to obtain w
pm`1q
j . For the coarse correction step, instead of solving the problem on the

coarser level j ´ 1 exactly, we can solve it by the same multigrid procedure described here. In

this way, we obtain a recursive multigrid V-cycle. If we perform coarse grid correction twice at

each level, then we get a W-cycle.

One problem with this procedure is that ej´1 and wj are in different levels. To avoid this

difficulty, we propose the following coarse grid correction scheme instead of (8.29):

min
d
p0q
j´1PV

j´1
h

ŞK0

1

2
ard

p0q
j´1, d

p0q
j´1s ´ xσpw

p0q
j q, d

p0q
j´1y. (8.30) eqn:newcorrction

And then w
p1q
j “ w

p0q
j ` d

p0q
j´1 which is always in K0 because both w

p0q
j and d

p0q
j´1 are in K0 by

definition. It is easy to check that the local obstacles in this method are monotone in the sense

of Kornhuber [39]. Then we get the similar V-cycle or W-cycle multigrid method as for linear

problems expect we need to add a projection step to project the iterates to K0.

Remark 8.3. This method is shown to be not very good by Tai’s test example. The reason

is that the coarse grid correction only works when the current approximation is less than the

exact solution in the method.
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8.4 Constraint decomposition method

It is known the general V-cycle can be written as a successive subspace correction method. For a

sequence of search directions tφiu
N
i“1 such that V j

h :“ spantφiu
N
i“1. We can construct a numerical

method for find the minimizer of (8.12) as a sequential quadratic programming method. Starting

from an initial guess w
p0q
j P V j

h

ŞK0, at each iteration, we solve

min
w
p0q
j `αφ1PV

j
h

ŞK0

1

2
arw

p0q
j ` αφ1, w

p0q
j ` αφ1s ´ f0pw

p0q
j ` αφ1q. (8.31) eqn:ssc

Similar to the discussion in the previous section, we need to solve a discrete problem

min
w
p0q
j `αφ1PV

j
h

ŞK0

1

2
arφ1, φ1sα

2 ´ xσpw
p0q
j q, φ1yα. (8.32) eqn:ssc2

Then the new iterate is obtained by w
p1q
j “ w

p0q
j `αφ1. Similarly, we start from w

p1q
j and search

in the direction φ2 to obtain w
p2q
j , and so on.

If we choose spantφiu
N
i“1 as the canonical nodal basis of V j

h , then it is just usual nonlinear

or projected Gauss-Seidel method. To take advantage of multilevel basis, it is natural to choose

spantφiu
N
i“1 “ tφj1, . . . , φ

j
Nj
, φj´1

1 , . . . , φj´1
Nj´1

, . . . , φ1
1, . . . , φ

1
N1
u. It falls into the category of ex-

tended relaxation methods. The problem with this procedure is that φi might not be in the finest

level j, which costs extra computation effort to enforce the constraints w
pi´1q
j ` αφi P V

j
h

ŞK0.

See Tai [51] for details.
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[4] I. Babuška. Error-bounds for finite element method. Numerische Mathematik, 16(4):322–

333, 1971.

[5] R. E. Bank, P. E. Gill, and R. F. Marcia. Interior methods for a class of elliptic variational

inequalities. In B. v. B. W. Lorenz T. Biegler, Matthias Heinkenschloss, Omar Ghattas,

editor, Large-Scale PDE-Constrained Optimization, pages 218—-235. 2003.

[6] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta

Numerica, 14:1–137, may 2005.

[7] M. Benzi and M. A. Olshanskii. An augmented lagrangian-based approach to the oseen

problem. SIAM Journal on Scientific Computing, 28(6):2095–2113, 2006.

[8] J. Bergh and J. Lofstrom. Interpolation spaces: an introduction, volume 223. Springer

Science & Business Media, 2012.

[9] D. Boffi, F. Brezzi, and M. Fortin. Finite elements for the Stokes problem. In Mixed

Finite Elements, Compatibility Conditions, and Applications, pages 45–100. Springer Berlin

Heidelberg,, 2008.

[10] D. Braess. Finite elements. Cambridge University Press, Cambridge, second edition, 2001.

Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German

edition by Larry L. Schumaker.

171



BIBLIOGRAPHY 172

[11] D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical

Mathematics, 23(1):3–19, feb 1997.

[12] J. Bramble and J. Pasciak. Iterative techniques for time dependent Stokes problems. Com-

puters Math. Applic., 33:13–30, 1997.

[13] J. H. Bramble and J. E. Pasciak. A Preconditioning Technique for Indefinite Systems

Resulting from Mixed Approximations of Elliptic Problems. Mathematics of Computation,

50(181):1, jan 1988.

[14] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Mathematics

of Computation, 55(191):1–22, Jul. 1990.

[15] J. H. Bramble and J. Xu. Some estimates for a weighted {L}ˆ2 projection. Mathematics

of Computation, 56:463–476, 1991.

[16] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of

Computation, 31(138):333–390, 1977.

[17] A. Brandt. Multigrid guide. Technical report, 2011.

[18] A. Brandt and C. W. Cryer. Multigrid algorithms for the solution of linear complementarity

problems arising from free boundary problems. SIAM J. Sci. Statist. Comput., 4(4):655–

684, 1983.

[19] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (amg) for automatic multi-

grid solutions with application to geodetic computations. Report, Inst. for computational

Studies, Fort collins, colo, 1982.

[20] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15

of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2002.

[21] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising

from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis -

Modlisation Mathmatique et Analyse Numrique, 8(R2):129–151, 1974.

[22] F. Brezzi, M. Fortin, and L. D. Marini. Mixed finite element methods with continuous

stresses. Mathematical Models and Methods in applied sciences, 3(02):275–287, 1993.

[23] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Siam, 2000.

[24] L. Chen. Deriving the xz identity from auxiliary space method*. In Domain Decomposition

Methods in Science and Engineering XIX, pages 309–316. Springer, 2011.



BIBLIOGRAPHY 173

[25] P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in

Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-

Oxford, 1978.

[26] R. Courant and D. Hilbert. Methods of Mathematical Physics. Number v. 1 in Methods of

Mathematical Physics. Wiley, 1991.

[27] M. Dryja and O. Widlund. Additive schwarz methods for elliptic finite element problems

in three dimensions. In Fifth International Conference on Domain Decomposition Methods.

SIAM, 1992.

[28] M. Dryja and O. B. Widlund. Some domain decomposition algorithms for elliptic problems.

In Iterative Methods for Large Linear Systems. Academic Press Professional, Inc., 1989.

[29] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers:

with applications in incompressible fluid dynamics. Oxford University Press, USA, 2005.

[30] L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

[31] R. P. Fedorenko. A relaxation method for solving elliptic difference equations. USSR

Computational Mathematics and Mathematical Physics, 1(4):1092–1096, 1961.

[32] M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the numerical

solution of boundary-value problems, volume 15. Elsevier, 2000.

[33] G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:

Steady-state problems. Springer Science & Business Media, 2011.

[34] R. Glowinski. Numerical methods for nonlinear variational problems. Springer-Verlag, New

York, 1984.

[35] G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition, volume 10 of Johns

Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 1996.

[36] X. He and C. Vuik. Comparison of Some Preconditioners for the Incompressible Navier-

Stokes Equations. Numerical Mathematics: Theory, Methods and Applications, 9(02):239–

261, 2016.

[37] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element

Method. Cambridge University Press, Cambridge, 1987.



BIBLIOGRAPHY 174

[38] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their

applications, volume 88 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt

Brace Jovanovich Publishers], New York, 1980.

[39] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities. I. Numer.

Math., 69(2):167–184, 1994.

[40] M. Larin and A. Reusken. A comparative study of efficient iterative solvers for generalized

Stokes equations. Numerical Linear Algebra with Applications, 15(November 2007):13–34,

2008.

[41] Y. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly

singular systems. Mathematical Models and Methods in Applied Sciences, 17(11):1937–1963,

2007.

[42] D. S. Malkus and T. J. Hughes. Mixed finite element methodsreduced and selective inte-

gration techniques: a unification of concepts. Computer Methods in Applied Mechanics and

Engineering, 15(1):63–81, 1978.

[43] K.-A. Mardal and R. Winther. Uniform preconditioners for the time dependent stokes

problem. Numerische Mathematik, 98(2):305–327, 2004.

[44] K.-A. Mardal and R. Winther. Erratum: Uniform preconditioners for the time dependent

stokes problem. Numerische Mathematik, 103(1):171–172, 2006.

[45] K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial differ-

ential equations. Numerical Linear Algebra with Applications, 18(1):1–40, Jan 2011.
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