Chensong Zhang: Curriculum Vitae

Lab of Science & Engineering Computing	Office: +86 010-8254-1012
Academy of Mathematics and Systems Science	Mobile: +86 135-2040-7990
Chinese Academy of Sciences	ORICD: 0000-0002-2213-0899
Beijing, China	Email: zhangcs@lsec.cc.ac.cn
Google scholar	Web: http://lsec.cc.ac.cn/~zhangcs

Short Bio

Chen-Song Zhang is currently a professor at the Academy of Mathematics and Systems Science, CAS. He obtained his PhD from the *Applied Mathematics & Scientific Computing* program at the *University of Maryland, College Park, US.* His research interests include numerical methods for PDEs, adaptive mesh refinement, petroleum reservoir simulation, and complex fluid/flow simulation.

Employment

March, 2023 — Present: *Professor* LSEC, Academy of Mathematics and Systems Science, Beijing, China

Sep, 2023 — Present: *Adjunct Professor* University of CAS, Beijing, China

Sep, 2023 — Present: Adjunct Professor Shenzhen Research Institute of Bid Data, Shenzhen, China

March, 2014 — March, 2023: Associate Professor LSEC, Academy of Mathematics and Systems Science, Beijing, China

Aug, 2011 — March, 2014: Assistant Professor LSEC, Academy of Mathematics and Systems Science, Beijing, China

Postdoctoral Positions

July, 2010 — July, 2011: Postdoctoral Fellow Peking University, Beijing, China * Mentor: Zhiping Li

June, 2007 — Feb, 2011: CCMA Postdoc & Visiting Assistant ProfessorPenn State University, USA* Mentors: Jinchao Xu, Ludmil Zikatanov

Visiting Positions

Aug, 2015 — Sep, 2015: Visiting Professor Penn State University, University Park, PA, USA

May, 2014 — July, 2014: Visiting Professor Penn State University, University Park, PA, USA

July, 2009 — Jan, 2010: Visiting Professor Beijing International Center for Mathematical Research, Beijing, China

Education

Ph.D. in Applied Mathematics and Scientific Computing, July 2007 University of Maryland, College Park, MD, USA * Advisor: Ricardo H. Nochetto Thesis: Adaptive Finite Element Method for Variational Inequalities of Parabolic Type

Honors and Awards

- 2021: CSIAM Certificate for Practical Applications of Applied Mathematics, China
- 2020: Best Thematic Track Paper Award, International Conference on Computational Science
- 2006: Graduate School Dean Dissertation-Completion Fellowship, University of Maryland
- 2006: Mathematics Department Dissertation Fellowship, University of Maryland
- 2006: Center for Nonlinear Analysis Summer School Travel Fund, Carnegie Mellon University
- 2006: Seymour Goldberg Award (Spotlight on Graduate Research), University of Maryland
- 2001: Nanri Excellent Thesis Fellowship, Nanjing University
- 2000: Huawei Outstanding Students in Computational Science, Nanjing University
- 1999: Outstanding Student of Nanjing University, Nanjing University
- 1995: Three-Good Merit High-School Student of Jiangsu Province, Department of Education

Professional Committees and Services

- Editorial Board, Journal on Numerical Methods and Computer Applications, 2021–present
- PC on Algorithm, Software, and Applications, ORSC, 2023-present
- PC on Mathematics & Industry, CSIAM, 2022–present
- PC on HPC & Math Software, CSIAM, 2021–2022
- Organizing Committee of the SOLVER Conference & SOLVER Challenge, 2018-present
- PC on Numerical Methods for Petroleum & Water Resources, CSIAM, 2016-present
- Operations Research Society of China (ORSC)
- China Society for Industrial and Applied Mathematics (CSIAM)

Research Fundings

- July/2024–Dec/2027: Strategic Priority Research Program of the CAS.
- Jan/2024–Dec/2028: Strategic Priority Research Program of the CAS.
- Jan/2023–Dec/2023: Shale Gas Simulation, RIPED, PetroChina, PI.
- Aug/2022-Aug/2023: Huawei Research Project on Elasticity Solvers, PI.
- Jan/2021–Dec/2025: National Key R&D Program of China 2020YFA0711900.

- Jan/2020–Dec/2021: Collaborative Research Project of PetroBras.
- Jan/2020–Dec/2023: Key Science and Technology Project of PetroChina, UPC.
- Jan/2020–Dec/2023: National Science Foundation of China 11971472, PI.
- Jan/2020–Dec/2020: HiSim Project, RIPED, PetroChina, PI.
- Jan/2019–Dec/2020: Science Challenge Project, TZZT2019-B1.1, PI.
- Jan/2016–Dec/2020: Key Research Program of Frontier Sciences, CAS, QYZDB-SSW-SYS018, PI.
- Jan/2016–Dec/2020: Science Challenge Project, JCKY2016212A503-1-303.
- Jan/2016-Dec/2020: State Key Dev. Prog. for Basic Research, 2016YFB0201304.
- Jan/2016–Dec/2018: Major Research Plan of NSFC, 91530323.
- Jan/2015–Dec/2018: Major Research Plan of NSFC, 91430215.
- Jan/2015–Dec/2015: IAPCM Fundamental Research Fund, PI.
- Jan/2014–Dec/2015: Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry of China, PI.
- Jan/2012–Dec/2015: National Key Technology Research and Development Program (863) of the Ministry of Science and Technology of China, 2012AA01A3091.
- Jan/2012–Dec/2014: Major Research Plan of NSFC 91130011.
- Oct/2011–Oct/2014: Dean Startup Fund, Academy of Mathematics and System Sciences, PI.
- Jan/2011–Dec/2014: International Collaborative Project of PetroChina, 12HT105000002654.
- Dec/2010–Dec/2012: China Postdoc Science Foundation 45210148–0072, PI.
- Sep/2010: American Mathematical Society Travel Grant, PI.
- Sep/2009–March/2011: National Science and Technology Major Project of the Ministry of Science and Technology of China, CNOOCRC-2010-ZHKY-ZX-008.
- Sep/2009-Aug/2012: US National Science Foundation DMS-0915153, co-PI.

Selected Publications

- MGCFNN: A neural multigrid solver with novel Fourier neural network for high wave number Helmholtz equations, Y. Xie, M. Lv, and C.-S. Zhang, The 13th International Conference on Learning Representations (ICLR'25), accepted. CORE2023 Rank A*.
- [2] A MgNO method for multiphase flow in porous media, X. Liu, X. Yang, C.-S. Zhang, L. Zhang, and L. Zhao, Proceedings of the 16th Annual Meeting Conference on Porous Media. InterPore 2024, 953–969 (04/2025). Springer, Singapore.
- [3] A super-localized finite element method for inhomogeneous fourth-order singular perturbation problem, B. Dai and C.-S. Zhang, Applied Mathematics Letters, 166, 109534 (03/2025). IF2024:2.9.
- [4] Semi-StructMG: A fast and scalable semi-structured algebraic multigrid, Y. Zong, C.-S. Zhang, L. Mu et al. The 30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP'25), 496–511 (02/2025). CCF2022 Rank A.
- [5] A Stokes-dual-porosity-poroelasticity model and discontinuous Galerkin method for the coupled free flow and dual porosity poroelastic medium problem, R. Li, C.-S. Zhang, Z. Chen, Journal of Scientific Computing, online first, 102:41 (01/2025). IF2023:2.8.

- [6] Lowest-degree robust finite element schemes for inhomogeneous bi-Laplace problems, B. Dai, H. Zeng, C.-S. Zhang, and S. Zhang, Applied Numerical Mathematics, 203, 235–254 (09/2024). IF2022:2.994.
- [7] AutoAMG(θ): An auto-tuned AMG method based on deep learning for strong threshold, H. Zou, X. Xu, C.-S. Zhang, and Z. Mo, Communications in Computational Physics, 36, 200–220 (07/2024). IF2022:3.791.
- [8] Poster: StructMG: A fast and scalable structured multigrid, Y. Zong, X. Wang, H. Huang, C.-S. Zhang et al. The 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP'24), 478–480 (08/2024). CCF2022 Rank A.
- [9] Application-oriented preconditioning of seepage mechanics, C. Feng, S. Li, S. Liu, C.-S. Zhang, L. Zhao, Chinese Journal of Computational Physics, 41, 98–109 (01/2024). In Chinese.
- [10] A Stokes-Darcy-Darcy model and its discontinuous Galerkin method on polytopic grids, R. Li, Y. Gao, C.-S. Zhang, Z. Chen, Journal of Computational Physics, 510, 112780 (01/2024). IF2022:4.645.
- [11] On the existence of locally-defined projective interpolations, H. Zeng, C.-S. Zhang, and S. Zhang, Applied Mathematics Letters, 146, 108789 (12/2023). IF2023:3.7.
- [12] An improved multistage preconditioner on GPUs for compositional reservoir simulation, L. Zhao, S. Li, C.-S. Zhang et al., CCF Transactions on High Performance Computing, 5, 144–159 (02/2023). IF2022:0.900.
- [13] Parallel multi-stage preconditioners with adaptive setup for the black oil model, L. Zhao, C. Feng, C.-S. Zhang, and S. Shu, Computers & Geosciences, 168, 105230 (10/2022). IF2022:5.168.
- [14] A low-degree strictly conservative finite element method for incompressible flows, H. Zeng, C.-S. Zhang, and S. Zhang, SMAI Journal of Computational Mathematics, 8, 225–248 (09/2022).
- [15] A new analytical framework for the convergence of inexact two-grid methods, X. Xu and C.-S. Zhang, SIAM Journal on Matrix Analysis and Applications, 43, 512–533 (03/2022). IF2020:1.944.
- [16] Linear solvers for petroleum reservoir simulation, C.-S. Zhang, Journal on Numerical Methods and Computer Applications, 43, 1–26 (03/2022). In Chinese.
- [17] Convergence analysis of inexact two-grid methods: A theoretical framework, X. Xu and C.-S. Zhang, SIAM Journal on Numerical Analysis, 60, 133–156 (01/2022). IF2020:3.212.
- [18] Optimal quadratic element on rectangular grids for H¹-problems, H. Zeng, C.-S. Zhang, and S. Zhang, BIT Numerical Mathematics, 61, 665–689 (06/2021). IF2020:1.663.
- [19] An advanced ALE-mixed finite element method for a cardiovascular fluid-structure interaction problem with multiple moving interfaces, P. Sun, C.-S. Zhang, R. Lan, L. Li, Journal of Computational Science, 50, 101300 (01/2021). IF2020:3.976.
- [20] Monolithic arbitrary Lagrangian-Eulerian finite element method for a multi-domain blood flow aortic wall interaction problem, P. Sun, C.-S. Zhang, R. Lan, and L. Li, In: Krzhizhanovskaya V. et al. (eds), Proceeding of International Conference on Computational Science 2020. CORE2020 Rank A. Lecture Notes in Computer Science, vol 12143, 60–74 (06/2020). Springer, Cham. Best Thematic Track Paper of ICCS 2020.
- [21] A numerical simulator for modeling the coupling processes of subsurface fluid flow and reactive transport processes in fractured carbonate rocks, T. Yuan, C. Wei, C.-S. Zhang, and G. Qin, Water, 11, 1957, 1–18 (10/2019). IF2020:3.103.
- [22] Distributed Lagrange multiplier/fictitious domain finite element method for a transient Stokes interface problem with jump coefficients, A. Lundberg, P. Sun, C. Wang, and C.-S. Zhang, Computer Modeling in Engineering and Sciences, 119, 35–62 (04/2019). IF2020:1.593.

- [23] Multiscale hybrid-mixed finite element method for flow simulation in fractured porous media, P. Devloo, W. Teng, and C.-S. Zhang, Computer Modeling in Engineering and Sciences, 119, 145–163 (04/2019). IF2020:1.593.
- [24] A new estimate for a quantity involving the Chebyshev polynomials of the first kind, X. Xu and C.-S. Zhang, Journal of Mathematical Analysis and Applications, 476, 302–308 (03/2019). IF2020:1.583.
- [25] Numerical simulation of an immersed rotating structure in fluid for hemodynamic applications,
 W. Leng, C.-S. Zhang, P. Sun, et al., Journal of Computational Science, 30, 79–89 (01/2019).
 IF2020:3.976.
- [26] On the ideal interpolation operator in algebraic multigrid methods, X. Xu and C.-S. Zhang, SIAM Journal on Numerical Analysis, 56, 1693–1710 (06/2018). IF2018:2.322.
- [27] ALE method for a rotating structure immersed in fluid and its application to artificial heart pump in hemodynamics, P. Sun, W. Leng, C.-S. Zhang, et al., In Y. Shi, et al. (eds), Proceeding of International Conference on Computational Science 2018. CORE2018 Rank A. Lecture Notes in Computer Science, 10862, 9–23 (06/2018), Springer.
- [28] A new linear solver for fine-scale reservoir simulation, Z. Li, S. Wu, Q. Li, C.-S. Zhang, et al., Journal of Numerical Methods and Computer Applications, 39, 1–9 (03/2018). In Chinese.
- [29] New perturbation bounds for the spectrum of a normal matrix, X. Xu and C.-S. Zhang, Journal of Mathematical Analysis and Applications, 455, 1937–1955 (11/2017). IF2018:1.188.
- [30] Analytical decoupling techniques for fully implicit reservoir simulation, C. Qiao, S. Wu, J. Xu, and C.-S. Zhang, Journal of Computational Physics, 336, 664–681 (05/2017). IF2018:2.845.
- [31] An error-resilient redundant subspace correction method, T. Cui, J. Xu, and C.-S. Zhang, Journal of Computing and Visualization in Science, 18, 65–77 (01/2017).
- [32] Numerical studies of a class of linear solvers for fine-scale petroleum reservoir simulation, Z. Li, S. Wu, C.-S. Zhang, and J. Xu, Journal of Computing and Visualization in Science, 18, 93–102 (01/2017).
- [33] An efficient SpMV for petroleum reservoir simulation on GPUs, Z. Li, C. Feng, S. Shu, and C.-S. Zhang, Journal of Numerical Methods and Computer Applications, 37, 315–324 (12/2016). In Chinese.
- [34] Toward cost-effective reservoir simulation solvers on GPUs, Z. Li, S. Wu, J. Xu, and C.-S. Zhang, Advances in Applied Mathematics and Mechanics, 8, 971–991 (12/2016). IF2018:0.844.
- [35] Accelerating reservoir simulation on multi-core and many-core architectures with graph coloring ILU(k), Z. Li, C. Feng, S. Shu, and C.-S. Zhang, Information Technology and Intelligent Transportation Systems, Springer, Switzerland, 454, 221–233 (11/2016).
- [36] Cost-effective parallel reservoir simulation on shared memory, S. Wu, B. Wang, Q. Li, J. Xu, C.-S. Zhang, and C. Feng, SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia (10/2016).
- [37] A stable and scalable hybrid solver for rate-type non-Newtonian fluid models, Y.-J. Lee, W. Leng, and C.-S. Zhang, Journal of Computational and Applied Mathematics, 300, 103–118 (07/2016). IF2018:1.883.
- [38] An adaptive hybrid stress transition quadrilateral finite element method for linear elasticity, F.-T. Huang, X.-P. Xie, and C.-S. Zhang, Journal of Computational Mathematics, 34, 339–364 (07/2016) IF2018:1.238.

- [39] On Robust and Efficient Parallel Reservoir Simulation on Tianhe-2, W. Guan, C. Qiao, H. Zhang, C.-S. Zhang, et al., SPE Reservoir Characterization and Simulation Conference and Exhibition, SPE-175602 (08/2015).
- [40] A multilevel preconditioner and its shared memory implementation for a new generation reservoir simulator, S. Wu, J. Xu, C. Feng, C.-S. Zhang, et al., Petroleum Science, 11, 540–549 (10/2014). IF2018:1.846.
- [41] A multi-stage preconditioner for the black oil model and its OpenMP implementation, C. Feng, S. Shu, J. Xu, and C.-S. Zhang, Domain Decomposition Methods in Science and Engineering XXI, LNCSE Series, Springer-Verlag Berlin Heidelberg, 129–140 (05/2014).
- [42] On adaptive Eulerian-Lagrangian method for linear convection-diffusion problems, X. Hu, Y.-J. Lee, J. Xu, and C.-S. Zhang, Journal of Scientific Computing, 58, 90–114 (01/2014). IF2018:2.370.
- [43] Numerical study of geometric multigrid on CPU-GPU heterogenous computers, C. Feng, S. Shu, J. Xu, and C.-S. Zhang, Advances in Applied Mathematics and Mechanics, 6, 1–23 (01/2014). IF2018:0.844.
- [44] Application of auxiliary space preconditioning in field-scale reservoir simulations, X. Hu, J. Xu, and C.-S. Zhang, Science China Mathematics, 56, 2737–2751 (12/2013). IF2018:1.031.
- [45] Multilevel preconditioners for a new generation reservoir simulator, S. Wu, J. Xu, C.-S. Zhang, et al., SPE Reservoir Characterization and Simulation Conference and Exhibition, SPE-166011 (10/2013).
- [46] Combined preconditioning with applications in reservoir simulation, X. Hu, S. Wu, X.-H. Wu, J. Xu, C.-S. Zhang, S. Zhang, and L. Zikatanov, Multiscale Modeling and Simulation, 11, 507– 521 (08/2013). IF2017:2.277.
- [47] Application of an energy-minimizing algebraic multigrid method for subsurface water simulation, R. Cheng, X. Huang, S. Shu, J. Xu, C.-S. Zhang, S. Zhang, and Z. Zhou, International Journal of Numerical Analysis and Modeling, 10, 374–388 (02/2013). IF2016:0.850.
- [48] Development of a fast auxiliary space preconditioner for numerical reservoir simulations, X. Hu, W. Liu, G. Qin, J. Xu, and C.-S. Zhang, SPE Reservoir Characterization and Simulation Conference and Exhibition, SPE-148388, (09/2011).
- [49] Global existence and uniqueness of solutions to discretized viscoelastic flow models, Y.-J. Lee, J. Xu, and C.-S. Zhang, Mathematical Models and Methods in Applied Sciences, 21, 1713–1732 (08/2011). IF2015:3.084.
- [50] Effects of integrations and adaptivity for the Eulerian-Lagrangian method, J. Jia, X. Hu, J. Xu, and C.-S. Zhang, Journal of Computational Mathematics, 29, 367–395 (06/2011). IF2015:0.731.
- [51] Stable finite element discretizations for viscoelastic flow models, Y.-J. Lee, J. Xu, and C.-S. Zhang, Handbook of Numerical Analysis (HNA) Vol. 16, Numerical Methods for Non-Newtonian Fluids, 371–432 (02/2011).
- [52] Multigrid methods for elliptic obstacle problems on 2D bisection grids, L. Chen, R. H. Nochetto, and C.-S. Zhang, Domain Decomposition Methods in Science and Engineering XIX, LNCSE Series, Springer-Verlag Berlin Heidelberg, 229–236 (01/2011). ISBN 978-3-642-11303-1.
- [53] A posteriori error analysis for a class of integral equations and variational inequalities, R. H. Nochetto, T. von Petersdorff, and C.-S. Zhang, Numerische Mathematik, 116, 519–552 (10/2010). IF2015:1.813.
- [54] A coarsening algorithm on adaptive grids by newest vertex bisection and its applications, L. Chen and C.-S. Zhang, Journal of Computational Mathematics, 28, 767–789 (08/2010). IF2015:0.731.

- [55] Adaptive methods for variational inequalities: theory and applications in option pricing, C.-S. Zhang, Lambert Academic Publishing, ISBN 978-3-8383-8457-3 (07/2010).
- [56] Adaptive finite element method for variational inequalities: theory and applications in finance, C. S. Zhang, Ph.D. Thesis, University of Maryland, College Park, ISBN 978-0549-32727-1 (07/2007).
- [57] A posteriori error analysis for parabolic variational inequalities, K.-S. Moon, R. H. Nochetto, T. von Petersdorff, and C.-S. Zhang, ESAIM: Mathematical Modelling and Numerical Analysis 41, 485–511 (05/2007). IF2009:1.483.
- [58] AFEM@matlab: A MATLAB package of adaptive finite element methods, L. Chen and C.-S. Zhang, Tech Report, University of Maryland at College Park (03/2007).
- [59] A modified augmented Lagrangian method for a class of monotone variational inequalities, B.-S. He, H. Yang, and C.-S. Zhang, European Journal of Operations Research 159, 35–51 (11/2004). IF2009:2.158.

Invited Conference Talks

- [1] 2025: Workshop on Approximate Computing in Numerical Linear Algebra, Beijing, China
- [2] 2024: Forum on Biomechanics, Beijing, China
- [3] 2024: Algorithm Software and Applications, Operations Research Society of China, Xinxiang, China
- [4] 2024: Summer School on Scientific Computing and Machine Learning, Shenzhen, China
- [5] 2023: HPCMid Workshop, Qingdao, China.
- [6] 2022: Plenary Speaker, International Multigrid Conference, Lugano, Switzerland
- [7] 2021: Summer School for Excellent Math Students, Nanjing University, China
- [8] 2019: International Workshop on Multiphysics Problems, China
- [9] 2019: Modeling & Simulation in Science, Saudi Arabia
- [10] 2018: Lenovo HPC Summit, China
- [11] 2016: International Conference on HPC Middleware, China
- [12] 2015: 4th Brazil–China Conference on Scientific Computing, China
- [13] 2015: 3rd International Conference on HPC and Applications, China
- [14] 2013: Plenary Speaker, 16th National Symposium on Numerical Methods in Fluids, China
- [15] 2013: Plenary Speaker, 4th Elsevier National Library Connect, China
- [16] 2012: Plenary Speaker, 21st Intl. Conference on Domain Decomposition Methods, France
- [17] 2011: Plenary Speaker, Symposium on Computational Science, Engineering and Finance, China

Other Invited Talks

- [1] Robustness and adaptivity of iterative solvers, Xiangtan University, Aug 21, 2022.
- [2] Development of open-source software for multicomponent porous media flow, Huawei, Shenzhen, July 7, 2022.
- [3] Numerical methods for problems with moving interface, ICIAM, Spain, July 17, 2019.
- [4] Simulation of fluid flow in carbonate reservoirs, Modeling & Simulation in Science, KAUST, Saudi Arabia, Feb 25, 2019.
- [5] Simulation of fluid flow in carbonate reservoirs, TU Delft, Netherlands, Nov 15, 2018.

- [6] Numerical simulation of an immersed rotating structure in fluid, CSIAM, Chengdu, Sep 15, 2018.
- [7] Multiphysics simulation and HPC, Lenovo HPC Summit, Beijing, Aug 31, 2018.
- [8] Numerical simulation of discrete fracture networks, CAM Colloquium, Penn State University, University Park, USA, Apr 30, 2018.
- [9] Field-scale petroleum reservoir simulation, Short Course at China University of Petroleum, Qingdao, June 28–30, 2017.
- [10] Challenges in field-scale petroleum reservoir simulation, International Workshop on Computational Mathematics for Young Scholars, Shanghai, June 04, 2017.
- [11] Parallel multilevel iterative methods for coupled PDEs, International Workshop on Fluid-Structure Interaction Problems, Singapore, June 02, 2016.
- [12] Parallel petroleum reservoir simulation: numerical methods and their implementation, Workshop on Large Scale Scientific Computing and Its Applications, Beijing, China, Dec 18, 2015.
- [13] Multilevel Iterative Methods for Coupled PDEs and Their Parallelization, 4th China-Brazil Conference on Scientific Computing, Xi'an, China, Sep 24, 2015.
- [14] High-performance computing and its applications, CCMA Luncheon Seminar, Penn State Univ, University Park, PA, USA, Aug 31, 2015.
- [15] Parallel solvers and multilevel methods for coupled PDEs, 3rd International Conference on HPC and Applications, Shanghai, China, July 26, 2015.
- [16] FASP solver project, NX Nastran, SIEMENS Co. Ltd., Shanghai, China, March 24, 2015.
- [17] Co-Design: From an algebraic solver perspective, International Workshop on Co-Design, HPC China, Guangzhou, China, Nov 07, 2014.
- [18] Multilevel preconditioners for multiphase multicomponent flows in porous media, 1st International Conference of Mathematics, Information and Computational Sciences, Beijing, China, Oct 20, 2014.
- [19] Multilevel iterative methods for fluid simulations, 16th National Symposium on Numerical Methods in Fluids, Fenghuang, China, Aug 23, 2013.
- [20] How to organize 2500 papers: 15 years ago and now, Elsevier National Library Connect, Nanchang, China, June 18, 2013.
- [21] Multilevel iterative methods for multiphase multicomponent flows in porous media, Tsinghua University, Beijing, China, April 26, 2013.
- [22] Adaptive Eulerian-Lagrangian method for advection-diffusion equations, Numerical Approximation of Partial Differential Equations, Gargnano, Italy, March 22, 2013.
- [23] FASP solvers and their applications in petroleum reservoir simulation, Seminar, China University of Petroleum, Qingdao, China, Oct 07, 2012.
- [24] Numerical simulation of multiphase multicomponent flows in porous media, Seminar, Institute of Mechanics, CAS, Beijing, China, Sep 17, 2012.
- [25] Fast auxiliary space preconditioning: implementation and applications in complex flows, 21st International Conference on Domain Decomposition Methods, Rennes, France, June 28, 2012.
- [26] A parallel GAMG solver for the Stokes problem, 8th International Conference on Scientific Computing and Applications, Las Vegas, US, April 03, 2012.
- [27] Effective solvers for enhanced oil recovery, International Symposium on Computational Science, Engineering and Finance, Kunming, China, July 29, 2011.

- [28] Toward field-scale petroleum reservoir simulation, PKU–PSU Smart Energy and Environment Workshop, Beijing, China, May 18, 2011.
- [29] Numerical simulation of enhanced oil recovery with polymer flooding, Institute of Computational Mathematics and Scientific/Engineering Computing, CAS, Beijing, China, Dec 21, 2010.
- [30] Software design for petroleum reservoir simulations, Applied Mathematics Seminar, Xiangtan University, Hunan, China, Nov 06, 2010.
- [31] Adaptive and multilevel algorithms for parabolic variational inequalities and their applications in finance, Seminar on Mathematical Finance, Rutgers University, NJ, Oct 08. 2010.
- [32] Eulerian-Lagrangian methods for complex fluids simulation, Numerical Analysis Seminar, University of Maryland, College Park, MD, Feb 24, 2010.
- [33] Multilevel algorithms for complex fluids, Department of Mathematical Sciences Colloquium, University of Nevada, Las Vegas, NV, Jan 28. 2010.
- [34] A new coarsening algorithm and its applications in multilevel preconditioning and adaptivity, Applied Mathematics Seminar, Nanjing University, Nanjing, China, Oct 19, 2009.
- [35] Multilevel algorithms for complex fluids simulation, The 19th International Conference on Domain Decomposition Methods, Zhangjiajie, Hunan, China, Aug 17, 2009.
- [36] Multilevel algorithms for complex fluids simulation, Numerical Analysis Seminar, University of California, Irvine, CA, May 11, 2009.
- [37] Adaptive methods for parabolic variational inequalities and their applications in finance, Computational and Applied Mathematics Colloquium, Penn State University, State College, PA, Jan 25, 2007.

Conference & Workshop (as organizer)

- Aug 2–5, 2025: Solver2025, Qingdao
- July 22–25, 2024: Solver2024, Chengdu
- July 08–19, 2024: CUHK and CUHK–Shenzhen joint summer school on scientific computing and machine learning, Shenzhen, China
- May 18–20, 2024: Numerical algorithms for microfluidic chip simulation, Shenzhen, China
- May 13-16, 2024: Machine learning and big data in porous media, Interpore24, Qingdao, China
- Dec 8–10, 2023: Algorithm, software and applications, Operations Research Society of China
- Aug 7-11, 2023: Solver2023, Xining
- July 20–24, 2022: Solver2022, Chongqing
- Nov 12–14, 2021: Solver2021, Beijing
- June 22–25, 2021: Workshop on scientific computing with applications (dedicated to J. Xu)
- Aug 6-8, 2020: Solver2020, Suzhou
- Sep 6–7, 2019: 5th Workshop on Numerical Methods for PDEs, Beijing
- Aug 15–16, 2019: Solver2019, Kunming
- Aug 11–16, 2019: International Multigrid Conference 2019, Kunming
- Jan 14, 2019: Workshop on High-Performance Numerical Algorithms and Software for Large-Scale Scientific and Engineering Applications, HPC Asia 2019, Guangzhou

- June 22-25, 2018: Solver2018, Shaoshan
- June 1-8, 2018: 5th Workshop on Inter-Facial Dynamics and FSI Problems, Beijing & Sanya
- Dec 5–6, 2015: International Forum on Petroleum Reservoir Simulation, Guangzhou
- Aug 8–9, 2015: Workshop on finite element methods, Beijing
- Aug 5-7, 2015: Short course on multigrid methods and applications, Beijing
- July 15-25, 2013: Workshop on Scientific Computing with Application, Kunming
- March 20–22, 2013: Numerical Approximation of PDEs (dedicated to R. Nochetto)
- Dec 6-7, 2012: International Forum on Petroleum Reservoir Simulation, Beijing
- Oct 28, 2011: Workshop on Mathematical Methods in Petroleum Reservoir Simulation, Beijing
- Aug 01-10, 2011: Workshop on Algebraic Multigrid Methods, Kunming

Teaching Experiences

Fall 2024	Academy of Mathematics and Systems Science
Introduction to Multilevel Iterative Methods	
Spring 2023	Academy of Mathematics and Systems Science
Introduction to Multilevel Iterative Methods	
Summer 2022	University of CAS, Online
Fast Solvers for Large Algebraic Systems	
NJU Summer School 2021	Nanjing University, Online
Algorithms and Applications for Supercomputing	
Fall 2016/2018/2020	Academy of Mathematics and Systems Science
Introduction to Multilevel Iterative Methods	
PSU–PKU Joint Summer School 2009	Peking University, Beijing
Numerical Methods for Partial Differential Equation	ions
Fall 2008	Penn State University, State College
Graduate Course: Numerical Analysis I – Introdu	action to Algorithms
Spring 2008	Penn State University, State College
Graduate Course: Advanced Numerical Optimizat	ion
PSU–PKU Joint Summer School 2008	Peking University, Beijing
Numerical Methods for Partial Differential Equation	ions
Spring 2009	Penn State University, State College
Calculus II	<i>y</i> ,
Spring 2008	Penn State University, State College
Linear Algebra	2

Fall 2007 Advanced Calculus Penn State University, State College

Fall 2002, Spring/Fall 2003, Fall 2004 Calculus I/II University of Maryland, College Park

Software Projects

- FASP: A software package for high-performance auxiliary space preconditioners
- OpenCAEPoro: An open-source package for multicomponent porous media flow
- OpenCAXPlus: An open-source project that combines CAD/CAE/CAM and AI
- AFEM@matlab: A Matlab package for adaptive finite element methods (now in iFEM)

Graduate Students and Postdocs

- (8) Li Zhao, Postdoc, 2023-present
- (7) Yan Xie, PhD student, 2021-present
- (6) Bin Dai, PhD student, 2020–present
- (5) Shizhe Li, PhD student, 2019–2024
- (4) Kailei Zhang, master student, 2018–2021
- (3) Huilan Zeng, PhD student, 2016–2021
- (2) Ronghong Fan, PhD student, 2015–2020
- (1) Xuefeng Xu, PhD student, 2014–2019

Visiting Scholars and Students

- (7) Boqian Shen, KAUST, Saudi Arabia, 03/2023-07/2023
- (6) Ting Lai, Xiangtan University, China, 07/2021-08/2021
- (5) Huipeng Gu, Southern Univ of Science & Technology, China, 07/2021–08/2021
- (4) Haoran Qi, Penn State University, USA, 09/2020–12/2020
- (3) Wenchao Teng, Chinese Univ of Petroleum, Qingdao, 07/2017-12/2017
- (2) Haifeng Zou, Beijing Univ of Technology, 09/2016-06/2018
- (1) Zheng Li, Xiangtan University, 09/2014–12/2016

Skills

Languages: Chinese (native), English (fluent)

Computer Skills: C/C++, Fortran, MPI/OpenMP, Matlab, Mendeley Advisor Certificates: Senior Programmer Certificate (now as Software Designer Certificate)

References

${\rm Professor}\ {\rm Dr}.\ {\bf Bingsheng}\ {\bf He}$

Department of Mathematics Nanjing University Nanjing, JS, 210093, China

Professor Dr. **Ricardo Nochetto** Department of Mathematics University of Maryland College Park, MD 20742, USA

Professor Dr. Jinchao Xu

Department of Mathematics Penn State University University Park, PA 16802, USA

Professor Dr. **Jun Hu** School of Mathematical Sciences Peking University Beijing, 100871, China

Professor Dr. **Gabriel Wittum** Applied Math. & Computational Sciences King Abdullah Univ. of Science & Technology Thuwal 23955, Saudi Arabia

Professor Dr. Ludmil Zikatanov Department of Mathematics Penn State University University Park, PA 16802, USA Phone: +86 138-1390-5718 Email: hebma@nju.edu.cn Web: http://math.nju.edu.cn/~hebma/

Phone: +1 301-405-5145 Email: rhn@math.umd.edu Web: http://www.math.umd.edu/~rhn

Phone: +1 814-865-1110 Email: xu@math.psu.edu Web: http://www.math.psu.edu/xu

Phone: +86 136-7137-5669 Email: hujun@math.pku.edu.cn Web: http://dsec.pku.edu.cn/~hujun/

Phone: +49 170-919-6248
Email: wittum@g-csc.de
Web: https://cemse.kaust.edu.sa/org/mas

Phone: +1 814-880-0146
Email: ludmil@psu.edu
Web: http://www.personal.psu.edu/ltz1/

Last updated on 2025/04/08 18:18:18