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Abstract

By Bezout’s theorem, three quadric surfaces may have infinitely intersections, but have at

most eight isolated intersections. In this paper, we present an efficient and robust algorithm

to obtain the isolated and the connected components of the real intersections of three quadric

surfaces. Moreover, the conditions under which the intersections are finite and infinite are

thoroughly investigated. Furthermore, our method can be used to find the number of

isolated real intersections.
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1 Introduction

Quadric surfaces, or surfaces of degree two, are widely used in mechanical CAD/CAM and

computer graphics. There is plenty of literature on the intersection of two quadric surfaces

[12, 13, 4, 16, 17, 3, 10]. Finding the intersection points of three quadrics is also an important

subject in CAGD [2]. Throughout the paper, every quadric surface discussed is assumed

to be defined by the zero set of a quadratic form XT AX in 3D real affine space, where

X = (x, y, z, 1)T is a 4D column vector and A is a 4× 4 real symmetric matrix. The set of

intersection points of three quadrics XT AX = 0 , XT BX = 0 and XT CX = 0 comprises

all the points in 3D real affine space that satisfy the three equations. The following questions

are of the fundamental importance in dealing with the intersection of three quadrics.

(1) Under what conditions do the three surfaces have real intersections?

(2) Under what conditions is the number of real intersections finite?

(3) How to count the real intersections if the number of real intersections are finite?

(4) How to count the isolated real intersections when the number of real intersections is

infinite?

(5) How to find the real intersections including isolated and the connected components

efficiently and robustly?

The goal of this paper is to answer all the questions above.

Traditionally, the polynomial system representing the intersection is solved by using

Sylvester resultants successively. In [2], a more efficient method is proposed to compute

the intersection of three quadrics using Macaulay’s multivariate resultant. The idea works
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as follows. First, by using multivariate resultant, an univariate intersection polynomial

equation P = 0 of degree at most eight is derived. After solving this equation, for each

real root of P = 0, a system of three polynomial equations in two variables is obtained .

The solution of the system of three polynomial equations in two variables involves the use

of Sylvester resultant and GCD of the pairwise resultants. All these resultant calculations

are expensive ones especially the calculation of the multivariate resultant. In addition, the

floating point GCD computation is highly unstable. Another drawback of this method is

that in some cases, the multivariate resultant may be identically equal to zero, even if there

are only finitely intersection points. In this case, the method fails to produce anything.

Example 1 Let a1x+ b1y + c1z = 0, (a1x+ b1y + c1z)(a2x+ b2y + c2z)+a2x+ b2y + c2z =

0, and (a1x + b1y + c1z)(a3x + b3y + c3z) + a3x + b3y + c3z = 0 be equations of three

quadric surfaces. It is easy to see that the system has exactly one real root (0,0,0) if the

coefficients are generic. The rank of the matrix of the coefficients of y2 , yz , and z2 is 2.

x-homogenizing the system yields

a1xwx + b1y + c1z = 0,
(a1xwx + b1y + c1z)(a2xwx + b2y + c2z) + wx(a2xwx + b2y + c2z) = 0,
(a1xwx + b1y + c1z)(a3xwx + b3y + c3z) + wx(a3xwx + b3y + c3z) = 0,

(1)

where wx is the homogenizing variable. It is easy to see that the line defined by wx = 0 and

b1y+c1z = 0 represents a set of nontrivial solutions of (1). So the multivariate resultant for

the x-homogenized system is identically equal to zero. Similarly, the multivariate resultants

for the y and z -homogenized systems are identically equal to zero. In this case, a generic

linear transformation of the variables yields a system of the same structure. Thus this

system cannot be solved by using multivariate resultant.
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Another obvious approach to computing the intersection points of three quadrics is

to use Levin’s [12] or enhanced Levin’s method[17] to get a parametric equation of the

intersection curve of two of the three quadrics and then substitute the parametric equation

into the remaining quadric. The roots of the resulting equation correspond to the points of

the intersection of three quadrics. But the parametric equation of the intersection curve may

contain a square root. Therefore, the degree of the resulting equation can be higher than

8. For example, assume that the intersection curve of two quadratics is x(u) = (a1(u) +

√
s(u)b1(u))/p(u), y(u) = (a2(u) +

√
s(u)b2(u))/p(u), z(u) = (a3(u) +

√
s(u)b3(u))/p(u),

where s(u)is a quartic polynomial,ai(u), 1 ≤ i ≤ 3 is a cubic polynomial and bi(u), 1 ≤ i ≤ 3

and p(u) are both linear polynomials. Substituting the equation into z2 = 0, we have,

a4
3(u) + b4

3(u)s(u) + 2a2
3(u)b2

3(u)s(u) − 4s(u)a2
3(u)b2

3(u) = 0. The resulting equation is of

degree 12. Moreover, for any real root u0 of the resulting equation, we have to determine

whether s(u0) ≥ 0. Hence, the number of real roots of the resulting equation does not agree

with the number of real quadric intersections.

Based on Levin’s method of computing the intersection curve of two quadrics [12, 13], in

this paper, we present a more efficient and robust method for finding all of the real quadric

intersection points including isolated points and connected components. Assume that three

quadrics A , B , and C are given. Using Levin’s method, we can transform the problem

of finding the intersection points of A , B , and C , to finding the intersection points of

parametric curves E(u, v) = 0 and F (u, v) = 0, where E and F are polynomials of degree

at most 6 with degree at most 2 in v and at most 4 in u . Then an univariate polynomial of

degree at most eight in u can be derived from those 2 equations by using resultant. Under
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a minor restriction, the number of real roots of the univariate polynomial agrees with the

number of real quadric intersections. Hence, by using Sturm Sequence or the results from

[18], we can count the real quadric intersections. So, (1) and (3) can be answered. Based

on a detailed analysis of the system E = F = 0, (2), (4), and (5) can be answered.

2 Preliminaries

We assume that each quadric surface A is given as the solution set in R3 of a quadratic

implicit equation XT AX = 0, where X = (x, y, z, 1)T is a 4D column vector and A is a

4×4 real symmetric matrix. We use the same notation A for a quadratic implicit equation

and its associated matrix; the corresponding quadric surface is denoted as A. Let three

quadric surfaces be defined by A : XT AX = 0,B : XT BX = 0, and C : XT CX = 0. For

brevity, similar to the notations used in [12], the intersection curve of two quadrics A,B

and the intersections of three quadrics A,B , and C will be referred to as QSIC(A, B)

and TQSI(A,B, C) (Three Quadric Surfaces Intersection) respectively. For a given set S,

throughout the rest of the paper , #S denotes the cardinality of S.

We will refer to the 3× 3 upper left submatrices of A , B , and C , denoted by Au , Bu ,

and Cu , as the principal submatrices of A , B , and C respectively. The determinant of

such a matrix is called the principal subdeterminant.

Given two distinct quadrics A : XT AX = 0 and B : XT BX = 0, the pencil generated

by A and B is the set R(λ) with equations XT (A + λB)X = 0, λ ∈ R.

When considering the intersection curve of two quadric surfaces, Levin proved that

there exits a so called parameterization surface, a simple ruled surface, in the pencil of two
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quadrics [12]. This idea is very useful for parameterizing QSIC and has inspired several

subsequent papers on its applications and improvement [17, 11, 10]. Levin’s method is

based on the following key result:

Theorem 1 [12] The pencil generated by two distinct quadric surfaces contains at least

one simple ruled quadrics, i.e., a plane, pair of planes, hyperbolic or parabolic cylinder, or

a hyperbolic paraboloid.

A more concise proof of Theorem 1 is given in [17].

One important property of the simple ruled quadrics in Theorem 1 is that their principal

subdeterminants are zero(cf.[12]). So to find a simple ruled quadric in the pencil generated

by A and B , we need to compute the type of B and of the quadrics R(λ) = A − λB ,

where λ is a solution of det Ru(λ) = 0.(cf.[12]) (By [13], when det Ru(λ) ≡ 0, the problem

can be easily solved by considering the roots of det R(λ) = 0.) By Theorem 1, one of these

quadrics is simple ruled. Let R be such a quadric and assume that R and B are distinct

(otherwise, we simply swap A and B ).

By [12] and [13], the simple ruled quadric R can be reduced, by a series of affine

transformations T , to an appropriate normal form given in Table 1. (To remove two layers

of nested radicals from Levin’s algorithm, L. Dupont etc. suggest using Gauss’ method for

the reduction of the simple ruled quadric R.cf.[3] ) The parameterization of the normal

form is also described in Table 1. The parameterization is denoted by q(u, v). Substituting

q(u, v) for X in XT BX = 0 yields

E : e2(u)v2 + e1(u)v + e0(u) = 0. (2)
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The respective degrees of the polynomials e0, e1 and e2 are also given in Table 1.

Table 1. Parameterizations of normal simple ruled quadrics

quadric canonical equation parameterization degree of e2, e1, e0

simple plane x=0 q(u, v) = [0, u, v, 1] 0,1,2
double plane x2 = 0 q(u, v) = [0, u, v, 1] 0,1,2

parallel planes x2 = 1 q(u, v) = [±1, u, v, 1] 0,1,2
intersecting planes x2 − y2 = 0 q(u, v) = [u,±u, v, 1] 0,1,2

hyperbolic paraboloid z − xy = 0 q(u, v) = [u, v, uv, 1] 2,2,2
parabolic cylinder x2 − y = 0 q(u, v) = [u, u2, v, 1] 0,2,4
hyperbolic cylinder xy − 1 = 0 q(u, v) = [u, 1/u, v/u, 1] 0,2,4

It is easy to see that when q(u, v) is substituted into XT CX = 0 for X , we shall obtain

an equation with exactly the same form as E :

F : f2(u)v2 + f1(u)v + f0(u) = 0. (3)

This reduction from a system of three equations to a system of two equations in the form

of (2) is crucial to our method. This new system is much easier to analyze and yet it still

carries all the information about TQSI(A,B, C). We shall analyze the system E = F = 0

in the next section.

3 The Morphology of TQSI

For given quadrics A,B , and C , let’s consider

E : e2(u)v2 + e1(u)v + e0(u) = 0,

F : f2(u)v2 + f1(u)v + f0(u) = 0, (4)

where E and F are defined in (2) and (3).

In general, each real root of system (4), (u0, v0), corresponds to exactly one real point

in TQSI(A,B,C), i.e. T −1q(u0, v0), since T is an invertible transformation. Moreover,
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if R isn’t a double plane, the multiplicity of a root (u0, v0) of E = 0, F = 0 agrees with

the multiplicity of T −1q(u0, v0) in TQSI(A,B, C). When R is a double plane, the double

multiplicity of a root (u0, v0) of E = 0, F = 0 agrees with the multiplicity of T −1q(u0, v0)

in TQSI(A,B, C). But when R is a hyperbolic cylinder, the real roots of the form (0, v0)

correspond to real points of TQSI(A, B,C) at infinity. Hence, throughout the rest of the

paper, when R is a hyperbolic cylinder, we will discard u = 0 from the lists of real roots

of relevant polynomial equations without further declaration. Throughout the rest of the

paper, by abusing our notation, we denote T −1q(u, v) simply by q(u, v), whenever it does

not cause any confusion.

By Table 1, the degrees of E and F in u and v are two and two respectively if q(u, v) is

not a representation of a parabolic cylinder nor a hyperbolic cylinder. In this case, by multi-

homogeneous Bezout theorem [15], system (4) has at most 8 isolated roots in the complex

2-projective space P1 × P1 . (The 2-homogeneous Bezout number for the system is the

coefficient of α1α2 in (2α1 +2α2)2 .) In particular, when q(u, v) is a hyperbolic paraboloid,

the degree of E and F is 4. In this case, the intersection points of E and F are infinite in

complex project space.But the infinite intersection points only occur in infinite. Moreover,

by multi-homogeneous Bezout theorem, the isolated intersection points in complex project

space is at most 8. In case q(u, v) is a representation of a parabolic cylinder or a hyperbolic

cylinder, system (4) can be easily reduced to an equation in u of degree less than or equal

to 8. Thus in any case, no extraneous intersection points are introduced through this

transformation from the intersection of 3 surfaces to the intersection of two curves, except

at infinity of some projective spaces.
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If E or F is independent of v , then the problem becomes very simple. So from now

on, we assume both E and F depend on v unless otherwise mentioned. Let G(u) =

res(E,F, v), the Sylvester resultant of E and F with respect to v . For example,

G =

∣∣∣∣∣∣∣∣∣

e2 e1 e0 0
0 e2 e1 e0

f2 f1 f0 0
0 f2 f1 f0

∣∣∣∣∣∣∣∣∣

when e2(u) 6≡ 0 and f2(u) 6≡ 0. It is easy to see that deg G ≤ 8. If for u0 ∈ R,

ei(u0) = 0 and fi(u0) = 0, 0 ≤ i ≤ 2, then E(u0, v) ≡ 0 and F (u0, v) ≡ 0. Hence,

in this case, TQSI(A, B,C) contains infinite real intersections. To deal with the case,

we let g(u) =
∑2

i=0 e2
i (u) +

∑2
i=0 f2

i (u). Obviously g(u0) = 0 implies ei(u0) = 0 and

fi(u0) = 0, 0 ≤ i ≤ 2.

Hence, when g(u0) = 0, the parametric curve q(u0, v) is a subset of TQSI(A,B, C).

If g(u) ≡ 0, then the parametric surface q(u, v) is a subset of TQSI(A,B,C). For any

X ∈ TQSI(A,B), X belongs to the surface defined by the matrix A+λB . So X ∈ q(u, v).

Thus q(u, v) = TQSI(A, B,C). So we have the following

Theorem 2 If g(u) is not identically zero and g(u) = 0 has a real root u0 , then TQSI(A,B, C)

contains the curve q(u0, v). If g(u) ≡ 0, then TQSI(A, B,C) is the parametric surface

q(u, v).

If g(u) = 0 has a real root u0, then TQSI(A,B,C) contains the curve T −1q(u0, v)

(here, we need to distinguish T −1q(u0, v) and q(u0, v)). By table 1, q(u0, v) is a generating

line of the simple ruled quadric R.

When g(u) = 0 has no real root, if G ≡ 0, TQSI(A,B, C) may still have infinitely

many points. Hence, The condition that g(u) = 0 has real roots is only sufficient for
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TQSI(A,B, C) to contain infinitely many points. The next theorem can be used to check

if the number of the real points in TQSI(A,B,C) is finite.

Theorem 3 Suppose G 6≡ 0. Then # TQSI(A,B,C) is finite if and only if g(u) = 0 has

no real roots.

Proof. By theorem 2, if # TQSI(A,B,C) is finite, then g(u) = 0 must not have any real

roots. Now let us assume that g(u) = 0 has no real roots. Let u1, ..., uk be the real roots of

G = 0, where 0 ≤ k ≤ 8. Since g(ui) 6= 0, for each ui , the system E(ui, v) = F (ui, v) = 0

has at most 2 real roots, i = 1, ..., k . Thus # TQSI(A,B,C) is finite. (By Bezout theorem,

#TQSI(A,B, C) ≤ 8.) 2

But when G ≡ 0, TQSI(A,B, C) may have infinite or finite points. We will analysis

the case in detail. Let D(u, v) = GCD (E, F ). By Proposition 1 of [1, §3.6], G ≡ 0 if and

only if the degree of D(u, v) in v is positive. Thus we have the following

Theorem 4 If G ≡ 0, then TQSI(A,B, C) is the union of set of the points corresponding

to the real roots of D(u, v) = 0 and the set of the points corresponding to the real roots of

E/D = F/D = 0.

Remark 1 If G ≡ 0, then the degree of D(u, v) in v is positive. So it can only be 1 or

2. If the degree of D(u, v) in v is 1, then D = 0 defines the (real) curve(s) with equation

v = −d0(u)
d1(u) , where D(u, v) = d1(u)v + d0(u). If the degree of D(u, v) in v is 2, then we

can factor D(u, v) into the form: D(u, v) = H(u)D̃(u, v), where D̃(u, v) has no factor

depending only on u. If H(ui) = 0 for some real ui , i = 1, · · · , k , then D(u, v) = 0

defines the curves u = ui, i = 1, · · · , k . The handling of D̃(u, v) = 0 is the same as that of
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D(u, v) = 0 with H(u) = 0 having no real roots. Now let’s assume that H(u) = 0 has no

real roots. Let Dis(u) be the discriminant of D̃(u, v), where u is regarded as constant. If

Dis(u) ≡ 0, then D̃(u, v) = 0 and therefore D(u, v) = 0 defines the curve(s) with equation

v = −d1(u)
2d2(u) , where D(u, v) = d2(u)v2 + d1(u)v + d0(u). If Dis(u0) > 0 for some real u0 ,

then Dis(u) ≥ 0 for u ∈ [a, b] for some a < b. Thus D(u, v) = 0 defines the curve(s)

with equation v = −d1(u)±
√

Dis(u)

2d2(u) . If Dis(u) < 0 on (a, u0) ∪ (u0, b), where a < b, and

Dis(u0) = 0, then D(u, v) = 0 has an isolated real root (u0,
−d1(u0)
2d2(u0) ), provided d2(u0) 6= 0.

Since Dis(u0) = (d1(u0))2− 4d2(u0)d0(u0) = 0 and d2(u0) = 0 would imply H(u0) = 0, so

d2(u0) 6= 0.

Note that when the degree of D(u, v) in v is 2, E/D and F/D are independent of v .

Thus the system E/D = 0 and F/D = 0 can not have real roots, since otherwise E/D

and F/D would have a nonconstant common factor h(u) which contradicts the fact that

D(u, v) is the GCD of E and F.

The following examples demonstrate a variety of cases in Remark 1.

Example 2 A = y + x2 = 0, B = z2 + 1 − y = 0, and C = 2z2 + 2 − 2y = 0. A can

be parameterized as x = u, y = −u2, z = v . Then E = v2 + 1 + u2 and F = 2v2 +

2 + 2u2 . Obviously, G ≡ 0 and D(u, v) = v2 + 1 + u2 . Since Dis(u) = −4 − 4u2 < 0,

TQSI(A,B, C) = ∅.

Example 3 A = y + x2 = 0, B = z2 + y − xy = 0, and C = 2z2 + 2y − 2xy = 0. A can be

parameterized as x = u, y = −u2, z = v . Then E = v2− u2 + u3 and F = 2v2− 2u2 + 2u3 .

Obviously, G ≡ 0, D(u, v) = v2 − u2 + u3 and Dis(u) = −4u2 + 4u3 . It is easy to see that
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on (−∞, 0) ∪ (0, 1) Dis(u) < 0, Dis(0) = 0, and Dis(u) > 0 on (1,∞). So {(0, 0, 0)} is

the only isolated point in TQSI(A,B,C) and v = ±2u
√

u− 1 for u ≥ 1 corresponds to

curves in TQSI(A,B, C).

Example 4 A = y + x2 = 0, B = z(1 + y) = 0, and C = z2 + z(1 + y) = 0. A can be

parameterized as x = u, y = −u2, z = v . Then E = v(1 − u2) and F = v2 + v(1 − u2).

Obviously, G ≡ 0 and D(u, v) = v . So TQSI(A,B,C) contains the curve defined by z = 0

and y = −x2 . E/D = 0 and F/D = 0 correspond to two isolated points (±1,−1, 0).

Remark 2 Assume that G 6≡ 0 and g 6≡ 0 and u1, ..., uk are the real roots of g = 0. Then

g is divisible by u−ui . So there exist integers ni so that g(u) = (u−u1)n1 · · · (u−uk)nk g̃(u),

where g̃(ui) 6= 0. Since g(u) =
∑2

i=0 e2
i (u)+

∑2
i=0 f2

i (u), it is easy to see that ni ’s are even

numbers. Let Ẽ = E/
∏

(u − ui)ni/2 , F̃ = F/
∏

(u − ui)ni/2 , and G̃ be the resultant of Ẽ

and F̃ . Then g̃ = 0 has no real roots and G̃ 6≡ 0. Thus Ẽ = F̃ = 0 has only finitely

real roots. It is easy to see that the real roots of Ẽ = F̃ = 0 corresponds to points in

TQSI(A,B, C).

Combining the discussions of Remarks 1 and 2 we have the following

Theorem 5 If G 6≡ 0 and g 6≡ 0, then the number of isolated points in TQSI(A,B,C) is

equal to the number of real solutions of Ẽ = F̃ = 0. If G ≡ 0 and g 6≡ 0, then the number

of isolated points in TQSI(A, B,C) is equal to the number of real solutions of Ẽ = F̃ = 0

plus the number of isolated solutions of D(u, v) = 0.

Furthermore, we have

12



Theorem 6 If TQSI(A,B,C) has infinite points, then number of isolated points in TQSI(A,B, C)

is less than or equal to 4.

proof: Since TQSI(A,B, C) has infinitely many real points, by Theorem 3, either G ≡ 0

or g(u) = 0 has real roots. When g(u) = 0 has real roots but G 6≡ 0, by Theorem 5, we

only need to consider the number of real roots of Ẽ = 0, F̃ = 0. In case e2 ≡ 0 and f2 ≡ 0,

the degree of res(Ẽ, F̃ , v) is less than or equal to 4 and thus the conclusion follows.

If e2 6≡ 0 or f2 6≡ 0, by Table 1, g(u) = 0 has real roots can only happen when q(u, v)

is a parameterization of hyperbolic paraboloid. In this case, the degrees of Ẽ and F̃ in u

are no more than 1. Write Ẽ = uQ1(v) + Q2(v) and F̃ = uQ3(v) + Q4(v), where Qi(v)

is a polynomial with degree in v no more than 2. Obviously, the degree of res(Ẽ, F̃ , u) is

less than or equal to 4. Since Ẽ and F̃ are linear in u, the number of real roots of system

Ẽ = 0, F̃ = 0 is less than or equal to 4.

When G ≡ 0 and g(u) = 0 has no real roots, let us consider Ê = E
D and F̂ = F

D , where

D(u, v) is a GCD of E and F with positive degree in v. If the degree of D(u, v) in v is 1,

then the real roots of D(u, v) = 0 correspond to connected components of TQSI(A,B, C).

So we only need to consider Ê = ê1(u)v + ê0(u) = 0, and F̂ = f̂1(u)v + f̂0(u) = 0. By

looking at the degrees of ei(u) listed in Table 1, it is easy to prove that the degree of

res(Ê, F̂ , v), i.e. ê1(u)f̂0(u)− f̂1(u)ê0(u), is less than or equal to 4. So the number of real

roots of system Ẽ = 0, F̃ = 0 is less than or equal to 4.

Finally, let us look at the case where the degree of D(u, v) in v is 2. By remark 1, we

only need to consider H(u) = 0 and Dis(u). Since H(u) = 0 implies g(u) = 0 and that

case has been discussed, it suffices to consider the case where H(u) = 0 has no real roots.
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Since there are infinitely many intersection points, Dis(u) ≡ 0 or Dis(u0) > 0 for some

real u0 . If Dis(u) ≡ 0, TQSI(A,B,C) contains no isolated real points. If Dis(u0) > 0

for some real u0 , the number of isolated real points in TQSI(A,B, C) is the same as the

number of real roots of Dis(u) = 0 at which Dis(u) has local minimums. Since the degree

of Dis(u) is at most 4, the number of isolated real roots of D(u, v) = 0 is less than or equal

to 1. 2

Remark 3 It is easy to check whether G ≡ 0. By using Sturm Sequence, we can detect

whether there exits u0 ∈ R such that g(u0) = 0. When TQSI(A,B, C) has infinitely

many real points, Remarks 1 and 2 can be used to calculate the connected components

of TQSI(A,B, C). The results of [16, 17] can also be used to calculate and classify the

morphology of the connected components of TQSI(A,B,C).

4 Counting and Computing the Real Points in TQSI(A,B, C)

Let G(u) = res(E, F, v). Obviously, the degree of G(u) is no more than 8. In this section,

we assume that G(u) 6≡ 0 and g(u) has no real roots, since otherwise we can reduce the

problem to a new problem with G(u) 6≡ 0 and g(u) has no real roots, using the results

from theorems 4, 5 and remarks 1 and 2. Hence, by Theorems 3, the number of real points

in TQSI(A,B, C) is finite. It is to see that system (4) can be reduced to :

e2(u)v2 + e1(u)v + e0(u) = 0,

(−f2(u)e1(u) + e2(u)f1(u))v + f0(u)e2(u)− e0(u)f2(u) = 0. (5)

It is not hard to see that if −f2(u0)e1(u0) + e2(u0)f1(u0) = 0 and f0(u0)e2(u0) −
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e0(u0)f2(u0) = 0, then the four columns (rows) of H =




e2(u0) e1(u0) e0(u0) 0
0 e2(u0) e1(u0) e0(u0)
f2(u0) f1(u0) f0(u0) 0
0 f2(u0) f1(u0) f0(u0)




are linearly dependent. Let s(u) = (−f2(u)e1(u)+e2(u)f1(u))2+(f0(u)e2(u)−e0(u)f2(u))2.

Then s(u0) = 0 implies G(u0) = det(H) = 0. In this case, (5), and therefore (4), may have

0, 1, or 2 real solutions counting multiplicity. So, it is important to see whether s(u) = 0

has a real root. We have

Theorem 7 When s(u) = 0 has no real roots, the number of real roots of G(u) = 0 agrees

with the number of real roots of polynomial system (4) counting multiplicity.

Proof. Let u0 be such that G(u0) = 0 with multiplicity m . Let S(v) = e2(u0)F −f2(u0)E ,

and consider

S = (−f2(u0)e1(u0) + e2(u0)f1(u0))v + f0(u0)e2(u0)− e0(u0)f2(u0) = 0. (6)

If −f2(u0)e1(u0) + e2(u0)f1(u0) 6= 0, then (6) is linear and therefore (4) has exactly one

solution. Since G(u) = (f0(u)e2(u)−e0(u)f2(u))2−(−f2(u)e1(u)+e2(u)f1(u))(e1(u)f0(u)−

e0(u)f1(u)), −f2(u0)e1(u0)+e2(u0)f1(u0) = 0 would imply that f0(u0)e2(u0)−e0(u0)f2(u0) =

0 and thus s(u0) = 0. So −f2(u0)e1(u0) + e2(u0)f1(u0) 6= 0. Therefore, each root of

G(u) = 0 corresponds to exactly one solution of polynomial system (4)with multiplicity

m . Hence, the number of real roots of G(u) = 0 agrees with the number of real roots of

polynomial system (4) counting multiplicity. 2

By using the method of [18] or Sturm Sequence, we can obtain the number of real roots

of G(u). Hence, when s(u) = 0 has no real roots, we can obtain the number of real points in

TQSI(A,B, C). In case s(u) has real roots, one can compute q(u) = GCD(−f2(u)e1(u) +
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e2(u)f1(u), f0(u)e2(u) − e0(u)f2(u)). Note q(u) is a polynomial of degree ≤ 4. Hence, we

can find the exact real roots of equation q(u) = 0. Denote them as u1, · · · , um , where

m ≤ 4. Denote the number of common real roots of e2(ui)v2 + e1(ui)v + e0(ui) = 0 and

f2(ui)v2 + f1(ui)v + f0(ui) = 0 as ni . Then we have

Corollary 1 The number of real roots of polynomial system (4) is equal to
∑m

i=1 ni +

M, where M is the number of real roots of G(u)/
∏m

i=1(u − ui)ki = 0, ki is the largest

integer such that G(u) is divisible by (u− ui)ki , ni is the number of common real roots of

e2(ui)v2 + e1(ui)v + e0(ui) = 0 and f2(ui)v2 + f1(ui)v + f0(ui) = 0, where ui is the real

root of q(u) = GCD(−f2(u)e1(u) + e2(u)f1(u), f0(u)e2(u)− e0(u)f2(u)) = 0, 1 ≤ i ≤ m.

Example 5 Let A = z − xy , B = z2 − 1, and C = yz + xz + x2 − y . Then A can be

parameterized as x = u, y = v , and z = uv . Thus E = u2v2−1, F = uv2 +(u2−1)v+u2 ,

G = u4(u4 − u2 + 2 + 2u), and s(u) = u4(u2 − 1)2 + (u4 + u)2 . The common real roots of

G(u) = 0 and s(u) = 0 are u = 0, 1. u = 0 corresponds to no real roots, while u = −1

corresponds to v = ±1. The number of real roots of polynomial system (4) is equal to 2.

In Section 3 and 4,we obtained some sufficient conditions in terms of the roots of s(u),

g(u) and G(u) of #TQSI .We summarize these necessary and sufficient conditions for

different cases in the following theorem.

Theorem 8 Let G(u) = res(E,F, v), g(u) =
∑2

i=0 e2
i (u)+

∑2
i=0 f2

i (u) and s(u) = (−f2(u)e1(u)+

e2(u)f1(u))2 + (f0(u)e2(u)− e0(u)f2(u))2. Then

(1) When G 6≡ 0, #TQSI(A,B, C) is finite if and only if g(u) = 0 has no real roots;
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(2) When G ≡ 0, #TQSI(A,B, C) may have finite or infinite many points. The detail

analysis is presented in Remark 1;

(3) When g(u) have real roots, #TQSI(A,B, C) is infinite;

(4)When TQSI(A,B, C) has infinite points, then number of isolated points in TQSI(A,B,C)

is less than or equal to 4;

(5)When G 6≡ 0 and g(u) has no real roots,#TQSI(A,B, C) equal to
∑m

i=1 ni + M.

The ni and M is defined in Corollary 1.

By using the Theorem and Corollary above, we shall give an algorithm for counting

the real intersections of TQSI. Moreover, by analysing the multiplicity of G(u) = 0, it is

not difficult to construct a similar algorithm to present the multiplicity of the intersection

points in TQSI. A similar algorithm used to calculate TQSI instead of counting the real

intersections of TQSI will also be given.

Algorithm 1

Input: Three distinct quadrics A : XT AX = 0,B : XT BX = 0 and C : XT CX = 0.

Output: M , the number of isolated real points in TQSI(A,B, C); I , a flag with values “True”

or “False” to indicate whether TQSI(A,B, C) has connected components.

• Begin

Step 0. M:=0; I:=False.

Step 1. Generate

E : e2(u)v2 + e1(u)v + e0(u) = 0,
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F : f2(u)v2 + f1(u)v + f0(u) = 0. (7)

Step 2. Compute G = res(E, F, v)

If G ≡ 0 Do

go to Step 3.

End If

go to Step 4.

Step 3. (This step is used to handle the situation where G ≡ 0.)

Compute D(u, v) = GCD(E, F ). Use Remark 1 to determine n and N , the number

of isolated and the total number of real roots of D(u, v) = 0 respectively

M:=M+n

If N = ∞ Do

I:= True

End If

E := E
D ; F := F

D

Go to Step 5

Step 4. (This step is used to handle the situation where G 6≡ 0.)

If there exits u0 ∈ R, such that
∑2

i=0 e2
i (u0) +

∑2
i=0 f2

i (u0) = 0 Do

I := True

Use remark 2 to reduce E and F
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End If

Go to Step 5

Step 5. Find m, the number of real roots of (−f2(u)e1(u) + e2(u)f1(u))2 + (f0(u)e2(u) −

e0(u)f2(u))2 = 0

If m = 0 Do

go to Step 6

End If

go to Step 7

Step 6. Find n, the number of real roots of G = 0

M:=M + n

STOP

Step 7. Compute q(u) = GCD(−f2(u)e1(u) + e2(u)f1(u), f0(u)e2(u)− e0(u)f2(u)).

Find the real roots of q(u) = 0, denoted as u1, · · · , um , m ≤ 4

Find ni , the number of common real roots of e2(ui)v2 + e1(ui)v + e0(ui) = 0 and

f2(ui)v2 + f1(ui)v + f0(ui) = 0

M := N +
∑m

i=1 ni, where N is the number of real roots of G(u)/
∏m

i=1(u− ui)ki = 0

and ki denotes the maximal integer such that G is divisible by (u− ui)ki .

End

Remark 4 (1) Step 3 requires the determination of the sign of Dis(u). Since the degree of

Dis(u) is less than or equal to 4, one can find the exact real roots of Dis(u) = 0. Denote
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them as u1, · · · , um, m ≤ 4. By testing the sign of Dis(u) between two adjacent real roots,

we can determine whether Dis(u) < 0,∀u ∈ R.

(2) In the algorithm, to determine the numbers of real roots of polynomials, one often

uses Sturm Sequence. The calculation of the Sturm Sequence requires polynomial division.

To avoid polynomial division, we can use the explicit criterion for the determination of the

numbers of real roots of polynomial (cf[18]).

Our main algorithm is the following.

Algorithm 2

Input: Three distinct quadrics A : XT AX = 0,B : XT BX = 0 and C : XT CX = 0.

Output: TQSI: Parameterizations of the curves and isolated real points in TQSI(A,B, C).

Begin

Step 0. TQSI := ∅

Step 1. Generate

E : e2(u)v2 + e1(u)v + e0(u) = 0,

F : f2(u)v2 + f1(u)v + f0(u) = 0. (8)

If E
F = constant Do

D:= E

Go to ♠

End If Go to Step 2.
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Step 2. Compute G = res(E, F, v).

If G ≡ 0 Do

go to Step 3

End If

go to Step 4.

Step 3. (This step is used to handle the situation where G ≡ 0.)

Compute D(u, v) = GCD(E,F )

♠ Use Remark 1 to generate a parameterization p(t) of the curve(s) and the isolated

points {p1, · · · , pk} in TQSI(A,B, C) corresponding to D(u, v) = 0 (this set could be

empty)

TQSI := TQSI ∪ {p(t)} ∪ {p1, · · · , pk}

E := E
D ; F := F

D

Go to Step 5

Step 4. (This step is used to handle the situation where G 6≡ 0.)

If there exits u0 ∈ R, such that
∑2

i=0 e2
i (u0) +

∑2
i=0 f2

i (u0) = 0 Do

Compute s(u) = GCD(e2, e1, e0, f2, f1, f0)

Generate a parameterization p(t) of the curve in QSIC(A,B) corresponding to

s(u) = 0.

TQSI := TQSI ∪ {p(t)}
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E := E
s ; F := F

s .

Calculate G = res(E,F, v)

End If

Go to Step 5.

Step 5. Find the real roots of G(u) = 0, by numerical method [14]. Denote them as u1, · · · , um.

Denote common real roots of e2(ui)v2 + e1(ui)v + e0(ui) = 0, f2(ui)v2 + f1(ui)v +

f0(ui) = 0 as vi,1, · · · , vi,ki , ki ≤ 2.

TQSI := TQSI ∪ {q(ui, vi,j), i = 1, · · · ,m, j = 1, · · · , ki}.

End

Remark 5 (1) By Theorem 6 and Remark 1, when TQSI(A,B, C) has infinite real points,

to find the isolated real points , we only need to solve a equation with degree ≤ 4.

(2) In Step 5, the common real roots of e2(ui)v2+e1(ui)v+e0(ui) = 0, f2(ui)v2+f1(ui)v+

f0(ui) = 0 need to be calculated. When e2(ui) 6= 0, the system can be reduced to e2(ui)v2 +

e1(ui)v + e0(ui) = 0, (e2(ui)f1(ui)− e1(ui)f2(ui))v + e2(ui)f0(ui)− e0(ui)f2(ui) = 0. Hence,

when e2(ui)f1(ui)− e1(ui)f2(ui) 6= 0, the common real root is − e2(ui)f0(ui)−e0(ui)f2(ui)
e2(ui)f1(ui)−e1(ui)f2(ui)

.

(3) If G 6≡ 0 and TQSI(A,B, C) has finite points, GCD computation is not needed.

We shall use some examples to demonstrate the major steps of our algorithm in a variety

of cases.

Example 6 A :x2+y2+z2−1 = 0; B :x2+(y−0.5)2−0.25 = 0; C :y2+xz+x2+2x−1 = 0;

R = A− B can be parameterized as (x, y, z)t = (v, 1− u2, u)t . Then we have

E : v2 + (1− u2)2 + u2 − 1 = 0;F : v2 + v(2 + u) + (1− u2)2 − 1 = 0.
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G = res(E, F, v) = −4u2−4u3+4u4+4u5+u6. By Sturm Theorem, the number of real roots

of (2 + u)2 + u4 is 0. Hence, the number of real points in TQSI(A,B,C) is equal to the

number of real roots of G(u) = 0. By Sturm’s Theorem, the number of real roots of G(u) = 0

is equal to 3. Hence, the number of real points in TQSI(A,B, C) is equal to 3. By solving

G(u) = 0, the three real points in TQSI(A,B,C) are (0, 1, 0), (0.489856, 0.39973,−0.77473),

and (0.304295, 0.103257, 0.946965) respectively (see Fig.1).

Fig.1.

Example 7 A = x2 + y2 − 1; B = 2x2 + z2 − 1; C = x2 + z2 − 1. The pencil generated

by A and B contains a hyperbolic cylinder R : 2A − B = 2y2 − z2 − 1 = 0. R can be

parameterized as ( v
u , 1

2
√

2
(u + 1

u), 1
2(u− 1

u)). We have

E : v2 +
1
8
(u4 + 2u2 + 1)− u2 = 0;F : v2 +

1
4
(u4 − 2u2 + 1)− u2 = 0.

Obviously, q(u) = u4

8 − 3
4u2 + 1

8 and G = ((4 − 24u2 + 4u4))2/1024. Solving q(u) = 0

yields u1 = 1 +
√

2, u2 = 1 − √
2, u3 = −1 +

√
2, u4 = −1 − √

2. G is divisible by

(u − ui)2, i = 1, · · · , 4. Substituting ui into E , we find that TQSI(A, B,C) has four
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different real points. By solving G(u) = 0, the four real points in TQSI(A,B, C) are

(0, 1,−1), (0,−1, 1), (0, 1, 1), and (0,−1,−1) respectively (See Fig.2).

Fig.2.

Example 8 A = x2−y2−z = 0, B = y2 +z2−x = 0, and C = xz +z2−x2−x+yz = 0.

A is a hyperbolic paraboloid and can be parameterization as ((u + v)/2, (u− v)/2, uv). We

have,

E : (u2+1/4)v2+v(−u/2−1/2)+u2/4−u/2 = 0; F : (u2−1/4)v2+v(u2−u/2−1/2)−u2/4−u/2 = 0;

G = res(E,F, v) = 1/256((32u2 + 64u3 + 16u4 − 48u6 − 192u7 + 128u8)).

By Sturm Theorem, the number of real roots of ((u2+1/4)(u2−u/2−1/2)+(u/2+1/2)(u2−

1/4))2 +((u2 +1/4)(−u2/4−u/2)− (u2/4−u/2)(u2−1/4))2 = 0 is 0. By Sturm Theorem,

the number of real roots of G = 0 is equal to 3. Hence, TQSI(A,B, C) have three different

real points. By solving G(u) = 0, the three points in TQSI(A,B, C) are (0, 0, 0), (1, 0, 1),

and (1.0828, 0.5216, 0.9004) respectively (See Fig.3).
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Fig.3.

Example 9 A = y + xz = 0, B = y2 + yx + z = 0, and C = y2 + yz + z = 0. A can be

parameterized as x = u, y = −uv , and z = v . Then

E : (u2 − u)v2 + u = 0;F : u2v2 − u2v + u = 0.

By Sturm theorem, (u2 − u)2 + u2 + (u2)2 + (u2)2 + u2 = 0 has real roots. Hence,

TQSI(A,B, C) have infinite real points. Obviously, u = GCD(u2 − u, u, u2, u). Let

E := E/u, F := F/u. G = res(E, F, v) = u3 − u2 + 1. has a real root. The number of

isolated real points in TQSI(A,B, C) is equal to 1.

By Algorithm 2, the parameterization of the curve in TQSI(A,B, C) is (t, 0, 0). By

solving u3 − u2 + 1 = 0, the isolated real point is (−0.7548, 0.5698,−0.7549) (See Fig.4).
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Fig.4.

We implemented our algorithms and performed numerical experiments on a computer

with Intel CPU 1.7G and 256M memory. The performance of the algorithm is grati-

fying. For 200 3-quadric random configurations involving 532 intersections, 532 inter-

sections are found. The total CPU time is 51S. For the intersection point X0, we use

d(X0) = max(|X0AXT
0 |, |X0BXT

0 |, |X0CXT
0 |) to measure whether X0 is accurate. Among

532 intersections, the numbers of intersections satisfying d(X0) > 10−7 and d(X0) > 10−6

are 21 and 5 respectively.

5 Summary

To overcome some weakness of existing algorithms, we present an efficient and robust

method for computing the intersections of three quadratic surfaces. Numerical experiments

showed that our method is significantly more stable than the existing algorithms. This

method can also be used to count the number of isolated intersections of three quadratic
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surfaces even when there are infinitely many intersections. Moreover, the conditions under

which the intersections are finite and infinite are thoroughly investigated.

It seems to be impossible to obtain the intersections without error. But in CAD field,

a special class of quadrics, natural quadrics –planes, spheres, circular cones, and right

circular cylinders, are frequently used. There is plenty of literature which discusses the

computation of the intersection curve of two natural quadrics by geometric approach [5,

6, 7, 8, 9]. A future research on how to obtain the intersections of three natural quadrics

without error by geometric approach is desired. In [3], the authors showed how to obtain

parametric intersection curves that are near-optimal in the number and depth of radicals

involved. Improving the accuracy of TQSI by using an idea similar to the one proposed in

[3] is also desired.
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