Multilevel Iterative Methods

Chen-Song Zhang

Version 0.5, February 6, 2017

Abstract

Over the last few decades, intensive research has been done on developing efficient parallel
iterative solvers for PDEs. One useful mathematical technique that has drawn a lot of
attention is multilevel iterative solvers and preconditioners. The lecture note is originally
prepared for a semester-long course at LSEC. In this note, we will discuss algorithm, analysis,
and applications of multilevel iterative solvers for partial differential equations. The note
is mainly based on Prof. Jinchao Xu’s short courses at the Peking University in 2013 and
at the Academy of Mathematics and Systems Science in 2016 and Prof. Ludmil Zikatanov’s

summer school lectures at the Academy of Mathematics and Systems Science in 2015.

Contents

Contents 1

I Theory of Multilevel Iterative Methods 6

1 Introduction

1.1

1.2

1.3

1.4

1.5
1.6

The model equation

Derivation and classical solution * L L.

Sobolev spaces * L L e 10
Weak formulation 12
Well-posedness of the weak problem ~ 13
A simple model problem L 16
High-frequency and locality 17
Discretization methods oL oL o 18
Finite difference method Lo o o 18
Finite element methodo oo 21
Simple iterative solverso 22
Some examples L Lo e e 23
A simple observation 24
Smoothing effect » 24
Multigrid method in 1Do oo 26
Nested grids o L o 26
Smoothers L 26
Prolongation and restriction o Lo 27
Multigrid algorithm Lo 27
Tutorial of FASP ~ 29
Homework problems L L 30

CONTENTS

2 Iterative Solvers and Preconditioners

2.1 Stationary linear iterative methods oL
Preliminaries
Stationary iterative methods Lo oo
Symmetrization oL
Convergence rate of stationary iterative methods
An example: modified G-S method «

2.2 Krylov subspace methods oo oo
Gradient descent methodo
Conjugate gradient method Lo
Generalization to Hilbert spaces.

2.3 Condition number and preconditioning L oL
Construction of preconditioners
Preconditioned conjugate gradient method
Stopping criteria *

2.4 Domain decomposition methods
Divide and conquer e
Overlapping DD methods
Classical convergence results of overlapping DDMs »

2.5 Homework problems

Two-grid Methods

3.1 Finite element methods
Galerkin approximation
Finite element Lo
Some properties of finite element methods ~
Error analysis x

3.2 Matrix representations Lo
Vector and matrix representationso L L Lo
Finite element matrices Lo L
Simple iterators in matrix form

3.3 Smoothers and smoothing effect oo oo oL
A numerical example
Local Fourier analysis x
Smoother analysis

3.4 A two-grid method L

31
31
32
34
36
37
38
40
40
42
45
46
47
48
49
50
50
o1
92
53

CONTENTS

11

General two-grid methods oo
Convergence analysis of TG o
Optimal coarse Space o v i i e e
3.5 Matrix representation of the two-grid method
Grid transfer operators in matrix form L.
Coarse problem in matrix form o
Two-grid iterator in matrix form oL Lo

3.6 Homework problems

Subspace Correction Methods

4.1 Successive and parallel subspace corrections
Abstract framework for subspace corrections
SSC and PSC methods

4.2 Expanded system and block solvers
Expansion of the original problem 0 0oL
Block solvers for expanded equation
Convergence of block solvers

4.3 Convergence analysis of SSC L
A technical lemma L
The X-Z identity

4.4 Convergence analysis of PSC oo
Condition number of PSC
Estimates of K7 and Ko

4.5 Homework problems L

Multilevel Iterative Methods and Their Applications

Multilevel Subspace Correction Preconditioners

5.1 Two-grid overlapping DDM + o o
Two-level space decomposition
Convergence analysisof DDM o oo

5.2 HB preconditioner L L L
Nested space decomposition L o
Hierarchical basis preconditioner
Strengthened Cauchy-Schwarz inequality

Convergence analysis of HB preconditioner »

71
73
75
7
7
78
78
79

80
80
80
82
83
84
85
87
88
88
89
92
92
93
95

96

CONTENTS 4

5.3 BPX preconditioner L oo 104
Telescope expansion of L2-projections vv i 104
Norm equivalence 105
BPX preconditioner and its convergence 106
Matrix representation of BPX o000 108

5.4 Homework problems 108

6 Multigrid Methods 109

6.1 Geometric multigrid method Lo oo 109
V-cycle multigrid method oo oo 110
Matrix representation of GMG L o 112
Convergence analysis of GMG method = 112
Problems with anisotropic coefficients x 113
General procedure of multigrid methodso 115

6.2 Nested iterations L 116
V-cycle and its generalizations L L L L. 116
Full multigrid method 119

6.3 From geometric to algebraic multigrid oo 120
Sparse matrices and graphs *o Lo 120
M-matrix and Delaunay triangulation » o000, 122
Algebraic smooth error 123
Construction of coarse spaceso o e 125

6.4 Classical algebraic multigrid methods 126
Strength of connections 126
C/F splitting o 127
Construction of prolongation L. 129

6.5 Aggregation-based algebraic multigrid methods 132
Unsmoothed aggregation AMG 133
Smoothed aggregation AMG 134

6.6 Homework problems 135

7 Fluid Problems 137

7.1 The Navier—Stokes equations * 137
Flowmap o 137
Volume and mass conservation o 139
Balance of momentum Lo 140

Mathematical models 142

CONTENTS

7.2 The Stokes equations

The time-dependent Stokes equation

The Brezzi theory

Well-posedness of the Stokes problem

Penalty method for the Stokes problem *

7.3 Mixed finite element methods . . .
Well-posedness and convergence . .

Some stable finite element pairs * .

Mixed methods for the Poisson’s equation »

7.4 Canonical preconditioners
Preconditioning the Stokes problem
Preconditioning the time-dependent

7.5 Block preconditioners
Block diagonal and lower triangular

Augmented Lagrangian method . .

Stokes problem *

method

7.6 Multigrid methods for Stokes equation oL,

Braess—Sarazin smoother
Vanka smoother

7.7 Homework problems

8 Optimization Problems
8.1 Model problems
A model variational inequality . .
Finite element discretization for VIs

Error and residual

8.2 Nonlinear equation and unconstrained minimization

Nonlinear solvers
Newton—Raphson method

Full approximation scheme

Subspace correction methods for convex minimization

8.3 Constrained minimization

Projected full approximation method

Interior point method
Monotone multigrid method

8.4 Constraint decomposition method

Bibliography

143
143
144
146
146
147
147
148
149
151
151
152
154
154
155
158
158
158
159

161
161
161
163
163
164
164
165
166
167
167
167
168
169
170

171

Part 1

Theory of Multilevel Iterative
Methods

Chapter 1

Introduction

Computer simulation has become an important tool in engineering and sciences. Many physical
problems in scientific and engineering computing can be reduced to the numerical solution of
certain partial differential equations (PDEs). Finding a viable solution to underlying discretized
systems is often expensive, generally consuming a significant portion of the overall cost in a
numerical solution procedure of PDEs. Various fast solution techniques, such as adaptive mesh
refinement (AMR), domain decomposition (DD) methods, and multigrid (MG) methods, have

been developed to address this issue.

A Physical Problem

v

Mathematical Model

Analysis — Simulation — Soitware

Development
N e

4 N 4 N

Existence, Linearization, .
) . User interface,
uniqueness, mesh generation, RN
- . . code optimization,
stability, discretization, .
. . input/output,
regularity, solution, .
. .. customer service,
conservation, parallelization,

Figure 1.1: Numerical simulation of a physical problem.

The above diagram gives a simple illustration of how a physical problem is “solved” via

numerical simulation in general. It is basically an interplay of modeling, mathematical analy-

7

CHAPTER 1. INTRODUCTION 8

sis, numerical analysis, scientific computing, and software engineering. A successful computer
simulation of complicated physical phenomena requires expertise in many scientific subjects.
Hence, nowadays it is difficult for one person to manage all these areas and close collaborations
of experts from different areas become crucial.

Effective linear solvers play a key role in many application areas in scientific computing.
There are many different types of algorithms for solving linear systems. In this lecture, we focus
on studying algorithmic and theoretical aspects of multilevel iterative methods, including GMG
and AMG. The basic problem setting for our discussion is: Given an invertible matrix A : RV*V
and a vector f e RY, find @ € RY such that A7 = f There are many features of linear solver

that we desire in practice, including:

e Convergence — The method should converge to somewhere at least.

e Robustness — The method should behave similarly for different conditions.

e Optimality — The method can give a solution with O(N) computational cost.

e Efficiency — The method can give a solution with “reasonably short” wall time.

e Scalability — The method can scale well on modern parallel architectures.

e Reliability — The method should converge to a solution with limited amount of time.
e Usability — The method can be implemented and used relatively easily.

These above features sometimes contradict with each other and we have to find a good
balance in practice. There are many different solution methods available. In this lecture,
including direct solvers and iterative solvers. In this lecture, we will discuss several popular
multilevel iterative methods, including the overlapping domain decomposition methods with
coarse space corrections, two-grid methods, geometric multigrid methods, algebraic multigrid
methods. And we will mainly study the convergence theory of these methods using the subspace

correction framework.

1.1 The model equation

Let @ < R? be an open and bounded domain with Lipschitz boundary and f e L?(f2). We
consider solution of the Poisson’s equation with Dirichlet boundary condition
—Au=f in Q,
u=20 on 0€).

(1.1)

CHAPTER 1. INTRODUCTION 9

This equation will be our main model equation in most part of this lecture.

Remark 1.1 (Diffusion equation in various applications). The Poisson’s equation, or more
generally the diffusion equation, appears in many areas of physics, for example, Fick’s law for
chemical concentration, Fourier’s law for temperature, Ohm’s law for electrostatic potential,

Darcy’s law for porous media flow.

Derivation and classical solution *

The concept of diffusion is widely used in physics, chemistry, biology, sociology, economics,
and finance. It is the net movement of the object (e.g. molecules or atoms) from a region of
high concentration (or high chemical potential) to a region of low concentration (or low chemical
potential). This is also referred to as the movement of a substance down a concentration gradient.

Let u(x) be some diffusive quantity, like pressure, temperature, or concentration of a bio-
logical species. We define the operator V := (d1,...,04)". So the gradient of scalar function
u : € — R can be denoted by Vu. The Laplace operator can be written as Au = V - Vu. A

diffusive flux F is usually proportional to the gradient of u, i.e.,
F = —kVu. (1.2)

where & is the diffusivity (e.g., heat conductivity or permeability). Note that —Vu is the so-called
steepest descent direction. If a flow is controlled solely by diffusion, then the mass conservation

in any volume w can be written, in the integral form, as

afudmzj F.i7dS
ot)., g

or, in the strong form, as

0 .,
—u=-V- F. 1.
Pl (1.3)
This can be seen by applying the Divergence Theorem
fv'ﬁdxzf F - 7dS. (1.4)
w ow
Now, by plugging (1.2) into (7.10), we obtain an equation
0
Fri V- (kVu). (1.5)

If we assume k = 1 or just a constant and there is a source/sink term f on 2, then we arrive at

the heat equation

%U—Au= f. (1.6)

The steady-state solution of equation (1.6) satisfies the well-known Poisson’s equation

—Au = f. (1.7)

CHAPTER 1. INTRODUCTION 10

Remark 1.2 (Laplace equation). In case of the body force or source/sink term is zero, the

equation is usually referred to as the Laplace equation
—Au=0. (1.8)
If u e C?(Q2) and —Au = 0, the u is called a harmonic function.

We have the fundamental solution of the Poisson’s equation

— o= log |z], d=2
O(x) := (1.9)
1 —d
e alel?™ d=3
where a(d) is the volume of the unit ball in R?. It is well-known that
ua) =@ fim [@9 f0)dy
satisfies —Au = f in R? and u € C%(R?); see Evans [30].

Theorem 1.1 (Strong Maximum Principle). If u € C?*(Q) () C(Q) is harmonic in Q, then the
mazimal value

max u(x) = max u(x).
reQ) €0

If the domain Q is connected, then w = C if there exist xg €) such that
u(zg) = maxu(z).
e
Theorem 1.2 (Uniqueness of solution). If f € C(2), then there exists at most one solution

ue C2(Q)NCQ).

Sobolev spaces *

The standard L®-norm and L?-norm will be denoted by ||-||s and ||-||o, respectively. The symbol
L%(Q) denotes a subspace of L?({2) consisting of functions that have a zero average. The bilinear
forms (-,-) and (-, -) denote the classical L?-inner product and the duality pair, respectively.

Given a natural number k£ € N and 1 < p < o0, we define the Sobolev spaces

W]f(Q) ={v: QR : Ve LP(Q), for all |a| <k}, (1.10)
where a = [ay, ..., aq] is a multi-index and V¥ := 01 - - 0990 is the weak derivative of order

«. The corresponding norm and semi-norm are then defined as follows: for 1 < p < o0,

1

1 1
lohwge = (2 1V000) " Iohvgey = (2 IV™0lhg)"s (111)

la|<k la|=k

and, for p = o0,

lvllws) = |Sl‘1<Pk IV, [vlwe @) = ‘Sl|1_Pk IVl oo (2)- (1.12)

CHAPTER 1. INTRODUCTION 11

Definition 1.1 (Sobolev number). Consider a change of variables £ = x/h for h > 0 and all
x € Q, which transforms the domain Q to €. With this transformation, a function v(z) on

becomes 0(Z) on Q). We notice that

~ o) k
‘U|WZ§(Q) =N b(Wp)|U|W,’;'(Q)a (1.13)
where the Sobolev number is defined by
i d
sob(W,) :=k — —. (1.14)
p

Remark 1.3 (Natural scaling). There is a natural scaling for the semi-norm | - |WI’,€(Q)- For

h > 0, we apply the change of variable & = z/h : Q — Q). Then the following scaling result holds

_ hsob(W;f) ”U

0

_d
Wh(S) ~ n* p’”‘wg(ﬂ) ‘Wlf(ﬂ)‘

This property is useful in scaling argument (or homogeneity argument) for finite element error

estimates.

If p = 2, the spaces W¥(Q2) are Hilbert spaces and we denote them by H¥(Q) for short. The

inner product is given by
(u, V)0 = (U, 0) griq) = Z f Veu V& dx.
la|<k V€

The induced norm of this scalar product is the W§(€)-norm. We denote HE(€2) the completion
of CX(Q) in H*(Q). We will also use the fractional Sobolev space H¥™(Q) where 0 < o < 1.

It is defined as the completion of C°(€2) in the fraction norm:

D=

Jolgaey = ([0 + [0mro)

. |Dv(x) — Dv(y)[? 2
‘U’HkJro(Q) = < 2 L JQ o — y|ir20 dedy | .

|l =k

where

VI

Before we discuss the Poisson’s equation in weak formulation, we introduce a few important
properties of the Sobolev spaces, which will become important in our later analysis for multigrid

methods.

Proposition 1.1 (Sobolev embedding). Let 0 < k < m. If sob(W") > sob(WF), then the
embedding W () — Wf(Q) is compact.

Proposition 1.2 (Poincaré-Wirtinger inequality). For any v e HY(Q), we have

o~ Lvdxﬂm < CO)o], o

CHAPTER 1. INTRODUCTION 12

Proposition 1.3 (Poincaré inequality). For any v € HE(Q), we have
1/d
H”HO,Q < Cql Q" MLQ'
It is a special case of the more general Friedrichs’ inequality on Wlﬂ“(ﬂ) with zero trace and it is

sometimes referred to as the Friedrichs—Poincaré inequality.

Proposition 1.4 (Trace theorem). There exists a unique linear operator trace : H(Q)
L?(09Y), such that trace(v) = v, if ve CO(Q) (" HY(Q), and

[trace(v)”om <OC)|vhig, YveHY(Q).
Moreover, if g € H%@Q), there exists ¢ € HY(Q) such that ¢|oq = g and

[¢lle < Clgl

1,00
Weak formulation

Now we consider the Poisson’s equation in a weaker sense. A simple motivation is to convert

from a point-wise view to an average view:
u(z) =0, ae < JQ wdzr =0, YveC(Q).
Similarly, we can write the Poisson’s equation in the weak form (i.e., the integral form). In the
one-dimensional case, it is easy to see that
- =f, ae. = - Jg(u” + flvdz =0, Yve CF(Q).
Let % be a Hilbert space with an inner product (-,)¢ and its induced norm | - |4. Let ¥

be a Hilbert space with another inner product (-,-)y and its induced norm | - | 4. Denote by ¥’

the dual space of ¥ equipped with the norm

, U
flpr = sup 20y e g,
ey HU”‘I/

Definition 1.2 (Continuity). A bilinear form a[-,-] : % x ¥ — R is called continuous if and

only if there exists a constant Cy, such that
alu,v] < Cyllul#|v|y, Yue%,ve¥. (1.15)

Consider a continuous bilinear form a[-,-] : Z x ¥ — R and f € ¥’. We formulate a model

problem: Find u € % such that Au = f in ¥’. Or in the weak form, find u € % such that
alu,v] = (f,v), Yve¥. (1.16)

Example 1.1 (The Poisson equation). The Poisson problem with homogenous Dirichlet bound-

ary was given in (1.1). In this case, we have Au := —Au and af[u,v] := (Vu,Vv). Ap-

parently, the bilinear form a[-,-] is continuous due to the Cauchy—Schwarz inequality and
U =Y = HQ). O

CHAPTER 1. INTRODUCTION 13

Well-posedness of the weak problem x

We denote the space of all linear and continuous operators from % to ¥ as £ (% ;7). Here we

review a few results on the inf-sup condition due to Necas [46].

Theorem 1.3 (Banach-Nec¢as Theorem). Let a[-,-] : Z x ¥ +— R be a continuous bilinear form
with a norm defined as
alu,v]

laf = sup swp Lol

(i) Then there exists a unique linear operator A€ L (% ;) such that
(Au,v)y = alu,v], Yue%,ve¥,

with the operator norm
HA”g(%;v/) = [al- 1]

(i) Moreover, the bilinear form a[-,-| satisfies the inf-sup condition:

Ja >0, such that ofu]y < sup a[u,v], Vue#, (1.17)
vey |Vl
forany 0#ve ¥, there exists ue€ U, such that alu,v] # 0, (1.18)
if and only if A: % — V is an isomorphism and
A gy < @t (1.19)

Proof. (i) For any fixed v € %, the mapping a[u, -] belongs to the dual space ¥”’. By the Riesz

representation theorem, there exists Au € ¥ such that
(Au,v)y = afu,v], Yve¥.

Since al-, -] is continuous, we obtain a bounded operator A € £ (% ;¥). Furthermore,

Ay (Au,v)y alu, v]
I Al 27y = sup = sup sup ———2 = sup sup —-———
wew Wz wew verv lullz vy wew vev lulz|vly

= lal]J-
(ii) = The inf-sup condition (1.17) guarantees that there exists av > 0 such that

A
afulz < supM = sup (Au, v)y

——— = |Au|y, YueZ%. (1.20)
ver |vly ve¥ ||UH7

This implies that A is injective. Let {Uk}zo:o c % and v, := Auy be a sequence such that
v — v € Y. In order to show the range of A is closed, we need to show v € A(%). From the

inequality (1.20), we have

alur — ujllz < |Alug —uj)|y = lvk —vi|y — 0.

CHAPTER 1. INTRODUCTION 14

Hence, {uy}y._, is a Cauchy sequence and u, — u € % . Moreover,
v=lim vy = lim Aug = Aue A(%).
k—00 k—0
Now we assume that A(%) # #. Since A(%) is closed, we can decompose ¥ as
V= A%)®AX)*

and A(%)* is non-trivial. That is to say, there exists 0 # v, € A(%)*, which contradicts the
condition (1.18). Hence the assumption A(%) # ¥ cannot hold, i.e., A is surjective. This, in

turn, shows that A is an isomorphism from % onto ¥". Moreover, (1.20) shows
aA™ |y < oly, Yve.

This proves the inequality (1.19).
(i) <= We have

| due] (Awo) - [Auly
inf sup———— = inf sup——— =
we? vey |ula|vly we? vey |ula]y ue? |ulle
: o] < A=)4\ 1 “1y-1
= inf —— = sup7> = |4 o = o
By ~ U2 TR A e =

This is exactly (1.17). Since A is an isomorphism, for any 0 # v € ¥, there exists 0 # u € %,
such that Au = v and
alu,v] = (Au,v) = [v[j # 0,

which is (1.18). O
Theorem 1.4 (Necas Theorem). Let a[-,] : % x ¥ +— R be a continuous bilinear form. Then

the equation (1.16) admits a unique solution w € % for all f € V', if and only if the bilinear

form a[-,-] satisfies one of the equivalent inf-sup conditions:

(1) There exists o > 0 such that

alw, v]

sup > a|wly, YweU; (1.21)

ver vl
and for every 0 # v € ¥, there exists w € % such that a[w,v] # 0.

(2) There holds

afw, v] alw,v]

inf sup ———— >0 and inf sup ———— > 0. (1.22)
we? vey |w]a |v]» vel wew |wlla|v]»
(8) There exists a positive constant « > 0 such that
inf supM = inf sup _afw.v] . (1.23)

vly e wew |wla vy

we vey |wa

CHAPTER 1. INTRODUCTION 15

Furthermore, the solution u satisfies the stability condition

v <o fly.

lu

Proof. Let J : ¥ +— ¥ be the isometric Reisz isomorphism. According to Theorem 1.3, we
have Ae Z(%; V), which is the linear operator corresponding to a[-,-]. In this sense, (1.16) is

equivalent to
ueE U : .Au:j_lf in V7.
Assume the condition (1) holds. Then, A is invertible by Theorem 1.3. The other direction is
also easy to see.
Now the interesting part is to show the equivalence of the three conditions, (1), (2), and (3).
From the proof of Theorem 1.3, we have seen that

alw, v]

inf sup ———— = |A7Y L, ..
225 Tl oy~ o
Similarly,
, fu),
imf sup — 2 g A g (A
ve? e |wla|v]» ve? e |wla|v]y ve? e |wla|v]»
—tn—=1 —1)—-1
= ”-’4 THy(%ﬂ/) = ”-A Hy(y/;a//)y
where AT denotes the adjoint operator. Furthermore, if the condition
inf sup aw, o] >0
ve? wew |wla|vly
holds, then for any v € ¥, we have
sap Ay
wew |[wla|v]y
Hence there exists w € %, such that a[w,v] # 0. This completes the equivalence proof.]

From the proof of the last two theorems, we have the following observations:

Remark 1.4 (Existence and uniqueness). Solution of the equation (1.16) exists (i.e., A is
surjective or onto) if and only if

. alw,v . —
inf sup M > 0. existence or surjective

VeV wew HwH”// HU

v
Solution of (1.16) is unique (i.e., A is injective or one-to-one) if and only if

alw, v]

inf sup > 0. uniqueness or injective

we? yey |lwla|v]y
That is to say, A is bijective if and only if the inf-sup conditions (1.22) or its equivalent conditions
hold. In finite dimensional spaces, any linear surjective or injective map is also bijective. So we

only need one of the above inf-sup conditions to show well-posedness.

CHAPTER 1. INTRODUCTION 16

Remark 1.5 (Optimal constant). The constant « in (1.23) is the largest possible constant in

(1.21). In general, the first condition in Theorem 1.4 is easier to verify than the third condition.

Corollary 1.1 (Well-posedness and inf-sup condition). If the weak formulation (1.16) has a
unique solution w € % for any f € V' so that

lullze < C|fllv,
then the bilinear form al-,-] satisfies the inf-sup condition (1.23) with o = C~1.
Proof. Since (1.16) has a unique solution for all f € ¥’ the operator A : Z(%; V) is invertible
and A™' : Z(¥;%) is bounded. Due to the fact |ully < C|f|lyr, we have | A7 »(y.2) < C.

From the proof of the Necas theorem, we can immediately see the optimal inf-sup constant

a= A" G =07 O

A simple model problem
From now on, we consider the simplest case where ¥ = % and A is coercive.

Definition 1.3 (Coercivity). A continuous bilinear form a[-,-] : ¥ x ¥ +— R is called coercive

if there exists a > 0 such that

alv,v] = allv|%, Yve¥. (1.24)

alv,w] alv,v]
Twly = Tolv
in Theorem 1.4. Hence, for any f € ¥, the coercive variational problem (1.16) has a unique

We notice that sup,cy > ollv|y, which implies the first inf-sup condition

solution and the solution u is continuously depends on f, i.e., [u|y < a™!|f|y/. In this case,

Theorem 1.4 is reduced to the well-known Laz-Milgram theorem.

Corollary 1.2 (Lax-Milgram theorem). Let a[-,-] : ¥ x ¥ +— R be a continuous bilinear form
which satisfies the coercivity condition (1.24). Then (1.16) has a unique solution u € ¥ for any
fe?" and uly <a”t|f]y.

Remark 1.6 (Energy norm). If the bilinear form al-,-] : ¥ x ¥ — R is symmetric, then,

apparently, it defines an inner product on #. Its induced norm is also called the energy norm
1/2
ol := afv, 0]

Coercivity and continuity of the bilinear form al-, -] imply that

alelly < Iel < Jal el = 4] g0 015

namely, the energy norm |[|-|| is equivalent to the | - |y-norm. We will denote the dual energy

norm by |-,

CHAPTER 1. INTRODUCTION 17

Remark 1.7 (Poisson is “well-conditioned”). We notice that the Poisson’s equation is well-
posed in the sense that —A : ¥ — ¥ is an isomorphism with ¥ = H}(Q) and ¥’ = H-Y(Q).
Furthermore, it is well-conditioned, i.e., there exist constants a (coercivity constant) and C,

(continuity constant), such that

Yve V.

aHUH?t/ < afv,v] = (—Av,v) < C’aHvH?,/,

Hence we have the “condition number” of the Laplace operator is bounded

Caq

K(—A) = H - A L) < E

f=a)"

20

The problem here lies in that we are working on two different spaces ¥ and ¥’. If we con-
sider —A : L?(Q) — L%(Q) instead, then we lost boundedness. More general theory has been

developed in the seminar work [4].

High-frequency and locality

Consider the eigenvalue problem for one-dimensional Laplace operator with the homogenous
Dirichlet boundary condition, i.e., —u"(z) = Au(z) for x € (0,1) and «(0) = u(1) = 0. It is easy

to see that the eigenvalues and the corresponding eigenfunctions are
e = (kmr)? and ug(z) = sin(kmx), k=1,2---

For other types of boundary conditions, the eigenvalues and eigenfunctions can be obtained
as well. We notice that larger eigenvalues (larger k) correspond to eigenfunctions of higher
frequency. Similar results can be expected for discrete problems which will be discussed later
on.

An important observation comes from the analysis to the local problem
—uf(z) = f(z), z€ Bs:= (zg— 9,20 +9) and ug(xg — 0) = us(xg +0) =0.

We can obtain the eigenfunctions of this local problem: wu;j(x) = sin (%(m — 20+ 9)), k =
1,2,---. Define the error e := u — us in Bs. Hence e is harmonic in By. It is easy to construct

a cut-off function 6 € C§°(Bs), such that it satisfies the following conditions:
(i) 0(z) > 0; (i) O(z) = 1, Yo € Byjp; (iil) [0/ (2)] < §.
Thus we have

[le@Pa < [fwlw@Pa - - [(03¢ ed)ea
Bs/a Bs Bs

2C 2C 3 3
7 B |96/6| dﬂf < 5(JB6 |9€/|2 dﬂf) 2 <JB |6|2 dx) 2.

é

N

N

CHAPTER 1. INTRODUCTION 18

The first and last inequalities immediately imply that

(JB |e’(:c)|2d:v>% < (JB 92(:3)|e'(x)|2d:6>é < 250<JB |e|2dx)é. (1.25)
5/2 s s

If we plug in the eigenfunctions us), to this inequality, we can see that

km 2C
- < -,
26 0
which suggests only low-frequency components are left in the error function e and oscillating

components in the distance d are accurately captured.

Remark 1.8 (Geometric high-frequencies). This simple result implies that the high-frequency
part of u can be estimated very well by the local solution wugs for elliptic problems. Singularity
is a particular form of high-frequency. In the numerical treatments, many forms of singularity
can be resolved through local mesh refinement and the reason why this type of methods is able

to work is because of such local behavior of high frequencies. Motived by (1.25), we can define

geometric high-frequency functions wuy as those with large |Vug|o.a/|uklo.q ratio.

1.2 Discretization methods

Discretization concerns the process of transferring continuous functions, models, or equations
into their discrete counterparts. This process is usually carried out as the first step toward
making them suitable for numerical evaluation and implementation on modern computers.

Let Q € R? be an open domain and f € L?(2). We consider the following model problem

—Au=f in Q,
u=0 on 0S).

Many discretization methods have been developed, such as finite difference (FD) and the finite
element (FE) methods, each with specific approaches to discretization. After discretization, we

usually end up with a linear algebraic system of equations

—

At = f. (1.26)

Finite difference method

In one-dimensional case, without loss of generality, we can assume Q = (0, 1) and the domain is
sub-divided into N +1 equally spaced pieces. So we get a uniform mesh with meshsize h = §7;

see the following figure for illustration.

CHAPTER 1. INTRODUCTION 19

To T1 X2 Ty Tniq

0 h 1

Figure 1.2: Uniform mesh in 1D.

Using the Taylor’s expansion, we can easily obtain that

(i) = %[u'(:ﬁH%) —ul(z_y)] + O)
=) — 2u(e) + u@n)| + 002

Let u; ~ u(x;) be an approximate solution. Then the FD discretization of the Poisson’s equation

is

2 -1 uy f(z1)
-1 2 —1 U9 f(x2>
1
ﬁ . ‘. . : = : . (127)
-1 UN—1 flxn—-1)
-1 2 uN f(zN)

That is to say,

A= %tridiag(—lﬂ,—l) and fi= <f1>N = (f(xz))N .

i=1 i=1
We need to solve the linear system A# = JF in order to obtain an approximate solution to the
Poisson’s equation. It is worth noticing that the coefficient matrix A is symmetric positive

definite (SPD), sparse, as well as Toeplitz.

Remark 1.9 (An alternative form of the linear system). Sometimes, it is more convenient (for

implementation) to also include the boundary values in @ and write the linear system as

1 U 0
-1 2 -1 Uy fi
1
3 =
-1 2 -1 Uun fN
1 UN+1 0

Apparently this form is equivalent to the discrete problem above.

Remark 1.10 (Eigenvalues of 1D FD problem). For simplicity we now assume h = 1. It is
well-known (see HW 1.2) that the eigenvalues of A := tridiag(—1,2,—1) are

km .9 km
)\k(A)_2_2COS<N+]_> = 4sin <M)

CHAPTER 1. INTRODUCTION 20

and the corresponding eigenvectors are

ik)

o N
{k = (§f>i=1ERN, with ff := sin (N+1

We note that the set of eigenvectors of A, 5 k= (@k)ij\il, forms an orthogonal basis of RY.

Therefore, any 5 e RY can be expanded in terms of these eigenvectors:
N
£= > ad®
k=1

This type of expansion is often called the discrete Fourier expansion. From Figure 1.3, we can
easily see that the eigenvectors are “smooth” with small £ and are “oscillatory” with large k.

Hence the smoothness of { has a lot to do with the relative size of the coefficients ay.

Figure 1.3: Eigenvectors of 1D finite difference system for the Poisson’s equation.

For two-dimensional problems, we can partition the domain uniformly in both z and y-
directions into n + 1 pieces (N = n?). We denote (z;,y;) = (n%ﬂ,n%rl) and the Poisson’s

equation is discretize using the five-point stencil

1 .
ﬁ[‘lui,j - (ui—l,j T Uit1,5 T U1+ Ui,j-i—l)] = f(wi,y5), 4,5=1,...,n
Then we need to assign an order to the grid points in order to write the unknowns as a vector.

There are many ways to order the unknowns for practical purposes. For simplicity, we use the

CHAPTER 1. INTRODUCTION 21

Lexicographic ordering, i.e., p(j_1)n4; := (%i,y;). Then we have

Uy fi
Ay -1
! U fo
-1 Ay -1
1
w2 = :
-1 A,_1 -1
1A, UN—1 fn-1
un In

where the block diagonal matrices 4; := tridiag(—1,4, —1), (¢ = 1,...,n) are tridiagonal. Define
C := tridiag(—1,0,—1). Then it is clear that

| 1 1
A= ﬁtrldlag(—I,Al,—I) = ﬁI®A1 —i-ﬁC@I.

Remark 1.11 (Eigenvalues of the 2D FD problem). Again we assume h = 1. Similar to the

1D problem, we can get the eigenvalues
o 2 cos T _ 4 sin® _m + 4 sin? L,
n+1 n+1 2(n+1) 2(n+1)

5—» . kim . U7
;= | sin sin .
I n+1 n+1

k,l=1,...n

=1,

Aij(A) =4 —2cos

with eigenvectors

Remark 1.12 (Ordering). The shape of the above coefficient matrix A depends on the ordering
of degrees of freedom (DOF's). We will see that the ordering also affects the smoothing properties
of smoothers and parallelization. Finding minimal bandwidth ordering is important for some

methods, like direct solvers. But it is NP-hard.

Finite element method

Finite element method (FEM) is a Galerkin method that uses piecewise polynomial spaces for
approximate test and trial function spaces. The readers are referred to [25, 37, 10, 20] for more
detailed discussion on construction and error analysis of the standard finite element method.
The weak formulation of the model equation can be written as (see Example 1.1): Find
u € H}(Q), such that
fﬂ Vu - Vudx = JQ fvdx, Yve H}Q).

In 1D, it is easy to explain the main idea of finite element method. Let Pg(7) be the space of

all polynomials of degree less than or equal to k¥ on 7. Let

V=V,={vel(®Q) : vePi(zi1,z;), v(0) = v(1) = 0}.

CHAPTER 1. INTRODUCTION 22

Now we can write the discrete variational problem as: Find uy € V}, such that

alup,vp] = (f,vn), Yoy € Vj.

Furthermore, we use nodal basis functions ¢; € Vj,, i.e. ¢;(x;) = 6; ;. In this way, we can express
a given function uy € V3 as up(x) = Zjvzl uj¢;(x). Hence we arrive at the following equation:

Foranyi=1,..., N,
N
Z ald, dilu; = (f,¢:) or > Ajjuj = fi.
=1 j

This is a system of algebraic linear equations

—

Ail = f, (1.28)

with (4),, = as; 1= afou 6], = () and £ = (1), = (¢r00)
)t

i=1
If we use the uniform mesh in Figure 1.2, then we have (see HW 1.3) that

A= %tridiag(—l, 2,-1) and f = (hf(xl))]i

Upon solving this finite-dimensional problem, we obtain a discrete approximation uy. The finite
element method has several appealing properties and it will be the main underlying discretization

used in this lecture; see §3.1 for more details.

Remark 1.13 (Discrete Poisson’s equation is ill-conditioned). Remark 1.7 has shown that the
Poisson’s equation has a bounded condition number. On the other hand, the discrete problems
from FD and FE are both ill-conditioned if meshsize h is small. Later on, we will see that this
will cause problems for many iterative methods. The convergence rate of these methods usually

depend on the spectrum of the coefficient matrix A.

Remark 1.14 (A useful notation). We use some notations introduced by Xu [55]. The notation
a < b means: there is a generic constant C' independent of meshsize h, such that a < Cb.
Similarly, we can define “2” and “=~”. This is important because, in our future discussions,
we would like to construct solvers/preconditioners that yield convergence rate independent of

meshsize h.

1.3 Simple iterative solvers

There are many different approaches for solving the linear algebraic equations results from
the finite difference, finite element, and other discretizations for the Poisson’s equation. For
example, sparse direct solvers, FFT, and iterative methods. We only discuss iterative solvers in

this lecture.

CHAPTER 1. INTRODUCTION 23

Some examples

Now we give a few well-known examples of simple iterative methods. Consider the linear system
Al = f Assume the coefficient matrix A € RV*Y can be partitioned as A = L + D + U, where
L,D,U € RY*N are the lower triangular, diagonal, and upper triangular parts of A, respectively

(the rest is set to be zero).

Example 1.2 (Richardson method). The simplest iterative method for solving A# = f might
be the Richardson method
e = a4 w(f - Aae). (1.29)

We can choose an optimal weight w to improve performance of this method. O

Example 1.3 (Weighted Jacobi method). The weighted or damped Jacobi method can be writ-

ten as
"V = 7% 4 wD(f — A@°'9). (1.30)

This method solves one equation for one variable at a time, simultaneously. Apparently, it is a
generalization of the above Richardson method. If w = 1, then we arrive at the standard Jacobi
method. O

Example 1.4 (Gauss—Seidel method). The Gauss—Seidel (G-S) method can be written as
i = @+ (D + L) (f - Ad°).
We rewrite this method as
(D + L)@™™ = (D + L)y7* + (f — Aq°) = f — vz°.

Thus we have
@ = @ 4 D7V (- L — (D + U)a). (1.31)
Compared with the Jacobi method (1.30) (w = 1), the G-S method uses the most updated

solution in each iteration instead of the previous iteration.]

Example 1.5 (Successive over-relaxation method). The successive over-relaxation (SOR) method

can be written as
(D + wL)@™ = wf — (wU +(w— l)D)ﬁ"ld. (1.32)

The weight w is usually in (1,2). If w = 1, then it is the G-S method. O

CHAPTER 1. INTRODUCTION 24

A simple observation

Many simple iterative methods exhibit different rates of convergence for short and long wave-

length error components, suggesting these different scales should be treated differently. Let Apax

and Apin be the largest eigenvalue and the smallest eigenvalue of A, respectively, and Emax and

{min be the corresponding eigenvectors. One interesting observation many people made is: When

we use the weighted Jacobi method (1.30) with weight w = 2/3 to solve the problem A = 0

with the initial guess just equal to 5max, the convergence is very fast. On the other hand, if the

weighted Jacobi iteration is used to solve the same equation but with a different initial guess
é’min, the convergence becomes slow. See Figure 1.4 for a demonstration.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 1 1 1 1 1
0 20 40 60 80 100 120

Figure 1.4: Error decay in | - [-norm for weighted Jacobi method with initial guess E k.

Note that the reason which causes this difference mainly relies on the fact that the error in
the first problem (corresponding to Emax) is oscillatory or of high frequency but the error in the
second problem (corresponding to Emm) is smooth or of low frequency. This makes one speculate
that the weighted Jacobi method can damp the high frequency part of the error rather quickly,
but slowly for the low frequency part; see Remark 1.8.

Smoothing effect *

In view of Remark 1.10, based on the understanding of the relation between the smoothness
and the size of Fourier coefficients, we can analyze the smoothing property using the discrete

Fourier expansion. Let @ be the exact solution of the 1D FD problem on uniform grids and @ (™)

CHAPTER 1. INTRODUCTION 25

the result of m-th iteration from the damped Jacobi method (or equivalently in this case, the
Richardson method). Then

— @™ = (I —wA)(@—a™ V)= = (I —wAd)™(@—a?).

£

It is straightforward to see that

Me(I —wA) =1 — whi(A) = 1 — 4w sin? (m) .

Notice that A\; (I —wA) can be viewed as the damping factor for error components corresponding
to Fourier mode k; see Remark 1.10. We would like to choose w such that A\;’s are small.

Consider the Fourier expansion of the initial error:

Then

Note that, for any polynomial p, we have p A)gk = p()\k)gk. By choosing w = i ~ m, we

obtain

N N
,,l—L»(m) _ Z Oék(l —W)\k)mfk _ Z a](gm)gk’
k=1

Ed
—

where

The above equation implies

N—k—|—17r) (N—k+17r>2m
T <ak A 4 y

(m): s a2m - —
Yk T RS (N+1 2 N+1 2

which approaches to 0 very rapidly as m — oo, if k is close to N (high-frequencies). This
means that high frequency error can be damped very quickly. This simple analysis justifies the
smoothing property we observed in the beginning of this section.

We can apply the same analysis to the Jacobi method as well and the Fourier coefficient in

front of the highest frequency is as follows:

(m) N m N 2 m
m—(1—-2sin? ——— — cos™ ~ (=11 ")
N (o E) v e ()~ (Y 2N+ 1)2) MW

This suggests that the regular Jacobi method might not have a smoothing property and should

not be used a smoother in general.

CHAPTER 1. INTRODUCTION 26

1.4 Multigrid method in 1D

In this section, we first give a simple motivation and sneak-peak of the well-known multigrid
method, which is a representing example of multilevel iterative methods. The observations of
this section will be helpful for our later discussions; see the famous tutorial by Briggs et al. [23]
for a quick introduction to the multigrid methods. Consider the finite difference scheme (1.27)

for the Poisson’s equation in 1D, namely

Ai = with A= %tridiag(—l,Z,—l), Fi = f(z).

Nested grids

Multigrid (MG) methods are a group of algorithms for solving partial differential equations
using a hierarchy of discretizations. They are very useful in problems exhibiting multiple scales
of behavior. In this section, we introduce the simplest multigrid method in 1D.

Suppose there are a hierarchy of L + 1 grids with mesh sizes h; = (%)Hl (l=0,1,...,L);

see Figure 1.5. It is clear that
ho>hy>hyg>--->hp=:h

and N = 2511 — 1. We call level L the finest level and level 0 the coarsest level.

=0 —L L L— ho = (3)

Figure 1.5: Hierarchical grids for 1D multigrid method.

Smoothers

We consider how to approximate the solution on each level using some local relaxation method.
Assume the 1D Poisson’s equation is discretized using the finite difference scheme discussed in

the previous section. Then, on each level, we have a linear system of equations

Ay = f; with A; = b2 tridiag(—1,2, —1).

CHAPTER 1. INTRODUCTION 27

For each of these equations, we can apply a damped Jacobi method (with damping factor 1/2)
1 -
g™ = @™+ 207t (fi - Aa™) (1.33)

to obtain approximate solutions. This method is usually referred as a local relaxation or

smoother, which will be discussed later in this lecture note.

Prolongation and restriction

Another important component of a multigrid method is to define the transfer operators between
different levels. In the 1D case, the transfer operators can be easily given; see Figure 1.6. In

another word, we can also write the transfer operators in the matrix form, i.e.,

1 21
1 1
Ry 1:= 1 1 2 1 and P = B

)

— N

(1.34)

— N

We notice that R = %PT. It is straight-forward to check that the coefficient matrices of two

-0 > > o -0 > » Om
N N N N
/ \ / \ 7\ /7 \
/ \ / \ / \ / \
4 N LA N s oo L)
Ry 53 2543 2 | Py 1 5 o1 5 51
/ \ / \ / \ / \
/ \ / \ / \ / \
/ N/ \ / v/ \
¥ \W \ / \7 \
-0 O -0 Om

Figure 1.6: Transfer operators between two consecutive levels (Left: restriction operator; right:
prolongation operator).

consecutive levels satisfy

A1 =Ry 1 AiP_q.

Multigrid algorithm

Now we are ready to give one step of the multigrid algorithm.
Algorithm 1.1 (One iteration of multigrid method). @ = MG(L, f;, @)

(i) Pre-smoothing: @ <« o + %Dl_l(ﬁ — Alﬁl)

CHAPTER 1. INTRODUCTION 28

(ii) Restriction: 7j_; « Ry (ﬁ — Alﬂ’l)

(iii) Coarse-grid correction: &_; «— MG(l —1,7_1,0;_1)
(iv) Prolongation: u; « u; + P,_1 ;€]

(v) Post-smoothing:) « u; + %D;l (ﬁ — Alﬁl)

Remark 1.15 (Coarse-grid correction). Suppose that there is an approximate solution @ (m),
Then we have
A(@—a™) =7 .= f— Ag(™

and the error equation can be written

Aem) = g(m), (1.35)

If we get €™ or its approximation, we can just update the iterative solution by @™+ —

@™ 4+ &™) to obtain a better approximation of @. This explains the steps (iii) and (iv) in the

above algorithm.

Remark 1.16 (Coarsest-level solver). It is clear that, in our setting, the solution at level [= 0
is trivial to obtain. In general, we can apply a direct or iterative solver to solve the coarsest-level
problem, which is relatively cheap. Sometimes, we have singular problems at the coarsest level,

which need to be handled with care.

Algorithm 1.1 is one iteration of the multigrid method. We can iterate until the approxima-
tion is “satisfactory”. For example, we iterate until the relative residual |7o/ | f]o is less than
107%; we will discuss stopping criteria later in this lecture. This multigrid algorithm is easy to
implement; see HW 1.5. In Table 1.1, we give the numerical results of Algorithm 1.1 for the 1D
Poisson’s equation. From the table, we find that, unlike the classical Jacobi and G-S methods,
this multigrid method converges uniformly with respect to the meshsize h. This is, of course,
a very desirable feature of the multilevel iterative methods, which will be investigated in more
details in this lecture.

Now it is natural to have a few questions on such multilevel methods:

e When does the multigrid method converge?

How fast the method converges?

How to find a smoother?

Why the matrices R and P are given as (1.34)7?

How to generalize the method to other problems?

CHAPTER 1. INTRODUCTION 29

#Levels #DOF #Iter Contract factor

5 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table 1.1: Convergence behavior of 1D geometric multigrid method.

1.5 Tutorial of FASP x

All the numerical examples in this lecture are done using the Fast Auxiliary Space Precondition-
ing (FASP) package. The FASP package provides C source files' to build a library of iterative
solvers and preconditioners for the solution of large-scale linear systems of equations. The com-
ponents of the FASP basic library include several ready-to-use, modern, and efficient iterative
solvers used in applications ranging from simple examples of discretized scalar partial differential
equations (PDEs) to numerical simulations of complex, multicomponent physical systems.

The main components of the FASP basic library are:

Basic linear iterative methods;

Standard Krylov subspace methods;
Geometric and Algebraic Multigrid (G/AMG) methods;

Incomplete factorization methods.

The FASP distribution also includes several examples for solving simple benchmark problems.
The basic (kernel) FASP distribution is open-source and is licensed under GNU Lesser General
Public License or LGPL. Other distributions may have different licensing (contact the developer

team for details on this). The most updated version of FASP can be downloaded directly from
http://fasp.sf.net/download/faspsolver.zip

To build the FASP library for these operating systems. Open a terminal window, where you
can issue commands from the command line and do the following: (1) go to the main FASP di-
rectory (we will refer to it as $ (faspsolver) from now on); (2) modify the “FASP.mk.example”

file to math your system and save it as “FASP.mk”; (3) then execute:

> make config

> make install

!The code is C99 (ISO/IEC 9899:1999) compatible.

http://fasp.sf.net/download/faspsolver.zip

CHAPTER 1. INTRODUCTION 30

These two commands build the FASP library/header files. By default, it installs the library
in $(faspsolver)/1lib and the header files in $(faspsolver)/include. It also creates a file
$ (faspsolver) /Config.mk which contains few of the configuration variables and can be loaded
by external project Makefiles. If you do not have “FASP.mk” present in the current directory,
default settings will be used for building and installation FASP.

Now, if you would like to try some of the examples that come with FASP, you can build the

“tutorial” target and try out the tutorial examples:

> make tutorial

Equivalently, you may also build the test suite and the tutorial examples by using the “local”

Makefile in $(faspsolver)/tutorial.

> make —C tutorial

For more information, we refer to the user’s guide and reference manual of FASP? for techni-
cal details on the usage and implementation of FASP. Since FASP is under heavy development,
please use this guide with caution because the code might have been changed before this docu-

ment is updated.

1.6 Homework problems

HW 1.1. Prove the uniqueness of the Poisson’s equation. Hint: You can argue by the maximum

principle or the energy method.

HW 1.2. Prove the eigenvalues and eigenvectors of tridiag(b, a,b) € RV*" are

. NEkr \T
),...,Sln(N+1)> ,

)\kza—2bcos<k77r) and gkz(sin(

N +1 N +1

respectively. Apply this result to give eigenvalues of the 1D FD matrix A. What are the

eigenvalues of tridiag(b, a, c) € RV*NV?

HW 1.3. Derive the finite element stiffness matrix for 1D Poisson’s equation with homogenous

Dirichlet boundary condition using a uniform mesh.

HW 1.4. Derive 1D FD and FE discretizations for the heat equation (1.6) using the backward

Euler method for time discretization.

HW 1.5. Implementation of multigrid in 1D using Matlab, C, Fortran, or Python. Try to study

the efficiency of your implementation.

2 Available online at http://fasp.sourceforge.net. It is also available in “faspsolver/doc/”.

http://fasp.sourceforge.net
faspsolver/doc/

Chapter 2

Iterative Solvers and Preconditioners

The term “iterative method” refers to a wide range of numerical techniques that use successive
approximations {u(m)} for the exact solution u of a certain problem. In this chapter, we will
discuss two types of iterative methods: (1) Stationary iterative method, which performs in
each iteration the same operations on the current iteration; (2) Nonstationary iterative method,
which has iteration-dependent operations. Stationary methods are simple to understand and
implement, but usually not very effective. On the other hand, nonstationary methods are a

relatively recent development; their analysis is usually more difficult.

2.1 Stationary linear iterative methods

In this section, we discuss stationary iterative methods; typical examples include the Jacobi
method and the Gauss—Seidel method. We will discuss why they are not efficient in general but
still widely used. Let V' be a finite-dimensional linear vector space, A : V +— V be a non-singular

linear operator, and f € V. We would like to find a w € V, such that
Au = f. (2.1)

For example, in the finite difference context discussed in §1.2, V' = R" and the linear operator
A becomes a matrix A. We just need to solve a system of linear equations: Find % € RY, such
that

—

A= f. (2.2)

We will discuss the linear systems in both operator and matrix representations. We note that
the notation here in (2.2) might be slightly different when we discuss the discrete problems

arising from the finite element discretizations.

Remark 2.1 (More general setting). In fact, we can consider iterative methods in a more

general setting. For example, let V' be a finite-dimensional Hilbert space, V’ be its dual, and

31

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 32

A :V — V' be a linear operator and f € V'. A significant part of this lecture can be generalized

to such a setting easily.

Preliminaries

The most-used inner product in this lecture is the Euclidian inner product (u,v) := ¢, uv dx;
and if V =RN (u,v) := Zf\i 1 4v;. Once we have the inner product, we can define the concept
of transpose and symmetry on the Hilbert space V. Define the adjoint operator (transpose) of

the linear operator A as AT : V — V, such that
(ATu,v) := (u, Av), Yu,veV.
Remark 2.2 (Non-singularity). We denote the null space and the range of A as

null(A4) = {veV : Av =0}, (2.3)
range(A) = {u=Av :veV}. (2.4)

We have null(A7)+ = range(A) and null(AT) = range(.A)*. If null(A) = {0}, then A is injective
or one-to-one. Apparently, A : V — range(A) is surjective or onto. If we consider a symmetric

operator A : null(A)* — range(A), then A is always non-singular.

A linear bounded operator A on V is symmetric if and only if
(Au,v) = (u, Av), Yu,v € domain(A) < V.
If A is densely defined and AT = A, then A is called self-adjoint.

Remark 2.3 (Symmetric and self-adjoint operators). A symmetric operator A is self-adjoint
if domain(A) = V. The difference between symmetric and self-adjoint operators is technical;

see [61] for details.

The set of eigenvalues of A is called the spectrum, denoted as o(A). The spectrum of any
bounded symmetric matrix is real, i.e., all eigenvalues are real, although a symmetric operator
may have no eigenvalues’. We define the spectral radius p(A) :=sup {|A| : A€ o(A)}.

An important class of operators for this chapter is symmetric positive definite (SPD) op-
erators. An operator A is called SPD if and only if A is symmetric and (Av,v) > 0, for any
v € V\{0}. Since A is SPD, all of its eigenvalues are positive; furthermore,

(Av,v) (Av,v) '

min max
veV\{0y [lv]? veV\{o} [v]?

Amin(A) = and Amax(A) =

! A bounded linear operator on an infinite-dimensional Hilbert space might not have any eigenvalues.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 33

We define the condition number x(A) := ’/\\m‘f"‘((j)) , which is more convenient, compared with

spectrum, to characterize convergence rate of iterative methods. For the indefinite case, we can

use
SUPjeo(A) | Al

~A) = infyer(a) [l

More generally, for an isomorphic mapping A € Z(V;V), we can define
k(A) = Al 2y ”A_1HZ(V;V)-

And all these definitions are consistent for symmetric positive definite problems. If A is a SPD

operator, it induces a new inner product, which will be used heavily in our later discussions
(u,v) 4 = (Au,v) Yu,v e V. (2.5)

It is easy to check (-,)4 is an inner product on V. For any linear bounded operator B : V +— V|
we can define two transposes with respect to the inner products (-,-) and (-,-)4, respectively;

namely,

(BTu,v) = (u,Bv),
(B*u,v) 4 = (u,Bv)4.

By the above definitions, it is clear (see HW 2.1) that

B* = A'BT A. (2.6)
Remark 2.4 (Induced norms). The inner products define above also induce norms on V' by
|v| = (v,v)% and |v[l 4 := (v,v)i. These, in turn, define the operator norms for B : V — V|
ie.,
5= sp B g Bl s 1P
vervioy vl vervioy)4
It is well-known that, for any consistent norm || - |, we have p(B) < |B|. Furthermore, we

have the following results:

Proposition 2.1 (Spectral radius and norm). Suppose V' is Hilbert space with an inner product

(+,+) and induced norm || - |. If A:V — V is a bounded linear operator, then

p(A) = lim A"

m—+00

Moreover, if A is self-adjoint, then p(A) = |A].

From this general functional analysis result, we can immediately obtain the following rela-

tions:

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 34

Lemma 2.1 (Spectral radius of self-adjoint operators). If BT = B, then p(B) = |B|. Similarly,
if B* = B, then p(B) = |B].a.

Symmetry is a concept with respect to the underlying inner product. In this chapter, we
always refers to the (-, -)-inner product for symmetry. By definition, (BA)* = BT A. If BT = B,

we do not necessarily have (BA)T = BA. However, we have a key identity:
(BA)* = BT A = BA;
see HW 2.2 for the first equality. So Lemma 2.1 implies the following identity:
p(Z —BA) = |T —BA|a,

where Z : V +— V is the identity operator.

Stationary iterative methods

A linear stationary iterative method (one iteration) can be expressed in the following general

form:
Algorithm 2.1 (Stationary iterative method). u"*" = ITER(u°)
(i) Form residual: r = f — Au°
(ii) Solve error equation: Ae =r by é = Br
(iii) Correct iteration: u™*" = ¢°d + ¢
That is to say, the new iteration is obtained by computing
umY = % 4 B(f — Aud). (2.7)

Notice that each iteration only depends on the previous approximate solution u°'4 and does not
involve any information of the older iterations; in each iteration, it basically performs the same

operations over and over again. It is easy to see that
u—u™ = (I —BA) (u— u(m_l)) == (I —-BA™(u-— u(o)) =& (u— u(o)),

where the operator £ := Z — BA is called the error propagation operator and B is called the
iterator.

We can get the following simple convergence theorem.

Theorem 2.1 (Convergence of Algorithm 2.1). The Algorithm 2.1 converges for any initial guess
if the spectral radius p(Z — BA) < 1, which is equivalent to limy,—, o (Z — BA)™ = 0. The con-

verse direction is also true.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 35

This convergence result is simple but difficult to apply. More importantly, it does not
provide any information on how fast the convergence could be if the algorithm converges; see

the following example for further explanation.

Example 2.1 (Spectral radius and convergence speed). Suppose we have an iterative method

with an error propagation matrix

0 1 0
|t er
. .
0 -« ... 0

and the initial error is €(© := 47— ©) = (0,...,0,1)” € RY. Notice that, in this example, p(E) =
0. However, if applying this error propagation matrix to form a sequence of approximations, we
will get

€@y = eW)g = = g™ Va =1 and ey =0.

The main question now is to find out whether there is a constant § € [0,1) and a convenient

norm | - | on RN, such that |e(™+D| < §|e™)| for any €@ e RV, O

Remark 2.5 (Convergence rate of the Richardson method). The simplest iterative method for
solving Ad = f might be B = wl, which is the well-known Richardson method in Example 1.2.
In this case, the iteration converges if and only if p(I —wA) < 1, i.e., all eigenvalues of matrix A
are in (0, 2). Since A is SPD, the iteration converges if w < 2Ag1, (4). If we take w = AL (A),

max max
then

Amin(A4) 1
Amax (4) k(A)

p(I — AL

max

(A)A) =1 -

2
)\max(A) +)\min(A) and

In fact, the optimal weight is wopt =

) B Duin(4) k(4 —1
P — woptA) = [T — wopt Al =1 Amax(A) + Amin(A4) B K(A)+ 1

We can see that the convergence is very slow if A is ill-conditioned.

—

Remark 2.6 (Richardson and steepest descent method). If A is a SPD matrix, then A4 = f is

equivalent to the unconstrained quadratic minimization problem

B A
argmin — 1 Ad — f14.
weRN

We immediately notice that the search direction in the Richardson method is exactly the same

as the steepest decent method for the above minimization problem; see §2.2.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 36

Symmetrization

In general, the iterator B might not be symmetric and it is more convenient to work with

symmetric problems. We can apply a simple symmetrization step:
w3 = m) B< f Au(m>), (2.8)
W)) BT(fo Au(m+%>), (2.9)
to obtain a new iterative method
w—u™) = (T — BT AT — BA)(u — u™) = (T — BA)*(T — BA)(u — u'™).
This new method satisfies the relation
w—u™) = (T — BA)(u — u'™)
and it has a symmetric iteration operator
B:=B"+B-BTAB=B"(BT+B' - A)B=:BTKB. (2.10)
Lemma 2.2 (Error decay property). We have, for any v eV, that
ol = 1@ = BAYW[= (BAv,v) .

or equivalently,

((Z - BA)v,v) , = (T - BAW|
Proof. Notice that, by the definition of symmetrization,
BA=B"(B"T + B! - ABA.
This immediately gives
(BAv,v)4 = ((B*T + B! — A)BAv, BAv) = (BAv,Av) + (Av, BAv) — (ABAv, BAv)
= ((2Z - BA)v,BAv) ,
and the first equality follows. The second equality is trivial. O]

Remark 2.7 (Contraction property). The stationary iterative method defined by B is a con-
traction if |Z — BA| 4 < dp < 1. Apparently, it is equivalent to say

lel? = @ = BAYe’ = (1=) e|5, >0, Ve 0.

Lemma 2.2 indicates that § := |Z — BA|4 < 1 if and only if B is SPD. The constant § is
called the contraction factor of the iterative method. In the later discussions, we can assume the

iterator B is SPD; in fact, if the iterator is not symmetric, we can consider its symmetrization.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 37

Remark 2.8 (Effect of symmetrization). We notice that B =B and (Z - BA)* =T - BA.
Furthermore, Lemma 2.2 implies that ((Z — BA)v, U)A = |(Z — BA)v|%, Vv e V. Since T — BA
is self-adjoint w.r.t. (-,-)4, we have |Z — BA|4 = p(Z — BA). And as a consequence,

Z-BAla= sw (Z-BAwe) = s [(T-BAplh=|T-BAR: (211
v|a=1 v|a=1

This immediately gives
p(T —BA) = |T— BA|4 = |T— BAJ, > p(T — BA).

Hence, if the symmetrized method (2.8)—(2.9) converges, then the original method (2.7) also

converges. Furthermore, we can obtain the following identity:

— — 7 — BA)v,
T BAL = o7 By = s (B

x (2.12)
veV\{0} lv]%

Convergence rate of stationary iterative methods

Since o(Z—BA) = {1—\ : Ae 0(BA)}, the convergence of the symmetrized method (2.8)—(2.9)
is equivalent to p(Z — BA) < 1. Up to a constant scaling, it is equivalent to o(BA) < (0, 1], i.e.,
BAis SPD w.r.t. (-,-)4. It is equivalent to say that B is SPD w.r.t. (-,-). We summarize the

convergence conditions in the following theorem.

Theorem 2.2 (Convergence of Symmetrized Algorithm). The symmetrized iteration (2.8)—(2.9)
(with appropriate scaling) converges if and only if B is SPD.

Example 2.2 (Jacobi and weighted Jacobi methods). If A € RV*¥ is SPD and it can be parti-
tioned as A = L+ D+U, where L, D,U € RV*N are lower triangular, diagonal, upper triangular
parts of A, respectively. We can immediately see that B = D~! yields the Jacobi method. In

this case, we have
B=B"BT+B'-AB=DT(D-L-UD"

If Kjacobi := D —L—U = 2D — A is SPD, the Jacobi method converges. In general, it might not
converge, but we can apply an appropriate scaling (i.e., the damped Jacobi method) B, = wD ™.
We then derive

Bl +B ' —A=20"'D— A

The damping factor should satisfy that w < ﬁ in order to guarantee convergence. For

the 1D finite difference problem of the Poisson’s equation, we should use a damping factor
0<w<l1. [

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 38

Based on the identity (2.12), we can prove the convergence rate estimate:

Theorem 2.3 (Convergence rate). The convergence rate of the stationary iterative method (or
its symmetrization) is
_ 1 —
1T -BA|% =|T-BA|a=1-—, with ¢;:= sup (B 11},1}).
“ lvll.a=1
Proof. The first equality is directly from (2.11). Since ((Z — BA)v,v)4 = [v|%} — (BAv,v) 4, the
identity (2.12) yields

_ — 1
1T -BAPA =1— inf (BAv,v)4 =1 Apn(BA) =1— —,

lvf.a=1 €1

where
1 = Amax((BA)™) = sup ((BA)_lv,v)A = sup (Eilv,v).

[v].a=1 [v].a=1

An example: modified G-S method *

Similar to the weighted Jacobi method (see Example 2.2), we define the weighted G-S method
B, = (w D+ L)~1. We have

BT +B'—-A=(w'D+L)T +(w'D+L)—(D+L+U)= (2w ' =1)D.

w w

The weighted G-S method converges if and only if 0 < w < 2. In fact, w = 1 yields the standard
G-S method; 0 < w < 1 yields the SUR method; 1 < w < 2 yields the SOR method. One
can select optimal weights for different problems to achieve good convergence result, which is
beyond the scope of this lecture.

Motived by the weighted G-S methods, we assume there is an invertible smoother or a local
relaxation method S for the equation Ad = f_; like the damped Jacobi smoother S = wD™!

(0 <w < 1). We can define a general or modified G-S method:
B:=(S'+L)"h (2.13)

This method seems abstract and not very interesting now; but we will employ this idea on block
matrices for multilevel iterative methods later on.

We can analyze the convergence rate of this modified G-S method using the same technique
discussed above. Since K = B~T + B~! — A is a symmetric operator and we can write (2.10)
as B = BTKB. If B is the iteration operator defined by (2.13), we have

K=ST+0)+ (S +L)-D+L+U)=5T+5'1-D.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 39

Furthermore, from the definition of K, we find that B~! = K + A — B~T. Hence we get an

explicit form of B! by simple calculations:

B ' =(K+A-B)K" K+A-BY)=A+(A-B K (A-B™).
This identity and the definition of B yield:

(E*ﬁ, 77) — (A7, 7) + (K*l(D Y U—8 Y, (D+U - 5*1)17), Vi e RV,
Now we apply Theorem 2.3 and get the following identity for the convergence rate:

Corollary 2.1 (Convergence rate of Modified G-S). If K = S~1 + S~ — D is SPD, then the
modified G-S method converges and
_ 1 2
[—BAP =|I-BAja=1— ——, with cy:= sup HK—% (D+U - 8_1)17H .
1+ [7]a=1
This simple result will motivate our later analysis for subspace correction methods in Chap-

ter 4.

Example 2.3 (Solving 1D FD equation using G-S). If we apply the G-S method to the 1D FD
system (1.27) for the Poisson’s equation discussion in §1.2. For simplicity, we first multiply the
both sides of the equation by k%, namely, A := tridiag(—1,2, —1) and fi= (th(xi))i]il. In this
case, S = D7! and K = D. Corollary 2.1 shows that the convergence rate of the G-S iteration
satisfies that

1 LD U,
I-BAP =1— ' with o= sup E2_UTD
L+c¢o FeRN\{0} 191%

The positive constant can be further written

(D~'Uw,U%) (U, U%) 1y v?
cg= Ssup ~—————> = Sup ————> = sup =
verRM\(0y (AT, D) gerM\(0} (AT,7) germgoy (AT,)

Because we have the eigenvalues of this discrete coefficient matrix A of FD (see Remark 1.10),
we can estimate the denominator
J— - . ™ —
(A5,8) = duin(AT = 450 (5375) 191

Hence, asymptotically, we have the following estimate

12

5|V

. 1l

TeRN\{0} 4 sin? (SNFT))”UH

~(N+1)2=h2
Hence

Il — BA|s ~V1—Ch?~1—Ch2

Similarly, for the FE equation, the condition number also likes O(h~2) and convergence rate will

deteriorate as the meshsize decreases. O

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 40

2.2 Krylov subspace methods

Nonstationary iterative methods are more popular for standard-alone usage. Krylov subspace
method (KSM) is a well-known class of nonstationary methods [35]. Let A : V +— V be an
invertible operator. By the Cayley—Hamilton theorem (see HW 2.3), there exists a polynomial
of degree no more than N — 1, q,_,(\) € Py_1, such that A~! = ¢, ,(A). Hence the solution
of the linear system has the form u = ¢,_, (A)f. Krylov subspace methods construct iterative

approximations to u in

’Cm::Span{faAfa-AQfa'"7Am_1f}> m:172""

Gradient descent method
Let A:V +— V be an SPD operator. Consider the following convex minimization problem:

Igéi‘];l}'(u) = %(Au,u) — (f,u). (2.14)

Suppose we have an initial approximation u°'d and construct a new approximation

wuhev — uold +ap

with a fixed search direction p € V' and a stepsize . In order to find the “best possible” stepsize,
we can solve an one-dimensional problem (i.e., the exact line-search method):
. _ L/ o old old
ranelﬂlgf(a) = 5(u + ap,u —i—oep)A — (f,u®" 4+ ap).
By simple calculation (HW 2.4), we obtain

1 1
‘F(a) = iaz(Ap7p) - a(f - AuOldap) + i(AuOIdﬂudd) - (f7 u01d>7

and the optimal stepsize is

_ old old
o= LA 70p) e eld g0l (2.15)

(Ap,p) (Ap,p)’

In the previous chapter, we have discussed the Richardson method. A nonstationary version

of the Richardson method can be given as:
w™H) = (M o, (f - Au(m)),

which can be viewed as the gradient descent or steepest descent (SD) method with exact line-
search for the above convex minimization problem. This method is easy to implement and
cheap in computation (each step only requires 1 matrix-vector multiplication and 2 inner prod-
ucts). Unfortunately, the SD method usually converges very slowly. See the following algorithm

description of the SD method:

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 41

Listing 2.1: Steepest descent method

1|%% Given an initial guess uw and a tolerance ¢;
r— f— Au;
while |r|>¢€

a«— (r,r)/(Ar,T);

U<—u-+ar;

=W N

ot

6 r—r—aAr;

7 |end

Example 2.4 (Line-search and the G-S method). Let V = RN, A = (a; ;) € RV*¥. Suppose
we choose the natural basis as the search directions, i.e., p = & := (0,...,0,1,0,...,0)T e V.
Let @°4 = 7(©) be an initial guess. Then the above method yields the iteration:

P GArY) IO

L =

_ ISR 2
(Ap,p)

@™ =q(=Y 4 ap = al

So we get
N i—1
fi— 2 aig “j(l : S

Qi

() — 7G-1) |

£

This means that only one entry is updated in each iteration:

N (i—1)

: fi— 2020 aigu; 1

Uu; = u; + ‘ j=1 "% 7j :—(fi— E ai’jujneW7 E aiJ’LL]Qld). (216)
(IM ai,i — .

j<i j>i

After N steps (1 = 1,2,...,N), we obtain a new iteration @™V, which is exactly the G-S

iteration. Based on (2.16), we can write the G-S error propagation matrix in a different form
I —BA= (I —Inay'yINA) - (I — a1 1T A) = (I = TIx) -+ (I = IT), (2.17)

where I; is the natural embedding from span{é;} to RN and II; = IiA,;lIiTA. This form of G-S
will be further discussed later in the framework of Schwarz method and subspace correction

method.

Theorem 2.4 (Convergence rate of steepest descent method). If we apply the exact line-search

using the stepsize

(m) p(m)
e (1)

(r(m)7 r(m))A

then the convergence rate of the SD method satisfies that

k(A —1\™
-l < (S50 51) vl (2.18)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 42

Proof. The exact line-search stepsize is easy to obtain by 1D quadratic programming. At the

m-th iteration, the energy satisfies that

1

o (A, 7)),
By plugging the expression of «,, into the right-had side of the above equality, we obtain that
1 (r(m) p(m))2

2 (Ar(m) p(m))°

Fum™Dy = Fu™ + ap,r™) = Fu™) — oy, (7™ (™)) 4

Fum)y = Fum™y -

This implies that

(m 2
Flum Q_ F
Fum) — Fu) (™) - 2(Ar™ r(m)) (u)
Flulm) = F(w) F(ulm) = F(u
(r(m) | (m))2 1 1
O (Arm)) (ALt)y T B
By the Kantorovich inequality, we know £ < ﬁ))‘;‘l‘:). So it follows
Flulm Dy — Flu) ol Mmedmin e = Amin)® _ (6(A) — 1 2
];(u(m)) - Jr(”) a B = ()‘max +)\min)Z B ()‘maX +)‘miH)Q a K(A) +1 ‘
Hence the result. O

Conjugate gradient method
Now we consider a descent direction method with search direction p(™, i.e.
wmH) — (M g, M), (2.19)

In this case, the “optimal” stepsize from the exact line-search is

(m)_p(m)
= W. (2.20)
(ptm), pm))

We notice that the residual after one iteration is
pm+l) _ (m) _ Oérrwétp(m)

In order to keep the iteration going, we wish to construct a new search direction which is

orthogonal to the previous search directions. This motives us to define
ptmHD = pm+D g p(M) - such that (p(m),p(m+1))A =0.

By simple calculations, we get the weight

(Arm+D),)
(Ap(m)7p(m)))

This is basically the so-called conjugate gradient (CG) method.

B = — (2.21)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 43

Lemma 2.3 (Properties of conjugate directions). For any conjugate gradient step i, we have

following identities:

1.

4.

=0, j#i

This lemma is very simple but important; see HW 2.5. It guarantees we can apply a short

recurrence iteration procedure while keep all directions are orthogonal to each other.

Lemma 2.4 (Stepsizes for CG). For the conjugate gradient method, we have following identi-

ties:
_)
1. ap, = (Ap(m),p(m))7
2 B = T(m+1),7“(m+1))

(), 0y

The previous lemma may look like some trivial transformations, but it is essential for CG

implementation, which is described as follows:

(V)

=W

© 0 N o w

10

Listing 2.2: Conjugate gradient method

ro—

end

%% Given an initial guess uw and a tolerance g;

while |r|>¢

f—AU, DT

o« (r,r)/(Ap,p);

U <—u+ap;

7 <«—1r— aAdp;

B (77)/(r,r);

p—7+pBp;

Update: wu <« u, r <7, p<p;

The CG method converges much faster than the steepest descent. In fact, we have the following

theorem

Theorem 2.5 (Convergence rate of CG). The convergence rate of the CG iteration satisfies the

following estimate:

Ju—u™], <2 (~A) — 1) Ju—u®] . (2.22)

VE(A) +1

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 44

Proof. We only give a sketch of proof here. From Lemma 2.3, the residual #(™) is orthogonal to
Ky = span{r®, Ar© . 4"~ 10)}
namely
(A(w — u™) v) = (r™ 0) =0, Voe Ky,
This implies

((u— u®) — (um — u(o)),v)A =0, Yvel,.

The above A-orthogonality gives

Y | et
= min (7= gna (DA @~)| = min Jgn(A)w - u)]

The desired estimate can then be obtained by choosing appropriate Chebyshev polynomials; see

HW 2.6 as a guideline to complete the proof.]

If the spectrum of A is uniformly distributed in the interval [Amin, Amax], then the upper
bound in (2.22) is sharp. In fact a few “bad eigenvalues” have almost no effect on the asymptotic
convergence of the method. In this case, the bound is not sharp. The asymptotic convergence

rate can be estimated by the effective condition number [2, 3].

Remark 2.9 (Computational complexity of CG). We find that, in each iteration of the CG
method, the complexity is only 1 matrix-vector multiplication and 2 inner products, with a few

vector additions.

Remark 2.10 (MINRES method). If A:V +— V is a symmetric isomorphism mapping and it
is indefinite, we can apply the minimum residual (MINRES) method characterized by

u'™ = argmin || f — Av|3.

vEK m

We can derive analytically that (see, for example, [35])

(m) i (0)
[< min max lgn ()]

In this case, the following crude convergence estimate holds
—1\™ k(A) — 1\
) (A — u| <2 (AL Cu o (FAZINT 0 599
Iy = At =l < 2 (057) A=), =2 (50 51) Ol 229
If all the eigenvalues are positive, we can get sharp convergence estimate using Chebyshev
polynomials. Unfortunately, it is not easy to get a general yet sharp estimate for indefinite

problems.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 45

Generalization to Hilbert spaces

It is important to note that the above convergence estimates (2.22) and (2.23) do not depend
on the finite dimensionality N. Hence the Krylov subspace methods (KSMs) can be applied for
operators A : ¥ — ¥. In view of Remark 1.7, we have

HA”D?(VV) = sup (-/41)721)) _ a['[},z'l)] <
’ veY HUHV veyV HUHV

a

and the inf-sup condition (1.17) gives

_ e Ay (Av,u) .
= inf = inf sup ————— = infsup ———— >
ve? folly vV ey [Wlvlluly ver ey [vllvuly

alv, u]

A2 o

Hence the condition number x(A) < Cy/«, which is bounded.

However, in order to employ KSMs for the continuous equations that we are interested in, like
the Poisson’s equation, we have to consider A : ¥ +— # ', where ¥ and # are separable Hilbert
spaces. Typically, # > ¥ and most likely # = ¥’. The following discussion directly follows
the work by Mardal and Winther [45]. For simplicity, we consider a symmetric isomorphism
Ae LV, 7)), ie.,

(Au, vy = {Av,u), wu,veY,

where (-, -) is the duality pair. Since ¥’ ¢ ¥/, KSMs are not well-defined in this case.
We need to construct an isomorphism B mapping ¥’ back to #. We assume that the map B
is symmetric and positive definite, namely {-, B-) defines an inner product in #”. We immediately

notice that B could be a Riesz operator?: For any given f € 7,

(Bf,v)y ={f,v), Yve¥.

As a consequence, (B~!.) is an inner product on ¥, with associated norm equivalent to | - |y .

This leads to a so-called preconditioned system
BAu = Bf

and BA is an isomorphism from ¥ to itself. The Krylov subspace methods can be applied to
this preconditioned system and B is called a preconditioner.

Note that BA: ¥ — ¥ is symmetric with respect to (-,)y, i.e.,
(BAu,v)y = (Au,v) = alu,v] = (u, BAv)y, u,veV.

The last equality follows from the symmetry of the bilinear form a[-, -]. Furthermore, due to the

continuity of a[-, -] (1.15), we obtain

|(B.A’U,U)1/| CL[’U,U]
IBAlgvip) = sup Lo <C
U ey R ver v[5 ‘

2We note that B is inner product dependent.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 46

and the inf-sup condition (1.17) gives

BAv|- BAv, u):- .
”(8“4)71”;%1(7/“//) = inf w = inf Supw = inf SUPM >
Ther oy v ey [ollyllully vt uey olvluly

Example 2.5 (Poisson solver as a preconditioner). As an example, we consider a second-order
elliptic operator A : H}(Q) — H~1(2). We need to define

(Bf7 U)Hé Q) = (VBfa VU)O,Q = <f? U>'

1

In this sense, we can choose B = (—A)™" as a preconditioner. We note that other inner products

can be used, which will yield different preconditioners. As long as the above continuity condition

and the inf-sup condition hold, the preconditioned system is well-conditioned. O

Now we summarize the above discussion on how to construct a “natural” preconditioner:

1. Define an appropriate inner product (-,-)y;

alu,v]
vll»

2. Establish the inf-sup condition sup,,. > alu|y for any u € ¥;

3. Define B as the Reisz operator, i.e., (Bf,v)y = {f,v) for any v e ¥;
4. The preconditioned system B.A is symmetric with respect to (-,)y and well-conditioned;
5. Construct a discretization which satisfies the corresponding discrete inf-sup condition;

6. Define a spectrally equivalent B}, as a preconditioner.

2.3 Condition number and preconditioning

The convergence rate of an iterative method depends greatly on the spectrum of the coeflicient
matrix. Hence, iterative methods usually involve a second matrix that transforms the coef-
ficient matrix into one with a more favorable spectrum. The transformation matrix is called
a preconditioner. A good preconditioner B improves the convergence of the iterative method
sufficiently and is relatively cheap to compute, in order to overcome the overhead (extra cost) of
constructing and applying the preconditioner. There are a few ways to apply preconditioners,

for example:
BAu = Bf Left preconditioning

ABv = f u = Bv Right preconditioning
BrABrv = B f u = Bgrv Split preconditioning

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 47

Construction of preconditioners

We first introduce a few simple facts that could be helpful when we need to estimate the condition
number k(BA). Although convergence behavior of iterative methods is not governed by the
condition number alone, it provides useful information for a variety of methods. For example,
we would hope that k(BA) « k(A), if we apply the steepest descent method or the CG method
to solve a linear system.

It is desirable to have an optimal preconditioner which satisfy most of, if not all, the following

properties:

e The preconditioned linear systems have improved convergence behavior. Furthermore,
the spectral condition number of B.A should be bounded independently of the size of the

problem.

e The preconditioner is relatively easy to setup and cheap to apply. The computational cost

of Br should be proportional to the size of the problem.

e The preconditioner should be robust on different domain shapes, mesh types, jumps in

coefficients, etc.

e The preconditioner can be parallelized easily and efficiently.

Lemma 2.5 (Estimation of condition number). If g and u; are positive constants satisfying

140 (Au, u) < (Bflu,u) < 1 (Au,u), YueV, (2.24)
then the condition number
k(BA) < m
Ho

Proof. By change of variable u = A_%v, we have U(A_%BflA_%) c [uo,,ul] and, hence,
O’((BA)_I) = [MO;Ml]- O

Sometimes, it is more convenient to use the following equivalent conditions of (2.24):

Lemma 2.6 (Some equivalent conditions). If 4 and B are symmetric positive definite operators

on a finite-dimensional space V', then we have the inequalities (2.24) are equivalent to
po(Bu,u) < (A u,u) < py (Bu,u), VueV, (2.25)

or
pt (Au,u) < (ABAu,u) < gt (Au,u), YueV, (2.26)

or
pyt (Bu,u) < (BABu,u) < pig*(Bu,u), YueV. (2.27)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 48

Proof of this lemma is left to the readers as an exercise; see HW 2.7.

Remark 2.11 (Another equivalent condition). If A and B are symmetric positive definite op-
erators on a finite-dimensional space V, o > 0 and 0 < § < 1, then it is easy to verify the

following two conditions are equivalent:
—a(Au,u) < (AZ — BA)u,u) < 6(Au,u), YueV (2.28)

and
(1+a) YAu,u) < (B lu,u) < (1—06)" (Au,u), YuelV. (2.29)

Let B be a symmetric iterator of the SPD operator A. We have seen that a sufficient

condition for the iterative method to be convergent is that
p(Z —BA) < 1.

In this case, p := |Z — BA|4 < 1. The method is not only converging but also a contraction,
e, |Ju—u™|4 < p™|u—u®|4 — 0as m — +co. Similar argument as Theorem 2.2 shows

that B must be SPD. Furthermore, by definition, we have
(A= 24BA+ ABABAYu, u) < p(uu)a.
Changing variable v = A2y, we obtain
((I— A1/2BA1/2)21),1)> < pPlo,v) = ‘((I— A1/2B.A1/2)v,v)‘ < p(v,v)
— ’((A — .AB.A)u,u)‘ < p(Au,u), YueV.

Hence Remark 2.11 shows (see HW 2.9) that the condition number is uniformly bounded, i.e.,

1+p

In fact, the above estimate can also be easily obtained from p(Z — BA) = p < 1.

Preconditioned conjugate gradient method

The first question to answer is whether and how CG can still be applied to the preconditioned
system BAu = Bf. As we mentioned B.A is not symmetric w.r.t. (-, -) but symmetric w.r.t. (-,) 4.

Similarly, we can define a new inner product (-,-)g-1 := (B7!.,-). Then
(BA-,)g-1 =(A-,-) = BAis SPD w.r.t. (-,")5-1,

which means CG can be applied to BAu = Bf with the new inner product.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 49

Lemma 2.7 (Stepsizes of PCG). For the preconditioned conjugate gradient method, we have
the following identities:

(Br(m) 7 T(m))
- (Ap(™ pm)”

(Br(m+D)_p(m+1))

2. B = (BT(m):’F(m))

1. ap,

We notice that B~! is cancelled out in the above inner products. With the help of this
lemma, we can write the pseudo-code of PCG with left preconditioner (compared with regular

CG, it just requires one more matrix-vector multiplication):

Listing 2.3: Preconditioned conjugate gradient method

1 [%% Given an initial guess u and a tolerance g;

(V)

r<— f—Au, p< Br;
while |r|>¢€
o« (Br,r)/(Ap,p);

U<—u+ap;

> W

(o3

7 —r—aAdp;
B« (BF,7)/(Br,r);
p < Bf+Bp;

Update: u <« u, r« 7, p<p;

© o N o

10 | end

Remark 2.12 (Iterator and preconditioner). We use the same notation B for the preconditioner
and the iterator, apparently for a reason. Indeed, the convergence rate of the preconditioned

CG method (2.22) is equal to

1
_ VR(BA -1 _ e Rk S B,
“T rBA +1 e p

The last inequality holds true when 0 < p < 1. Hence, for any convergent stationary linear

iterative method, a preconditioner can be found and its convergence can be accelerated by
PCG. Of course, it comes with the extra cost of applying the preconditioners. Preconditioning

is so important for practical problems and KSMs are sometimes referred as accelerators.

Stopping criteria x

When an iterative method is employed, sometimes it is hard to determine when to stop the

iteration process. Ultimately we would like to have the error (™ = 4 — u(™ in certain norm
1

(e.g. the energy norm) to be small enough, i.e., (e(m),e(m))j1 < e. However, the error is not

usually computable. Norms of the residual »(™ = f — Au(™), which is not only computable but

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 50

also naturally available in the iterative process, are used instead. According to the standard
perturbation analysis, we have
1= ut™] [l
Ifl

In fact, A(u —u(™) = f — Au™ = (™) Hence |u —u(™]|| < | A=Y |r™]. On the other hand,
it is easy to see that |f| < |Al|[|u|. By combining the last two inequalities, we can obtain the

desired estimate (2.30). We notice that the right-hand side of (2.30) is the relative residual (with

< k(A)

(2.30)

initial guess equals zero) and the left-hand side is just the relative error. Hence this inequality
shows that, even if the relative residual is small, the relative error could be still very large,
especially for the ill-conditioned problems.

is a better quantity to

Tyl

Although L?-norm of r(m) g usually used in practice, (r(m),r(m))

monitor for convergence. We notice that

(rm) M) g = (A, Ael™) = (ABAeM™ el™).

1

According to Lemma 2.6, (r(m),r(m))é is equivalent to (e(m),e(m))j, if B is a good precondi-
tioner. In practice, there might be situations that left part of the preconditioner changes the
residual of the equation a lot, which will cause trouble for users to design stopping criteria. The
preconditioned equation has a residual rg = Br = B(f — Au) and ||rg| might be a lot different

than |r||. Thus it is usually not good to use rp instead of r.

2.4 Domain decomposition methods

In the field of numerical methods for partial differential equations, domain decomposition meth-
ods (DDMs) make use of divide and conquer techniques by iteratively solving subproblems
defined on smaller subdomains. It is a convenient framework for the solution and, more im-
portantly, preconditioning of heterogeneous or multiphysics problems. It can be used in the
framework of many discretization methods (e.g., FD and FE) to make their algebraic solution
efficient, especially on parallel computers. Roughly speaking, there are two ways of subdividing
the computational domain, overlapping and non-overlapping. We will only discuss overlapping

domain decomposition methods here.

Divide and conquer

We consider the model boundary value problem

Au = [inQ
u = 0 on 0N}

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS ol

Overlapping domain decomposition algorithms are based on a decomposition of the domain 2
into a number of overlapping subdomains. To introduce the main ideas of DDMs, we consider
the case of two overlapping subdomains §2; and 5, which form a covering of Q and Q; [Qg # ©;
see Figure 1. We let I'; (i = 1,2) denote the part of the boundary of €2;, which is in the interior
of Q.

Figure 2.1: Overlapping domain partition with two sub-domains.

If we already have an approximate solution (™, we can construct a new approximation by

solving the following two equations:

(Augmﬂ) = f in Qq,
ugmﬂ) = ™ onI'y,
(m+) _ on 00\,
and .
Augmﬂ) = f in Q,
4 ;mﬂ) = ¢gm on I'y,
ugmﬂ) = 0 on 5QQ\F2

There are two approaches to apply these two subdomain corrections—the additive approach and

the multiplicative approach. In the additive approach, we take g™ = 4(™) and carry out the

m+1)

two corrections simultaneously. In the multiplicative approach, we take g(m) = ug and use

the most up-to-date iterative information. We then define the new iteration as

u(m+1)

(m+1) o 2)
u xTr) =
) {UW“X if 7 € 0\Qy.

ifoQQ;

Overlapping DD methods

With the above motivation in mind, we are ready to introduce the standard overlapping domain

decomposition method in matrix form:

Aii = f, V =RV,

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 52

Suppose we have an one-dimensional domain partitioning of 2; see Figure 2.2. Of course, we

can use more general partitioning strategies as well.

A

2

0 Q2 Q3 Q4 Q

BH

Figure 2.2: Overlapping domain partition with four sub-domains.

Denote the set of grid point indices as G := {1,2,..., N} and it is partitioned into n subdo-
mains. Let G; be the index set of the interior points of ;, and N; := |G’,\ be the cardinality of
G;i. Apparently, we have

G:GIUG2UUG" and N <N+ Ny+---+ N,.

In the matrix form, the injection matrix (natural embedding) I; € RV*Mi is defined as

7 R if kIE(iﬁ

(L) = @, 1 . (2.31)
0, if ke G\G;.

It is natural to define sub-problems as A; := IiT Al (i=1,...,n). If we solve each sub-problem

exactly, then we have B; := IiAi_lliT.
We can define an additive Schwarz method (ASM) as

n n
Bus:= Y, Bi= Y LA'IT, (2.32)
=1 =1

which generalizes the block Jacobi method. Similarly, a multiplicative Schwarz method (MSM)
is then defined by the following error propagation operator

I — BugA = (I — ByA) - (I — B1A) = ﬁ([— BiA). (2.33)

1=n
This is a generalization of the block G-S method (with overlapping blocks). In practice, the
sub-problem solver A, 1 could be replaced by an approximation, like the ILU method.

Classical convergence results of overlapping DDMs x

These DD methods, especially the ASM version, are usually applied as preconditioners for
parallel computing. Its convergence has been analyzed in [27, 28] and we only show the results

for the additive version here.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 93

Theorem 2.6 (ASM DD preconditioner). The condition number of ASM domain decomposition

method is independent of the mesh size h and satisfies
k(BasA) < H2(1 + f72),
where H is size of domain partitions and SH characterizes size of the overlaps.

The DD preconditioner (2.32) performs very well in practice. But the convergence rate still
depends on H and the condition number could be large if H is very small. A simple approach
to get rid of this dependence on H is to introduce a coarse space Vj < V and a corresponding

coarse-level solver, i.e.

n
Bas i=IoAg'I§ + Y. LAY,
=1

where Iy : Vo — V is the injection matrix and Ag is the coarse space problem. We then have

the following estimate on the condition number:

Theorem 2.7 (Two-level ASM DD preconditioner). The condition number of ASM domain

decomposition method is independent of the mesh size h and satisfies
#(Bas2A) S 1+ 471

The above theorem shows the dependence on meshsize can be removed by introducing an
appropriate coarse-level correction. We will construct and analyze two-level and, more generally,

multilevel iterative methods in the following chapters.

2.5 Homework problems

HW 2.1. Show the identity (2.6).
HW 2.2. If BT = B, show that (BA)* = BT A = BA.

HW 2.3. Let A € RV*N and ¢(\) := |\I — A| be the characteristic polynomial of A. Show the
Cayley-Hamilton theorem, i.e., ¢(A4) = 0.

HW 2.4. Show the optimal stepsize (2.15) for general descent direction method.
HW 2.5. Prove Lemmas 2.3 and 2.4.

HW 2.6. The Chebyshev (or Tchebycheff) polynomial of first kind on [—1, 1] can be defined
recursively as

To(xz) =1, Ti(x)==z, Thy1(x)=22T,(x) — Th-1(z).

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS o4

Show that ,
1) - (e V" =)

and ’Tn(x)’ < 1 for any xz € [-1,1]. Let 0 < Apin < Amax. Define

Su(\) = [TH<M>}‘1Tn(AW i 2y

)\max -)\min)\max -)\min

and we have

P minsAmasx] pepm;n I H Pmins Ama]’

e I L

where P, is the set of polynomials of degree less than or equal to n.
HW 2.7. Prove Lemma 2.6.
HW 2.8. Show that (2.28) and (2.29) are equivalent to each.

HW 2.9. Let A be SPD and B be a symmetric iterator. If p = |Z — BA| 4 < 1, then B is also
SPD and
K(BA) < —.

Chapter 3

Two-grid Methods

In the previous chapter, we have seen several simple iterative solvers and preconditioners for
solving the linear algebraic system (2.1). However, the convergence rate of most methods dis-
cussed in the previous chapter deteriorates when meshsize h goes to zero, except the overlapping
domain decomposition method with coarse-grid correction. In this chapter, we discuss the two-
grid (or more generally, two-level) method for the discrete Poisson’s equation:

—Au=f in{, .
= Au=/f.
u=0 on oN.

In Chapter 1, we have briefly discussed the finite element approximation for this model problem.
From now on, we will mainly discuss in the context of finite element discretizations.
Throughout this chapter, we use the standard notations for Sobolev spaces introduced in
Chapter 1: H*() denotes the classical Sobolev space of scalar functions on a bounded domain
Q = R? whose derivatives up to order k are square integrable, with the full norm | - ||, and the
corresponding semi-norm | - |. The symbol H{ () denotes the subspace of H'(2) whose trace
vanishes on the boundary 0). We will also discuss the corresponding spaces restricted to the

subdomain of 2.

3.1 Finite element methods

We now take a little detour and say a few more words about finite element discretizations;

see [20] for details. The linear operator A : ¥ — ¥’ is defined by
(Au,v) := alu,v] = jQ VuVvdzr, YveV
and f € ¥’ is a function or distribution. Suppose that A is bounded (1.15), i.e.,
alu, v] < Collulyv]y, VYu,ve?

95

CHAPTER 3. TWO-GRID METHODS 56

and coercive (1.24), i.e.,

alv,v] = a|v|?, Yve¥.

We would like to find w € ¥ such that Au = f, which is well-posed; see Remark 1.7.

Galerkin approximation

The Galerkin method exploits the weak formulation and replaces the underlying function space
by appropriate finite dimensional subspaces. We choose a finite dimensional space Vi (trial/test
space), which is an approximation to the space ¥ with dim(Vy) = N. When it causes no
confusion, we shall just drop the subscript and denote V = V. Then we arrive at the Galerkin
discretization:

Find uy e V: alun,vn] = (f,on), YouneV. (3.1)

Equation (3.1) yields the so-called Galerkin discretization. If the bilinear form al-, -] is symmetric
and coercive, it is called the Ritz—Galerkin discretization. In the finite-dimensional setting, we
can identify the dual space V' and V; this way, the duality pair (-,-) becomes the [-inner
product (-,-).

For conforming discretizations, the bilinear form al-,-] is well-defined on V' x V. If the

bilinear form al-, -] is coercive, then we have
alvn,on] = ay|oy|%, Yo eV.

Since coercivity is inherited from ¥ to V, we can see that the constants ay is bounded from
below, i.e.,
>a, VN

Ay

As a consequence, the inf-sup condition holds’. It is easy to show the following simple optimality

approximation properties.

Remark 3.1 (Galerkin Orthogonality). Assume V < ¥. The weak formulations of the exact
and discrete solutions satisfy

(I[U,’U]=<f,1}>, Vve”i/;

alun,vn] = (f,on), YVonveV.

Taking v = vy in the first equation and simply subtracting the two equations gives the Galerkin

orthogonality, i.e.,

alu —uy,vn] =0, YuyeV. (3.2)

'In general, the continuous inf-sup condition does not imply the discrete one.

CHAPTER 3. TWO-GRID METHODS o7

If a[-, -] is symmetric and coercive, then (3.2) means the error u — uy is orthogonal to V' in the
induced inner product from the bilinear form a[-,-]. Apparently, Il yu := up is a projection

from ¥ to V with respect to (-,-) 4-inner product. It is oftentimes called the Ritz projection.

Lemma 3.1 (Céa’s Lemma). If the bilinear form al-,-] is continuous and coercive, then the

Galerkin approxzimation uy satisfies

C,
v < EGHU_UNH‘/M V’UNEV.

[u—un

More generally, we have the following quasi-optimality or quasi-best-approximation of the

finite-dimensional Galerkin approximation.

Proposition 3.1 (Quasi-Optimality). Suppose a[-,-] : ¥ x ¥ +— R is continuous. The fi-
nite dimensional subspace V' in the Galerkin approzimation satisfies the discrete inf-sup condi-
tion (1.23) with ay > 0. Let u and uy be the exact solution of (1.16) and the Galerkin solution

of (3.1), respectively. Then the error

[A]

|u=unlly < == min u—wy|y.
N €

Proof. For all wy € V, applying (1.21) and (3.2), we have

aylluy —wn|y < sup alun —wy,on] _ sup alu—wy,vy]
< —
N uNEV lon ovev llowlly

< Al e = wn |-

Then simply applying the triangular inequality gives the estimate.

M ay

lu —un|y min |u —wy|y.
eV

N
This constant in the upper bound is not sharp. The desired constant is obtained by Xu and
Zikatanov [59]. O

Remark 3.2 (Stability). In view of Theorem 1.4, we can see that the Galerkin solution depends

on the data continuously, i.e.,

1
lunlly < =[fll-
o

Finite element *

The finite element method (FEM) has a long history in practical use and is widely applied
to lots of problems in physics and engineering. It has been proved to be very successful in
many areas, like structural mechanics. After decades of extensive development, the subject of
classical (conforming) finite element method has become a well-understood and successful area in
scientific computation. The most attractive feature of the FEM is its ability to handle complex

geometries, boundaries, and operators with relative ease.

CHAPTER 3. TWO-GRID METHODS o8

Definition 3.1 (Finite element). A triple (K, P,N) is called a finite element if and only if
(i) K € R? be a bounded closed set with nonempty interior and piecewise smooth boundary;

(i) P be a finite-dimensional space of functions on K;
(iii) N = {N1,...,Ni} be a basis of P'.

We usually call K the element domain, P the space of shape functions, and N the set of

nodal variables.

Definition 3.2 (Nodal basis). Let (K,P,N) be a finite element. The basis {¢;}j=1,. x of P
dual to N, i.e., Ni(¢;) = 0;; is called the nodal basis of P.

Example 3.1 (1D Lagrange element). Let K = [0,1], P be the set of linear polynomials, and
N = {N1,Nao} where M1 (v) = v(0) and Na(v) = v(1). Then (K,P,N) is a finite element and it
is the well-known P; Lagrange finite element discussed in Chapter 1. The nodal basis functions
are ¢1(z) =1 —x and ¢o(x) = z. O

Remark 3.3 (Set of nodal variables). If P is a k-dimensional space and {Ni,..., N} < P’

Then condition (#7i) in Definition 3.1 is equivalent to the unisolvence: For any v € P,
N;(v)=0, i=1,....k = v=0.

Now we describe the main steps of discretization using the (K, P, N)-finite element:
Step 1. Domain partitioning: Suppose K is simplex in R%. We first partition the physical
domain into small subdomains. We discretize a polygonal domain {2 into small triangles or
tetrahedrons 7. Let h, := \Tﬁ be the diameter of 7 € M and h(z) be the local meshsize, that
is the piecewise constant function with h|, := h, for all 7 € M. The collection M of elements
is called a mesh or triangulation. We call My, := M quasi-uniform if there exists a constant h
independent of 7 such that
h<h:<h, V7teM.

We will only consider conforming meshes, i.e., the intersection of any two elements in M is
either an edge (d = 2) / a face (d = 3), vertex, or empty (see Figure 3.1 for an example). We
denote by G(M) the set of all grid points (vertices) in the mesh M. And G(M) = G(M)
is the set of vertices except those on the Dirichlet boundary. Here we use the subscript h to
describe the discrete nature and this does not imply the underlying meshes are quasi-uniform

with meshsize h. In the future discussions, we will focus on uniform conforming meshes only.

CHAPTER 3. TWO-GRID METHODS 99

Figure 3.1: A polygonal domain €2 with conforming partition.

Step 2. Finite-dimensional approximation: Let V, < ¥ be the space of continuous
piecewise polynomials over a quasi-uniform conforming mesh My, which satisfies appropriate

conditions on the boundary I' := Q\Q, i.e.,
Vii={veC@Q) : vl e Py, forall e My} 7. (3.3)

We notice that there are many ways to approximate the continuous test function space. Different
choices will then result in different numerical methods. In this section, we shall focus on the
simplest case—linear finite element method on triangles or tetrahedrons, i.e., v|; is a linear
polynomial on each 7 € Mpy. The weak form of the finite element approximation reads: Find

uy, € V3, such that
a[Uh, Uh] = <f7 Uh>7 v Vp € Vh) (34)

or, equivalently,

Ahuh = fh. (35)
Step 3. Assembling the finite-dimensional problem: Using the finite element definition
(K,P,N), we can give a basis of the finite dimensional approximation space V},. Suppose { ¢Z}f\; 1
be a basis of the N-dimensional space Vj;,. Then (3.5) can be written as an linear algebraic

equation
Apun = fi- (3.6)

We are going to discuss this notation later in §3.2.

Some properties of finite element methods *

There are a few important properties of finite element space and method that will become crucial

for our later analysis for multilevel iterative methods.

CHAPTER 3. TWO-GRID METHODS 60

Proposition 3.2 (Interpolation error). Let My, be a uniform mesh and V}, be a C*(a = 0)
finite element space on My,. The interpolant Jy, : W;”(Q) — V}, satisfies

||v — jhv”Wk(Q) < hm_k”vHWW(Q), Vve W (), 0 <k <min{m,a+ 1}.
P p

Proposition 3.3 (Inverse estimate). Let My, be a uniform mesh and P < W;(K) W (K)
and 0 < m < k. If V}, is a finite element space for (K, P,N) on My, then we have

1 . 1
< Z HUH:;V;“(T)>I) $hmfk+m1n{0:%7§ (2 Hqu ;n(T)>q7 Vo eV,

TEM}, TEMp,

Remark 3.4 (Spectral radius and condition number of Ap). Suppose that we have a uniform
partition with meshsize h. It is clear, from the Poincaré inequality and the inverse inequality,
that

[0]§ < (Anv,v) = (Vo,V0) = [ol]* S h2|olf, Vo e Vi
In fact, we have p(Ap) =~ h™2 and r(Ap) = h™2

Using Proposition 3.3, we can easily see that, for any v € V,

_d
i@ S b Pvlr@). pell,
v s) < h°*|vllr2), s€]0,

o] f1+e) S P70 H1(0), o € (0,

Moreover, there is a discrete Sobolev inequality at the bottom-line case (when d = 2) which is

worthy for special attention.

Proposition 3.4 (Discrete Sobolev inequality [15]). The following inequality holds
vl L) < Ca(h) v 1), VveE Vi,
where Cy(h) = 1, Cy(h) = |log |2, and Cs(h) = h™2.
Proposition 3.5 (L2-projection [15]). Define Qy : L*(Q) — Vj, by
(Qnv,w) = (v,w), YveL*(Q),weV.
Then we have the following weighted L?-estimate

[v = Qnolly + Bl Qnv], < ho],-

CHAPTER 3. TWO-GRID METHODS 61

Error analysis »

We now briefly introduce standard error estimates for the continuous linear finite element;
see [25, 20] for details. For standard finite element approximation of elliptic equations, the most

important property is the following Galerkin orthogonality property (see Remark 3.1)
alu —up,vp] =0, Yo,eV.

Using the definition of the energy norm ||-|| := a[-,-]"/?, the Galerkin orthogonality (3.2),

and the Cauchy-Schwarz inequality, we have
llu = wnll* = afu = up,u — un] = afu = up,u = o] < Jlu = un] u = vall, Vo € V-
Hence, we obtain the optimality of the finite element approximation, i.e.,
Ju— il < ot fJlu=vs] (3.7)

This means wy, is the best approximation of u in the subspace V. In general, it is not true for

finite element approximations.

Theorem 3.1 (H'-error estimate). If u e HJ' () (1 < m < 2), its P1 Lagrange finite element
approzimation uy, € Vi, © ¥ = H}(Q) satisfies

Ju— “hH1,Q S hm_l‘“’m,ﬂ'

If m = 2, then we have |u —upl1,0 < thHOQ.

Theorem 3.2 (L%-error estimate). If u € HZ(R?), its Py Lagrange finite element approzimation
up € Vi © ¥ = HE(Q) satisfies

Ju— “hHo,Q < hlu— uh’l,Q S h2’“}2,9 S hQHfHO,Q'

Remark 3.5 (A posteriori error analysis). A posteriori error estimation relies on the following

error equation (or residual equation):
alu — up,v] = afu,v] — alup,v] = (f,v) — afup,v] = (f — Aup,v), YveV.
Hence, by the Cauchy-Schwarz inequality, we obtain (see HW 3.1)
If = Aupll, < flu = wnll < If = Ausll, - (3.8)

Here |||, is the dual norm of |-||. Notice that, on the right-hand side, we only have the data
f and the discrete solution up. This upper bound does not depend on the unknown solution w.
Of course, to make the upper bound useful in adaptive algorithms, we need it to be local and

computable.

CHAPTER 3. TWO-GRID METHODS 62

3.2 Matrix representations

In the previous chapters, we have written the discrete problem simply as
At = T,
which is actually abuse of notation. Now we would like to clarify (especially for finite element

methods) the relation between the general operator form Apu, = f5 and its often-used matrix
form (3.6), i.e., Apuj, = Ih

Vector and matrix representations

Assume that {¢;};—1,. n is a basis of V. Any function v € V' can be represented as

N

v= Z%’@‘

=1

and the vector representation (coefficient vector) of v is defined as

U1

S
Il

e RY. (3.9)

Un

It is not hard to notice that there is another natural and easier-to-compute vector representation

(U’ ¢1)
U= (U’.@) and U= Mo, (3.10)
(U7 ¢N>

where M € RV*N with M; ; := (¢j,¢:) = (¢4, ¢;) is the mass matriz. v and ¥ are sometimes

called the primal and dual vector representations of v, respectively. Apparently, we have
(uw, 7)) = ul Mv = (u,v)y.

Suppose W is another finite-dimensional linear space with a basis {¢;};,=1, /. In general, W
could be of different dimension than V', namely, N’ # N. For any linear operator A : V — W,
we give a matrix representation (the so-called primal representation), A € RV 'xN , such that it

. N’ . .
satisfies that >;" (A)m.i/}i =A¢; (j=1,...,N), ie,

A(p1,...,0Nn) = (Y1,...,¥N)A. (3.11)
On the other hand, the dual representation (the stiffness matriz) corresponding to A is denoted
by A e RN*N with entries (JéAl)ZJ = (Adj, ¢i).
It is not difficult to check the statements in the following identities; see HW 3.2.

CHAPTER 3. TWO-GRID METHODS 63

Lemma 3.2 (Matrix representations). If A, B : V — V and v,u € V, we have the following

results:
1. AB=AB;
2. Av = Av;

5 A=MA;
6. (u,v) = (Mu,v).

Example 3.2 (Identity operator). Let Z : V — V be the identity operator. Its stiffness matrix
and mass matrix are equal to each other, i.e., Z=M.HenceZ=M"17=1. Asa consequence,
we have

I=ZT=AA"'=AA4",

which shows A7 = A~1. O

Example 3.3 (Finite difference matrices). For the finite difference methods, we can simply let
A : RY > RY be a matrix and the basis ¢; = & := (0,...,1,...,0)7 € RV, then we have
A=A=A=A 0

Remark 3.6 (Matrix representation with orthonormal basis). More generally speaking, if A :
V > V and {¢;}¥, is an orthonormal basis of V, then we have M = I and A=A

Finite element matrices

We now use a few simple examples to demonstrate how to apply these notations. Suppose
that V' =V}, is the piecewise linear finite element space and {¢;};—1, . n are the canonical basis
functions. Let A be the resulting coefficient matrix of (3.1) with (A); ; = a;; := a[¢i, ¢;]. By
definition, A = A € RV*Y is the stiffness matrix corresponding to A. Let u = (ul)lj\il e RN
be the vector of coefficients of uy. Let J?= (fz)fil = {<f, ¢Z>}z]\i1 Then u satisfies the linear
system of equations:

—

flng or Au = f.

Since we are going to focus on the finite element discretization from now on, we denote A := A,
when there is no ambiguity arises. Upon solving this finite-dimensional problem, we obtain a

discrete approximation uj = Zf\; 1 Ui Pi.

CHAPTER 3. TWO-GRID METHODS 64

The main algebraic properties for the stiffness matrix is that: A is sparse with O(N') nonze-
ros, symmetric positive definite (for Dirichlet or mixed boundary condition problems) or sym-
metric positive semi-definite (for Neumann boundary condition problems). We now summarize
this brief introduction of finite element methods with a few comments. The following results
are valid for a large class of finite elements for second-order elliptic boundary value problems in

general domains.

Remark 3.7 (Spectrum of mass matrix). Another often used matrix is the mass matrix M €
RN in which M;; = (¢4, ¢;). It is well.known that the mass matrix is also SPD and well-
conditioned, i.e.,

el < "M e < kel vEeRY.

In fact, we know that
(Muv,v) Zv (i, 05) = (v,v) = J dx_hdZv ~ hi(v,v) (3.12)
Remark 3.8 (Spectrum of stiffness matrix). Suppose that we have a uniform partition with
meshsize h. It is well-known that the stiffness matrix A is SPD and, from Remark 3.4,
el < €T AE < helf, vEeRY.

Hence the condition number x(A4) =~ h~2 and the CG method becomes very slow when h de-

creases.

Simple iterators in matrix form

Now we consider the solution of the standard P; Lagrange finite element for the Poisson’s
equation, i.e., Au = f The simplest iterative solver for this finite element equation is probably

the well-known Richardson method:
uev — @old + w(f'_ Agold>_ (3‘13)

It is equivalent to

u"ev = EOld “FCU(Mi— MAQOM) _ Qold “FCUM(i—AQOld)-
That is to say, the Richardson method, in the operator form, can be written as
weV = uold +B (f . Auold)
- w
with an iterator B,,, whose matrix representation is B, = wM. Therefore, it is easy to check

(HW 3.3) that the operator form of the Richardson method is

N
B,v:=w Z(v,qbi)gbi, YweV <«— B, =wM. (3.14)
i=1

CHAPTER 3. TWO-GRID METHODS 65
If we choose w = 1 in the Richardson method, then we get Byv = Zi\i 1 (v, ¢3)@;. This implies
N N
(Byv,v) Z v gbl Z (Mv, Mv) = (M2g,y).

Since M is SPD, we get
(M?v,0) = (MM3v, M2v) = h*(M3v, M2v) = h*(Mu, v).

The estimate (3.12) implies that
(Byv,v) = hi(v,v). (3.15)

In general, a smoother or local relaxation is just a stationary iterative method
uev — qold o S(f - Auold)
and its matrix representation is
u"ey — ol +§(M’1f— Mfljtgold) — 04 +SM’1(f— Auold)' (3.16)
The above equality indicates that, in the matrix form, we shall define a smoother as

S:=SM~L (3.17)

Example 3.4 (Matrix form of the Richardson iteration). For example, if we consider the above

Richardson method (3.14) as an example, then
Sgp=8SrM ' =B,M ' =wl.
This coincides with the algebraic form of the Richardson method (3.13). O

Let w := STwu. Then we have

= ((s"w0),, - (Zu (8765.0)). = (Duy(65,59)). = (8w

This immediately gives

STu=8"w=w=M4g

I
S
@

In turn, it shows

ST =M (MS)" = M'STM = ST M. (3.18)

By definition of the primal matrix representation of an operator, we have

S(¢la"'a¢N):(¢17"'7¢N)§ and S_l(qsl,...,ng)=(¢1,...,¢N)57_1,

CHAPTER 3. TWO-GRID METHODS 66

Using Example 3.2, it is easy to see that
S=(8) = (sM) =M (3.19)

Using (3.17)—(3.19) and the definition of symmetrized operator (2.10), we can obtain the

matrix form of the symmetrization

S

SM™ = STM(MTST 4 M - M A) SMM !
= ST(s7T+871—A)s, (3.20)

which is consistently with the definition of symmetrization.

3.3 Smoothers and smoothing effect

The methods discussed by far, for example the damped Jacobi and Gauss—Seidel methods, are
mostly local relaxation methods. Other similar methods include the SOR method and incomplete
LU factorizations. The name “local relaxation” comes from the fact that these methods just
correct the residual vector locally at one nodal point at a time; see Example 2.4. Although these
methods are not very efficient as a solver by themselves, they are still key ingredients of modern
multilevel iterative methods. These methods can be applied to reduce high-frequency error

components. In this section, we analyze their smoothing effect in several different approaches.

A numerical example

The damped Jacobi and Gauss—Seidel methods are often called local relaxations. This relaxation
procedure is effective to the error components that are local in nature. Therefore, it is not
surprising both the damped Jacobi and the Gauss—Seidel methods can damp out non-smooth
components more easily. These methods are very inefficient for relatively smoother components
in the error since a smoother function is more globally related.

We have observed that the basic stationary linear iterative schemes converge rather fast in
the very beginning but then slows down after a few step; see Figure 1.4 for the convergence
behavior of the damped Jacobi method. Moreover, these methods not only converges fast in
the first few steps, but also smooth out the error function very quickly. In other words, the
error becomes a much smoother function after a few iterations. This property of the iterative
scheme is naturally called smoothing property and an iterative scheme having this smoothing
property is called a smoother. Figure 3.2 is a pictorial example for applying multiplicative
overlapping domain decomposition method with four subdomains. We can see that, after one

iteration, the method smoothes out the high frequency part and leaves the lower frequency part

CHAPTER 3. TWO-GRID METHODS 67

INITIAL GUESS FIRST SUBD. SOLVE

';ﬁ gv#w . "VVVV

06 \‘

0™
0z ™
n D
(a) Initial Guess (b) A quarter of the domain relaxed
FIRST HALF SOLVED AFTER SMOOTHING

ggﬁéﬁgﬂﬁ -

01- H 0.
5

P\

i 1 &

i =S

T o8 e . L s
06 o os s et . " o8
PP g 3 Ry 06 PN X e 06
o ~ 04 iy T 04
e o2 el oz
o g o g

(c) First half relaxed (d) After smoothing

Figure 3.2: Iterative method in the viewpoint of subdomain relaxation.

behind. In fact, basic linear relaxation schemes, such as the Richardson, Jacobi, and Gauss—
Seidel iterations, are local and can only capture high frequency (local) part of the error, but do

not work well on low frequency (global) part.

Local Fourier analysis

In order to analyze the local behavior of iterative methods, we consider the 2D Poisson’s equation
with homogenous Dirichlet boundary condition on the unit square discretized with a uniform
triangulation; see §1.2.

We first analyze the damped Jacobi method. Using the local Fourier analysis [17], we have
the following steps:

1. The standard FD stencil can be written as
duij — (wicrj + wiry + wigo1 +uigr1) = b2 fij, 4,5=1,...,n
and the damped Jacobi (or Richardson) method for the above equation reads

new old old old old old) .
up = (1 —w)ui; +4(uZ 1; tuis g 1+u”+1)+zh fij, Li=1....n

CHAPTER 3. TWO-GRID METHODS 68

2. Define the discrete error function €5V := w;; — uj5" and e;?}]d = U — u?}]d, for 7,5 =
1,...,n. It is clear that the error function satisfies the local error equation
eI = (L= w)ef + 2 (e + e+ ey - e), ij=1,.m.
3. Apply the discrete Fourier transformation:
eij = Z ageﬁ(w”j%) and O,, := {(91,02) 10 = 2]{%, 0y = 2%, k,le [—ml,mz]},

0O,

where mq = n/2—1,mg = n/2, if n is even and my = mg = (n—1)/2, if n is odd. Plugging

the discrete Fourier transforms of e?‘;'-w and eflj‘-i to the above error equation, we get the

amplification factor of the local mode eV —1(i01+762)

new

ay cos(61) + cos(6z)
= =1- — < 1.
AO) = g = 1w (1 5)<1

Furthermore, A(f) — 1 when |0| — 0 (low-frequency components).

4. Asymptoticly, m; ~ ma ~ §. So we can define a smoothing factor (i.e. maximal amplifi-

cation factor corresponding to high-frequency local modes) by
_ 7T
p = sup{’)\(Q)’ 1y S 0k| < 7, k= 1,2}.
0
By plugging in the end points, we get the the smoothing factor for the damped Jacobi

3

Remark 3.9 (Optimal damping factor for smoothing). We notice that, if w = 1 (the Jacobi

method is

11
2w

IOJaCDbi ?

= max{‘l — 2w’,

method), then p, .. = 1. This confirms the result we obtained in the previous subsection.

Apparently, the “best” weight that minimizes the smoothing factor is w = 4/5, which leads to
ﬁJacobi = 3/5

It is not hard to imagine that the G-S method should have better smoothing property than

the Jacobi method. Using the same steps as above, we have:
1. The G-S method in lexicographical order reads

new old new old 1 2 ..
(ui—l,j + ui-i—l,j + u’i7j—1 + ui,j-‘rl) + Zh fiJ, 1,] = 1, ceeyn.

2. The discrete error function satisfies

=

_ new old new old ..
W Z(eH’j +eding et i), hi=1..n

CHAPTER 3. TWO-GRID METHODS 69

3. Apply the discrete Fourier transform and compute the amplification factor

ahew 6\/7191 + 6\/7192

0
>‘(9) T agld - 4 — e—V—101 _ o—/—102"

4. One can show the smoothing factor for the G-S method is

_ m 1
Pas = ‘)\(g,arccos(4/5))‘ =3

Remark 3.10 (Anisotropic problems and smoothing effect). Notice that the above analysis only
works for uniform partition and isotropic coefficients. When we solve an anisotropic problem,
it is important to note that the G-S method (and other point relaxation methods) yields not as
good smoothing factor as the isotropic case. In fact, the smoothing factor goes to 1 when ratio

between small and large coefficients goes to 0; see Chapter 6 for details.

Remark 3.11 (Ordering and smoothing effect). For the G-S method, ordering is important.
When using the red-black ordering, one can show the smoothing factor is prpas = i. This

means the smoothing effect of the red-black ordering is better.

Smoother analysis

Consider the Richardson method (3.14) with weight w = h?74 i.e.,
N
Sgv =01 (v,)i, YveV. (3.21)
i=1

In view of (3.15) and using the fact that the spectral radius of the FE operator is p(A) =~ h~?2
(see Remark 3.4), we find

(Srv,v) = h2~4@,0) = h?(v,v) = ——(v,v). (3.22)

This is the property we will ask for a smoother later on. Roughly speaking, Sg behaves like A~!
in the high-frequency part.
Apparently, the damped Jacobi method also satisfies this condition. In fact, using the

standard scaling argument on each element, we can see that

hI72(€,€) < (DE,€) < h¥2(¢,€).

Hence, we have the Jacobi smoother

(Syv,v) = (MSyv,v) = (MD_IMQ,Q) >~ hd+2(g,y) >~ hQ(U,U) >~ —

CHAPTER 3. TWO-GRID METHODS 70

Remark 3.12 (Smoother v.s. preconditioner). From the property (3.25) of these popular

smoothers, we can easily see that

pzl(v,v) < (Sv,v) < pzl(v,v), (3.23)

where p, := p(A). Thus we have a lower bound for the minimal eigenvalue p;l < Amin(S).

With simple manipulations, we also get

pzl(v,v)A < pzl(Av,Av) < (SAv,v) 4 < pzl(Av,Av) < (v,v) 4. (3.24)

Due to Lemmas 2.5 and 2.6, (3.24) indicates that x(SA) < p(A) = k(A), which means these

smoothers might not improve the condition number by themselves.
Next, we shall show that the G-S method behaves in a similar way.

Lemma 3.3 (Smoothing property of G-S in matrix form). Let A be the stiffness matriz and
A=A=D+L+U. Then the G-S method satisfies

(D + L)¢|, = |D¢|, = h*2|¢lo, VEeRY.
Proof. Locality of the nodal basis functions leads to sparse matrix L; in turn, this gives
[(D+ L)e], < | Defy < h*lelo-
The other direction follows from
W72 €3 < (DE,€) < (D + A)&,€) = 2((D + L)E,€) < (D + L)Eo [€]lo-
We then get the desired estimates with simple manipulations. O

Lemma 3.4 (Smoothing property of SGS). Let S : V +— V be the symmetrized G-S (SGS)

iterator. Then we have
(Sv,v) = h% (v, v) = IO(IA)(U,U). (3.25)
Proof. The matrix form of SGS is
S=SM=(D+U)"'D(D+ L)' M.
Let v be the vector representation of v € V. Then we have
(Sv,v) = (MSv,v) = (MSv,v) = HD%(D + L)*lMQHS.
Hence to show the lemma is equivalent to prove that

IDY(D + L) Muf? = B2 (M),

CHAPTER 3. TWO-GRID METHODS 71
By changing of variable & := (D + L)"'Mv € RY and the fact M =~ h?, we reduce the above
equality to

hi=2(Dg, €) = WD |¢2 = |(D + L)¢|} = (Mu, Mv), VEeRY,

which is true due to Lemma 3.3. O

3.4 A two-grid method

From the analysis in §3.3, we have found that local relaxation methods (smoothers) can damp
the oscillatory components of the error quickly. Motivated by the two-level DD method in
§2.4, we can introduce coarser levels to take care of the smooth components. A natural idea is
then, after a few smoothing steps, to approximate the resulting problem on a coarser grid and
continue the iteration with a “coarse version” of the problem. The main idea is to resolve the
high frequency part of the error with relaxation schemes and leave the low frequency part to the
coarse levels. Before we discuss multilevel methods, we first investigate a much simpler case,

the two-grid method.

General two-grid methods

Let V3, be fine grid finite element space and Vi be the coarse gird space (usually it is a subspace

of Vj,.) The two-grid method for equation (3.1) can be described as
Algorithm 3.1 (General two-grid method). Given an initial guess u(9) € Vj,.

(i) Pre-smoothing: Apply a few relaxation steps to smooth u(?) on the fine grid to obtain a

new approximation v € V;
(ii) Coarse-grid Correction: Find ey € Vi by solving or approximating the error equation
(Aew,vr) = (f — AulV) vp)
on the coarse gird, and then set u?@ = o + ey
(iii) Post-smoothing: Apply relaxation to smooth 1 on fine grid to obtain u®) € V.

Remark 3.13 (Low frequency error). A simple observation is that smooth functions can be
represented on coarse grids rather accurately. For example, suppose uj, and up are the finite

element solutions on Vj, and Vg < Vj, respectively. Then we immediately have

a[uh—uH,vH] 20, VUHEVH.

CHAPTER 3. TWO-GRID METHODS 72

Using the Aubin-Nitsche’s argument, we consider a boundary value problem
—Av =up —uyg in and v =0 on 0.
If we have full elliptic regularity, then ||v|2 < C|up —ug|o is bounded. For any vy € Vi, we get
lun = unl§ = alv,un —un] = alv —vm,up — un] < Jo — vyl lun — wrl < Hlols Jun — unl -
Hence the following inequality holds
lun —umlo < H [lun —ugll < H [Jusl - (3.26)

That is to say, if uy, is relatively smooth (small first derivatives), then u; can be well approxi-

mated by ug.

A more concrete algorithm based on the abstract algorithm above can be introduced. Let
V' be the fine space associated with meshsize h and V. € V be the coarse space associated with

meshsize H. Let Z. : V. — V be the natural embedding (injection), i.e., Z,v. = v., Vv, € VL.

Remark 3.14 (Embedding and projection). By the definition of embedding Z. : V. — V and
the fact

(ICTU, we) = (v, Zow,) = (v,w.), YveV,w.eV,

it is easy to see that ZI = Q. is the (-, -)-projection from V to V.. And the coarse-level operator
can be defined by the Galerkin relation

Ac =T AL, = QeAL..
Suppose that S is a smoother and B, is a solver (iterator) for the coarse-grid problem.
Algorithm 3.2 (Two-grid method). Given an initial guess u(%) e V.
(i) Pre-smoothing: u(!) = u(9) + S(f — Au®);
(ii) Coarse-grid Correction: u® = u(V) + (Z.B.Z')(f — AuM);
(iii) Post-smoothing: u® = u? + ST(f — Au®).

We note that this algorithm is very similar to the multigrid algorithm discussed in Chapter 1.
We can choose S, V., and B, to make the method efficient for the equation. The two-grid method
is defined in the hope of capturing the high-frequency components of error on the fine grid, and
leaving the low-frequency components to the coarser grid. The effect of coarse grid correction

is illustrated in Figure 3.3. Note that these two pictures have different scales.

CHAPTER 3. TWO-GRID METHODS 73

AFTER SMOOTHING AFTER COARSE GRID CORRECTION
'IB‘
0.015 5. :
] ¢
.01} b
34 _\c-":‘._l
0.005 | 2. A
i &
0 5 T
-1
-0.005 | R T b
001 e -3 . \ 4
|t 4 1 “ v
L 1
[T 4 [X R 2t 1
06 o o 0.8 0.5 S 0.8
04 e - 08 04 0.6
- a [[
02 e i 0z = 0z
0 o o o

Figure 3.3: After coarse-grid correction, global low frequency is replaced by local high frequency.

Convergence analysis of TG

In this section, we will estimate convergence rate of two-grid methods. We first give two simple
lemmas. Proof to these two simple lemmas are straightforward and left to the readers; see
HW 3.4.

Lemma 3.5 (Iterator of two-grid method). The two-grid method has a corresponding iterator
Brg: V' — V defined as

Brg =38+ (T-STA)IBI! (T - AS), (3.27)
where S = ST + 8 — ST AS is the symmetrization of the smoother S.

Lemma 3.6 (Error propagation of two-grid method). The error propagation operator Epg =

I — BrgA for two-grid method is
Erg = (T —STANT — B.AL) (T — SA), (3.28)

where Il is the (-,-) 4-orthogonal projection onto V.. If the coarse-level solver is exact, namely,
B. = AZ!, then we have

Erg = (I —-STA(Z - 11)(T - SA). (3.29)

Notice that II. is the A-projection from V to V.. So there is an implicit natural embedding

operator Z, in front of /1. in the above equality.

We now present a theorem which gives the convergence rate of a simplified two-grid method

(Algorithm 3.3) in terms of approximability of the coarser space V..

CHAPTER 3. TWO-GRID METHODS 74

Algorithm 3.3 (Simplified two-grid method). Given an initial guess u(?) € V.
(i) Coarse-grid Correction: u(!) = v + (Z.B.ZT)(f — Au®);
(ii) Post-smoothing: u® =« + S(f — Au).

Assume that S is SPD. In the two-grid method analysis below, we need the following notation

T=Tg:=8A:V V. (3.30)

With the above notation, the inner product
-1
(“v”)g‘l = (T u, U)A’

the accompanying norm | - |5-1, and (-,-)g-1-orthogonal projection Qg1 : V > V.. The

S
convergence rate of the two-grid method is obtained in the following theorem; compare this

result with the convergence rate of stationary iterative method in Theorem 2.3.

Theorem 3.3 (Convergence rate of the two-grid method). The convergence rate of the two-grid

method (3.27) with the exact coarse-level solver is given by

1

Ercly =1— —— 3.31
lErall = 1- =, (331
where))
Z— Qs1)v| UV — Vel o
c1(Ve) := sup I 521) HS = sup inf % (3.32)
veV [ol% vev veeVe [|v]
Sketch of the proof. (1) It follows from (3.28) that
&ra = (T - SA)L - IL).
Hence, we can immediately obtain
T —SA)(T — IL)v|? T —SA)p|?
ol = aup [E=SAE Il 1T =S4l
veV HUHA vech'A HUHA
Using the definition of (-, -) 4-projection II., we can show that
Z—T)v,v To,v Z—1.)Tv,v
|Ercl% = sup (@=Tvv)y)2). =1— inf (T.0) 4 =1— inf ())A.
vevhA vl vevia (U,0)4 vevA (v,v)4

(2) Define a new operator
X:=(T—-1II)T : VA — Vi (3.33)

CHAPTER 3. TWO-GRID METHODS 75

and it is easy to check that X is self-adjoint with respect to (-,-) 4. A key observation is that

the inverse of X' can be explicitly written as
Z=T NT—-Qs)

Since (1.7 (T — ngl)u,v)A = (T'(Z- ngl)u,v)A = (7 - Qs-1)u, 0)371 = 0 for any
u e V34 and v € V., we have II.Z = 0, which implies that Z : V;*4 s V24, Furthermore, by

the definition of projections, we get
XZ=(T—-I)T—-Qg1)=T—1I.=T onV;A

(3) Consequently Amin (X) = Amax (Z2)*. Finally,

T YT — Qe1)v,v T — Qc1)v,0)4-
Amax (Z) = Sup ((g 1))A = sSup ((s 1))S :
veviA (v,v)A vevia (v,0)4
T — Qgmr)ol- T—0 i
= sup S s sup I 821) H‘S =: (Vo).
D T s A WA

The last identity holds because 7 — Qz—1 = (Z — Q5-1)(Z — II.) and we can then take the

supremum back over all v € V' (similar to the argument in the very beginning of this proof). [

Optimal coarse space

Now we discuss how to choose the coarse space to maximize the convergence speed, which will
become handy later for developing algebraic multigrid methods (AMGs). We will show that the
space spanned by the eigenvectors of SA corresponding to small eigenvalues gives the “best”
coarse space. Here “best” refers to this coarse space minimizes the convergence rate.

Theorem 3.3 provides an estimate on the convergence rate of a two-grid method in terms of
¢1(V.). For a given method, a smaller bound on ¢1(V,) means faster convergence. In particular,
the two-grid method is uniformly convergent if ¢;(V.) is uniformly bounded with respect to
meshsize. However, one problem for applying Theorem 3.3 is that it is sometimes difficult to
work with S~ .

A natural approach to overcome such a difficulty is to introduce a simpler but spectrally

equivalent SPD operator D, such that

YvelV.

Crflolp < Jols < Culel,

Similar to the definition of ¢;(V;), we can introduce the quantity

[@= oy _ e b=l
V.,D) = — e = o A
Ve, D) =sup == = s nf TR

)

CHAPTER 3. TWO-GRID METHODS 76

where Qp : V — V_ is the (-, -)p-orthogonal projection. Hence
Crei1(Ve,D) < e1(Ve) < Cy er(Ve, D).
It is straight-forward to derive the following estimates:

Theorem 3.4 (An estimate of convergence rate of TG). The convergence rate of the two-grid
method (3.27) with exact coarse-level solver is given by

1 1 1

1) <|€rela <1 <1- (3.34)

- Cra(Ve,D - Cya(Ve,D) CyC’
where C is an upper bound of ¢1(V,, D), i.e.,
. 2 2
Ulrel‘f/c v — UCHD < Clv|3, VYveV. (3.35)

The following theorem characterizes the optimal choice of coarse space V. with a fixed

smoother S:

Theorem 3.5 (Optimal coarse space). Given a smoother S, the best coarse space of dimension
N, s given by

. Ne
VP = argmin [|Era(Ve)|a = span {&}, <, (3.36)
dim V=N,

where {{k}kNil are the eigenfunctions corresponding to the smallest eigenvalues N, of S.A.

Proof. Recall that &g = (Z — STA)(Z — I1.)(T — SA). Since Erg depends on V. we write

Erc (V) and using the same argument as in the proof of Theorem 3.3, we have

. (SAv,v)4
Era(Vala = 1— min SA0OA
vevia vl
Thus,
SAv,
“min_ [Erg(Vo)la=1— max min %
dim Ve=Ne dim Ve=Ne epta [v]5
By the well-known Courant minimax principle [26], we have
max min 7(SAU’U)A =
. 2 = AN:+1
dim Ve=Ne ey ta [0]%

and the equality holds if V., = V" as given in (3.36). O

Remark 3.15 (Lower bound of contraction factor). Since the coarse space which minimizes
the convergence rate is the coarse space which minimizes also ¢;(V;), we have the following

inequalities
1 1

= =
1—|€ralla ™ Ane+
which is a lower bound of the contraction factor in terms of size of the small eigenvalues (low

a(Ve) or I€rcla =1— AN, 41,

frequencies) of SA.

CHAPTER 3. TWO-GRID METHODS 7

Since the eigenvalues of SA are expensive to compute, the practical value of Theorem 3.5 is
limited. But it will provide useful guidance in the design practical algebraic multilevel methods
in §6.3.

3.5 Matrix representation of the two-grid method

In practice, we have to understand the matrix representation of an abstract algorithm before we
can actually implement it. We now explain the matrix representation of the two-grid method

in the finite element context.

Grid transfer operators in matrix form

Let {¢;} be the basis of a finite element space V' on the fine-grid, then the stiffness matrix A

reads
(A)i,j = a[$i, ¢5]-
Let {¢f} be the basis functions of the coarse-grid subspace V., = V' and the stiffness matrix on

the coarser space is denote by A, with (/lc) el = a[¢f, #7]. Then ¢f can be expressed as

N

¢ = Z (P)i,l¢i

i=1
or

(¢§77¢?\7¢) = (¢17"'7¢N)P7

which defines a prolongation matrix P € RNV*Ne By definition, this implies that P = I..

Remark 3.16 (Cannonical prolongation operator). Let 1y := (1,1,...,1)”. Since the basis

functions form the partition of unity, it follows that

N Ne
(G1,-+ oN)In = D di = 1= Y ¢f = (65, , ¢)N, = (¢1,-+ , oN)P 1w,
i=1 I=1
Hence we have that the prolongation matrix preserves constant away from the boundary, i.e.,
Ply, =1y.

It is important to note that ﬁ = Q. # @T, i.e., the matrix representation of adjoint
operator is not equal to the transpose of the matrix representation. If we take any v € V| then

we have

Ve 1= QC’U and Ve = (ia .- ’¢5VC)&

CHAPTER 3. TWO-GRID METHODS 78

On the other hand, with straightforward calculations, we obtain that

N, N. N Ne N , Nc .,
7. = (o)) = (o)~ = (21@](@@2)) - (2 o, (2. M)]w)k_l — 7.7 M.

k=1 J=1

In turn, we can obtain the matrix representation of the L?-projection

Qv =ve =M 0. =M'Z"Mv = I!=Q.=M'Z,"M=M"P"'M. (337

Coarse problem in matrix form
Since the coarse-level operator is defined as A, = ICT AT., we obtain its matrix representation
A= Q. AT, — A= MA.= M.Q. AL, = PTMAP = PTAP. (3.38)
Then the coarse stiffness matrix satisfies
A, = PTAP. (3.39)

Therefore, the algebraic form (3.39) of the coarse level problem is equivalent to the matrix

representation of the operator form.

In the above equality, we observe that, the L?-projection Q. is not needed for implementation.

Instead, we only need to use a restriction matrix R := PT.

Remark 3.17 (Finite difference case). Notice that, here, for the finite element stiffness matrices,
the restriction matrix is just R = PT. However, we have already noticed that R # P” for the
finite difference method in (1.34). In fact, many books (see [23] for example) states R = c¢PT.
This difference comes from the scaling effect caused by h. In the 1D FD example, the coeflicient

matrices on fine and coarse levels are A = h™' A and A, = H' A,, respectively. Hence we get
- - h
A.=PTAP — A.= <HPT> AP =: RAP.

This remark explains how we can obtain such the constant ¢ in general.

Two-grid iterator in matrix form

From (3.27), we have that the two-grid method with exact coarse solver is
Breg =S+ (T-STA) AT (T - AS).
We can then write the above equation in matrix form

Brc =8+ (- STALATTI(Z - AS).

CHAPTER 3. TWO-GRID METHODS 79

So we define
Brg i=BregM ' =SM + (Z - STA T AT (Z - AS)M .

Using the matrix form the symmetrization, inversion, and transpose derived earlier, we can

easily get
Bra =S5+ (I —STA)PA'PT(I— AS) =S+ (I — STA)P(PTAP) ' PT(I — AS).

Now we are ready to introduce the matrix representation of the two-grid method for solving
the linear system Au = f We describe the two-grid method as a preconditioner action Brg(+).
For any given vector (usually it is the residual vector) 7€ RY, we can compute Brg(7) in the

following steps:

Listing 3.1: A two-grid method

1|%% Given any vector 7;
2 |Pre—smoothing: ¥ « S7;
3 |Coarse—grid correction: @ « ¥+ P(PTAP)™'PT (¥ — A%);

4 |Post—smoothing: Brel « W+ ST(F— A);

3.6 Homework problems

HW 3.1. Show the a posteriori error bounds (3.8).

HW 3.2. Prove the statements in Lemma 3.2.

HW 3.3. Show the operator form and matrix form (3.14) of the Richardson method.
HW 3.4. Prove Lemma 3.5 and Lemma 3.6.

HW 3.5. Write the 1D multigrid method in §1.4 as a two-grid method (Algorithm 3.2) called

recursively.

HW 3.6. Give the detailed proof of Theorem 3.3. Hint: First show that

(T-SAT Tl [E-SHT-Mely [T SAw
o [ol?, e A 7 e R 20 A SR P

Then prove that X defined in (3.33) is self-adjoint with respect to (-,) 4-inner product.

Chapter 4
Subspace Correction Methods

In the previous chapters, we have been considering the linear equation
Au = f, (4.1)
where A : V +— V is SPD. A linear stationary iterative method can be written as
um = % 4 B(f — AuY). (4.2)

If B is an SPD operator, with proper scaling, the above iterative method converges. Furthermore,
B can be applied as a preconditioner of Krylov subspace methods.

In this chapter, we present a framework for analyzing linear iterative methods and/or pre-
conditioners obtained by the concept of space decomposition and subspace corrections. This
general framework can be used to establish convergence theory for various methods, including

the multigrid method and domain decomposition method discussed in the previous chapters.
4.1 Swuccessive and parallel subspace corrections
Suppose we have a subspace decomposition of the solution space
J
V=>V, and V,cV (j=1,...,J)
j=1

For any v € V, we can write it as v = Z}le v; with v; € V;. Notice that this representation
is not unique as there could be redundancy in the subspace decomposition. Furthermore, such
redundancy is crucial for optimality of multilevel methods.

Abstract framework for subspace corrections

We first define a few operators which have already been used at different places in the previous

chapters.

80

CHAPTER 4. SUBSPACE CORRECTION METHODS 81
Definition 4.1. Let V' be a Hilbert space with inner product (-,-) and V; < V be a subspace.

We define

subspace problem A; : V; — Vj, (Ajvj,wj) = (Avj,wj), Yvj,w; € Vj;
('7 -)—pmjection Qj Ve ‘/j7 (ijij) = (’anj)? ij € ‘/j;
(+,-)a-projection II; : V — V; (ILjv,wj) s = (v,w)a, YwjeVj.

Remark 4.1 (Matrix representation of the A-projection). Let u. := I[I.u. Since I, : V — V, C

V' is the A-orthogonal projection operator, for any u € V', we have
alue,ve] = a[llu,v.] = alu,ve], Yv.€e V.
Using the matrix representation notations introduced in §3.2, we have, for any v. € V., that
alte, ve] = (Aue,ve) = &T/lck, Vu. € Vg (4.3)

alu,ve] = (Au,ve) = (ICUC)TA@ = CTPTAQ, YueV. (4.4)

From (4.3) and (4.4), we can derive the matrix representation of the Galerkin projection on the

coarse grid
/lc% = PTAQ = I.u=Iu=1u.= flC_IPT./ly.

Hence, we obtain the matrix representation of the A-projection operator
I, = A1 PT A (4.5)

Using Definition 4.1, we have the following elementary results (the proof is left to the readers;
see HW 4.2):

Lemma 4.1 (Relation between projections). The following equalities hold:
1. I] = Q;, TF = Ij;
2. Q;A = A;ll;.
Remark 4.2 (Subspace problems). From the definition of A;, we get
Aj = I} ATj = Q;AT; = Q;AQ;.

With the help of Lemma 4.1 and simple calculations, we obtain the error equation on each

subspace V:
Ae=r = QjAe=Q;r = Ajllje=0Q;r = Aje;=r;,

where r; = Q;r and e; = Ilje.

CHAPTER 4. SUBSPACE CORRECTION METHODS 82

The idea of method of subspace corrections (MSC) is motivated by Algorithm 2.1! and the
idea of divide and conquer. We can describe the idea of subspace correction in the following

abstract algorithm?, which is a just generalization of Algorithm 2.1:
Algorithm 4.1 (Method of subspace corrections). u"*" = SC(u°9)
(i) Form residual: r = f — Au°
(ii) Solve error equation on Vj: Aje; =r; by e; ~ é; = Sjr;j
(iii) Correct iteration: u"®" = u°d + ¢;

Notice that, instead of constructing an iterator for the whole system, Algorithm 4.1 only con-

siders subproblems on subspaces.

Remark 4.3 (Subspace solvers). It is well-known that

uj = argmin F(v) := %(.Av,v) —(f,v)

veVj

is equivalent to

uj = argmin Hu — ’UHA.
VEV;

We notice that the solution of the subspace problem Aje; = r; = QjT’Old satisfies that

F(u + ¢;) = min F(u' + e).
eeVj

SSC and PSC methods

Algorithm 4.1 does not specify how to combine the corrections é;’s from different subspaces.
There are basically two approaches: the successive subspace correction (SSC) and the parallel
subspace correction (PSC). SSC can be viewed as the multiplicative Schwarz method (2.33) and
PSC can be viewed as the additive Schwarz method (2.32). We now give description of the SSC
and PSC algorithms.

Algorithm 4.2 (Successive subspace corrections). u™*%V = SSC(u°'?)
(i) v=u

(i) v=v+8;Q;(f—Av), j=1,...,J

'The corresponding operator form is just (4.2).
2Note that this procedure is not really an algorithm as it does not specify how to combine the corrections é;’s
from different subspaces.

CHAPTER 4. SUBSPACE CORRECTION METHODS 83

(iii) u™v =wv

Algorithm 4.3 (Parallel subspace corrections). u™®V = PSC(u°'?)
(i) r = f — Au°d
(i) &5 =S;Q,r, j=1,...,J
(iif) wrev = wd+ 337 ¢
From the above algorithms, it is immediately clear why they are named as PSC and SSC,
respectively. As in (3.30), we define an operator
T = 7fgj =8;9;A=8SA11; : V — V.
Apparently, if we restrict the domain to V;, then we have
7;':7:91 =SjA; V= V.
We shall now assume all the subspace solvers (smoothers) S; are SPD operators. As SJT =S;

the operator 7; = S;A; : Vj — Vj is symmetric and positive definite with respect to (-,-)4. If

Sj = A;l, i.e., the smoother is the exact solver on each subspace, then we have T; = II;.

e The SSC method satisfies:
u—u" = (I —BA)(u—u) = (Z—Ty)--(T—Ti)(u—u"). (4.6)

If J = N and each subspace V; = span{¢;} (j = 1,...,N) and S; = Aj_l, then the
corresponding SSC method is exactly the G-S method; see (2.17).

e For the PSC method, the iterator (or, more often, the preconditioner) satisfies

J J J J
B=)>8Q;=> 1,59 ad BA= leijA = 217; (4.7)
J= J=

j=1 j=1
If Si’s (j = 1,...,J) are all SPD, then the preconditioner B is also SPD; see HW 4.3. If
each subspace V; = span{¢;} (j = 1,...,N), then the PSC methods with S; = w(-, ¢;)¢;
and §; = .Aj_1 correspond to the Richardson method and the Jacobi method, respectively.

4.2 Expanded system and block solvers

Back in §2.1, we have discussed a modified block Gauss—Seidel method. In this section, we
discuss an expanded system of (4.1) and its block iterative solvers. Moreover, we will show
how these block solvers are related to the subspace correction methods for the original linear
system (4.1). This relation will become important in the next section for deriving the X-Z

identity, which gives the convergence rate of SSC.

CHAPTER 4. SUBSPACE CORRECTION METHODS 84

Expansion of the original problem

Suppose that the finite dimensional vector space V can be decomposed as the summation of
linear vector subspaces (might not be linearly independent), Vi, Vs, ..., Vs, ie, V = Z;-le Vj.
We define a new vector space

V=VixVyx---xVj.

Define an operator IT : V — V such that ITu = Z}]=1 uj, where u = (ug,...,us)’ € V with each
component u; = u; € V;. From the definition, IT is surjective. This operator can be formally

interpreted as
= (..., Iy,

where Z; : V; — V is the natural embedding. Hence, we obtain

U1 J J
HUZ(Il,...,IJ) ZZI]'U]‘ZZU]'.
j=1 j=1
"
So we have
Izt Q1
o= : |=| :
7 QJ

Define A : V — V such that A;; = A; j := Z AZ; : V; — V;. And we denote A; := A; ;.

)

Hence we can write the operator A in a matrix form

Aig o Ay
— T _(A.. — :
A:=T7AT (AW>JXJ
App - Agg
Given any right hand side function f € V', we define
s
f.=TI7f = : eV.
it

In this setting, we can consider the following problem: Find u € V, such that
Au=Tf. (4.8)

This system is called the expanded equation of the original linear equation (4.1). We will see

how the solution of these two problems are related.

CHAPTER 4. SUBSPACE CORRECTION METHODS 85

If A is SPD, then A is a symmetric positive semidefinite (SPSD) operator. Note that
A could be singular due to nontrivial null space, null(IT). However, its diagonal entries A;

(j =1,2,...,J) are non-singular. We can define a semi-norm for B: V — V

|Bva

Iviazo [via

Block solvers for expanded equation

As before, we denote the lower, upper, and diagonal part of A as L, U, and D, respectively.
We can immediately see that the stationary iterative methods discussed in §1.3 can be easily
adapted to solve (4.8). The linear stationary iterative methods for (4.8) can be written in the
following abstract form

u™v = u’d + B(f — Au), (4.9)

where the iterator B: V — V. If B = D!, then we have the block Jacobi method for (4.8); if
B = (D + L)™!, then we have the block Gauss—Seidel method.
Motivated by (2.13), we can generalize the block Jacobi and G-S methods a little bit. Assume

there is a non-singular block diagonal smoother (or relaxation operator) S: V — V| i.e.,
S = diag(&1, S, ..., Sy), with Sj ViV g=1,2,...,J.

We define modified block Jacobi method by B = S and the modified block Gauss—Seidel method
by B=(S7!+L) %L

Theorem 4.1 (Solution of expanded and original systems). The linear stationary iteration (4.9)
for the equation (4.8) reduces to an equivalent stationary iteration (4.2) with the iterator B =
MIBII? for the original equation (4.1). Moreover, these two methods have the same convergence
rate, i.e.,

|Z — BAJa = [T—BA[a.
Proof. The linear stationary iterative method
uev — uold + B(f _ Auold)
is equivalent to
W = w Y B (T - Y A
k i

= u?ld + Z Bj&I,? (f - Z .AIiu?ld> = u?ld + Z BijI,zﬂ (f - Au°1d> .
k 7 k

CHAPTER 4. SUBSPACE CORRECTION METHODS 86

Therefore, we have

utew — szu}lew _ uold + ZI]'B]'JCII? (f o .AuOld) _ uold + B(f - .AUOId).
J Jk

This proves the equivalence of (4.9) and (4.2).
A key observation is that

(BAv,v)a = (ABAv,v) = (T ATIBIIT ATlv,v) = (ABATIv, IIv) = (BATIv, IIv) 4.

The contraction factor can be written

-8B 2 v,v)4 — (BT + B— BT AB)Av, v
HI _ BAH?A = sup H(?)UHA = sup ().A (())A
v#£0 HUHA v#0 (v,v) 4
(IIv,IIv) 4 — ((B" + B — BT AB) AIlv, HV)A
= su
TTv0 (Tiv, Tiv) 4
(v,v)a— (BT +B - BTAB)AV,V)A
= sup 5
[via#0 IvIa
= [I-BAJ;.
Hence we get the desired result. O

Example 4.1 (Block Jacobi method and PSC). We now apply the block Jacobi method for the
expanded system (4.8), i.e.,
utev — uold + D—l(f _ Au°1d).

We notice that D™'A = D~'IT AII, which is spectrally equivalent® to IID 'TIT A. In fact,

from Theorem 4.1, we can see that the above iterative method is equivalent to

J
utew — uold + HD_lHT(f - Auold) _ uold + Z IJA]—IZJT (f - AuOld).
j=1
We immediately recognize that this is the PSC method or the additive Schwarz method with

exact subspace solvers.]

Example 4.2 (Block G-S method and SSC). Similar to the above example, we can get the
block G-S method is just the SSC method or the multiplicative Schwarz method for the original
problem. We now apply the block G-S method for the expanded system (4.8), i.e.,

u'ev — uold + (D + L)—l(f _ AuOId).
We can rewrite this method as

(D + L)u™" = (D + L)u® + (f — Au®).
3Note that o(BA)\{0} = o(AB)\{0}.

CHAPTER 4. SUBSPACE CORRECTION METHODS 87

Hence we have
Dulev — Duold +f — Lu"v — (D + U)uold;

in turn, we get

uew — uold + Dfl <f — Lu™v — (D + U)uold))

For j =1,...,J, the block G-S method can be written as

new __ . old -1 Ty T L, new T _,,0ld
W = AT (IF f = Y TT AT - Y T AT
i<j 12]

We define iteration

Z
uJ

Z u?ew + 2 u?ld _ EIZ.U?QW + Zl'iu?ld’ g=1,...,J

i<j 1] 1<j (=]
By this definition, we can see that

j+1

W' = + Zjui™ — Ijugld —u7 + IjAglzf(f — Au7).

Here the term f — Au7 is sometimes called the dynamic residual, which is the residual at an
inner iteration of the G-S method. From the above equation, we notice that the block G-S
method is just the SSC method with exact subspace solvers S; = Aj_l for the original linear

equation (4.1). O

Convergence of block solvers

Motived by the weighted Jacobi and G-S methods, we assume that there is an invertible smoother
or local relaxation S for solving Au = f. Similar to the method presented in §2.1, we define a

general or modified block G-S method:

1

B:=(S'+L) . (4.10)

We analyze the convergence rate of this method. Let K := B™7 + B™! — A be a symmetric

operator and the symmetrization operator as B = BTKB. Then we get
(B7'v.v) = (BT'K B Tv,v) = (ST + LK IS+ U)v,v), WeV (411)
By the definition of K, it is clear that K is diagonal and
K=S7T+U)+S!'+L)-D+L+U)=8T4+s 1 -D=5T78Ss,
where S := ST + S — STDS. Hence, we get

K'=(sT+s'-D)'=s5's". (4.12)

CHAPTER 4. SUBSPACE CORRECTION METHODS 88

We can also obtain B~! = K + A — BT, Hence we have a representation of B! by simple

manipulations:
B' = K+A-B K (K+A-B H)=A+A-B K (A-B™).
This identity and the definition of B immediately yield another important identity:
<§*1v, v) — (Av,v) + (K—l(D +U-S v, D+U- S_l)v>, YveV. (4.13)

Now we apply a modification of Theorem 2.3 (i.e., general convergence rate estimate for SPD

problems?) and get the following convergence result:

Theorem 4.2 (Convergence rate of modified block G-S). If S := ST + S — STDS (or K :=
ST + 8~! — D) is SPD, then the modified block G-S method converges and

1 2
[T-BAJR =1-——. with ¢:= sup HK—% (D+U- s—l)vH .
co

[vlia=1
4.3 Convergence analysis of SSC

In the previous section, we have found that the SSC method for the original equation is equivalent
to the block G-S method for the expanded equation using the same subspaces {V]}j:l Now
we use the same argument discussed in Chapter 2 to analyze the convergence rate of the block
G-S method for the expanded system. In this way, we can give a convergence analysis for the

successive subspace correction method. The proof here follows the discussion in [24].

A technical lemma

Suppose V = 23'121 V;. It is clear that IT : V +— V is surjective and ITu = Z‘j]:ll'juj. We have

the following simple but useful lemma:

Lemma 4.2. If the iterator B in (4.9) is SPD, then B = IIBII! is also SPD and

(B~ 1v,v) = in\ff (B 'v,v), YweV.
veE
IIv=v

Proof. 1t is clear that (Bv,v) = 0 for any v € V' due to positive definiteness of B. Furthermore,

we have

0= (Bv,v) = (BIITy,TTy) = Mv=0 = venul(II’) = range(II)*.

“In order to apply the convergence rate estimate Theorem 2.3 for stationary iterative methods to a symmetric
positive semi-definite problem, we can restrict the domain of operator A inside the subspace range(A). This way
the operator A is still non-singular.

CHAPTER 4. SUBSPACE CORRECTION METHODS 89
Since II is surjective, we have v = 0. This proves the iterator B is SPD.
Define v, := BII”B~1v. It is easy to see that
v, =NBII'B v =BB"lv=v, YveV,

and
(B lv,, w) = (TITB v, w) = (B~ v, TIw).

If w € null(TI), then (B~!v,,w) = 0. This ensures that, for any vector v € V, there exists a

B~ !-orthogonal decomposition v = v, + w with w € null(IT). Hence, we get

(B~ lv,v) = (B_l(v>.< W), Ve + W) = (B_lv*,v*) + (B_lw,w).

Thus
: -1 _ -1 . -1
ﬁ%l‘ifv(B v,v) = (B Vi, v*) + weilIlllf(H) (B w, w)
= (B_lv*,v*) = (HTB_IU, BHTB_IU) = (B_lv,v).
Hence the result. O

Remark 4.4 (Minimizer for the expanded problem). From the above proof, we can easily see

v, = BIIT B 1y is the minimizer.

Remark 4.5 (Auxiliary space problem). The above lemma for relation between the expanded
problem and the original problem can also be extended to the auxiliary space method: For two
vector spaces V and V and a surjective I : V ~— V| if the iterator B : V' — V is SPD, then
B =TI BT is also SPD and

(B~ v, v) = inf (B719,0), YveV.

The X-Z identity

We now give the well-known X-Z identity originally proved by Xu and Zikatanov [58] which

gives the exact convergence rate of the SSC method.

Theorem 4.3 (X-Z Identity). Assume that B is defined by Algorithm 4.2 and, forj =1,...,J,
w;j = A;1l; Zi}j v; — S;lvj. If S;T + 8]71 — Aj are SPD’s for j =1,...,J, then
1 1

T—-BAA=1- —1- =, 4.14
[I T+ e o (4.14)

where
J

cp = sup _ inf 1S w2, (4.15)
|v|A—12jvrv121 T

CHAPTER 4. SUBSPACE CORRECTION METHODS 90

and

¢y = sup _ inf Z HS S v+ STW] H ey (4.16)

Jol.a=12;5Vi=v ;

Proof. By applying Theorem 2.3 and Lemma 4.2, we know

—1 -1
IT —BA|% =1- (sup (B_lv,v)> =1- < sup _inf (Blv,v)>)
lola=1 o a=1 V=Y
From (4.13) and (4.12), we have, for any v € V, that
(E_lv, v) = (Av,v) + (K_l(D +U-SY)v, D+U- S_l)v>.

By simple calculation, we get

(D+U)v

(X iaely;, Y a0y,)

j=1 j=2

(Z AlnleVj, Z A2H2IjVj’ .. .)T

j>1 i>2

(A Y v, Aally 3 v,)T

j=1 j=2

We then have

(D +U - S_l) v = (Wi, Wa,... ,WJ)T, with w; := .Ajﬂj Z vV — Sj_le.

=]

Due to the fact that K is diagonal, we have

J J
(K '(D+U-s")v, (D+U-5")v) = Z (557 +871 = A5) twyowy) = 2 |STwi| o,
where S; := SJ-T (SJ-_T —I—Sj_l —Aj)Sj is the symmetrization of S;. We then obtain, for any v € V/,
that

. ——1
sup _inf (B v,v) =14+ sup _inf HSTWJ H
o a=1Tv=v [ofa=1Tv=0

This gives the desired estimate for the constant cg.
On the other hand, from (4.11), we have

(4.17)

CHAPTER 4. SUBSPACE CORRECTION METHODS 91

We notice that

SJ-_TVJ‘ + Z Q;AT;v; = Sj_TVj + Al Zvi = (SJ'_T + Sj_l —Aj)vi+w;

1>] 1>7]

= 85788 v+ w; =8 <§j8j_lvj + SJ'TWj>‘

Plug this into the previous identity, we get

J L 2
(E_lv,v> = Z (Sj_l + SJ-_T —Aj) 2 (Sj_TVj + Z Q;AZ;v;)
Jj=1]
J 2
= 2 ngj_le + S]TW] -
j=1
Hence the estimate for the constant c;.]

Remark 4.6 (An equivalent form). We have introduced operators 7; := S;A; : V; — V;. Hence
ng =8 A =T, +7;*=T;*T; and we can rewrite the above estimate (4.16) in a slightly different
form. Notice that, in (4.17),

S,_ij + Z Qj.AIZ'Vi = .Aj (SJT.AJ')_lvj + .Ajﬂj Z V; = Aj[(T*)_lvj + Hj Z Vi]

J J
i>] i>] i>]

and

(S;l + S{T — .Aj)_lAj

I
=
+H
=

L) =TT

Thus we have ;

c1 = sup _ inf

loa=125Vi=v i

2
(4.18)
A

7o (T X)

i>7

Example 4.3 (Simple stationary iterative method). One-level linear stationary iterative method
utew — uold + g(f _ A’LLOld),

can be viewed as a special subspace correction method with only one subspace V. Hence,

using (4.18), we immediately have

c1 = sup HTE_%UH?A: sup ((EA)_I’U,’U)AZ sup (3—1%0)7
lvl.a=1 [v]a=1 lo) a=1

which is exactly the convergence rate derived in Theorem 2.3. O

Example 4.4 (Two-grid method). Theorem 3.3 can be viewed as a special case of the X-Z
identity in the case of space decomposition with two subspaces, i.e., V = V. + V. Suppose we
use A1 and S as subspace solvers, respectively. According to (4.18), we get
. = 1
1 = sup inf [ve + Il + [(SA) 2 v]%.

_ 1 W=Ue+v
lwla=1 VEVL,vEV

CHAPTER 4. SUBSPACE CORRECTION METHODS 92

We can prove that

cy = sup inf H(EAV%UH?A\: sup inf (g_lv,v).
[o].a=1veve 4 v].a=1 vev;-A

Hence, we immediately obtain

2 -3 2
= sup |(Z-— Qg_1)v||§71 = sup HTE (T - Q§_1)UHA,
lv]a=1 lvll.a=1
which is consistent with the X-Z identity. O

Corollary 4.1 (SSC with exact subspace solvers). If an exact subspace solver S; = A;l for
each subspace is used, then we have, in (4.14), that

J

2
o= sup _ inf HHj Vi (4.19)
o] a=12;Vi=v Jzzl ; Aj
and
J 2
¢y = sup _ inf HH]- vil . (4.20)
lv]a=12; Vj—”gl l; Aj

4.4 Convergence analysis of PSC

In this section, we estimate the condition number of the PSC method.

Condition number of PSC

To obtain estimates on the condition number of the preconditioned problems, we first give the

following assumptions:
Assumption 4.1 (Convergence assumptions for MSC). We assume that

1. For any v € V, there exists a decomposition v = Z‘]

ie1 V) with v; € V; such that

(S;lvj,vj) < Kq(Av,v); (4.21)
1

J
j:

2. For any u,veV,

2

2

J J
Z (ﬁu, 7}U)A < Ky (Z(ZMU)A) (Z(EU,U)A> . (4.22)
i=1 Jj=1

(i,9)
Theorem 4.4 (Condition number of PSC). If Assumption 4.1 holds true, the PSC method (4.7)
satisfies
K/(B.A) < KlKQ.

CHAPTER 4. SUBSPACE CORRECTION METHODS 93

Proof. For any v € V, suppose that v = 3.7

j=1Vj is a decomposition satisfies the first condition

of Assumption 4.1. It is easy to see that

J J J J
(v,v)4 = 2 vj,v Z vj, IIv) 4 2 vj, A Z S 2’UJ,S-%.,&leYjv)
j=1 j=1 7j=1 j=1
J 1 1 J 1 1
< S vj,v] 2 (SjAjva,.Aij 2 Z y U],U])Q (SjAjva,v)j
= 1 1 =
J 3/ J 2 .
< (Z (Sj_lvj,vj)) (2 (EU,U)A> < VK4 ||UHA(BAU,U):2.
Jj=1 j=1

Consequently, we have the lower bound

1
E(U,U)A < (BAv,v)4, VYveV.
From the second assumption, we have

J
|BAv|Z = D (Tiv, Tyw) 4 < Ka(BAv, v) 4 < Ka| BAv| 4lv]a.

ij=1

So we obtain the upper bound
(BAv,v)4 < Ka(v,v)4, YveVW.
Thus Lemmas 2.5 and 2.6 yield the desired estimate. O

According to Theorem 4.4, if we can find a space decomposition and corresponding smoothers
with uniform constants K; and Ks, then we are able to construct a uniformly convergent pre-

conditioner using the PSC framework.

Remark 4.7 (Similar estimate for SSC). In fact, with the same assumptions (Assumption 4.1),
we can also show that the SSC method also converges with

2—0)1

T-BAA<1— s

and wp := max p(S;A4;) = max p(7;).
j j

Because a sharp result has been given in §4.3, we will just leave the proof to the readers (cf., for

example, [55]).

Estimates of K; and K

Assumption 4.1 is not easy to verify directly. So we now give a few useful estimates for the
constants in these conditions. We first give a straight-forward estimate of K7, which clearly
separates the condition on space decomposition part and smoother part. We leave the proof of

the following lemma to the readers; see HW 4.5.

CHAPTER 4. SUBSPACE CORRECTION METHODS 94

Lemma 4.3 (Estimates of K;). Assume that, for any v € V, there is a decomposition v =

Z}']=1 vj with v; € Vj:

(i) If the decomposition satisfies that

J
Z Ujav] 1(U7U)A7

Jj=1

then we have

Ky < Ci/wy, where wy = mm {)\mm (S;A;)}

J—

(i) If pj = p(A;) and .

> 0i(ws,v5) < Ci(v,0)4

then we have

K < C*l/wo, where wg 1= AminJ{pj)\min(Sj)}.
j=

Tt

We introduce a nonnegative symmetric matrix
S = (04;) e R7*, (4.23)
where each entry o; ; is the smallest constant such that
(Tiw, Tjv) 4 < wioij(Tiu, u)%4 (Tjv, v)i, Vu,veV. (4.24)
It is clear that 0 < o;; < 1. Moreover, o;; = 0, if ILII; = 0.

Lemma 4.4 (Estimate of Ky). The constant Ky < wi1p(X). Furthermore, if o;; < v holds
for some parameter 0 < v < 1, then p(X) < (1 —v)71; in this case, the inequality (4.22) is the

well-known strengthened Cauchy-Schwarz inequality.

Proof. From the definition of ¥ as in (4.23), it is immediately clear that Ko < wip(X). Fur-
thermore, because the matrix ¥ is a real symmetric matrix and p(X) < max;_; s 2;;7:1 g j, We

have

A

J J
< xSy < 3
1<j<J 4 £
i=1 =1

Hence the result. O

CHAPTER 4. SUBSPACE CORRECTION METHODS 95

Auxiliary space method *

Sometimes, we cannot apply subspace correction methods directly due to difficulties in obtaining
an appropriate space decomposition. In this case, we can introduce an auxiliary or fictitious
space V for assistance. If IT : V — V is surjective and satisfies the following two conditions:
Firstly,

054 < plolz, VoeV.

Secondly, for any v € V, there exists v € V such that II& = v and
pol ol 4 < Jvfa, VOEV.

Under the above assumptions, if B is a SPD preconditioner for A, then B = IBIIY is SPD and

K(BA) < (Z;)z K(BA).

This suggests that we can construct a subspace correction method on V instead of the original

space V. This simple result is sometimes called the Fictitious Space Lemma; see [47, 56].

4.5 Homework problems

HW 4.1. Prove the statements in Remark 4.3.

HW 4.2. Prove Lemma 4.1.

HW 4.3. If §; (j = 1,...,J) are all SPD, then the preconditioner B = Z}']:1 §;Q; is also SPD.

HW 4.4. Show that the block G-S method for the expanded system is just the SSC method

for the original problem.

HW 4.5. Prove the estimates in Lemma 4.3.

Part 11

Multilevel Iterative Methods and
Their Applications

96

Chapter 5

Multilevel Subspace Correction

Preconditioners

In Chapter 4, we have discussed stationary iterative methods in the framework of method of
subspace correction (MSC). In this chapter, we give a few examples of multilevel methods and

their convergence analysis based on the framework of subspace corrections.

5.1 Two-grid overlapping DDM x

In this section, we will investigate the two-level overlapping domain decomposition method in

Chapter 2 using the MSC framework.

Two-level space decomposition

Based on the previous discussions, it is now easy to understand that the additive and multi-
plicative Schwarz domain decomposition methods can be considered as PSC and SSC, respec-
tively. For proof-of-concept, we use the Poisson’s equation on 2 as an example. In this case,
Y = H}(Q), Q= szl Qj,and ¥ :=={ve ¥ : suppv C Qj} c ¥ see Figure 2.2. We define a
finite-dimensional coarse space Vy € ¥ of meshsize H = diam({2;). Apparently, we have a space

decomposition
V=VW+N+---+7].

The SSC method based on this space decomposition with exact sub-problem solvers for each
sub-domain as well as the coarse space gives an abstract multiplicative Schwarz DDM method.

We give a partition of unity §; € C*(Q) (j = 1,...,J) such that

(1) 0<0;<land 3/ ,0; =1

97

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 98

(2) suppf; < Q;
(3) max |V0;| < Cg/H, where Cg depends on the relative overlap size (3.
This way, for any function v € ¥, we have a decomposition
v=v0+v1+" -+,
where
vg € Vo and vji=0;(v—vo)€V, j=1,...,J
Thus Zj;l vj = v —vg and

Sl % o

=7+

J
- S % o=
= ‘Ho(@-’UO’ Z‘U Z 0:(v—vol.

i=j+1

Convergence analysis of DDM

Since II; : ¥ — ¥ is a A-projection for j = 1,...,J, it is easy to see that |II;(v—wvo)|1 < [v—uvo|i.
Furthermore,

J 2 J 2

‘Hj 2 Hi(v—vo)‘l = ‘H Z 0;(v — vg)

i=j+1 t=j+1 L& i=j+1

Sowte- o,
0,0

N

8y — w2

N

2
v — vo|1’Qj +

Summing up all the terms, we have

J J
Z]U of, < fo—wl+ Nlo-wla, + CGH2Y
i=j+l j=1 o =1

[o = wol; + CEH o — vl

where the constant in the last inequality depends on the maximal number of overlaps in domain
decomposition. Because vy could be any function in V{, we can choose vy = Qyv and, in view
of Proposition 3.5, obtain ;

> |, S uf, 5 ol

=0 i=j+1
Using the X-Z identity (Corollary 4.1), we get the following result. We leave the full proof to
the readers; see HW 5.1.

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 99

Proposition 5.1 (Uniform convergence of two-level DDM). The abstract domain decomposition

method with coarse space correction converges uniformly.

Remark 5.1 (DDM without coarse space). From the above analysis, we immediately see the
importance of having the coarse space V. With the same proof, one can show that the conver-

gence rate depends on H 2 if without the coarse space correction.

5.2 HB preconditioner

In the previous section, we have seen a two-level domain decomposition method in the setting

of subspace correction. Now we investigate a multilevel example.

Nested space decomposition

We consider the Poisson’s equation on a sequence of nested meshes M; (I =0,..., L) generated

from an initial mesh Mg by uniform regular refinements. Hence meshsize h; of M is proportional

to v with v € (0,1). For example, in Figure 1.5, there is a hierarchy of grids with h; = (1/2)*!

(l=0,1,...,L). Clearly,

ho > hy > ho>--->hp =: h.
Define continuous piecewise linear finite element spaces on each mesh as
Vii={ve? : v, ePi(r), VT e M} (5.1)
This way, we build a nested subspaces
VOCV1C~~CVL=:VC”//=H5(Q).

The set of interior grid points on the [-th level is denoted as z;; € G(M) (i =1,...,m). The
subspace V] is assigned with a nodal basis {¢;;};~,, where n; := ‘G(Mg)‘ The space V] can be

further decomposed as the sum of the one-dimensional subspaces spanned with the nodal basis

Vii :=span{¢y;} (i = 1,...,n;). In this way, we obtain a natural multilevel space decomposition
L L ny
V=>V=>> "V, (5.2)
1=0 1=0i=1
We can also define
Wy={veV, :v(z)=0,Vaze é(MZ_l)} (5.3)

and obtain a decomposition
V=WedW:® --®&Wr. (5.4)

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 100

Let J; : V — V; be the interpolation operator and define J_1 := 0. It is easy to see that

m:<t71_\7l—1)vz(z-—\-7l—l)‘/2) lzova

Notice that the decomposition (5.4) is a direct sum and there is no redundancy in this decom-

position at all.

For level [=0, ..., L, we define a nodal basis
Yri() = dri(x), for a; € GMNGMi_1), i =1,...,my ==y — .
Apparently, ZZL:O m; = ny, = N and this basis
{ri(x) -i=1,...,my, 1=0,...,L} (5.5)

is called hierarchical basis.

Hierarchical basis preconditioner

We now use the Richardson iteration discussed in §3.3 as the subspace solver, i.e.,

S1iQuiv = k™ (Quiv, i) Yus = b~ (v, ¥us) Vi

The PSC method based on the space decomposition (5.4) can then be written

N L my
Bupr = Z S;Q,r = 2 (hlz_d Z(T’ @Zﬁl,i)@ﬁl,i) . (5.6)
0 i=1

j=1 1=

And this is the explicit form of the well-known hierarchical basis (HB) preconditioner proposed
by Yserentant [62].
We shall now analyze this preconditioner in the framework of PSC in §4.4. In order to do

that, we need a few important estimates.
Lemma 5.1 (Stability of interpolation in H'). We have
[T~ Tyl + 0| Twf} < a0, VoV,
where ¢ (1) =1, ea(l) = L — 1, and c3(1) = v~ 270,
Proof. Using Proposition 3.2, we have

(T = Ti=1)vlo = | Tv — Ti—1Tivlo < ki Tivls-

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 101

Let 7 € M; and v, := |7|7!§_vdz be the average of v on 7. Using the standard scaling
argument for |- |1 -, the discrete Sobolev inequality Proposition 3.4, and the Poincaré inequality

Proposition 1.2, we can obtain that

|k7lv|1,T = |%U - UT|1,T < H:]lv - UTHOO,T < HU - UT”OO,T < CdHU - UT| 1,7 < C’d|v|1,7"
Hence the desired result follows by summing up terms on all elements in M;. O

Remark 5.2 (Condition number in hierarchical basis). The above lemma suggests that, if

ve W, for any 0 <! < L, we have
e (DR 2 (v,v) < alv,v].

Compare this with the general Poincaré inequality in Proposition 1.3. Furthermore, from the

inverse inequality Proposition 3.3, we always have
2 —2. 112 -2
alv,v] = ol < b 7|vlg = Ry 7 (v, 0).

Hence the operator A; is “well-conditioned” up to a constant c4(1); compare this property with

the standard Lagrangian finite element basis case in Remark 3.4.

Strengthened Cauchy-Schwarz inequality

Lemma 5.2 (Inner product between two levels). Let i < j; then we have
alu,v] < 'yj_ih;l\uthHo, VueVj,veVj.

Proof. We first restrict our attention to an element 7; € M;. For v € M, there is a unique
function v; € V, such that v; vanishes on d7; and equals to v at all other grid points. Let
vy := v — v1. Because u € W is a linear function on 7;, we have Sn VuVuv = 0.
Define T := UTjeMj,?jﬂamé@ 7j. Then |T| = (Z—;)d_lhf = h¢'h; and suppvy = T. We
have
HVUO

i Y MR =Y hRR) sl
a:eé‘(/vl])ﬂan QJGGO(M])maTz

Since Vu is a constant on 7;, we have

- 1/2
T |1/2 h¢1h -
e A e I A L e T

Combining the above two inequalities, we have

J Vu-Vov = J Vu- Vg < fyj’ihj_llu‘l ~ V1, € M;.

v H 0,73’

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 102

By the Cauchy-Schwarz inequality, we obtain the estimate:

alu,v] = Z fVu Vo < yj_ihj_l Z |u|1,n v

TEM,; T,EM;

o 1/2 1/2 o
PN Juln) (X Bels) T = Rl ol

TEM; T,.EM;

o~

A

Hence the result. O

Lemma 5.3 (Strengthened Cauchy-Schwarz inequality for interpolation). If u,v € V, let u; :=
(Ji — Ji—1)u, and v; := (J; — Jj—1)v, then we have

alui, v;] < V7w lvs] -

Proof. 1If j =i, we have v; = v; — Jj—1vj. So |vjllo = [|v; — Tj—1vjllo < hj|vj|.a follows from
Proposition 3.2. If ¢ > j, we can argue in a similar way. Hence the result follows directly from
Lemma 5.2. O

Lemma 5.4 (Estimating K»). Assume that T; = S;A;1l; and the subspace smoother S : Vj —
V; satisfies
2 _
[SAjvly < P57t (Aju,0), VeV,

where pj := p(A;). Then, if i < j, we have

(uis Tiv)a <97 uil alvla, VuieViveV. (5.7)
For 0 <1i,j < L, we have the strengthened Cauchy-Schwarz inequality

(Tiw, Tjv)a < 'y‘j*i|/2(7§u,u)%4 (7}1},1})%4, VuveV. (5.8)

Proof. By applying Lemma 5.2, we get

(s, Tjv)a = alus, Tiv] < 27705 uil 4l Tjvlo.
Furthermore, we have

1 Tivlo = IS;A; vl < hil A} Hyvllo < sl Hyvla < hylo].a.

This proves the first inequality (5.7).
First consider the case when j > ¢. By the Cauchy-Schwarz inequality and the inequal-

ity (5.7), we get
1 1 1
(Tru, Tiv)a < (T;Tiu, Tow) % (Trv,0) % < A9 "2 Tl a (Tjo,0) 3.

Also observe that (Tiu, Tiu)a < | Tiul|a(Tiu, u)?4 and the second inequality (5.8) follows imme-
diately. 0

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 103

Convergence analysis of HB preconditioner

Theorem 5.1 (Convergence of HB preconditioner). The multilevel PSC preconditioner Byp de-
fined in (5.6) satisfies
£(BupA) < Ca(h),

where C1(h) =1, Cay(h) = |log h|?, and C3(h) = h=1.

Proof. We choose a decomposition v = ZZL:O vy = ZlL:o(jl — Ji—1)v, where J_1 = 0. With
careful calculations, Proposition 3.3 and Lemma 5.1 (J; = II; in 1D) yield

L L L
D llZ < Dk ulg = Y el < Ca(m)lvl. (5.9)
1=0 1=0 1=0

On the other hand, we know wy = min; pjAmin(S;) < 1. Therefore K7 < Cy(h) due to Lemma 4.3.
The strengthened Cauchy-Schwarz inequality (5.8) and Lemma 4.4 give that Ko < 1. The

convergence result then follows directly from the general theory in Theorem 4.4. O

Define an operator ‘H : V — V such that
L
(ww):=3, 3 B2 (G = Tiaw)), (T = Tiaw) (i)).
1=0 2,6 G(M)\G(M—1)
Hence we get
L 2
(Hv,v) Z hjl_?‘(jlv T @), YeeV

2, €G(M)\G(M_1)

This operator is in fact the inverse of the HB preconditioner, i.e., H = Bﬁé; see [63]. In fact, in

the proof of Theorem 5.1, we have shown the following norm equivalence result:

L
[0l < (Ho,0) = X 0 20T = Fia)oll§ S Ca(h)|o)y- (5.10)

Let II; be the (-, -) 4-projection from V to Vj. It is easy to check that
a[(ﬂz -]Yi—l)v7 (H] -]]j—l)v] =0, Vi#j.

We can easily obtain that

L
2
% = | Y-ty = Y e[t = Bene, (01 1))
=0 0<i,j<L
L 2
— (1, — 1, - 1II ‘ iy ‘
> al(Ih - M), (I — I_y)v] = > 1-1)v),

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 104

Motivated by the above norm equivalence and (5.10), we can construct a multilevel PSC method

J
= Z S;11;
j=1

However, II; is not good for computation in general. In the next section, we explore the idea of

telescope expansion using L2-projection instead of interpolation or Ritz-projection.

5.3 BPX preconditioner

Using the same multilevel space decomposition setting in the previous section, we can give
parallel (PSC) versions of multilevel subspace correction method. The most prominent (multi-
level) example of PSC methods is the BPX preconditioner [14] based on the multilevel subspace

decomposition (5.2):

J
B=>189;, (5.11)
j=1
which is computationally more appealing and converges uniformly; see §3.2 for details. The HB

and BPX preconditioners belong to the class of multilevel nodal basis preconditioners.

Telescope expansion of L2-projections

Using notations in Definition 4.1, we have

Ay V=V, (A, v) = alug, v}, Yu,v eV
Q:L*—V (Qu,u) = (uv), Y eV; (5.12)
I : v —V (Iu,vy) = alu,v], Yuv eW.

We introduce a new notation i A j := min(s, j). It is trivial to see
QiQj = Qinj, LI = II; 5, (5.13)
and
(Qi = Qi-)(Qj — Qj—1) = (Il — IL;1)(Il; — Ij—1) = 0, Vi#j. (5.14)
If we define Q_1 = II_; = 0, we can give space decomposition

L L
ZZ(- Q1) 2 —111) (5.15)

=0 =0

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 105

Norm equivalence
Lemma 5.5 (Norm equivalence for L2-projection telescope sum). For all v € V, we have

(Q - Qlfl)v‘l ~ hl_lu(Ql - Qlfl)vHO'

Proof. Using the inverse inequality, Proposition 3.3, we get

(Q = Qui—1)v], < b Q0 = Qica)v,

Proposition 3.5, together with the trivial equality

(Q—Q-1)v=(T—2Q-1)(Q — Q-1)v,
O

gives the other direction.

Lemma 5.6 (Strengthened Cauchy-Schwarz inequality for L2-projection). Ifu,v eV, letu; :=
(Qi — Qi—1)u, and vj := (Q; — Qj—1)v, then we have
afui, v;] < 4wl allvjla-
Proof. 1f j > i, Lemma 5.5 shows |v;]o < hjllvj].4 and the result follows directly from Lemma 5.2.
If ¢ = j, we can argue in a similar way. O

Lemma 5.7 (Norm equivalences). For all ve V, we have
L 2
Q- Q)] = ol
=0

Proof. Due to that II) : # — V] is the standard H'-projection, the finite element approximation

(5.16)

theory gives
Yve V.

v = o], _, < o,

Since Q is a L%-projection, we have [Quu[o < |[v]o, Vv € L*(Q). Furthermore, using Proposi-

tion 3.5, we obtain
|Qlly < [[vf1, Yve?.

By space interpolation, we have, for any o € (0, %), that

Qo < [vlo, Yve?.
Let v; := (Il — Ii-1)v. Note that p; = p(A;) = hl_Q. It is easy to show, with help from

Proposition 3.3 and (5.16), that

[(Qr = Quvyoil; < A 1(Q = Qeyuilli_, o luill_ < of R ol

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 106

Using this inequality and the Cauchy-Schwarz inequality, we can derive that

IN]

DIV = Q1) V(Q = Qumn)y) = 2D (VIQr = Qu1)vi, V(Qr — Q1))
T i i 1=1
IA]
< D erhehSvilllogl s e ke loillilvile s DSy il g
i 1=1 i i

We have shown that }, ; Y=l v 1wl S X2 vill? = [[v]?, which shows
2
(2 = Qien)el} s [l
l
On the other hand, using Lemma 5.6, we obtain

w2 = Z (V(Qi —Qi—1)v, V(Q; — qu)v)

0.
< Z’Yli*ﬂﬂ(Qi - Qi [(Q; — Qj-1)v|, < Z 1(Q; — Qi—l)””i
0, i
Hence we get the norm equivalence using Proposition 1.3. O

Remark 5.3 (Fractional norm). We have shown the norm equivalence in H'-norm. In fact,

3

similar results also hold for H*(Q) with § < a < 3.

BPX preconditioner and its convergence

All subspace problems are one-dimensional and, thus, very easy to solve. We can write the

subspace solver (exact solver on each one-dimensional subspace) as follows:

ny ny

SPv =Y (A, ¢13) " (v, b1) bri = Y (Vori, Vor) ™" (v, 1) b

i=1 i=1
Since we are now considering the uniform refinement for the linear finite element discretization,
we can use an approximation of SZO , for example a local relaxation method:

T

S = Z h = (v, b)) i (~ SPv).

i=1
This simplification helps to reduce the cost of computation and implementation. Apparently,

we have

(Sv,v) = hl2_d (,7) = h? (v,v).

We have seen that the Richardson method, the damped Jacobi method, and the G-S method

all satisfy such a condition; see (3.22).

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 107

Remark 5.4 (Behavior of the smoother). Note that this “new” method is just the Richardson

method with a weight w = hl2_d on level [.

Using the above space decomposition and subspace solvers S;, the PSC method yields the

well-known BPX preconditioner

L L L

B = Z S Q) = ZIISZQZ = ZIlSlIlT (5.17)
=0 =0 =0

in operator form [14].

Theorem 5.2 (Uniform convergence of BPX). The BPX preconditioner (5.17) is uniformly con-
vergent, i.e., k(BA) < 1.

Proof. We take a decomposition v = ZZL:O v = ZlLZO(Ql — Q;_1)v, where Q_; = 0. Then we

can obtain, from Lemmas 5.7 and 5.5, that

~

L L
(Av,v) = Z Qz-1)v|$ =~ 30— Qo] = (D — Q11)v,v).
=0 1=0

=0

Define A := ZZL:O h;2(Q; — Qi—1). Apparently, (Av,v) = (Av,v), Yv € V. Using (5.13) and
(5.14), we can easily verify that

L
Z hi(Qr— Q1)
Hence

L L _
(A~ v, v) Z?lev Z (Qi_1v,v) = h2(Qrv,v) + Z YR (Qv,).

1=0
Namely, (A~'v,v) = (Bv,v) = (Av,v) = (Av,v) = (B 'v,v). Then Lemma 2.5 gives the

uniform convergence result. O

Remark 5.5 (Multilevel decomposition according to frequencies). From the above analysis, we

find that, for any ve V
(Q1— Qi1)v|, = ho Q- Q1)vfy = [Vulo~ |h oo

This fact draws close comparison with the Fourier expansion. That is to say v = ZZL:O v is a
multilevel decomposition to different frequencies. Hence A can be viewed as a multi-resolution
expansion of A and k(A~1A) < 1.

CHAPTER 5. MULTILEVEL SUBSPACE CORRECTION PRECONDITIONERS 108

Matrix representation of BPX
Using the matrix representation notations introduced in §3.2 and §3.5, the equation (3.37) in
particular, we immediately obtain the matrix representation of the BPX method:

L L L
Bu=Bu=) 1,8 Qu=) F(h M) (M P M)u= Y hi"P P Mu.
=0 =0 =0

In view of (3.16), we get the matrix form of the BPX preconditioner

L
B:=BM~' =) h'P P (5.18)
=0

This is the matrix form of the BPX preconditioner when we implement it.

To improve efficiency, we can use prolongation between two consecutive levels to obtain F.

5.4 Homework problems

Problem 5.1. Give the complete proof of the uniform convergence of the two-level domain
decomposition method (Proposition 5.1). What will happen if we do not include the coarse-

level correction (Remark 5.1)7

Problem 5.2. Implement the BPX preconditioner for the Poisson’s equation on a uniform grid.

You can choose your favorite discretization method.

Chapter 6

Multigrid Methods

Multigrid (MG) methods are a group of algorithms for solving differential equations using a
hierarchy of discretizations. The method has been proposed initially by Fedorenko [31] for
2D finite difference systems from the Poisson’s equation. Its main idea is to accelerate the
convergence of a basic iterative method (known as relaxation) by a global correction from time to
time, accomplished by solving a coarse problem approximately. The coarse problem is “similar”
to the fine grid problem, while cheaper to solve. This recursive process is repeated until a grid
is reached where the cost of direct solution is negligible compared to the cost of one relaxation
sweep on the finest grid. Later on Brandt [16] noticed that this method was considerably
faster than standard relaxation methods and brought it to attention of the western scientific

community.

6.1 Geometric multigrid method

Geometric multigrid (GMG) method is an optimal iterative solver for linear algebraic sys-
tem (2.1) arising from discretizations of elliptic partial differential equations such as the Poisson’s

equation. It is based on two important observations we made earlier in Chapter 3:

e A local relaxation method damps out non-smooth (high-frequency) components of the

error and the residual becomes a relatively smooth vector after a few relaxation sweeps;
e A smooth (low-frequency) vector can be well approximated on coarse grids.

MG establishes and makes use of hierarchical structures. It is a good example of the idea of
divide and conquer. MG can be used as a preconditioner for specific problems. This idea has
been applied in two-grid methods; see §3.4. However, for large-scale problems in scientific and

engineering computation, the coarse grid problem might be still too large to be solved quickly.

109

CHAPTER 6. MULTIGRID METHODS 110
This makes introducing multiple grids a natural idea. The key steps in the multigrid method
(see Figure 6.1) are as follows:

¢ Relaxation/Smoothing: Reduce high-frequency errors using one or more smoothing

steps based on a simple iterative method;
e Restriction: Restrict the residual on a finer grid to a coarser grid;
e Coarse correction: Solve an approximate problem on a coarse grid;

e Prolongation: Represent the correction computed on a coarser grid to a finer grid.

Fine Grid

o &
g g
e —
= =
&0 &
g =
S)
— =}
e

o

Coarse Grid

Figure 6.1: Pictorial representation of a multigrid method with three grid levels.

V-cycle multigrid method

Now we will explain the multigrid algorithms using the P; finite element method for the Poisson’s
equation on Q2 = R? as an example. Suppose we have a sequence of meshes M; (I = 0,...,L)
generated from an initial mesh Mg by (uniform) regular refinements. Hence meshsize h; of M;

is proportional to v% with v € (0,1). Clearly,
h0>h1>h2>~">hL=:h.

It is easy to see that a multigrid method can be viewed a recursive two-grid method. So
we only need to introduce how to do the iteration on two consecutive levels. We denote Z;_1 ; :
Viei = Vi (I = 1,---,L) as the natural embedding and Q;; 1 = Iljil,l : Vi — Vi1 as the
(+,-)-projection. Define A; (I =1,---, L) as the operator form of A on the subspace V; in (5.1).

Then a V-cycle multigrid method is given as follows:

CHAPTER 6. MULTIGRID METHODS 111

Algorithm 6.1 (One iteration of MG V-cycle). Assume that B;_1 : V;_1 — Vj_; is defined and
the coarsest level solver By = A 1 is exact. We shall recursively define B; : V; — V; which is an
iterator for the equation A;v; = r;. Let v; be the initial guess on each level, i.e., vy = u© and

v =0 for 0 < < L. Do the following steps:
(1) Pre-smoothing: For k = 1,2,...,m, compute
v — v+ S (r — Ay);

(2) Coarse-grid correction: Find an approximate solution ¢;_; € V;_; of the residual equation

onlevel I —1,ie., Aj_1¢_1 = Qu_l(rl — .Alvl), by an iterative method:

ej—1 — Bi1Qu—1(r — Awr), v — v+ e-1;

(3) Post-smoothing: For k = 1,2,..., m, compute

v — v + SlT (rl — .Alvl).

From this algorithm, we can see this MG V-cycle method is just a generalization of Algo-
rithm 3.2 (the abstract two-grid method). Clearly, this geometric multigrid method (with one
G-S iteration as pre-smoothing and one backward G-S iteration as post-smoothing) is just a
special successive subspace correction (SSC) method based on the following multilevel space

decomposition

v=>1-= M Vi + W+ > D Vi

j=1 I=L:—1:1 1=1l:ny I=1:L 1=n;:—1:1

which is a modification of (5.2). Furthermore, on each one-dimensional subspace ‘7j, the subspace
problem is solved exactly.
According to Lemma 3.6, the error transfer operator of MG V-cycle on the [-th level can be

written as
E:=I—-BA = (IS A)Z-B_1 A1) -SA),

where II;_; is the Ritz-projection from V to Vj_;. By applying this operator recursively, we

obtain the error transfer operator for the MG V-cycle:

EL,=T—-BL Al = (T—-SLAL) - (T—STA)(T 1) (T —-S1A1) - (T-SLAL).

CHAPTER 6. MULTIGRID METHODS 112

Matrix representation of GMG

Similar to the matrix representation of two-grid method discussed in §3.4, we can write the

matrix representation of multigrid method. By definition, we have
(A, v) = (Aug,vp), Vg, v €V

Hence,

(A Quu, Q) = (I} ATiQuu, Qv) = (AT Qu, T;Qv), Yu,ve V.
It is easy to see that
QAQ =9I AT — A=T[AL =T] AT,
This and (3.37), in turn, give the inter-grid transformations:
Ay=MA =MIFAL = M QM AL =" AL, 0<i<L.
Hence we get the dual matrix form of the coarse level operator

A =PF'APR, 0<i<L.

Convergence analysis of GMG method

Now we show the MG /-cycle (i.e., half of the MG V-cycle) method converges uniformly using
the X-Z identity. For simplicity, we show the proof in 1D here. For general analysis in R?, see
HW 6.1. The multidimensional cases and other MG methods can be analyzed in a similar way,
but much more technically involved.

Assume the subspace problems are solved exactly, i.e., §;; = Al_ﬂ.l, for i = 1,...,n; and

Il =0,...,L We denote the operators [J; : V +— V}, i.e., for any function v e V,
ny
(Fw)(x) = > v(ah) ¢i(x), VI=0,...,L
i=1

Let J_1v := 0, vg := Jov, and v; := (J; — Jj—1)v, | = 1,..., L. Using the interpolants in

multilevel spaces, we can write

L L
v=JLv = Z (jlfjl_l)v:Zvl. (6.1)
=0

We also have
n

h
3

=
£
S
=
—
&

Il
N
N
=

L
v=Yu-
=0

1=01=1 =0i=1

CHAPTER 6. MULTIGRID METHODS 113

It is easy to check that
L L ng
T—To= D, u= >, > v
I=k+1 I=k+11i=1
To estimate the convergence rate, in view of Corollary 4.1, we only need to estimate the

quantity:
L ny 2

€1 := sup inf ZZ I ; Z Uk’j‘{

ol =1 21, 0i=Y |12 (k,5)= (1)

We now define and estimate

L n
c1(v) = Z Z
=0 i=1

We use the same notations introduced in Chapter 4 for projections, If;; : V — V; is the

n

1 L mn
IYl,i(Zvl,j+ Z ka,j)‘
=i

2
. 1
j= k=l+1j=1

(+,-)a-projection. For one-dimensional problems, it is easy to see that I, = J;; see HW 6.2.

This leads to the following identity
IL,(Z—-J)=0, V1<i<n, 0<I<L.

Furthermore, we also have 17171(2].% v ;) = 1 (’Ul,i + Ul,z'+1)- Using these properties, we have

3

L mn
|10 (vii + viier) + i (T — jl)”ﬁ = Z 2 |03 (v, + Ul,i+1)|i
1=0 i=1

L L
_ 2
oili = DICNT - Ty s Dl lwlE = Jolf
=0

=0

|
M=

C1 (’U) =

N
I

(e}
-
30

I

A
1=

~
Il
o
~
Il
—

The last equality is easy to check; see HW 6.3. This estimate shows the convergence rate of MG

is uniformly bounded.

Remark 6.1 (Relation with the HB preconditioner). Note that several places in the above anal-
ysis depend on the one-dimensional (d = 1) assumption. In fact, the decomposition (6.1) used
in this proof is the hierarchical basis (HB) decomposition in §5.2 and convergence rate of the
HB method is not optimal in multidimensional cases (d > 1). So the proof must be changed in

higher dimensions.

Problems with anisotropic coefficients »

For GMG, smoothness of error is in the usual geometric sense. But it is not always easy to do

so. A representative example is the second-order elliptic problem

—€Upy — Uyy = f(z,y), V(z,y)€Q, (6.2)

CHAPTER 6. MULTIGRID METHODS 114

where € > 0 is usually small. Other examples include problems with high-contrast coefficients,
problems on anisotropic meshes, etc.

If we apply the standard finite different discretization in §1.2 on uniform n x n tensor-product
grid for this problem, or equivalently the P; finite element discretization on uniform triangular

grid from regular refinements, then the coefficient matrix for (6.2) is
Ac=1® A +C®I, with A; . = tridiag(—e, 2 + 2¢, —¢), C = tridiag(—1,0, —1).

The eigenvalues of A are given

in g .9 i .o JT
Xij(Ae) = 2(1 + €) — 2ecos o 2 cos e 4e sin Mt + 4sin St 1)’
with eigenvectors
- . kim . Igw
§ij = (sm sin) .
’ n+1 n+1/kl=1,..n
If e « 1, then M1 < X1 < -+ < A1 < A2 < A2 < ---. We notice that, unlike the

Poisson’s equation, these eigenvalues are ordered in a different pattern. The geometric low
frequencies can be highly oscillatory in z-direction. It is natural to expect such a behavior
from the PDE itself as the x-direction is much less diffusive than the y-direction. We call the
z-direction (with small coefficient) the weak direction and the y-direction the strong direction.

We can also view this problem from a different perspective. Using the analysis in §3.3, we

obtain that the error of the G-S method satisfies

new new old new old s
(2 +2€)e75" = ee;Y ; teef G teist el iy, hi=1,...,n

According to the local Fourier analysis, we can obtain that

A(g) B algew B 66\/7101 + 6\/7192
o agld - 2+ 2 —ee— V101 _ o—V-102"

In this case, the smoothing factor of the G-S method is

<6<1_pgs>>>:m+2_>

2(e +1)p2, 5¢ + 3

Pas = A(g,arctan 1, ase—0.

This means the standard G-S method does not have smoothing effect on the anisotropic problem
when € is small.
On the other hand, if we apply the line G-S smoother, things will be a lot different. Suppose

we apply the line smoother in natural ordering (from left to right), namely,

new new old new new . :
(2 + 26)u7F" = ew; <Y ; + eud S ; + it iy, j=1,...,n, i=1,...,n

Then the error satisfies

new __ new old new new . .
(2 + 26)81'7]‘ = 682'_17j + €€i+1,j + ei,j—l + ei,j—i-l?] = 1, cee,n, 1= 1, e, N

CHAPTER 6. MULTIGRID METHODS 115

And we get
)\(0) _ agew 66\/?101

agd 24 26 — cemV101 — 2e—V=10

The maximal smoothing factor is then

e 5
)

Pras = max{2+€,

If 0 < e < 1, we always have p, ., = v/5/5 < 1 independent of e.

In multigrid methods setting, one could handle such an equation using special techniques like:
(1) an line smoother (group all y-variables corresponding to the same z-coordinate together),
or (2) semi-coarsening (only coarse in y-direction), or (3) operator-dependent interpolations.
Later in this chapter, we will turn our attention to the third approach, which leads to algebraic

multigrid methods for solving such difficult problems.

General procedure of multigrid methods

From our discussions above, we observe that a typical MG algorithm contains two phases—
the “setup” phase and the “solve” phase. The setup phase initializes a hierarchical structure,
including coarse spaces, prolongations and restrictions, coarse problem solvers for multilevel
iterations. Notice that the setup phase only needs to be called once before iterations; some-
times, the same setup phase can be used at different time levels for time-dependent problems.
For geometric multigrid (GMG) methods, the setup phase is trivial using the hierarchical grid
structure. However, GMG methods are difficult to apply for equations on general domains with
unstructured grids. Algebraic multigrid (AMG) methods can be viewed as a generalization of
geometric multigrid methods; see [60] and references therein for more details.

We now explain how to perform multigrid setup phase in a relatively general setting. Once
the setup is done, an appropriate nested iteration scheme should be chosen for the solve phase; see
§6.2. It is immediately clear that we only need to discuss how to setup hierarchical information
in two consecutive grids/levels for multigrid methods. We can summarize a general multigrid

setup procedure as the following steps:
Step 1. Selecting a smoother: Choose a smoother S for Au = f.
Step 2. Coarsening: Identify a coarser space V. — V, which contains smooth vectors.
Step 3. Constructing a prolongation: Construct a prolongation P in two steps:

3a. Decide, for each fine variable, which coarse variables will be used for interpolation;

CHAPTER 6. MULTIGRID METHODS 116

3b. Determine the weights for prolongation P.

Step 4. Recursion or nested iteration: Define A, = PTAP and f. = PT f; then apply the

algorithm for the coarse problem A u. = fe.

For GMG methods discussed by far, Steps 2-4 are determined by the information of nested
grids and the users can only find an appropriate smoother S. For example, in §1.4, we have

presented a 1D GMG method in a purely algebraic fashion. We have observed that:

(1) GMG coarsening explores the topology of the graph representing the stiffness matrices on

different levels are explicitly clear from the geometric refinement procedure;

(2) Prolongation and restriction for GMG usually depend only on the topological structure of

the graph without knowing the grid coordinates;

(3) For GMG, smoothness of error is in the geometric sense and, in the algebraic setting,

smooth error can be geometrically non-smooth.

6.2 Nested iterations

The solve phase approximates corresponding problems by calling a two-grid algorithm recur-
sively. There are different approaches for the solve phase; for example, we have seen the V-cycle

method in §6.1. In this section, we discuss a few popular methods for the solve phase.

V-cycle and its generalizations

The multigrid V-cycle iterator B, Algorithm 6.1, is a two-grid method with an inexact coarse-

level solver defined recursively, i.e., the coarse-level iterator B, is just B on the coarse-grid. On

old

o“ =0 and then iterate

the coarse level, we start from the initial guess u

ulev = ugld + Bc(fe— Acu‘c)ld), where B, is the two-grid method for A..

C

In the the V-cycle, we only apply the above iteration once on the coarse-level. Apparently, this

procedure can be generalized. For example, we can iterate multiple steps:
ugo) =0, ugk) = ugkfl) + Bc(fc — .Acugk*l)), k=1,...,u.
This gives an estimate

u = Bofe + (L~ BeAJul ™V = Bofe + Ecul™ = = (T4 Ec+ -+ EVYBfo

c

CHAPTER 6. MULTIGRID METHODS 117

where & := 7 — B.A.. We can define a new iterator B., such that
Bewfer= (T —E)(Z— &) 'Bufo = (T—E) AT fe (6.3)
Motivated by (6.3), we can introduce a polynomial g, (t) := (1 —¢)” € P, and let
Beyi= (T —au(BA)) A

Then v = 1 yields the V-cycle. And the first non-trivial example is the well-known W-cycle
(v = 2), which is a simple extension of the V-cycle algorithm; see Figure 6.2. By iterate twice
as in (6.4), we can obtain B2 (the W-cycle); see HW 6.4.

Algorithm 6.2 (One iteration of MG W-cycle). Assume that Bi_; : Vi1 — Vj_; is defined
and the coarsest level solver By = Aa is exact. We shall recursively define B; : V; — V; which

is an iterator for the equation A;v = r;. Let v = v(® be the initial guess.
(1) Pre-smoothing: For k = 1,2,...,m, compute

v<—v+81(rl —Alv);

(2) Coarse-grid correction: Find an approximate solution ¢;_1 € V;_; of the residual equation
on level [— 1, ie., Aj_1e-1 = Q11 (rl - Alv) using the iteration: Let ¢;_1 = 0 initially.
For k=1,2,

e—1<—e—1+ B (Ql,lfl(rl — Apw) — Az716171); (6.4)

Update the solution with

v v+ eq;
(3) Post-smoothing: For k =1,2,...,m,

U<—U+SZT(T1—.AZU).

Finest o @ @ HFelaxation
Y, J&/ ST

Figure 6.2: Multigrid V-cycle (left) and W-cycle (right).

Prolongation

CHAPTER 6. MULTIGRID METHODS 118

In V-cycle and W-cycle, the iterators on all the coarser levels are the same. We can also
use variable polynomial orders v; on level [(0 < < L). From the above discussion, we also
have a lot of freedom in the choice of ¢, (t). For example, we can use a polynomial g, (t) such
that ¢,(0) =1 and 0 < ¢, (t) < 1 on the spectrum of B.A.. This type of methods are referred
to as the AMLI-cycle (Algebraic Multi-Level Iteration cycle!); see [1] and references therein for
details.

Example 6.1 (A simple AMLI-cycle). A simple AMLI-cycle method is to give lp > 1, up >

o = 1, and use the following polynomial orders

p, if 1= klo;
v =
M, otherwise.

It is clear that, if l[g = 1 = ps = 1, then this method is just the V-cycle. O

Now we turn our attention to the work estimate of nested cycles. For simplicity, we consider
the AMLI-cycle with pus = 1 only. Denote the work needed by B; is W;. Assume the each
smoothing sweep costs O(N;) operations and N; ~ h;¢ ~ y~24 Then it requires 2m O(N;)
operations for the pre- and post-smoothing on level [. The prolongation and restriction also

requires O(N;) operations. Hence, for the AMLI-cycle, we have

Wity = ONiigs1 + -+ + Niigrio) + 10 (Nity) + 111 Wi
= O(Nt1yio) + 1O (Niiy) + 1 Wi
= O(Ngesyio) + 210 (Niio) + W1y,

k+1

b1
= lewflo + O(Z Ml—H]leo)
j=2
k+1

kt+1—j
- O(Z/‘1+]leo)
k
= Nigt1yio) Z (it

Hence, this AMLI method costs O(N) operations in each cycle, if p;v?¥ < 1. Here N = N,
is the number of unknowns on the finest grid. This analysis also yields the complexity of the
standard V-cycle method quickly.

Indeed, we can choose some optimal polynomial g, (t) like the Chebyshev polynomials. This

reminds us about the Krylov subspace methods discussed in §2.2. Inspired by this similarity, we

'Here “algebraic” stands for the fact that certain inner polynomial iterations are used in the definition of the
multilevel cycle.

CHAPTER 6. MULTIGRID METHODS 119

can apply a preconditioned Krylov methods (like Flexible CG or GCR methods) on some of the
coarse levels to improve convergence. This type of methods are called Krylov-cycle (K-cycle)
methods or Nonlinear AMLI methods [49].

The previous multigrid methods converge uniformly with respect to the meshsize h and requires
O(N) operations in each cycle. This means the computation cost is O(N) to reach a fixed
tolerance. On the other hand, when we solve a discrete partial differential equation, we usually
need to use smaller tolerances for finer meshsizes. This means, in order to reach the discretization

accuracy, the V-cycle multigrid method requires O (N log N) operations.

Full multigrid method

One way to improve the multigrid method is to provide good initial guesses using coarse approx-
imation (cheap in computation). This idea leads to the so-called full multigrid (FMG) cycle; see

Figure 6.3. From this figure, we can see the full multigrid method is a sequence of V-cycles on

Finest
) Relaxation

|
(J
4 O Exact solving
P \ Restriction
/ Prolongation
d 4 FMG prolongation
¢

Coarsest
Figure 6.3: Full multigrid cycle.

different levels. We can write the concrete algorithm as follows:

Listing 6.1: Full multigrid method

- —1
1 |0 < Ay fo;

for Il=1,...,L

(V)

3 ul(o) —Ti_q1,U—1;

4 ul(k) evfcycle(l,fl,ul(kfl)), k=1,...,v;
5 U < ul(");

6 | end

Theorem 6.1 (Full multigrid convergence). Assume that the l-th level iteration is a contraction

with a contraction factor 0 < § < 1 independent of level . If v is large enough, then we have

W’U,l - al”’ S hl‘u‘QVQa

where u; is the exact solution of finite element problem on level | and wu; is the approximation

solution on l-th level.

CHAPTER 6. MULTIGRID METHODS 120

Proof. Let e; := w; — ;. Apparently, on the coarsest level, we have eg = 0. On the [-th level

(0 <1< L), we have

lel < & Jur— sl < 8 (fur =l + Juas —ul + flury — s)

< & (Chifulyg + el).

By iteration, if 6¥ < 42, we obtain that

Co"Iy

v 2v lv
beull < O8R4+ 6% iy + -+ 87h ful, o < 75 =TT

|“|2,Q S hl|u|2,ﬂ'

Hence the result. O

The theorem indicates that, if we do enough V-cycles on each level, we can obtain an approximate
solution within the accuracy of discretization error. This result shows that FMG can reach

discretization error tolerance using O(N) operations.

6.3 From geometric to algebraic multigrid

Consider the system of equations arising form the Poisson’s equation on unstructured meshes

or the second-order elliptic equation with anisotropic coefficients
Au=f, where Ae RV and u, f e RV,

Problems with anisotropic coefficients on regular meshes, or problems with isotropic coefficients
but on anisotropic meshes, will cause troubles for geometric multigrid methods. While geomet-
ric multigrid essentially relies on the availability of robust smoothers, AMG takes a different
approach. AMG assumes a simple relaxation process to be given (typically point-wise relax-
ations) and then attempts to construct a suitable operator-dependent interpolation using the
algebraic information of the coefficient matrix A. In §6.1, we have already found that the G-S
method is not a good smoother in the usual geometric sense for (6.2) if the coefficient € is small.
However, we can choose coarse spaces adapted to such a smoother by mimicking the idea of

semi-coarsening.

Sparse matrices and graphs x

A sparse matrix can be represented as a graph. As the sparse matrices that we consider are
mainly symmetric in the following we only discuss undirected graphs here. We first introduce a
few elementary concepts from the graph theory. An undirected graph (or simply a graph) G is a

pair (V,E), where V is a finite set of points called vertices and E is a finite set of edges. As set

CHAPTER 6. MULTIGRID METHODS 121

of vertices we always consider subsets of {1,..., N}. An edge in E is an unordered pair (j, k)
with j, k € V. A graph Gy = (Vo, Ep) is called a subgraph of G = (V,E), if Vo < V and Ey c E.

If (j,k) € E is an edge in an undirected graph G = (V, E), vertices j and k are said to be
adjacent. The set of neighboring vertices of i is the set of all vertices that are adjacent to i;
and it is denoted as N; < V. A path from a vertex ¢ to another vertex j is a sequence of
edges {(¢, j1), (j1.J2)s ---» (im2:di-1), (i-1,4)} S E and the number of edges [is called the
length of this path. A vertex j is connected to a vertex k if there is a path from j to k. The
distance between j and k is defined as the length of the shortest path between these two vertices.
Apparently, the distance between two vertices is equal to 1 if they are adjacent and is set to o
if they are not connected.

An undirected graph G = (V, E) is connected if any pair of vertices are connected by a path,
otherwise G is said to be disconnected. An independent set of V is a set of vertices of G, no two
of which are adjacent. A mazimal independent set (MIS) is an independent set such that adding
any other vertex to the set will introduce at least one adjacent pair.

Let A e RV*N be a sparse matrix. The adjacency graph of A, denoted by G(A), is a graph
G=(V,E) withV:={1,2,...,N} and

E:={(, k) : ajr # 0}.

As a general rule, sparse matrices do not provide any geometric information for the underlying
graph and only the combinatorial /topological properties of G(A) or its subgraphs; see Figure 6.4.
We note that two different discretizations on different meshes could lead to same sparse coefficient

matrix A and, in turn, same graph G(A).

e 4 e A AN AN
J J U NN VAN
(e e N AN AN
L U V \ZEAN VAN %
d (i e A AN AN
L/ T/ L vV v QY

Figure 6.4: Finite element grid (left), difference grid (middle), and graph of their corresponding
stiffness matrices (right).

Let A be the coefficient matrix corresponding to the finite element discretization of the

second-order elliptic equation with Neumann boundary condition. Apparently A has zero row

CHAPTER 6. MULTIGRID METHODS 122

sum. Hence we can write

(Au,v) = Z —a; j(ui —uj)(v; —vj). (6.5)

(i,4)€E
1<j

On the other hand, we can easily derive the corresponding equality for the Dirichlet boundary

condition or the mixed boundary condition:

(Au,v) = Z —a; j(u; —uj)(v; — vj) and uj=v; =0, VYajeIp. (6.6)
(i,4)€E
i<j

M-matrix and Delaunay triangulation *

We first introduce the concept of M-matrix. We call A an M-matrix if it is irreducible (i.e., the

graph G(A) is connected) and

a;i; >0, a;; <0 (1 #]), a;;=> Z !am-‘, aj; > Z ’am‘ for at least one j.
i#] i#]

Apparently, the stiffness matrix in (1.28) is an M-matrix. It is in general not the case for the
stiffness matrices from finite element discretizations. In fact, whether a stiffness matrix is an
M-matrix depends on the underlying mesh M.

First we introduce a few notations using Figure 6.5. In any give simplicial element 7 in R3;
similar definitions can be introduced in R? for d > 2. An edge (4,7) has two vertices z; and xj
and denote this edge as E. Let kg(7) := F;(| Fj and 0g(7) be the angle between faces F; and

F};. Define a quantity
1
U)E(T) = m’/‘iE(’T)’COt HE(T) (67)

We then have the following result; see [57] for details.

Proposition 6.1 (Condition for M-matrix). The stiffness matriz for the Poisson’s equation is

an M-matriz if and only if, for any edge E, Y, _ pwp(T) = 0 with wg(r) defined in (6.7).

Remark 6.2 (Delaunay triangulation and M-matrix). In R2, the above proposition simply
means the sum of the angle opposite to any edge is less than or equal to 7, which means the
underlying triangulation must be Delaunay. Hence the stiffness matrix for the Poisson’s equation

is an M-matrix if the triangulation is Delaunay. And the condition is almost sharp?.

For a given mesh My, the stiffness matrix of P;-finite element method for the Poisson’s

equation is not necessarily an M-matrix. However, it can be estimated by an M-matrix. More

2The opposite direction is true with a few possible exceptions near the boundary

CHAPTER 6. MULTIGRID METHODS 123

Figure 6.5: Definition of 0 and kg in a simplex in 3D.

specifically, if we keep all the vertices of M}, and swap internal edges, we can obtain a Delaunay

triangulation ME . We have
(AMEU,U) < (Ath,v), VoeRY;

moreover, the equality in the above inequality holds if and only if M}, is Delaunay. We refer

the interested readers to [50] for details. Let ¢rq, € Vi, is a piecewise linear function and

om, (z) = Zfil v;¢i, m,, (x). Then we have
2 2
[opmpli < lomlys voeR™.

This means the Delaunay triangulation results in lower roughness of finite element functions

among all possible triangulations on a fixed set of vertices.

Algebraic smooth error

Based on the two-level convergence theory discussed in §3.4 (Theorem 3.5, in particular), we
have the following result: For a given smoother S, the best coarse space VP of dimension N,
is given by
VP = span{gp} e, (6.8)
where {Qbk}kNil are the eigenfunctions corresponding to the smallest eigenvalues A\, (SA). How-
ever, it is difficult to find small eigenvalues of SA in practice.
Hence it is important to give a practical characterization of the smooth error. A good
interpretation of smooth error in algebraic sense could lead to an efficient AMG method. In
view of (3.24), we know that the standard point-wise relaxation methods, like the Richardson,

weighted Jacobi, and Gauss—Seidel methods, satisfy that

0 (0.0) 4 5 (SAv.v) , <o (0,0)

CHAPTER 6. MULTIGRID METHODS 124

And Theorem 3.5 indicates the lower end of the spectrum of SA are low frequencies. This

motives the following definition of the algebraic smooth vector:

Definition 6.1 (Algebraic smoothness). Let ¢ € (0,1) be a small parameter. If v € V satisfies

(gAv,v)A < &2 (v,v)A,

then v is called algebraically e-smooth.

Since S is SPD, the algebraically smooth vectors satisfy

[o], = (540,85 ") < (SAv, Av)"* (5 v, 0) " < (57 0, 0) o] -

Then we can derive an estimate

[ols < elols— (6.9)

which can be also viewed as an alternative characterisation of algebraically smooth vectors. By

adding and subtraction and (2.10), we have
2
|(7 = 84w,
2
vl

Apparently, the contraction factor for this vector v is close 1 if ¢ is small. Basically, this means

=>1-—¢&“

((I—gA)v,v>A > (1 —82)(’0,’1})A

the algebraically smooth error components are those which the smoother cannot damp efficiently;
that is to say, an error not eliminated by the smoother is a smooth error; see Remark 1.8 for

geometric smooth error.

Remark 6.3 (Local adaptation of AMG). In AMG methods, it is not important whether S
smooths the error in any geometric sense or not. On the contrary, the key point is that the error
after smoothing sweeps can be characterized algebraically to a degree which makes it possible
to construct coarse levels and define interpolations which are locally adapted to the properties

of the given smoother.

Remark 6.4 (Smooth error and the Classical AMG). A simple characterization of smooth error
is used in methods like the Classical AMG. If e corresponds to the low-end of eigenvalues, then

we have Ae « 1. According to (6.5), this is equivalent to say that
(Ae,e) = Z —a;j(e; —e;)* < 1. (6.10)
i<j
This inequality provides an important motivation for the Classical AMG: Smooth error varies

slowly in the direction of relatively large (negative) coefficients of the matrix.

CHAPTER 6. MULTIGRID METHODS 125

Construction of coarse spaces

From Theorem 3.3, the convergence rate of the two-grid method depends on effectiveness of the
smoother S and approximability of the coarse space range(P). Now we discuss a few guidelines
on how to construct coarse spaces and prolongation matrices.

In §6.1, we discussed a general procedure of multigrid setup phase. The coarsening algorithms
are methods for determining the coarse level variables. Such algorithms are usually based on
selecting or combining vertices in the adjacency graph corresponding to the (filtered) coefficient
matrix A. We shall discuss concrete examples of coarsening algorithms in the following sections.
Now we present two assumptions on the coarse space V. and prolongation P.

A natural choice of the coarse DOF's is to use a subset of fine-grid DOFs. Under proper
re-ordering (coarse variables first and then fine variables) R = (I,0) € RV*" . According to
Theorem 3.4, we can use the diagonal matrix D € RV*N of A (i.e., the Jacobi method) to analyze
the smoother S defined by the point-wise Gauss—Seidel method. Motivated by Lemma 3.4, we
can further simplify it and just choose D := ||Al|oI, for example. This result motivates that we

should construct a coarse space, such that
o~ @ooff, = inf Jo—uf?, < ol voev,

where the constant C' should be small and uniform with respect to interested parameters like h.

This condition is a sufficient condition for the convergence of the two-grid method.
Assumption 6.1 (Weak approximability). ||(I — PR)UHD < alv|a, YveW.

The matrix PR can be viewed as an approximation of Qp = P(PTDP)~'PTD =: PR,.
Heuristically, the numerical error becomes quite smooth after a few relaxation steps and we
can expect the coarse-grid space can approximate v rather accurately if the coarse-grid space is
appropriately chosen. Motivated by Theorem 3.3, we have Assumption 6.1, which is equivalent
to that V. reproduces local constant. This condition is equivalent to that V. has locally supported
basis and Assumption 6.2. If v is smooth, i.e., |Vv| is small, then v can be approximated well
in the coarse space V.

In view of Remark 3.16, we assume that the prolongation operator preserves the constant
(Assumption 6.2). In fact, from the weak approximation property (Assumption 6.1) and let
D :=||A|I, we have

JAIY2 [0 = PRv| < afv]la.

If v is in the near-null space of A, i.e., |v[|a ~ 0, then PRv ~ v. Hence we get the following

simplified assumption:

Assumption 6.2 (Constant preserving). P1y, = In.

CHAPTER 6. MULTIGRID METHODS 126

Remark 6.5 (Operator complexity). When constructing the prolongation P, we must control
the sparsity of the coarse level matrices. For efficient overall performance, convergence speed
is only one aspect. An equally important aspect is the complexity (sparsity) of the coarser
level matrices produced by AMG. We now define a measurement of sparsity, i.e., the operator

complexity

Oy = ZlL=0 nnZ(Al)
A nnz(A)

where nnz(-) is the number of nonzeros of a matrix. Apparently, C4 > 1 is always true and
Ca = 1 corresponds to the one-level methods. During constructing the interpolation operator,

we would like to make C'4 as close to 1 as possible while keeping good convergence performance.

6.4 Classical algebraic multigrid methods

The original AMG [19] idea (the classical AMG) was developed under the assumption that such
a problem with A being an M-matrix was solved. The multilevel hierarchy is constructed based
on the coefficient matrix only. Later, the AMG algorithm was further generalized using many
heuristics that served to extend its applicability to more general problems. For simplicity, we

suppose A = (a; j) € RV*N be a SPD M-matrix and G = (V, E) be its corresponding graph.

Strength of connections

In coarsening, we need to find coarse level variables. This is usually done based on heuristics
from properties of M-matrices in AMG methods. Let g, € (0,1) be a given real number, usually

called relative strength parameter. If a pair of indices (i, j) satisfies that
—aij = Os| mkin i,

then this pair is called strongly negatively-coupled. Note that, by this definition, (7,) and (j,1)
are two different pairs by this definition. Of course, there are many different ways to define

strongly coupled pairs. For example, we can call ¢ and j strongly negatively- coupled,

if ;5 < 0 and]am-\ > HSm/ai’iaj’j.

We can easily generalize the concept by considering the positive coupling by removing “nega-
tively”.

Denote further

S; = {j € N; : j strongly coupled to z} and ST .= {j eV: ie Sj}.

CHAPTER 6. MULTIGRID METHODS 127

So S; is the set of indices which affects i and ST is the ones which are affected by i. After finding
the strongly coupled variables, we can filter the coefficient matrix and obtain Ag by removing
non-strongly coupled connections.

The above definition strongly coupled variables applies to the direct connections. Sometimes
we also need to consider long-range connections; for example, in aggressive coarsening. A variable
1 is said strongly connected to another variable j along a path of length [if there exists a sequence
of edges {(Z, J1), (J1,72)s -« -y (Ji—2, J1—1), (jl_l,j)} c E such that ji1 € Sj,. If there exist at
least one path of length less than or equal to [such that ¢ strongly connects to j, then we say
that ¢ is [-strongly connects to j and denoted by j € Sé.

We note that, based on the nonzero pattern of the original matrix A' or a filtered ma-
trix Als, one can tell whether there are paths between ¢ and j of length [or not. For ex-
ample, if we consider five-point stencil finite difference scheme on the mesh given in Fig-
ure 6.6 (left). Consider the vertex at the center, the point 13. Then Si3 = {12,8, 14,18} and
S%, = {12,8,14,18,11,3,15,23,7,17,9,19}. And we give the weights of A and A? in Figure 6.6.

A A AR AN AR
NVANVANVANVAN
AW AAWAAWANWZAN)
NVANVANVANVANY
JOAWAAWAAWARWAA)
NNVANVANVANVAN
D AN D D O
INV/ARNVARVER VAR
MDA D DD
INVARX VAR VAN VRN V)

Figure 6.6: Finite difference grid (left), strong connections and weights in A of vertex 13 (middle),
and 2-strong connections and weights in A? of 13 (right).

C/F splitting

The classical Ruge-Stiiben method is to split the set of vertices V to a sum of two non-intersecting
sets, the fine variables F and the coarse variables C, such that all the indices in F will be affected
by some index in C, while C is expected to contain as few entries as possible. Then F will be
chosen as the set of indices of finer grid nodes, and C will be chosen as the set of indices of coarse

grid nodes. The indices of nodes are assigned to be coarse or fine successively. Denote by U the

CHAPTER 6. MULTIGRID METHODS 128

set of indices of nodes that have not been assigned yet, and we summarize the algorithm in the

following subroutine:

Listing 6.2: Classical C/F splitting method
1|U<V, C—0, F<—0;
2 (while U#0Q
3 Xi < 2ISTOF|l+|STNV|, ieU;
4 k < argmax{\;,i € U};

5 C— CU{k}, U<—U\{k};
6 F—FUSE, U< U\SE;
7 |end

Note that A; is a measure of importance—It is a measurement about how many points are
affected by 7. If \; is big, we would like to include this point in C; in this way, we can make C
contains less points to get bigger coarsening ratio. We weight more on |S7 (F| than |S U]
due to the first part is already determined to be on the fine-grid. In the early stage of coarsening
procedure, F does not contain many points, the above algorithm selects a coarse point with as
many as neighbors that strongly coupled to it. In the later stage, vertices that strongly coupled
to many F-variables are preferred to be selected. We need to add them as F-variables and
interpolate indirectly through the F-variables that they are strongly coupled to.

There are a few special cases which require careful treatment during the C/F splitting pro-

cedure. We now summarize them in the following remarks:

Remark 6.6 (Isolated points). Before we start the above algorithm, we need to filter out those
isolated points (like the Dirichlet boundary points) and define them as F-variables. Similarly,
if a point has very strong diagonal dominance, we should also move them to F. These are the

trivial cases.

Remark 6.7 (Termination of C/F splitting). If successfully terminated, the set C is an inde-
pendent set of vertices of the underlying graph G. All F-variables have at least one strongly
negatively coupled C-variable, except the trivial ones in the previous remark. However, there
might be some U-variables left (with measure A; = 0). They are not strongly negatively coupled
to any C-variables or themselves. Furthermore, there are no F-variables are strongly negatively

coupled to these points.

Remark 6.8 (Aggressive coarsening). In practice, the standard C/F splitting scheme given
above usually results in high operator complexity (refer to Remark 6.5), which leads high com-
putational and storage demands; see Table 6.1. In such cases, we can apply the so-called
aggressive coarsening by considering strong connections of length [. Oftentimes [= 2 is used.

However, A% is expensive to compute and we can apply the regular C/F splitting twice. At

CHAPTER 6. MULTIGRID METHODS 129

the first pass, find C-variables among all variables using As; at the second pass, apply the C/F
splitting on C-variables using A% but on C only.

Coarsening method Standard Aggressive

Operator complexity 2.889 1.606
Setup time (sec) 1.536 1.036
Number of iterations 6 38
Solve time (sec) 0.791 3.293

Table 6.1: Solving 2D five-point stencil finite difference of the Poisson’s equation with 1 million
DOF using different coarsening methods (stopping criteria for PCG is the relative residual
smaller than 1079).

Example 6.2 (Anisotropic elliptic PDE). To illustrate the effect of the above C/F splitting
algorithm, we consider an anisotropic diffusion example in §6.1. The computational domain
is a unit square. Let us consider the anisotropic diffusion equation —euz, — uy, = 0 (e > 0).
Roughly speaking, we have €|uz,| ~ |uyyll. This means the solution is smooth in y-direction
(low-frequencies); but rough in x direction (high-frequencies). We consider the five-point stencil.
The difference equation at the node (x;,y;) is

2Uij — Uitl,g = Wi—1j 2Uig — Wij—1 — Uij+1

—€ = 0.
h2 h%
If 75 « h%, then w; ; depends on u; j+1 and w; j—1 only. Thus if we process the C/F procedure,
z y

= I i l - | | | |

| . ' - . |

— = ' — | m—— — mm——

[~) - |

re— ' l— -—————I———]—-

[, 1 = |

Figure 6.7: C/F splitting for the 2D elliptic problem with € = 1 (left) and € « 1 (right), where
the red points are C-variables and the black points are F-variables.

the coarsening will take place indeed in one direction only (semi-coarsening); see Figure 6.7. [

Construction of prolongation

After obtaining a C/F splitting, upon a reordering or indices, we can always assume the indices

of the nodes in C is from 1 to N,, and those in F are from N.+1 to N. We can write the stiffness

CHAPTER 6. MULTIGRID METHODS 130

matrix in the following block structure

(Ac,c Ac,F>(Uc>:<fc>
Arc Arf uF fr

Let el € R™e correspond to the variable on coarse grid. We now consider how to prolongate
it to e” € RN corresponding to a variable on fine grid. We use geometric multigrid method for
linear finite element method on uniform grids for the 1D Poisson’s equation as an example. Let
{¢P}Y| be the basis of the fine space V and {¢f}j\[:c1 be the basis of the coarse space V.. From

the geometrical multigrid point of view, it is natural to expect
a(¢f ¢l) =0, jeC, ieF. (6.11)

In fact, the main idea is that the fine-grid (high-frequency) part should be captured by fine
grid, i.e., a(u® — Igu®, ¢") = a(u, ¢"), if ¢" is a basis function corresponding to the difference
between fine and coarse grid functions.

It is trivial to see that (Pefl); = ejH, if j € C. Define

(1)

where I € RNe*Ne ig the identity matrix and Q € RIV=Ne)xNe - In matrix form, (6.11) can be

(0 0)(Ac,c AC,F><IC,C>:O
0 Irf Arc Arfp Q

That is to say, Apc + AFr@Q =0 or Q = —AE}:AF,O It is easy to check that this prolongation

written as

P = (I, Q)7 satisfies Assumption 6.2 if the row-sum of A is zero. However this prolongation is
too expensive to compute in practice and there are many different ways to approximate @ by a
simpler matrix W.

1) Direct interpolation scheme

For the error e € RV, we have

N
A|:7|:€]|3 + AE(:elé K1l = 2 ai,jeé-‘ ~0, iekF.
j=1
Motived by the above observation, we can assume
aigef + Y aijel =0, icF. (6.12)

JeN;

CHAPTER 6. MULTIGRID METHODS 131

This would be an interpolation scheme itself if all points in N; are C-variables. Of course, it is
not always the case. Alternatively, we can throw out the ones that are not strongly negatively
coupled and obtain

aiyiezh + Z CLZ'JG? =0, i€F. (613)
JjeSi

We approximate the above equation

ZkeNi Qi k .
ai el + o Z aiyje? =0, o= S cas 1€ F.
jeN, N C keN; N C di.k
If row-sum of the i-th row is zero, then a; = —ﬁ and we get an interpolation method
keP; v,
@
el = Z w@jef and wij = e ——. (6.14)
jeN; N C 2reN, nc ik

In this case, the matrix form is just W = (diag(AF,cl))_lA,:,c. It is straightforward to show
that Assumption 6.2 holds in this case.

We can also make W more sparse by shrinking the support slightly. Define an interpolation
set P; := S;[\C for i € F. After further sparsifying the interpolation (by keeping the strongly

negatively coupled C-variables only), we get

DkeN, Gik .
ai el + o Z ame? =0, o= 5 - , VieF.
jeP, keP; Qik

If row-sum of the i-th row is zero, then this gives the well-known direct interpolation

h _ . H o Qi j
e; = Z wi j€; and wij =

S (6.15)
jeP; Zkepi ik

2) Standard interpolation scheme

We first eliminate all e? for j € S;(F by

h h
ef === D) ajuei/azy.
kGNj
This results in
&i,ie? + Z d@j@? = 0, Vie F,
jeN;
with N; = {j # i : a;j # 0} and define a new interpolation set P, = (Ujes; nESi) Us:Nec.
Then we apply the above direct interpolation for this new equation and arrive at the so-called

standard interpolation scheme.

CHAPTER 6. MULTIGRID METHODS 132

3) Jacobi interpolation scheme

We can rewrite the equation (6.13) as

am‘e? + 2 amef + Z ai7j€? =0, t1€eF.
jEPi jESi\Pi

Therefore, in order to obtain an interpolation matrix @), we just need to approximately solve

the above equations for e? (i € F). For example, we can just apply one Jacobi iteration using
el A ZkePi a; key
J 2kep; Gik
as

as the initial guess of, 7 = N, + 1, j # i. Then the prolongation can be defined

elh = ef{, 1€ C
el (6.16)
_h h ' .ZkePi A kC) .
@i,i€; + 2jep, Qi€ + Zjesi\Pi @j,j S ar 0, i€eF.
kGPi 1,

This is the so-called Jacobi interpolation method.

Remark 6.9 (Some simple alternatives). The biggest advantage of the above approach is that
it is simple and local: For the i-th entry, we only need the information on the i-th row of the
matrix. We can improve this prolongation matrix P using some straightforward modifications.
A few more steps of Jacobi iteration might improve the accuracy. Moreover, the initial guess
for the same entry is not the same at the relaxations for different entries. For example, an

alternative initial guess could be

_h
ho_ Zkepj @j,kCk

e~ S5 TR S
J L
Zkepj @j.k

Remark 6.10 (Initial guess of W). If the initial guess W) preserves constants, then we get
k
Q-ww — (I - DF_lFAEF) (Q—wO).

Since both @ and W preserves constants, all improved weights W *) also preserve constants.

6.5 Aggregation-based algebraic multigrid methods

In this section, we consider the aggregation-base AMG methods whose easy-to-implement feature
has drawn quite some attention recently. The idea is to sub-divide the set of vertices into non-
intersecting sets (aggregates), i.e., V = Uj=1,...,Nc C;. Each aggregate C; corresponds to a coarser

variable.

CHAPTER 6. MULTIGRID METHODS 133

Unsmoothed aggregation AMG

There are several different sophisticated ways to form aggregates. In principle, any combinatorial
graph partitioning algorithms can be applied to form aggregation. We now give a simple greedy

algorithm to form such an aggregation.

Listing 6.3: A greedy aggregation method

1| Ne<—0, U<—V;

2 for ie U

3 if Nz U

4 Ne < Ne +1;

5 Cn. < {t}UN;, U< U\Cn,;
6 end

7| end

It is possible to have some “left-over” vertices which do not belong to any aggregate after the
above procedure. We can, for example, add them to their neighboring aggregates with least

points.

C1 C2 C3 C4

AN -

1 2 3 4 5 6 7

Figure 6.8: Aggregates and prolongation corresponding to (6.17).

Whence an aggregation is given, it is easy to define the prolongation matrix, for 1 <i < N
and 1 < j < Ng, by
(P))1, ifieCy
i

0, ifi¢Cj.

With this interpolation, it is straight-forward to see that P1y, = 15. We now give an example

CHAPTER 6. MULTIGRID METHODS 134

to explain P in one dimension. Let

e RV*Ne, (6.17)

Y

|
o O O O o O =
_ = 0O O O O O

SO O O O O = O
O O = = = O O

Figure 6.8 shows the aggregation defined by prolongation P in (6.17).
Of course, there are different ways to form aggregates and we now give another approach.

The algorithm to construct coarse grid and prolongation is

Listing 6.4: Another aggregation method

1 U<—V;

2| for el

3 Si<—{jeU:j is strongly coupled with i};

4 construct a column of prolongation P based on S;;
5 U U\({iUS:);

6 | end

Smoothed aggregation AMG

The unsmoothed aggregation methods are very simple but usually converge slowly. There are
two ways to improve their convergence behavior. One way is to employ a more complicated
nested iteration, like the K-cycle multigrid method discussed in §6.2. And the other way is
to enlarge the aggregates and smooth out the basis functions. The latter approach gives the
smoothed aggregation AMG methods.

Assume that all variables are partitioned into non-overlapping subsets {Cz}ZN:cl We further

assume that each C; has at least one interior point, i.e., there exists an index k; € C; such that
(4)y,

7

i= 0 for any j ¢ C;. Suppose that 1 is in the null space of A, namely, A1 = 0. Define

1(z,;), if j7eC;;
11(1"7) = (l‘]) 1 j ‘7,
0, otherwise.

Apparently, >, 1; = 1 and (Ali) . = 0. We now smooth out these piecewise basis functions by,

for example, one step of weighted Jacobi iteration

Y = (I —wD™1A)1,.

CHAPTER 6. MULTIGRID METHODS 135

Hence we have the partition of unity

MNapy=(I-wD'A) Y 1= (I —wD'A)1 =1,

7

Thus we can obtain
L(zy,) = D wj(an,) = D (T —wD ™ A) 1(ag,) = Li(a,) —wD ' ALi(xy,),
J J
which implies that D™1A 1;(zy,) = 0 and ;(zy,) = 1. We can define the prolongation

PSA = (@blﬂf% s 7¢Nc)’

Define 1. := (1,...,1)" € R¥e. Hence we have P51, = 1. Furthermore, the coarse level matrix
A, = PSTAAPS A satisfies that

A, =PI AY o = PELA1L=0.

By applying this definition recursively, we can finish the AMG setup for the smoothed aggrega-

tion method.

Listing 6.5: Smoothed aggregation method

1|U«<V;

2 |for 1eU

3 Si<—{jeU:j is strongly coupled with i};

4 construct a column of prolongation P based on S;;
5 U U\({iUS:);

6 | end

7 | Smooth the basis functions using the weighted Jacobi method PFsy = (I—wDilA)P;

We have mentioned in the previous subsection that there are different ways to form aggre-
gates. After forming aggregates one can apply UA or SA to give prolongation. Now we do
preliminary tests on aggregation methods for solving the 2D Poisson’s equation using the five-
point stencil; see Table 6.2. The AMG methods are applied as preconditioners of PCG. Note
that, for the SA method, we use the standard V-cycle multigrid in the solve phase; on the other
hand, for the UA methods, we use the K-cycle multigrid.

6.6 Homework problems

HW 6.1. Show the geometric multigrid V-cycle (Algorithm 6.1) is uniformly convergent in R

HW 6.2. If A = —A, show that the interpolant J; : V' +— V] is equal to the (-,-)4-projection
,:V V.

CHAPTER 6. MULTIGRID METHODS 136

Aggregation method SA [53] UA [53] Pairwise UA [48]

Number of levels 5 5 7
Operator complexity 1.364 1.264 1.332
Setup time (sec) 0.557 0.171 0.277
Number of iterations 16 21 12
Solve time (sec) 1.223 1.696 1.336

Table 6.2: Solving 2D five-point stencil finite difference of the Poisson’s equation with 1 million
DOF using different aggregation methods (stopping criteria for PCG is the relative residual
smaller than 1079).

HW 6.3. Let Q = (0,1) and v € V), be a P; Lagrange finite element function. Show that

Jolf = S uilf.
HW 6.4. Let q(t) = (1 —t)2. Show that B.s = (Z — q(B.A.))A; ! can be obtained by (6.4).

HW 6.5. Show the work estimate of the full multigrid method is O(N).

Chapter 7

Fluid Problems

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis
and algorithms to solve and analyze fluid problems. Computers are used to perform the calcu-
lations required to simulate liquids or/and gases with surfaces defined by boundary conditions.
The fundamental basis of most CFD problems are the Navier-Stokes (NS) equations, which
define single-phase fluid flows. These equations can be simplified by removing terms describing
viscous actions to yield the Euler equations. These equations can be simplified by dropping the
nonlinear convection term to yield the Stokes equation. In this chapter, we discuss multilevel

iterative methods suitable for problems arising from CFD.

7.1 The Navier—Stokes equations *

The Navier—Stokes equations describe the motion of viscous fluid substances. These balance
equations arise from applying the Newton’s second law to fluid motion, together with the as-
sumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the

gradient of velocity) and a pressure term.

Flow map

Let Qo be an open bounded set in R? (d = 2,3). As a convention, we denote the location of a
particle in Qg by X = (X1,...,Xy). This is the configuration at time ¢ = 0, which is also called
the initial configuration. To describe movement of particles, we denote the current configuration
as () at any time ¢ > 0. The position of a particle at time ¢ is denoted by x = (x1,...,xq); see
Figure 7.1. The Lagrangian specification of the flow field is a way of looking at particle motion
where the observer follows an individual particle as it moves through space and time; see the

right figure in Figure 7.1. The Eulerian specification of the flow field is a way of looking at

137

CHAPTER 7. FLUID PROBLEMS 138

z(X,t)
Q0 /\ Q¢
X3 I3
// 4

/ ped

/ ’

O Xg (0] TIo

X1 I

Figure 7.1: From initial configuration 2y to current configuration €2;.

particle motion that focuses on specific locations in the space through which the fluid flows as
time passes; see the left figure in Figure 7.1.

For a vector-valued function f : €; — R%, the divergence operator can then be written as
V.-f:= 2?21 0;f;. The gradient tensor Vf with (Vf);; = 0;f;. Let a € R% be a constant
vector field and (a- V)f = (Zle a;0;)f. We define an inner product of two gradient matrices
Vt: Vg = Z?:I Vf; - Vgi. Let u(-,t) : Q; — R? be the velocity field at a fixed time t. The
gradient of u is denoted by Vu = (0;u;); ;. Furthermore, Vu is often divided into the symmetric
part and the anti-symmetric part. The symmetric gradient is denoted as e(u) := %(Vu + vu®)
and it is the so-called strain rate.

We are ready to introduce an important concept to describe trajectory of particles, namely,
the flow map x(X,t), which is the trajectory of a particle X along time. We define that

dx(X,t)

T = —a - u(z,t) and z(X,0) = X. (7.1)

This simple one-dimensional ordinary differential equation (ODE) is called the characteristic
equation. Hence z(-,) is a mapping from the initial configuration €2 to the current configuration

Qy, or deformation. The deformation gradient and its determinant are then defined as
0
F = T;(and J:= |F| = det(F), (7.2)

respectively. F' is also called the Jacobian matrix.
For any function f(-,t) : Q; — R, we can easily derive that

. df ()
Ji= dt

=Vf-%+ft=ft+u‘Vf, (7.3)

CHAPTER 7. FLUID PROBLEMS

139

which is usually called the material derivative of f. Apparently, F' and J are functions of ¢.

Using the well-known Jacobi’s formula in matrix calculus, we can show that

J = Jtr(F7'F).
Hence we can immediately obtain
. 0X ox

This way, we get an ODE for J, i.e.

J=(V-u)J and J(0)=1.
In fact, we can also obtain the variation of the determinant of F,
§|F| = |F|tr(F~16F).
We can also derive similar results for the deformation gradient F' itself:
d 6 ox ot ou
=—(==) === === = VuF.
a'ax) " ax "ax -V

We can easily immediately see that

F,+u-VF=VuF and F(0)=1.

Volume and mass conservation

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

A very useful trick for doing calculus in continuum mechanics is the pull-back (from € to Q)

and push-forward (from g to ;) argument. We first give an example:

d d
— flx,t)de = — flx(X,t),t)]dX
i), S i J, 7@

0, dt

J (fi+u-Vf+ fV-u)JdX
Qo

f+fV-ude = | fi+V-(fu)de.
Q Q

This identity is often called the transport formula.

if(x(X, 0,) JdX + | flz(X,t),6)JdX
Qo

Lemma 7.1 (Transport formula). For a function f:Q — R and u(z,t) := dm(d)f’t), we have
d
— | f(z,t)dx = ft+V-(fu)d:L‘=J (ft+u-Vf+ fV-u)JdX.
dt Jo, o Q0

CHAPTER 7. FLUID PROBLEMS 140

For a domain 2 R?, we denote its volume (or area) as |©2|. We then find that
| :J 1 do :f JdX = J|
Q Qo
For incompressible fluids, we have that the volume preserving property

1.

|| = Q0] or J(t)

From the equation (7.6), we can derive that V - u = 0. This is the so-called divergence-free
condition.

Denote the density of the material occupying Q; by p(x,t). According to the equation (7.9),
for any region wy < €);, we have that

d

pn p(m,t)dxzf pt + V- (pu)dx

Wi

Since this identity holds for any w, we immediately see that
pt +V-(pu) =0 and p+pV-u=0, (7.10)

which is called the equation of mass conservation or the continuity equation.
It is clear that integrating the density over any domain w; gives the mass. Due to mass

conservation, we have that

| mxyix = | pwnae= | pacxo.000x.
wo we wo
Hence, we have the relation
X
pla(x,1),0) = 2, (7.11)

If the incompressible condition V - u = 0 holds, we obtain that p(x(X,t),t) = po(X).
If p = po is a constant, then (7.10) gives the divergence-free condition immediately. On the

other hand, if we assume incompressibility, we can get a simplified equation:
pr+(u-V)p=0 or p=0. (7.12)

Together with p(X,0) = pg being a constant, we can get p = pg for all time t € [0, T].

Balance of momentum

Now we consider the incompressible Newtonian fluids. Due to the Newton’s Second Law, we

have the balance of momentum

d
— | pudz = Force(§). (7.13)
it o,

CHAPTER 7. FLUID PROBLEMS 141

The left-hand side of the above equation is the rate of change for the momentum. Using the

transport formula (Lemma 7.1), we derive that

d
— pud:czf (pt +u-Vpu+p(u +u-Vu)dX.
dt Qs Qo

Due to the mass conservation and incompressibility (7.12), we then have

4 pudx = J p(u; +u- Vu)dz. (7.14)
dt Q Q

On the other hand, the right-hand side of the Newton’s Second Law is the total force acting on
Q. We have, from the divergence theorem, that

Force(§2) :=J fd:n~|—f T -ndS=| f+V.-Tdx,
Q 0 o

where f is the total external body force (like gravity), T is the traction tensor on the boundary

of £, and n is the outer normal direction on the boundary 0€2;. The exact form of T depends

on the underlying constitutive laws. For Newtonian fluids, the traction can be defined as
T := —pl + 2ue(u), (7.15)

where p is the pressure and p is the viscosity.

For incompressible fluids, we have V - u = 0. In turn, we can obtain (see HW 7.1) that

d d d
(V . (25(11)))]. = Z 81'(111'7]' + uM) = Z ajllm' + Z é’iuN- = Au]',

=1 i=1 i=1

which means

2V - e(u) = Au. (7.16)

This way we can get the momentum equation (balance of force) for incompressible Newtonian
fluids:

p(u; +u-Vu) = —Vp + pAu. (7.17)
If the density p is a constant, we further simplify the above equation (by modifying the definition

of p and p) to give
u +u-Vu=-Vp+ pAu. (7.18)

CHAPTER 7. FLUID PROBLEMS 142

Mathematical models

To summarize, we have derived the mathematical model for incompressible Newtonian fluids,

i.e., the Navier—Stokes (NS) equations:

(plus+u-Vu)—pAu+Vp = f, O balance of momentum;
pe+V-(pu) = 0, conservation of mass;
< Viu = 0, incompressibility; (7.19)
u = 0, o no-slip boundary;
uli—g = ug, initial condition.

If we assume the density p is a constant, then we can write (7.19) as follows:

w+u-Va—pAu+Vp = f, momentum equation;
V-u = 0 Q continuity equation;
3 t Yy €q) (720)
u = 0, o no-slip boundarys;
uli—p = ug, initial condition.

Now we have the mathematical model for incompressible viscous Newtonian fluids. If we
consider ideal fluids (viscosity p = 0) and assume that there is no external body force (f = 0),

then we get the incompressible Fuler equations:

(pluy+u-Vu)+Vp = 0, balance of momentum;
pe+V-(pu) = 0, conservation of mass;
{ V-u = 0, incompressibility; (7.21)
u-n = 0, no-flow boundary;
uli—p = ug, initial condition.

If the density p is a constant, then we have the following simplified form:

w+u-Va+Vp = 0, momentum equation;
V-u = 0, Q continuity equation;
' yed (7.22)
u-n = 0, Y no-flow boundary;
uli—p = ug, initial condition.

For numerical simulation of the Navier—Stokes and Euler equations, there are several tech-
nical difficulties. First of all, the incompressibility condition is a constraint on the velocity field
and appropriate finite element spaces need to be selected to discretize this mixed problem. Sec-
ondly, these equations have a nonlinear convection term; when the viscosity coefficient y is small

(corresponding to high Reynolds number), the convection is essentially dominant.

CHAPTER 7. FLUID PROBLEMS 143

7.2 The Stokes equations

For simplicity, we now focus on a linearized problem of the Navier—Stokes equation, namely the

Stokes equation.

The time-dependent Stokes equation
On an open bounded set c R?, we consider

w—pAu+Vp = £ Q
Veu = 0, @
u = 0, 0

uf;—g = up, .

(7.23)

This set of equations is usually referred to as the time-dependent Stokes equations. After time

discretization, we need to solve the Stokes-like equations

(I-EAu+Vp = f, O
Vou = 0, O (7.24)
u = 0, 09Q.

We can further simplify the discussion and only consider the following steady-state Stokes
equations, i.e.,
—Au+Vp = f,
V-u = 0, O (7.25)
u = 0, 0.
Let 7V := [Hé(Q)]d and 2 := L3(Q) = {q € L*(Q) : §, ¢ = 0}. The weak form of the Stokes
equation (7.25) can be written as: Find ue ¥ and p € 2, such that

QL e(u):e(V)de+(p, V-v) = (f,v), Vve?; (7.26)

(V-u,q) = 0, Vge 2.

The derivation is straightforward and hence leave to the readers; see HW 7.2.

Remark 7.1 (Constrained energy minimization). We can view the Stokes equations as a con-

strained energy minimization problem
min J e(v):e(v)dx —f f vdex,
veZ Jo Q

where 2 := {v € ¥ : V-v = 0} is the subspace of divergence-free functions. The equation
(7.26) is the first-order optimality condition of this constrained minimization problem and p is

the Lagrange multiplier.

CHAPTER 7. FLUID PROBLEMS 144

The Brezzi theory

Let ¥ and 2’ be the dual spaces of ¥ and 2, respectively. Generally speaking, we can put the

Stokes problem in an abstract framework and consider the following saddle-point problem: For

any given (f,g) € ¥' x 2’, find a pair (u,p) € ¥ x 2, such that the following system holds
afu, o] +bo.p] = (f0), Vwe ¥

(7.27)
blu, q] = (9,q9), VYqe 2.

Here a[-,-] : ¥ x ¥ — R and b[-,-] : ¥ x 2+ R are continuous bilinear forms, i.e.,

a[u,v] < CG«HUH"//”UH7/7 VU,U € %7

blu, p] < Coluly|ple, Yue?,pe2.
We can identify a linear operator A : ¥ +— ¥” such that
(Au,v) = alu,v], Yue¥, ve¥
and another linear operator B : ¥ — 2’ (or its adjoint B : 2 +— #") such that
(Bu,p) = <u,BTp> = blu,p], YueV¥, pe 2.
Hence (7.27) can be written in the following operator form
Au+ BTp = f,
Bu =g.

We now analyze under what condition(s) the weak formulation (7.27) is well-posed. We

define the kernel space of B as
Z =null(B) ={ve? :blv,q] =0, Vge 2} = V.
Because b[-, -] is continuous, Z is closed. Hence we can give an orthogonal decomposition
¥ = 2@+ = null(B) ®null(B)*.

For any u € ¥, we have u = ug + u, , with ug € null(B) and v, € null(B)*.
In order to solve Bu = g, we only need to solve Bu; = g. Using the inf-sup theory discussed
in §1.1, we can see that, if B is surjective, namely,

inf sup L4

=06>0, 7.28
o 5 Yol lal2 (7.28)

CHAPTER 7. FLUID PROBLEMS 145

then u, exists. Furthermore, it is easy to see that u| is also unique'. Hence we have B : Z+ —
2" and BT : 2 — (Z*) are isomorphisms.
Now we only need to show the existence and uniqueness of the following problem: Find
ug € &, such that
alug,v] = (f,v) —aluy,v], YveZ.
According to the Necas Theorem 1.4, we know that the existence and uniqueness of wug is
equivalent to the following inf-sup conditions

inf sup M = inf sup M

, =a>0. (7.29)
ue? ez |ulyvly ve? wez |luly|v]y

With the conditions (7.29) and (7.28), we obtain a unique solution u = ug + u .

We can find the solution for the pressure variable by solving
Bp = f — Au. (7.30)
For any v € 2 = null(B), it is easy to see that
(f — Au,v) = <BTp,v> = (p, Bv) = 0.

Hence, f — Au e (ZY) = {we ¥ : (w,v) =0, Yo € Z}. Because BT : 2 — (Z1) is an
isomorphism, there is a unique solution to (7.30).

Hence we obtain the following well-posedness result [21, Theorem 1.1]:

Theorem 7.1 (Brezzi Theorem). For continuous bilinear forms al-,-] and b[-,-], the saddle-
point problem (7.27) is well-posed if and only if (7.29) and (7.28) hold. Furthermore, the

solution (u,p) satisfies the stability condition

lully + lple < £y + l9l2-

Remark 7.2 (Inf-sup condition of the mixed formulation). Let 2" := ¥ x 2. We define a new
bilinear form a: " x 2" — R

al(u,p), (v,q)] := alu,v] + blv, p] + blu, q].
Then the saddle-point problem (7.27) is equivalent to finding (u,p) € £ such that

CNL[(’LL,])), (U7q)] = <f,’U> + <ga Q>) V(’U, Q) eX. (731)

If both a[-, -] and b[+, -] are continuous, then a[-, -] is also continuous. If a[-,-] and b[-, -] satisfy
the standard Brezzi conditions (7.29) and (7.28), respectively, then a[-,-] satisfies the inf-sup

condition as well.

!Suppose there is another solution @, , then B(uy —4y) = 0. In turn, we have uy — @y is in null(B). Due to
UL — UL enull(B)l, we find u; — @, = 0.

CHAPTER 7. FLUID PROBLEMS 146

Well-posedness of the Stokes problem

In view of the general theory developed in the previous subsection, we can define

a[u,v] = 2 L e(u) : e(v) do A= —A (7.32)
blv,q] := —J V-vqgdr B:=-V., Bl .=V (7.33)
Q

In this case, the inf-sup condition (7.29) is trivial since the coercive condition holds, i.e.,
| et = alulf, vue (@
Hence we only need to check the inf-sup condition for b[-, -].

Lemma 7.2 (Inf-sup condition for divergence operator). For any q € 2 = L3(X2), there exists
veV =[H}Q)]? such that

Vev=q and |v]i < qfo-
So the inf-sup condition (7.28) holds.
Proof. This non-trivial result goes back to Nec¢as and a proof can be found in [33, 1I.3.1]. O

Remark 7.3 (Existence of solution). It has been shown in the above lemma that range(B) =
L?*(Q)/R = 2. Or equivalently, we have null(B7) (2 = {0}.

Using the previous lemma and the Brezzi theorem, we can easily get the following result:

Theorem 7.2 (Well-posedness of the Stokes equations). There exists a unique solution (u,p) €
[HL()]? x LE(2) to the weak form of the Stokes equation (7.26) and

[l + [lplo < [£] -1

Penalty method for the Stokes problem x*

In general, there are two approaches to approximate the Stokes problem. The first one is to
approximate (7.26) directly. An alternative method is to formulate the original problem using

a penalty method as
Find ue v : QJ e(u):e(v)de +y(V-u,V-v)=(f,v), Vve?. (7.34)
Q

The above equation can also be seen in the linear elasticity problems and it is known for
causing the locking phenomena? for many finite element methods when ~ is big. This is usually
caused by overly constraint on the velocity space. To cure such a problem, penalty methods
introduce selective or reduced integration procedures. It has been shown that penalty methods

are sometimes equivalent to mixed methods [42].

2The computed velocity is vanishing or unnaturally small for big .

CHAPTER 7. FLUID PROBLEMS 147

7.3 Mixed finite element methods

In this section, we consider conforming mixed finite element methods for the Stokes equations.
Let Vi, ¢ ¥ = [H}(Q)]? and Q) = 2 = LE(Q) be finite dimensional spaces. Find uy, € V}, and
P € Qp, such that

2]9 e(up) : e(vp)de — (pn, V-vp) = (£,vp), YV € Vi, (7.35)

(V-upn, qn) = 0, Y qn € Qn.

The existence of the discrete solution (uy,pp) is straightforward due to the conformity of the

approximation spaces.

Well-posedness and convergence

Let Zj = null(B) be the kernel of the discrete divergence operator. In fact, the coercivity of

al-, -] yields that
inf sup 7a[uh,vh]

=aqp > 0. 7.36)
wi€Zn vyez, |unl1]vali (

If Z;, ¢ % and the coercivity condition holds, we have the following optimal approximation

property by the Céa’s lemma (Lemma 3.1):

Ju—uplly < = inf |u—v|y.
Qp VREZ

However, it is not easy to make the finite element kernel space Z;, ¢ Z. A sufficient condition
for this inclusion property is B(V}) € Qp, which suggests @, should be large enough for a fixed

space Vj,. In fact, we have
Byup =0, inQ, <= (Bupqn) =0, VYgy€Qp
Furthermore, we also have
Bu,=0, in2 <= (Bu,,q) =0 Vge2.

If uy, € Z, and ¢ € 2, then (Buy,q) = (Bup,q0 + q1) = (Bup,q) + (Bup,q1) = 0, where
q = qo+q1 with gg € Qp. Notice that (Buy,q;) = 0 because the inclusion condition B(V}) < Qp.

If Z;, & %, then there is a variational crime and we have following estimate:

Co\ . 1 alu—up,w
[u—uly < <1+J> inf |lu—v|y +— sup M
oy, / veZy, ap WEZh\{O} HWHV

For w € Z;,, we have

afu —uy, w] = afu, w] = (f,v) = —b[w, p] = —b[w,p — 4],

CHAPTER 7. FLUID PROBLEMS 148

for any ¢ € Q. Because b[-,] is continues, we find that
ja[u =y, w]| < Chlwly[p — dlle.
We can then conclude with the following best approximation result:

Lemma 7.3 (Quasi-optimality for velocity). Let V), € ¥ and Qp < 2. If the bilinear form

al-, -] is coercive, then we have

Cuy . Chy .
Ju—wily < (1+52) inf Ju—vly+ 2 inf [pglo.
Oéh VEZh Oéh qEQh

We have the identity

(Bhufu Qh) = b[uh7qh] = (Buhv Qh)a vq}l € Qh'

In the other words, Bxuy, is the L2-projection of Buy, onto Q. If null(Bg) is not trivial, then
range(By,) is strictly included in Q. This could lead to ill-posed problems. For a fixed Qp, the
velocity approximation space V}, should be rich enough in order to guarantee the discrete inf-sup
condition:

b
inf sup b0V, an) = B > 0. (7.37)

0€Qn vyev, [Valllgnlo
The condition null(BY) = {0} is necessary for the inf-sup condition above. If null(B}) is non-
trivial, then the numerical solution pj is not unique, namely, p, + sp is also a solution when
Sp € null(BE). In this case, we usually find the computed pressure is oscillatory and, hence,

null(Bg) is often referred to as the space of spurious pressure modes.

Theorem 7.3 (Quasi-optimality). Let Vi, € ¥ and Qp < 2. If the bilinear form al-,-] is

coercive and the inf-sup condition (7.37) holds with B, = By > 0, then we have

lu—wply + |p—prle < inf Ju—v|y + inf |p— q|e.
VEZy, q€Qh,

Some stable finite element pairs *

From the above discussions, we conclude that: To balance computational efforts and convergence
rates for the velocity in [Hg(2)]? and the pressure in L3(2), it is better to use (k + 1)-th degree
of polynomials for V}, and k-th degree of polynomials for Q.

Remark 7.4 (Constraint ratio). An empirical approach has been used to check the balance

between velocity and pressure approximation spaces. The so-called constraint ratio is defined as
Cr = dimQh/dith.

Apparently, if C, > 1 then number of constraints exceeds the number of variables, which will
usually cause locking. On the other hand, if C) is too small, then divergence free condition is

not approximated accurately enough.

CHAPTER 7. FLUID PROBLEMS 149

The easiest and seemingly natural choice for the mixed finite element spaces is the pair of the
lowest order polynomials P; ’O—P}? . Unfortunately, this pair does not satisfy the discrete inf-sup
condition and we have to either enlarge velocity field finite element space or restrict the pressure
space. There are many possible stable pairs; see the survey paper [9] and references therein for

more details. Here we just name a few:

PO PF0 for | > 2, Taylor-Hood

Qz’o]d*le—LO for k = 2, Taylor—-Hood

Pﬁ’o ® Bi] 27P,?, where B2 are cubic bubble functions, MINT

[
— — — —

1,012 po
Ph/2] *Ph

Pﬁ’o] dfPO, important theoretically, but degree not matching

P,?) BZ] . pL-1 Crouzeix Raviart

P,? ‘@ B#] - PL-1 Crouzeix Raviart

d . . .
h] fP}? , non-conforming Crouzeix—Raviart

P:70]2*P/]f_1’_1 for k > 4, Scott—Vogelius

QE - PE for k> 2

Constructing stable finite difference schemes for the Stokes equation lacks of theoretical
guidance like the Babuska—Brezzi condition discussed above. However we can expect that the
standard five-point stencil does not work for the Stokes equation. This is because the five-point
stencil can be viewed as Q}ll’o — }11’0 finite element with a specific quadrature rule. If we change
the pressure discretization to the center of cells, then it yields }L’O — Q?L’_l. And, apparently,
both finite element pairs are not stable. The main idea of the Marker-and-Cell (MAC) scheme is
to place the degrees of freedom for velocity and pressure at different locations. More specifically,
the pressure p is defined at the cell centers, the velocity component u; is defined at the middle
points of vertical edges, and the velocity component uy defined at the middle points of horizontal

edges; see Figure 7.2. This method is same as the RTy finite element on rectangular grids.

Mixed methods for the Poisson’s equation *

Mixed finite element methods have been applied to our model problem, the Poisson’s equa-
tion, as well. In this section, we use this model problem to further explain how to construct

preconditioners arising from the saddle-point problems.

CHAPTER 7. FLUID PROBLEMS 150

I
h Az -
-~
8] (] O Lo] Q Lo] 8] O
ST T T T T T T4 |
fhyI o [l e[J] o[[J] @[] e[l «[[] e [[Je [[] [o
< <& & < < < & &
o [I] o[J] «[[]] o«[]] «[|[] e [[]e [[] [o
Iy 2 X £y P £y Iy & w
W W K% W 7 KT W KT
o Ml e[l o] o1 ¢l o] e [[1e [[] e[l o
A A A A Al oA A A
g W W W W W W W e
; o Il e[l o]] «[]] #[[] e [[]e [[]] o
L N N s Fan s Fan AN an
i W W W W W W W A
a (] O O a O 8] O T

Figure 7.2: A sample discretization using the MAC scheme

(D Sometimes the mixed formulation of the Poisson’s equation is used for numerical treat-
ment: Find (u,p) € Ho(div, Q) x L3(€2) such that

(w,v)+ (p, V-v) = (f,v), Vve Hydiv,Q);
(7.38)

(V-u,q) = (9,9, VYge L.

Here H(div,Q) consists of all functions in [L2(Q)]? with divergence in L?(2) and Hy(div,)
contains the H (div, Q)-functions with vanishing normal components on the boundary 0€2. Define

an inner product
(ua V)Ho(div,Q) = (uv V) + (V ‘u, V- V)' (739)

This problem corresponds to the mixed formulation of the Poisson’s equation with the Neumann
boundary condition.
If u e 2 is divergence free, then |u| g (giv,0) = |ufo,o. Hence we can easily verify the Brezzi

conditions hold for this problem. As a consequence, the operator

] T —grad
Ao = () gora) Ho(div, Q) x L2(Q) — Ho(div, Q) x L2(Q)
1v

is an isomorphism. The canonical preconditioner is a block diagonal isomorphism

B ((T - gra(u)ddiv)_l 0

) : Ho(div, Q) x LE(Q) — Hy(div, Q) x LE(Q).

CHAPTER 7. FLUID PROBLEMS 151

(2 There is an alternative mixed formulation for the Poisson’s equation: Find (u,p) €
[L2(Q)]? x (H(2) (N LE(£2)) such that

(u,v) = (Vp,v) E,v), Vvell2(Q)]%

—(u,Vq) = {g,q, VYqeH(Q)NLFQ).

(7.40)

The Brezzi conditions can be verified using the Poincaré’s inequality. Hence A is also well-defined
on [L2()]4 x (H'(Q)(L3(€2)). And in this case, the canonical preconditioner is

Dy = (ﬁ <—AO>1) (22 x (B Q) L3@) = LX) x (H' (@) [V L3(©).

Apparently, this preconditioner is significantly different than the one given in the previous
subsection. As a result, different choices of approximation space and its norm can yield very

different solution methods.

7.4 Canonical preconditioners

In this section, we discuss how to construct canonical preconditioners for the saddle-point prob-
lems, like the Stokes equation and the time-dependent Stokes equation. The basic idea follows

the discussion in §2.2.

Preconditioning the Stokes problem

We notice that the corresponding operator of the Stokes system

- —A —grad
A gra
div 0

is an isomorphism mapping from [H(Q)]% x L2(Q) onto [H~1(Q)]4 x L2(Q). A natural precon-
1% pping 0 0 0 p

ditioner would be the classical block diagonal preconditioner

This observation immediately motivates the classical block diagonal preconditioner [13].

Similar to the continuous case, we can construct natural preconditioners based on the map-
ping properties. Let {X}} be a family of finite element spaces and it is conforming in the sense
that X;, ¢ 2 = [H}(Q)]¢ x LE(Q). Consider the discrete Stokes problem: Find (us,pp) € Xj,
such that

al(up, pr)s (Vi an)l = (f,va), Y(Vh, qn) € X

CHAPTER 7. FLUID PROBLEMS 152

The corresponding linear map Ay, : X}, — X ;, 1s given by
</~lhﬂ§‘,y> = &[xvy]v vxayEXh‘

Note that, in this case, @ is not positive definite and the system A, can be singular.
According to Remark 7.2, the stable discretizations can be characterized by a discrete inf-sup

condition: There exists a constant «g, independent of h, such that

inf sup alz.)

— = Qg > 0. (741)
weXn yex, || 2yl

This condition does not follow from the corresponding continuous inf-sup condition. Similar to

the continuous case, we can define a preconditioner Dy X 5 — Xp by

(Dnf.y) 2 = {fy), Vye Xp.

Dy = ((=an™" 0) (7.42)

That is to say

—1
0 7,
Apparently, if Ay, is symmetric, Dj,Aj, is symmetric with respect to (-,-)2 and

|DrAwl 2(x,.x) < Cas |(DrArn)) z(xpx0) < g

Hence the condition number x(Dj,.Ap) is uniformly bounded.

Preconditioning the time-dependent Stokes problem x

We now consider preconditioner for the time-dependent Stokes problem (7.24) where the coeffi-

~ T —e2A —grad
A - € gra
div 0

For this problem, we shall construct a preconditioner which is uniformly convergent with respect
to both h and e.

We first consider how to construct a preconditioner for A, = Z — €2A corresponding to the

cient operator is defined as

reaction-diffusion equation. In order to study the reaction-diffusion equation A.u = f in 2 and

ulon = 0, we can easily see the natural norm is

1 d 1
ul g ey 1= (Il + Ivul)* = (Juld + € Y 1vuil) .
=1

The question is what would be the appropriate norm for f.

CHAPTER 7. FLUID PROBLEMS 153

Using the classical theory of intersections and sums of Hilbert spaces [8], we can introduce
the norms for 27() 23 and 27 + 25 as

1
2
Jull o 2 = (lals + i)

and

SIS

. 2 2
[ulaisss = inf - (Jurls + uel%;) "

uleé’l”huze%'g

If 271() 23 is dense in both 27 and 25, then
(222 =20+ 25 and (2i+2) = 2[5,
If Fe 2(21:%) L (22 %), then
FeZ(2[2% (%)L (21 + 20 % + %),

For our purpose, we assume that 27 and 25 are real separable Hilbert spaces and 25 < 23.

Hence it is natural to assume |u|2; < |ul2,. For ¢ > 0, we consider the norm for spaces
21 eZ2 by

1 1

2)2 o : 2 -2 02)2

b)" Wlopeeog= it (1415 +2flyy) "
he2y,fe2]

Jul2: ez = (lul%; +

Apparently, Z; := 2122 and 2! := 27 + ¢ 125 are the same as 2] as sets. As ¢ tends
to zero, the norms for 2. and 2/ approaches the norms | - |2; and | - |27, respectively. In

particular, for the reaction-diffusion problem, we have
Ze=L*Q)(\eH3(Q) and 27 =L*(Q)+e TH Q).

As € goes to zero, both norms approaches the L?-norm. Furthermore, | f H%{g is equivalent to
(T = @A) = (T - @A), u).

Now we are in position to develop preconditioners for the time-dependent Stokes prob-
lem (7.23):

@ In view of §7.3, we know that Ay is bounded from Hy(div, Q) x L3(Q) into its dual space.

Hence we consider the operator A, on
2, = (Ho(div, Q)ﬂe[Hg(Q)]d) xL3(Q) and 2 := (Hg(div, Q)’+e’1[H’1(Q)]d> x L2(90).

In this case, the two Brezzi conditions holds and A, is an isomorphism. In turn, the canonical

preconditioner is of the form

AU _ (Z — graddiv—€2A)~1 0 '
‘ 0 T

CHAPTER 7. FLUID PROBLEMS 154

(2) We have seen that Ay is also bounded on [L2()]¢ x (H*(Q2) () L3()) into its dual space.
Furthermore, in order to guarantee the inf-sup condition, the proper norm for the pressure
unknown is [43, 44]:

o = IVdlzserm—r ~ lalmrser e
ve[H}(Q)]4 “VHL2DEH1

Motivated by these observations, we can consider

d
2. = [LQ(Q)ﬂeHé(Q)] x (Hl(n)ﬂLg(Q) +e—1L3(Q)>
and
d

2! = [LQ(Q) +e_1H_1(Q)] x ((Hl(Q)ﬂLg(Q))’ﬂeLg(m).
This choice of spaces gives a preconditioner of the form
5@ _ (T —eA)7! 0 '

0 (At + €T

Along this line, we can construct discrete block diagonal preconditioners for the time-
dependent Stokes problem [29, 12].

7.5 Block preconditioners

In the previous section, we discussed how to construct canonical (natural) preconditioners based
on the mapping property of the continuous Stokes equation. Now we shall consider the discrete
Stokes problem arising in the mixed finite element method (such as the Taylor-Hood finite

element method) in algebraic setting, i.e.,

A<u>=<f> and A:z(ABT>. (7.43)
p g B 0

Suppose A € R"*" B e R™*" 4 € R, and p € R”. Let N = n 4+ m. Assume that A is SPD
and B has full rank. It is well-known that the coupled system A is symmetric, indefinite, and

non-singular.

Block diagonal and lower triangular method

If we consider the block diagonal preconditioner given in the previous section, the preconditioner

~ Al 0
D= ok (7.44)
0 M,

can be written as

CHAPTER 7. FLUID PROBLEMS 155

where M, is the mass matrix corresponding to the pressure approximation space and, hence, it
is well-conditioned; see Remark 3.7. It is easy to check that (7.44) is exactly the algebraic form
of (7.42). Because both A and M, are symmetric positive definite matrices, the preconditioner
is well-defined.

Remark 7.5 (Block factorizations). We can apply the following block factorizations to the ma-
trix A such that

A BT\ I, 0 A0 I, A7'BT
B 0 BA™l 1, 0 S 0 -I,
(A0 I, A7'BT \ L, 0 A BT
B S 0 —I, BA™' I, o s)
where the matrix S := BA~'B7T is the Schur complement. In fact, D in (7.44) can be viewed

as an approximation of diag(A~!, S~1).

Remark 7.6 (Schur complement). Since the A is SPD, the Schur complement S = BA~!BT
is symmetric and positive semi-definite. Moreover, if B has full rank, .S is also SPD and we can
apply the CG method to solve the Schur complement equation. However, generally speaking,
S~1p cannot be computed efficiently with acceptable computational cost. Hence the Schur
complement S should be approximated by some approximation S. There are many different

ways based on approximation of the Schur complement; see the survey paper [6].

We can also use the block lower triangular matrix to construct a preconditioner

-1
3 A 0
TI:(B S) . (7.45)

In particular, if we replace A by its diagonal part D in the LU decomposition of Remark 7.5,
then we get the so-called SIMPLE preconditioner

—1 -1

. I, D7 'BT A 0

TsvpLE = T . (7.46)
0 I B BD'B

The name comes from the widely-used SIMPLE method for fluid problems.

Augmented Lagrangian method

One of the most well-known iterative method for solving (7.43) is probably the Uzawa method.

As the last decomposition in Remark 7.5, we can factorize the coefficient matrix as

A BT B I, 0 A BT
B 0 BA™' -1, 0o S)

CHAPTER 7. FLUID PROBLEMS 156

This means the original linear system can be rewritten as

()G (e)

As discussed in Remark 7.6, the pressure Schur complement equation might be too expensive
to be solved exactly. We can apply an iterative method to solve it. For example, we can apply

the Richardson’s iteration for the second equation in the above system, i.e.,
prev — pold —l—w(BA_lf _g— Spold) _ pold _w<g _BA7lf ¢ BA—lBTpold)_
Hence we can write the above iteration as an alternative direction method
AumY — f — BTpold, PV = pold (g — Burev). (7.47)

The method (7.47) is called the Uzawa iteration and it is just the Richardson iteration for
the Schur complement equation. As we have discussed in §2.1, the method converges with an
appropriate scaling factor w but the convergence rate is usually very slow. One way to speedup

the convergence is to apply the Augmented Lagrangian method (cf., for example, [32]):
(A + 67lBTB)unew _ f + EilBTg . BTPOId, pnew _ pold . 671(9 . BuneW)‘ (748)

Remark 7.7 (Uzawa method and Augmented Lagrangian method). It is easy to see that the
Augmented Lagrangian (AL) method is just the Uzawa method for the modified equation

. -1pT . A+e'BTB BT
A)= fre g , where A, := e . (7.49)
P g B 0

Furthermore, the damping factor w is chosen to be e 1.

Theorem 7.4 (Convergence rate of Augmented Lagrangian method). Let (u(?), p(©) be a given
inatial guess and (u™,p("™)) be the iterates obtained via the Augmented Lagrangian method (7.48).

Then we have

m € m
o=, < (=) Ip =2l

€+ M

m m— € m—1
u—ul < V="V <ve(55) " -2l

where A1 is the minimal eigenvalue of S = BA™'BT.

Sketch of proof. From (7.48) and (7.49), we have

CHAPTER 7. FLUID PROBLEMS 157

and
p—p™ = (I — B(eA + BTB)_IBT> (p— p(m_l)).

By the Shermann—Morrison—Woodburry formula, we have
Z:=B(eA+B'B)'BT =S, - S.(I +5.)7'S., S.:=¢'BA'BT.
It is easy to verify that
I-B(A+B'B)Y 'BT =1 - S+ S.(I +85.)7'S. = (I +5.)7 .

The above equality shows p(Z) < 1 and p—p(™ = (I +)~ ! (p —p(m_l)). So the first estimate

follows immediately. The second estimate is obtained by observing
|u— u(m)Hi1 = <(A +e'BTB - 'BTB) (u— u(m)),u - u(m)> <e(Z(p- pm) p — p(m_l))
and then applying the first estimate.]

According to Theorem 7.4, we can make the convergence as fast as we want by adjusting
the parameter e. However, the price to pay is that, in each iteration, we have to solve a nearly-
singular system with coefficient matrix A + ¢ ! BT B, which was discussed in [41]. We can also

apply the Augmented Lagrangian method as a preconditioner

_ A+ e'BTB 0
Tap = ‘ : (7.50)
B el

which is often referred to as the AL preconditioner [7].
The method is closely related to the grad-div stabilization [22] of the Stokes (or Navier—
Stokes) problem:
(I —pAu—e'VV-u+Vp =f,
V-u =0, Q (7.51)
u =0, o0
In this modified problem, the coercivity condition automatically holds on the discrete level for
the Hy(div)-norm defined by (7.39). After discrezation by some mixed finite element method, we
obtain discrete systems in the form of (7.48). We can apply the block preconditioners discussed
in the previous subsection to solve the resulting discrete problems; see the survey and numerical

experiments by He and Vuik [36].

CHAPTER 7. FLUID PROBLEMS 158

7.6 Multigrid methods for Stokes equation

We can construct coupled multigrid methods for the saddle-point problem (7.43) as well. For the
transfer operators, by applying the similar ideas as in multigrid methods for scalar equations,
we can construct prolongations and restrictions for velocity and pressure variables separately.
Coarse level solvers can also apply the same nested iterations as in §6.2. So we only discuss
smoothers for the Stokes system. Analysis and numerical experiments using different smoothers
have been reviewed in the survey by Larin and Reusken [40]. Apparently, the block precondi-
tioners discussed in the previous section can also be applied as smoothers for coupled multigrid

methods. In this section, we discuss two other widely-used smoothers in practice.

Braess—Sarazin smoother

The Braess—Sarazin smoother is introduced in [11] and can be written as

u(m+1) u(m) wD BT\ f A BT u(m)
sy T\ T B o) "\ o) m)| 92

where w is a positive parameter. This method mimics the damped Jacobi smoother for the
Poisson’s equation.

We need to solve, in each smoothing step, the following the linear system
< wD BT) (Sulm)) (f— Aulm — BTp(m))
B o)\ apm)~ — Bul™ ‘
The second equation ensures the discrete divergence free condition, i.e.,
Bu™*) = B(u™ 4 5u™) =0, m=1,2,...
Apparently, the Braess—Sarazin smoother can be reduced to an auxiliary pressure equation
(BD7'BT) 6p™ = wBu™ + BD7!(f — Au™ — BTp(™).

The coefficient matrix S := BD BT is similar to a scaled discrete Laplace operator on the

pressure space. In practice, we can solve it approximately using an iterative method.

Vanka smoother

Next we introduce a smoother originally proposed by Vanka [54]. In the context of finite element
methods, the Vanka-type smoothers are just block Gauss—Seidel (or Jacobi) methods. Each block

contains degrees of freedom in an element or a set of elements. One of the popular variant of

CHAPTER 7. FLUID PROBLEMS 159

Vanka-type smoothers is the so-called pressure-oriented Vanka smoother for continuous pressure
approximations. We only discuss this special case of Vanka smoother here.

For each pressure variable indexed by i (1 < i < m), let the set of velocity indices that are
“connected” to ¢ as

Sii={1<j<n:b;+#0}

where b; ; is the (i, j)-entry of the matrix B. So we can define an injection to the set of variables

{uj (] € 52)7 pz}a lea
IZ' _ Iu,i 0 c R(|S¢|+1)X(n+’m)7
0 I;

where I, ;p = p; and I, ;u = (uj)jes, are the corresponding injection matrices for velocity and
pressure, respectively.

We can then apply a multiplicative Schwarz method (or the so-called Full Vanka smoother):

I = Tevaad = [] (1 - 17471 1,4), (7.53)
=1
where
. T
A= LAIT = [A B) cgisirxasien,
B 0

We can also use a simplified version (i.e., the Diagonal Vanka smoother):
~ ~ m ~ ~
I~ TovaaA =] | (I —I7 Di_lliA>, (7.54)
i=1

where

. T
b= [P B crisinxisie,
B, 0

In this case, due to the special nonzero pattern of DZ-, it can be solved very efficiently.

7.7 Homework problems

HW 7.1. Show the equation (7.16). Hint: In R?, taking divergence of the symmetric gradient,
we get,

Puy + %82(82u1 + O1u2)

3uz + 501(O1uz + Oaur)

3(0%ur + A3ur) + 501(01ur + Oyusn)

- = %Au + %VV - .
%((9%712 + (7%1@) + %(92(511“ + (32712)

CHAPTER 7. FLUID PROBLEMS 160

HW 7.2. Derive the weak form (7.26) of the Stokes equations (7.25).

HW 7.3. Give the complete proof of Theorem 7.4.

Chapter 8
Optimization Problems

Mathematical optimization (mathematical programming or optimization) is the selection of a
“best” element (with regard to certain criterion) from some set of available alternatives. Many
optimization problems can be written as variational inequalities (VIs); for example, many prob-
lems in economics, operations research, and transportation equilibrium problems. In this chap-

ter, we discuss multilevel iterative methods for solving finite-dimensional variational inequalities.

8.1 Model problems

VIs arise from a wide range of application areas, like mechanics, control theory, engineering,
and finance. After several decades of development, this subject has become very rich on both
theory and numerics. For a general discussion on the existence and regularity, we refer the
interested readers to [38]. For a comprehensive discussion on numerical methods for VIs, we

refer to Glowinski [34].

A model variational inequality

Let a[-,-] and f(-) be a symmetric bilinear form and a linear form, respectively, and x € H}(£2)
be an admissible obstacle (for simplicity, we assume the zero boundary condition). Consider the
following elliptic variational inequality (or the obstacle problem): Find u € Ky := {v e H}(Q) :
v = x}, such that

alu,v —u] = flv—u), Vvelk,. (8.1)

After transformation w := u—y, we arrive at a new problem with a simple inequality constraint:
Find w € Koy := {v e H}(Q) : v = 0}, such that

alw,v —w] = fo(v —w) = f(v —w) —a[x,v —w], VveKp. (8.2)

161

CHAPTER 8. OPTIMIZATION PROBLEMS 162

For problem (8.1), the Lagrange multiplier can be defined as o1 such that
(o1(u),) == f(¢) —alu,¢], ¥ ¢e Hy(9). (8.3)
On the other hand, for (8.2), notice, for any ¢ € H}(2), that

(o2(w), @) = foly) — alw, o] = F() = alu, o] = (o1 (u), 9) -

It is easy to see that

(o1(u),v—u) <0, Vwvelk,, (8.4)
or
(o2(w),v —w) <0, VY wveKy.
On the other hand, if o is the Lagrange multiplier of (8.1), we have
(o(v) —o(u),) = —alv —u,¢], ¥ peHy(Q).
Hence,

(o(v) —o(u),v—u) = —afv —u,v —u] = — v —ul|*, Vov,ueHIQ). (8.5)
Hence, we have (o(v) — o(u),v — u) < 0, for any v,u € H}(Q), i.e., o is a monotone operator.

Remark 8.1 (Uniqueness of solution). Notice that if both u; and wus are solutions of the
variational inequality (8.1), by the monotonicity of o, |[u; — uz| = 0 and then we obtain the

uniqueness.

As before, we assume that A : H}(Q) — H1(Q) be the operator corresponding to al[-,].
An frequently equivalent formulation of (8.1) is the so-called linear complementarity problem
(LCP): Find a solution u € H} () such that

Au—f=0
u—x=0 (8.6)
<AU—faU—X>:0

The last equation is the so-called complementarity condition.
Proof. If u is a solution of LCP (8.6), then for any v € H} () and v > x we have
(Au— fu—v) = (Au— f,x —v) <0,

in view of the complementarity condition and the sign condition of Au — f. On the other hand,
if u is solution of (8.1), it is trivial to see that u satisfies the first two conditions of LCP. The

complementarity condition is obtained by taking v = u + (u — x) and v = . O

CHAPTER 8. OPTIMIZATION PROBLEMS 163

Finite element discretization for VIs

As discussed in §3.1, the domain € is partitioned into a quasi-uniform simplexes of size h; this
mesh is denoted by Mj,. Let V}, < VVO1 *(Q) be the continuous piecewise linear finite element
space associated with Mj,. The obstacle problem (8.2) can be approximated by a finite element

function uy, € Ko [V3 satisfying:

alup,vp —up] = fo(vp —up), YV op € Ko ﬂVh. (8.7)

As before, we denote all the interior nodes of the partition Mp by G(Mp). Let {¢Z}zeé(Mh)

be the canonical linear finite element basis of the mesh M,;,. Let u = v = Zzeé(Mh) Uy Py
and u = (“Z)zeé(M, the discrete solution and its nodal value vector (primal vector form),

respectively. Hence we have the following linear system
(w—u)T(Au—fo) =0, YVu=0, (8.8)

where A is the corresponding stiffness matrix of the bilinear form and f_}; is the dual vector form
of fo.

Remark 8.2. One can prove (see for example [18]) that the [?-error between the exact solution

u of (8.8) and any approximation solution v satisfies that

lv = ullo < |(fo = Av)+]o,
where the vector (ﬁ) — Aw) is defined element-wise by

(fT(;—AQ)i if v, >0

fo — Av)s ; = 7
(fo V), { min{(fo — Av);, 0} if v; = 0.

Error and residual

As usual, we define the energy functional as following

1
F(v) := ia[v,v] — f(v).
Then it follows that
1
Fv) — F(u) = 3 flo — u|||2 —(o,v—u), Vvelky. (8.9)

Consider finite element solutions, u; and wy, for problems (8.1) and (8.2), respectively. The
differences, in terms of energy, between the finite element solutions and the exact solutions can

be written as)

Fun) = Fu) = 5l — wl® = (o0, —)
1 (8.10)
Flun) = F(w) = 5 lwn —wl? = (o, w5 —w).

CHAPTER 8. OPTIMIZATION PROBLEMS 164

It is easy to see that the variational inequality (8.2) can be written as the following quadratic
minimization problem:

min %a[w,w] — fo(w). (8.11)

wE’Co

For finite element approximation, we compute the finite dimensional minimization problem

1
i Zafwp, wp] — . 8.12
min - Safunw] — foun) (812

Suppose wy, is an approximate solution of the above minimization problem. Then the defect
ey, = wp, — Wy, satisfies

. 1)) 1)
~ min —alwy, + ep, Wy, + €] — folwn + en) = —alep, en] — folen) + alwp, en] + C,
wp+er€Viy (Ko 2

i.e.,
1
min —alep, ep| — (o(wy), en) - 8.13
e 3 lens en] — (o (i), en) (8.13)
Notice that it is in the same form as (8.12) but replacing fo by o(wy). Hence the above problem
can be viewed as the error problem; compare this with the error equation in the linear case (1.35).

Whence we have ej,, we can update wy, = wp, + e, as in the linear case.

8.2 Nonlinear equation and unconstrained minimization
We first consider the unconstrained optimization problem

u = argmin F(v). (8.14)
vey

If F: 7% — Ris a convex function, then the problem is called a convex optimization (or
convex programming). If F is differentiable, a minimizer satisfies the well-known first-order
optimization condition

G(u) := F'(u) = 0, (8.15)

where G : 7 +— R is the Frechet derivative of F. If F is convex, then (8.14) is equivalent
for solving the nonlinear equation (8.15). In particular, if F is quadratic, then the problem is
called a quadratic optimization. Apparently, if F is a convex quadratic functional, then the

problem (8.14) is equivalent to our model problem (2.1), Au = f, with an SPD operator A = G'.

Nonlinear solvers

In general, the problem (8.14) is much more difficult to solve than (2.1) due to its nonlinearity.
We can employ a nonlinear iterative solver to linearize (8.15) to obtain a linear (differential) equa-

tion, i.e., linearization then discretization. For example, we may use the standard approaches,

CHAPTER 8. OPTIMIZATION PROBLEMS 165

like the Picard method or the Newton—Raphson method. Another strategy is to discretize the

continuous problem (8.14) or (8.15) in order to obtain a nonlinear algebraic problem

u = argmin F(v) (8.16)
veRN
or
G(u) = 0. (8.17)

The idea of coarse-grid correction used in Algorithm 3.1 does not apply any more here because the
classical residual equation is linear. There are basically two approaches to apply the multilevel
idea on this problem—The first approach is to linearize the problem and then apply multigrid
methods to linear problems; The second one is to apply multigrid directly to the nonlinear

problem using the so-called Full Approxzimation Scheme (FAS).

Newton—Raphson method

There are different ways to linearize a nonlinear problem like (8.15). For simplicity, we now
only consider discrete version of the nonlinear equation, i.e., ¥ = RYN. The most popular
approach is the so-called Newton—Raphson (or Newton) linearization. We apply second-order
Taylor expansion to approximate the objective function near the current iteration u®) € RN,
ie.,

F® +) ~ Ful) + (VFu), 0) + HTF e, o).

In order to find a good incremental correction step, we can consider

e®) = argmin é(v2}'(u(k))e, e) + (VF(u®),) = —[V2F (™)' VF(u®).

eeRN
This is the Newton—Raphson iteration
w1 — (k) [VQJ:(u(k))]_IV]:(u(k)). (8.18)
In the above iteration step, we need to solve a linear system, the Jacobian equation:
Ae®) .= [V2F(u®)]et) = —vF@u®) = 1K), (8.19)

We can employ the methods discussed in the previous chapters to solve such equations.

Listing 8.1: Newton-Raphson method

1 |Given an initial guess u€ ¥ and set r — —V.F(u);

[\v]

while |r|>¢€

3 solve the Jacobian equation VZF(u)e=r;
4 find a good stepsize a > 0;
5 u—u+ae; r——VF(u);

6 | end

CHAPTER 8. OPTIMIZATION PROBLEMS 166

The Newton-Raphson method converges very fast (second-order convergence) if the initial
guess is close enough to the exact solution. So if a good initial guess is available, the main
computation cost of the above algorithm is assembling the Jacobian systems and solving it to
acceptable accuracy. If we apply a multigrid algorithm to solve the Jacobian systems, then this
method is usually called Newton-Multigrid method. Similarly, another wide-used approach to
apply a domain decomposition preconditioned Krylov method to solve the Jacobian systems,
then this method is called Newton-Schwarz-Krylov method. Note that we might not need to

assemble the Jacobian system explicitly; instead, we can use a Jacobian-free scheme.

Full approximation scheme

For the nonlinear equation (8.15), the residual corresponding to an approximate solution v can
be defined as
r:=—G(v)=G(u) —G(v) (8.20)
However, because G is not linear, r # G(u — v). In FAS, instead of considering the residual
equation as in the linear case, the full equation is solved on the coarse grids.
We now use the following two-grid method to demonstrate the basic idea of FAS. Let u()
be an approximate solution on the fine grid after several steps of relaxation. On the coarse grid,

according to (8.20), we need to solve the following nonlinear equation
gc(ugl)) - QC(ICTU(I)) =r.=1I1r = —Ich(u(l)). (8.21)

This means, on the coarse level, a problem similar to the original problem (with different right-
hand side) should be solved

Ge(ul) = G.(ZFuW) — 27 G (uV). (8.22)

Usually the right-hand side of the above equation is denoted as 7.(u(")) and is called the tau
correction. Note that the coarse-level equation G. can be obtained from the discretization on

the coarse grid. We can also use the Galerkin method
Ge(ue) := I7 G(Zeue).
Once the problem (8.22) is solved, we correct the approximation as
u® =) 4 Ic(ugl) - ICTu(l)). (8.23)

Apparently the above idea can be applied recursively as we discussed in §6.2. Because the
coarse-grid problem is solved for the full approximation, rather than the error, the method is
named as the Full Approximation Scheme. In this algorithm, evaluating the nonlinear function
is usually the most expensive part computationally. We summarize the two-grid FAS algorithm

as follows:

CHAPTER 8. OPTIMIZATION PROBLEMS 167

Listing 8.2: Full Approximation Scheme

1 |Given an initial guess uwu€ ¥;
2 |Solve the nonlinear equation G.(u.) = Go(ZXu) — ZXG(u);

3 ’U/<—U+Ic(uc_I":Tu);

Subspace correction methods for convex minimization

Apparently, the idea of subspace correction methods can be easily extended to unconstrained
convex minimization problems here. The convergence analysis of SSC and PSC methods has

been given by Tai and Xu [52].

8.3 Constrained minimization

In this section, we consider multilevel solvers for constrained minimization problems
1
u = argmin F(v) := —a[v,v] — f(v), (8.24)
UE]CO 2

which is equivalent to the variational inequality (8.2).

Projected full approximation method

Since the the above problem is nonlinear, we can apply the Full Approximation Scheme intro-
duced in the previous section to solve this problem. And this is the so-called Projected Fully
Approximation Scheme (PFAS) by Brandt and Cryer [18].

As we have discussed in the previous chapters, we first need to find a relatively simple iterative
procedure which is able to dump the high-frequency part of the error quickly. In order to obtain
a smoother for (8.24), we can employ the simple iterative methods discussed in §2.1 and then
apply a projection step to ensure the new iteration stays in the feasible set. For example, if 1!
is the previous iteration and u®S is the iteration after one or several Gauss-Seidel sweeps, then

new - — max{0,u%%} € Ky is the new iteration. This method is naturally called the Projected

U
Gauss-Seidel (PGS) method.

At some point PGS will not reduce error efficiently any more, we then apply FAS to approx-
imate the error on a coarser level and continue this procedure until the coarsest level where the
nonlinear problem can be solved quickly and accurately. To ease the notation, we explain the
idea using a two-grid algorithm for now. We first solve the general LCP problem on a fine level

with a given right-hand side f;

CHAPTER 8. OPTIMIZATION PROBLEMS 168

using the PGS method or some other smoother to obtain an approximate solution u(*). Then

we solve the above LCP on a coarse level with the right-hand side

fer=T (f - Au(l)) + AT W
to obtain an approximation ugl). In turn, an improved approximation is given by

u® =M 4 Ic(u‘(:l) — Igu(l)).

Interior point method

For simplicity, we now consider the constrained minimization problem (8.2) on the finite dimen-

sional space RY, that is to say

1
u = argmin F(v) := —vl Av — fTo. (8.25)
v=0, veERN 2
In this case, the Lagrange multiplier ¢ € R satisfies that ¢ = —G(u). Then we have the

first-order optimality condition

o+ Gu) =0, o0<0,
Uo =0, u = 0.
Here we use a convention often employed in the literature U := diag{uq,...,un}; similarly, we

will denote ¥ := diag{o1,...,0n}.

The condition Uo = 0 (or equivalently, u;o; = 0 for any i = 1,..., N) is usually called the
complementarity condition. We now try to relax this condition such that Uo = ul, where p is
a positive penalty parameter and 1 is an all-one vector. At the same time, we try to maintain
the iterative solution (u, o) strictly in the primal-dual feasible set, i.e., u > 0 and o < 0. Hence
we need to solve a system of nonlinear equations:

o+Gu) = 0,
{ Uoc—p1l = 0.
We apply the Newton’s method for this system and obtain an iterative method

Adu+ 60 = —o—G(u) A T ou f—Au—o
or = .
Yéu + Ubo uwl—Uco ¥ U oo ul—Uo

Upon solving this linear system, we can obtain a new iteration. Furthermore, in the above

system, I, 3, and U are all known diagonal matrices, we only need to solve the Schur complement
problem

(A—U'S)ou=puU 1 + f — Au. (8.26)
Moreover, since o < 0 and u > 0, the above equation is well-defined and the coefficient matrix
is SPD. We can then apply a multilevel iterative method discussed in the previous chapters to

solve it efficiently; see [5] for details.

CHAPTER 8. OPTIMIZATION PROBLEMS 169

Monotone multigrid method

Now suppose we hierarchical meshes, {M9, ... ,M‘Zb} and let A;, b, 1 =0,...,j are the stiffness
matrices and right-hand-side vectors corresponding to the partition M. | respectively. As usual,
M% is the finest mesh. We denote the linear finite element space by V,f associated with mesh
M,

We need two kinds of orthogonal projections onto the finite element space V,f. The L*-

projections Q) : V}f — Vhl are defined by

(Quon, &1) = (v, 1), 1€ Vi, (8.27)

and the energy projections II; : V,f — V,f by

a[My, ¢1] = alvw, &1], ¢ € V. (8.28)

We first define multigrid methods recursively. For a given initial guess w;
coarse grid correction is performed: computing the approximate defect eg-_)
V}f ~! as the solution of the quadratic programming problem

0 0
alefy,ef] = o), el). (8.29)

1
min Z
e eVt w® el Ko 2

Then let w](-l) = w](-o) + eg.o_)l. Then we apply m steps of post-smoothing scheme, like projected
SOR to obtain w](-mﬂ). For the coarse correction step, instead of solving the problem on the
coarser level 7 — 1 exactly, we can solve it by the same multigrid procedure described here. In
this way, we obtain a recursive multigrid V-cycle. If we perform coarse grid correction twice at
each level, then we get a W-cycle.
One problem with this procedure is that e;_; and w; are in different levels. To avoid this
difficulty, we propose the following coarse grid correction scheme instead of (8.29):
o, o Sald®y a0~ (o), d%). (8.30)
1€V N Ko
And then wj(.l) = w() 4 d()1 which is always in Kg because both w(o) and d()1 are in Ky by
definition. It is easy to check that the local obstacles in this method are monotone in the sense
of Kornhuber [39]. Then we get the similar V-cycle or W-cycle multigrid method as for linear

problems expect we need to add a projection step to project the iterates to Ky.

Remark 8.3. This method is shown to be not very good by Tai’s test example. The reason
is that the coarse grid correction only works when the current approximation is less than the

exact solution in the method.

CHAPTER 8. OPTIMIZATION PROBLEMS 170

8.4 Constraint decomposition method

It is known the general V-cycle can be written as a successive subspace correction method. For a
sequence of search directions {¢;}¥ ; such that V,Z := span{¢;}¥;. We can construct a numerical

method for find the minimizer of (8.12) as a sequential quadratic programming method. Starting

from an initial guess wj(o) € fo () Ko, at each iteration, we solve

1
min §a[wj(-0) + a¢1,w§0) + ag] — fo(wj(-o) + agy). (8.31)
wj(p) +a¢1eV,f mIC()

Similar to the discussion in the previous section, we need to solve a discrete problem
1

min -

w§0)+a¢>1eV}fﬂ/Co 2

alé1, d1]a? — (o (wl”), ¢1ra. (8.32)

Then the new iterate is obtained by w](-l) = w](-O)
in the direction ¢2 to obtain wj(?), and so on.

If we choose span{qbi}i]\i 1 as the canonical nodal basis of V}f , then it is just usual nonlinear

()

+ a¢q. Similarly, we start from w;" and search

or projected Gauss-Seidel method. To take advantage of multilevel basis, it is natural to choose
span{gﬁi}fil = {(Z){, .. .,d)j j,(;ﬁ{_l, .. .,qﬁg\;l, .. .,gb%,...,gf)}vl}. It falls into the category of ez-
tended relaxation methods. The problem with this procedure is that ¢; might not be in the finest
level j, which costs extra computation effort to enforce the constraints w](.i_l) + ap; € V}f M Ko.

See Tai [51] for details.

Bibliography

[10]

O. Axelsson. A SURVEY OF ALGEBRAIC MULTILEVEL ITERATION (AMLI) METH-
ODS. BIT Numerical Mathematics, 43:863-879, 2003.

O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning
methods. Numerische Mathematik, 48(5):479-498, 1986.

O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate
gradient method. Numerische Mathematik, 48(5):499-523, 1986.

I. Babuska. Error-bounds for finite element method. Numerische Mathematik, 16(4):322—-
333, 1971.

R. E. Bank, P. E. Gill, and R. F. Marcia. Interior methods for a class of elliptic variational
inequalities. In B. v. B. W. Lorenz T. Biegler, Matthias Heinkenschloss, Omar Ghattas,
editor, Large-Scale PDE-Constrained Optimization, pages 218—-235. 2003.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numerica, 14:1-137, may 2005.

M. Benzi and M. A. Olshanskii. An augmented lagrangian-based approach to the oseen
problem. SIAM Journal on Scientific Computing, 28(6):2095-2113, 2006.

J. Bergh and J. Lofstrom. Interpolation spaces: an introduction, volume 223. Springer
Science & Business Media, 2012.

D. Boffi, F. Brezzi, and M. Fortin. Finite elements for the Stokes problem. In Mized
Finite Elements, Compatibility Conditions, and Applications, pages 45—100. Springer Berlin
Heidelberg,, 2008.

D. Braess. Finite elements. Cambridge University Press, Cambridge, second edition, 2001.
Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German

edition by Larry L. Schumaker.

171

BIBLIOGRAPHY 172

[11]

[12]

[14]

[15]

22]

[23]

[24]

D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical
Mathematics, 23(1):3-19, feb 1997.

J. Bramble and J. Pasciak. Iterative techniques for time dependent Stokes problems. Com-
puters Math. Applic., 33:13-30, 1997.

J. H. Bramble and J. E. Pasciak. A Preconditioning Technique for Indefinite Systems
Resulting from Mixed Approximations of Elliptic Problems. Mathematics of Computation,
50(181):1, jan 1988.

J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Mathematics
of Computation, 55(191):1-22, Jul. 1990.

J. H. Bramble and J. Xu. Some estimates for a weighted {L}"2 projection. Mathematics
of Computation, 56:463-476, 1991.

A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation, 31(138):333-390, 1977.

A. Brandt. Multigrid guide. Technical report, 2011.

A. Brandt and C. W. Cryer. Multigrid algorithms for the solution of linear complementarity
problems arising from free boundary problems. SIAM J. Sci. Statist. Comput., 4(4):655—
684, 1983.

A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (amg) for automatic multi-
grid solutions with application to geodetic computations. Report, Inst. for computational
Studies, Fort collins, colo, 1982.

S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15
of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2002.

F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising
from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis -
Modlisation Mathmatique et Analyse Numrique, 8(R2):129-151, 1974.

F. Brezzi, M. Fortin, and L. D. Marini. Mixed finite element methods with continuous

stresses. Mathematical Models and Methods in applied sciences, 3(02):275-287, 1993.
W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Siam, 2000.

L. Chen. Deriving the xz identity from auxiliary space method*. In Domain Decomposition

Methods in Science and Engineering XI1X, pages 309-316. Springer, 2011.

BIBLIOGRAPHY 173

[25]

[37]

P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in
Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-
Oxford, 1978.

R. Courant and D. Hilbert. Methods of Mathematical Physics. Number v. 1 in Methods of
Mathematical Physics. Wiley, 1991.

M. Dryja and O. Widlund. Additive schwarz methods for elliptic finite element problems
in three dimensions. In Fifth International Conference on Domain Decomposition Methods.
STAM, 1992.

M. Dryja and O. B. Widlund. Some domain decomposition algorithms for elliptic problems.

In Iterative Methods for Large Linear Systems. Academic Press Professional, Inc., 1989.

H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers:

with applications in incompressible fluid dynamics. Oxford University Press, USA, 2005.
L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

R. P. Fedorenko. A relaxation method for solving elliptic difference equations. USSR
Computational Mathematics and Mathematical Physics, 1(4):1092-1096, 1961.

M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the numerical

solution of boundary-value problems, volume 15. Elsevier, 2000.

G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:
Steady-state problems. Springer Science & Business Media, 2011.

R. Glowinski. Numerical methods for nonlinear variational problems. Springer-Verlag, New

York, 1984.

G. H. Golub and C. F. Van Loan. Matriz Computations, Third Edition, volume 10 of Johns
Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 1996.

X. He and C. Vuik. Comparison of Some Preconditioners for the Incompressible Navier-
Stokes Equations. Numerical Mathematics: Theory, Methods and Applications, 9(02):239—
261, 2016.

C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, Cambridge, 1987.

BIBLIOGRAPHY 174

[38]

[41]

[42]

D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their
applications, volume 88 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], New York, 1980.

R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities. I. Numer.
Math., 69(2):167-184, 1994.

M. Larin and A. Reusken. A comparative study of efficient iterative solvers for generalized
Stokes equations. Numerical Linear Algebra with Applications, 15(November 2007):13-34,
2008.

Y. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly
singular systems. Mathematical Models and Methods in Applied Sciences, 17(11):1937-1963,
2007.

D. S. Malkus and T. J. Hughes. Mixed finite element methodsreduced and selective inte-
gration techniques: a unification of concepts. Computer Methods in Applied Mechanics and
Engineering, 15(1):63-81, 1978.

K.-A. Mardal and R. Winther. Uniform preconditioners for the time dependent stokes
problem. Numerische Mathematik, 98(2):305-327, 2004.

K.-A. Mardal and R. Winther. Erratum: Uniform preconditioners for the time dependent
stokes problem. Numerische Mathematik, 103(1):171-172, 2006.

K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial differ-
ential equations. Numerical Linear Algebra with Applications, 18(1):1-40, Jan 2011.

J. Necas. Sur une méthode pour résoudre les équations aux dérivées partielles du type
elliptique, voisine de la variationnelle. Annali della Scuola Normale Superiore di Pisa-

Classe di Scienze, 16(4):305-326, 1962.

S. Nepomnyaschikh. Decomposition and fictitious domains methods for elliptic boundary
value problems. In Fifth International Symposium on Domain Decomposition Methods for

Partial Differential Equations, pages 62—72. Philadelphia: STAM, 1992.

Y. Notay. An aggregation-based algebraic multigrid method. Flectronic transactions on
numerical analysis, 37(6):123-146, 2010.

Y. Notay and P. S. Vassilevski. Recursive Krylov-based multigrid cycles. Numerical Linear
Algebra with Applications, 15(July 2007):473-487, 2008.

BIBLIOGRAPHY 175

[50]

[51]

[52]

S. Rippa. Minimal roughness property of the Delaunay triangulation. Comput. Aided Geom.
Design, 7:489-497, 1990.

X.-C. Tai. Rate of convergence for some constraint decomposition methods for nonlinear

variational inequalities. Numerische Mathematik, 93:755-786, 2003.

X.-C. Tai and J. Xu. Global and uniform convergence OF SUBSPACE CORRECTION
METHODS FOR SOME CONVEX OPTIMIZATION PROBLEMS. Mathematics of Com-
putation, 71(237):105-124, 2002.

P. Vanék, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems. Computing, 56(3):179-196, Sep 1996.

S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive vari-
ables. Journal of Computational Physics, 65:138-158, 1986.

J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34:581-613, 1992.

J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for

unstructured grids. Computing, 56:215-235, 1996.

J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equa-

tions. Mathematics of Computation, 68(228):1429-1446, 1999.

J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace
corrections in Hilbert space. Journal of The American Mathematical Society, 15:573-597,
2002.

J. Xu and L. Zikatanov. Some Observations on {Babu{s}ka} and {Brezzi} Theories. Nu-
merische Mathematik, 94(1):195-202, mar 2003.

J. Xu and L. T. Zikatanov. Algebraic Multigrid Methods. ArXiv e-prints, Nov. 2016.
K. Yoshida. Functional Analysis. Springer-Verlag, 1971.

H. Yserentant. On the multi-level splitting of finite element spaces. Numerische Mathematik,
49(4):379-412, 1986.

H. Yserentant. Two preconditioners based on the multi-level splitting of finite element
spaces. Numerische Mathematik, 58(1):163-184, 1990.

	Contents
	Theory of Multilevel Iterative Methods
	Introduction
	The model equation
	Derivation and classical solution
	Sobolev spaces
	Weak formulation
	Well-posedness of the weak problem
	A simple model problem
	High-frequency and locality

	Discretization methods
	Finite difference method
	Finite element method

	Simple iterative solvers
	Some examples
	A simple observation
	Smoothing effect

	Multigrid method in 1D
	Nested grids
	Smoothers
	Prolongation and restriction
	Multigrid algorithm

	Tutorial of FASP
	Homework problems

	Iterative Solvers and Preconditioners
	Stationary linear iterative methods
	Preliminaries
	Stationary iterative methods
	Symmetrization
	Convergence rate of stationary iterative methods
	An example: modified G-S method

	Krylov subspace methods
	Gradient descent method
	Conjugate gradient method
	Generalization to Hilbert spaces

	Condition number and preconditioning
	Construction of preconditioners
	Preconditioned conjugate gradient method
	Stopping criteria

	Domain decomposition methods
	Divide and conquer
	Overlapping DD methods
	Classical convergence results of overlapping DDMs

	Homework problems

	Two-grid Methods
	Finite element methods
	Galerkin approximation
	Finite element
	Some properties of finite element methods
	Error analysis

	Matrix representations
	Vector and matrix representations
	Finite element matrices
	Simple iterators in matrix form

	Smoothers and smoothing effect
	A numerical example
	Local Fourier analysis
	Smoother analysis

	A two-grid method
	General two-grid methods
	Convergence analysis of TG
	Optimal coarse space

	Matrix representation of the two-grid method
	Grid transfer operators in matrix form
	Coarse problem in matrix form
	Two-grid iterator in matrix form

	Homework problems

	Subspace Correction Methods
	Successive and parallel subspace corrections
	Abstract framework for subspace corrections
	SSC and PSC methods

	Expanded system and block solvers
	Expansion of the original problem
	Block solvers for expanded equation
	Convergence of block solvers

	Convergence analysis of SSC
	A technical lemma
	The X-Z identity

	Convergence analysis of PSC
	Condition number of PSC
	Estimates of K1 and K2

	Homework problems

	Multilevel Iterative Methods and Their Applications
	Multilevel Subspace Correction Preconditioners
	Two-grid overlapping DDM
	Two-level space decomposition
	Convergence analysis of DDM

	HB preconditioner
	Nested space decomposition
	Hierarchical basis preconditioner
	Strengthened Cauchy-Schwarz inequality
	Convergence analysis of HB preconditioner

	BPX preconditioner
	Telescope expansion of L2-projections
	Norm equivalence
	BPX preconditioner and its convergence
	Matrix representation of BPX

	Homework problems

	Multigrid Methods
	Geometric multigrid method
	V-cycle multigrid method
	Matrix representation of GMG
	Convergence analysis of GMG method
	Problems with anisotropic coefficients
	General procedure of multigrid methods

	Nested iterations
	V-cycle and its generalizations
	Full multigrid method

	From geometric to algebraic multigrid
	Sparse matrices and graphs
	M-matrix and Delaunay triangulation
	Algebraic smooth error
	Construction of coarse spaces

	Classical algebraic multigrid methods
	Strength of connections
	C/F splitting
	Construction of prolongation

	Aggregation-based algebraic multigrid methods
	Unsmoothed aggregation AMG
	Smoothed aggregation AMG

	Homework problems

	Fluid Problems
	The Navier–Stokes equations
	Flow map
	Volume and mass conservation
	Balance of momentum
	Mathematical models

	The Stokes equations
	The time-dependent Stokes equation
	The Brezzi theory
	Well-posedness of the Stokes problem
	Penalty method for the Stokes problem

	Mixed finite element methods
	Well-posedness and convergence
	Some stable finite element pairs
	Mixed methods for the Poisson's equation

	Canonical preconditioners
	Preconditioning the Stokes problem
	Preconditioning the time-dependent Stokes problem

	Block preconditioners
	Block diagonal and lower triangular method
	Augmented Lagrangian method

	Multigrid methods for Stokes equation
	Braess–Sarazin smoother
	Vanka smoother

	Homework problems

	Optimization Problems
	Model problems
	A model variational inequality
	Finite element discretization for VIs
	Error and residual

	Nonlinear equation and unconstrained minimization
	Nonlinear solvers
	Newton–Raphson method
	Full approximation scheme
	Subspace correction methods for convex minimization

	Constrained minimization
	Projected full approximation method
	Interior point method
	Monotone multigrid method

	Constraint decomposition method

	Bibliography

