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Abstract. In this paper, we study the convergence property of several
discrete schemes of the surface normal. We show that the arithmetic
mean, area-weighted averaging, and angle-weighted averaging schemes
have quadratic convergence rate for a special triangulation scenario of
the surfaces. By constructing a counterexample, we also show that it
is impossible to find a discrete scheme of normals that has quadratic
convergence rate over any triangulated surface and hence give a negative
answer for the open question raised by D.S.Meek and D.J. Walton. More-
over, we point out that one cannot build a discrete scheme for Gaussian
curvature, mean curvature and Laplace-Beltrami operator that converges
over any triangulated surface.

1 Introduction

Estimation of normal vectors and curvatures on discrete surfaces are often re-
quired in Computer Aided Geometric Design and Computer Graphics. In the
past decades, many discretized approaches for normal vectors, Gaussian cur-
vature, mean curvature and Laplace-Beltrami operator have been proposed and
used. The convergence of the discretized approaches has also been studied. In [5],
the authors analyzed the convergence of the normal vector and Gaussian cur-
vature. For normal vectors, they obtained the following result: for non-uniform
data, the unit vector parallel to the arithmetic mean of unit normals of the tri-
angular faces around a point approximates the unit normal of the surface at that
point to accuracy O(h). Furthermore, by the numerical test, they found that the
accuracy of the arithmetic mean, area-weighted averaging, and angle-weighted
averaging are not higher than O(h). As pointed out in [5], normal estimation
methods with accuracy O(h2) are very useful for the spherical image method
of Gaussian curvature approximation. Hence, they raised an open question:find
a linear combination of the normals of the triangular faces, based on geomet-
ric considerations, that approximates the normal of the surface to O(h2). In
this paper, we prove that under certain conditions, the approximation accuracy
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of normal vectors can be O(h2), meaning the approximation converges with a
quadratic rate. Moreover, we show that it is impossible to find a discretization
scheme of normals that has quadratic convergence rate over any triangulated
surface. Hence, the answer to the above mentioned open question is negative.

In [6], Meyer et al. proposed some discrete schemes to approximate sev-
eral important geometric attributes, including normal vectors and curvatures
on arbitrary triangular meshes. In [9], G. Xu proved that a well known dis-
cretized scheme of Gaussian curvature, derived from Gauss-Bonnet theorem,
has quadratic convergence rate under certain conditions. In [10] and [11], he also
studied the convergence of Laplace-Beltrami operators and mean curvature, in-
clude Taubin et al’s discretization [7], Mayer et al’s discretization [4], Desbrun et
al’s discretization[1], Meyer et al ’s discretization[6], and proposed several simple
discretization schemes of Laplace-Beltrami operator over triangulated surfaces.
In [5], the author proposes an asymptotic analysis of Gaussian curvature for three
methods: quadratic fit method, angular defect and spherical image method. A
review of these schemes is given in [3]. However, none of these discretizations
of Gaussian curvature and mean curvature has been proved to be convergent
over any non-degenerate triangulated surface. Therefore, a natural questions is
raised: can one build a discrete scheme of Gaussian curvature and mean cur-
vature which involves one-ring vertices and converges over any non-degenerate
triangle surface? In this paper, we shall give a negative answer to this question.
Hence, we have to accept the fact that the discretization scheme for curvature
only convergent over special triangular surface.

The rest of the paper is organized as follows. In Section 2, we introduce some
definitions and formulations. In Section 3, we discuss the convergence property of
discrete schemes of normals. In Section 4, by giving a counterexample, we show
that one cannot construct a scheme of Gaussian curvature and mean curvature
that converges over any non-degenerate triangle surface. Moreover, we also give
a negative answer to the open question raised in [5].

2 Preliminaries

Let S(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3 be a regular parametric surface.
We further assume that the point where the normal and curvature need to be
approximated is O : (x(0, 0), y(0, 0), z(0, 0))T . Then from differential geometry,
the normal vector of S(u, u) at O is Su(0,0) × Sv(0,0).

Let Pi = S(qi) be n distinct points on S(x, y) near the point (x(0, 0), y(0, 0),
z(0, 0))T and qi = (ri cos(θi)h, ri sin(θi)h). The indices arithmetic modulo n
so index n + 1 is the same as index 1. Without loss of generality, we assume
0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn < 2π. Denote the normal to the triangle PiOPi+1 as
ni,i+1, by using Taylor expansion,

ni,i+1 = (Pi − O) × (Pi+1 − O) (1)

=

⎛
⎝ (yuzv − yvzu) sin(θi+1 − θi)riri+1h

2 + Aih
3 + O(h4)

−((xuzv − xvzu) sin(θi+1 − θi)riri+1h
2 + Bih

3 + O(h4))
(xuyv − xvyu) sin(θi+1 − θi)riri+1h

2 + Cih
3 + O(h4)

⎞
⎠ ,
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where

Ai = (yuu cos2 θi + 2yuv cos θi sin θi + yvv sin2 θi)(zu cos θi+1 + zv sin θi+1)r
2
i ri+1

− (zuu cos2 θi + 2zuv cos θi sin θi + zvv sin2 θi)(yu cos θi+1 + yv sin θi+1)rir
2
i+1,

Bi = (xuu cos2 θi + 2xuv cos θi sin θi + xvv sin2 θi)(zu cos θi+1 + zv sin θi+1)r
2
i ri+1

− (zuu cos2 θi + 2zuv cos θi sin θi + zvv sin2 θi)(xu cos θi+1 + xv sin θi+1)rir
2
i+1,

Ci = (xuu cos2 θi + 2xuv cos θi sin θi + xvv sin2 θi)(yu cos θi+1 + yv sin θi+1)r
2
i ri+1

− (xuu cos2 θi + 2xuv cos θi sin θi + xvv sin2 θi)(yu cos θi+1 + yv sin θi+1)rir
2
i+1.

Denote the unit normal vector on triangle surfaces PiOPi+1 as ni,i+1 :=
ni,i+1/‖ni,i+1‖. By using the formulation above, we have

ni,i+1 = n0(1 − Ai(yuzv − yvzu)h − Bi(xuzv − xvzu)h + Ci(xuyv − xvyu)h

sin(θi+1 − θi)riri+1
+ O(h2)).

(2)

where n0 is the unit normal vector at O, i.e.

n0 =
(yuzv − yvzu,−(xuzv − xvzu), xuyv − xvyu)T√

(yuzv − yvzu)2 + (xuzv − xvzu)2 + (xuyv − xvyu)2
.

In general, the unit normal vector at O is approximated by

n∑
i=1

λini,i+1, (3)

where λi is weight and
∑n

i=1 λi = 1. By (2), we find the covergence rate of the
discrete scheme is O(h), which agrees with the result in [5].

There are several ways to determine the weights. A simple way is to take
arithmetic mean, i.e., λi = 1

n . Other ways include take an area-weighted average
and an angle-weighted average.

Using discretization normals, the spherical image method for Gaussian curva-
ture approximation is built in [5], and moreover, the following lemma is proved.

Lemma 1. (see [5]) When unit normals are known to accuracy O(h2), the spher-
ical image method approximates the Gaussian curvature to accuracy O(h).

Hence, O(h2) accuracy normals are very useful for computing the Gaussian
curvature.

3 Convergence of Normal Vectors

In [5], the authors showed that the accuracy of the arithmetic mean, area-
weighted averaging, and angle-weighted averaging are not higher than O(h).
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However, we shall prove that under certain conditions, the approximation
accuracy of the three ways can be O(h2).

We firstly exhibit the numerical behaviors of the discrete schemes of the sur-
face normal. To show the numerical behavior of the discrete schemes , we take
several two variable functions over xy-plane as three dimensional surfaces so that
the exact normal can be computed. Both the exact and approximated normals
are computed at some selected domain points qij = (xi, yj) = (i/20, j/20), i =
1, · · · , 19, j = 1, · · · , 19. The surfaces are triangulated around qij by triangulat-
ing the domain first, with mapping the planner triangulation onto the surfaces
by the selected bivariate functions. As a simple case, the domain around qij is
triangulated locally by choosing n regularly distributed points:

qk = qij + h(cos(θk), sin(θk)), θk = 2(k − 1)π/n, k = 1, · · · , n.

The convergence rate are checked by taking h = 1/8, 1/16, 1/32, · · · and n =
3, 4, · · · , 9.

The functions we use are the following

F1(x, y) =
√

4 − (x − 0.5)2 − (y − 0.5)2,
F2(x, y) = exp(−5((x − 0.5)2 + (y − 0.5)2)),
F3(x, y) = tan(5y − 5x),

F4(x, y) =
1 + cos(5y)

6 + 6(3x − 1)2
.

Denote e1(Fj , n), e2(Fj , n) and e3(Fj , n) as the maximal error of the approxi-
mated surface normals computed by the arithmetic mean scheme,angle-weighted
averaging and area-weighted averaging over the above mentioned local triangula-
tions and the exact normal vector computed from the continuous surfaces defined
by Fj . Tables 1–3 show the asymptotic maximal error e1(Fj , n), e2(Fj , n) and
e3(Fj , n).

From the above numerical resuls, we find the arithmetic mean scheme and
area-weighted averaging can converge in the rate O(h2) for the n > 3 regularly
distributed domain vertices. When the valence n is 3, in general, the approximate
surface normal converges in the rate O(h). Moreover, if n is even, the angle-
weighted averaging can converge in the rate O(h2).

Table 1. The maximal errors of the arithmetic mean scheme

n e1(F1, n) e1(F2, n) e1(F3, n) e1(F4, n)

3 1.7291e − 02 × h 8.2968e − 01 × h 1.7331e + 00 × h2 7.16229e − 01 × h

4 7.2445e − 02 × h2 5.4452e − 01 × h2 1.1554e + 00 × h2 6.3986e − 01 × h2

5 6.0409e − 02 × h2 5.9247e − 01 × h2 1.73312e + 00 × h2 8.6673e − 01 × h2

6 5.6638e − 02 × h2 6.6982e − 01 × h2 1.73310e + 00 × h2 9.0644e − 01 × h2

7 5.4428e − 02 × h2 7.2413e − 01 × h2 1.73310e + 00 × h2 9.8637e − 01 × h2

8 5.3324e − 02 × h2 7.6641e − 01 × h2 1.73310e + 00 × h2 1.0233e − 00 × h2

9 5.2663e − 02 × h2 7.9757e − 01 × h2 1.73310e + 00 × h2 1.0458e − 00 × h2
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Table 2. The maximal errors of the angle-weighted averaging

n e2(F1, n) e2(F2, n) e2(F3, n) e2(F4, n)

3 3.0024e − 02 × h 7.7029e − 01 × h 2.1349e + 00 × h2 7.1111e − 01 × h

4 6.81814e − 02 × h2 6.2178e − 01 × h2 1.1560e + 00 × h2 6.1403e − 01 × h2

5 5.33700e − 02 × h2 2.8789e − 02 × h 1.4518e + 00 × h2 1.9115e − 02 × h

6 4.9291e − 02 × h2 6.5325e − 01 × h2 1.8996e + 00 × h2 8.7364e − 01 × h2

7 4.6771e − 02 × h2 1.3400e − 03 × h 1.0810e + 00 × h2 1.2636e − 03 × h

8 4.5462e − 02 × h2 7.2842e − 01 × h2 1.2577e + 00 × h2 9.2338e − 00 × h2

9 4.4681e − 02 × h2 1.5197e − 03 × h 8.8635e − 01 × h2 3.6756e − 03 × h

Table 3. The maximal errors of area-weighted averaging

n e3(F1, n) e3(F2, n) e3(F3, n) e3(F4, n)

3 1.7281e − 02 × h 8.2961e − 01 × h 1.7331e + 00 × h2 7.1663e − 01 × h

4 8.4120e − 02 × h2 4.3854e − 01 × h2 1.1554e + 00 × h2 6.1402e − 01 × h2

5 7.3895e − 02 × h2 8.0248e − 01 × h2 1.7331e + 00 × h2 7.5509e − 01 × h2

6 6.8800e − 02 × h2 8.5412e − 01 × h2 1.7331e + 00 × h2 8.1070e − 01 × h2

7 6.7316e − 02 × h2 8.9488e − 01 × h2 1.7331e + 00 × h2 8.4060e − 01 × h2

8 6.6484e − 02 × h2 9.2511e − 01 × h2 1.7331e + 00 × h2 8.6749e − 01 × h2

9 6.4620e − 02 × h2 9.4713e − 01 × h2 1.7331e + 00 × h2 8.8737e − 01 × h2

In the following, we shall give a sufficient condition for the convergence in
rate O(h2).

Theorem 1. Let p0 be a vertex of M with valence n, and pi, i = 1, · · · , n be its
neighbor vertices. Suppose p0 and pi, i = 1, · · · , n are on a sufficiently smooth
regular parametric surface S(x, y) ∈ R3 and there exist q0, qi ∈ R2 such that
p0 = S(q0), pi = S(qi). Then in the following two cases

(1). n = 2m,m > 1, qi+m = q0 − (qi − q0),
∑m

i=1 λi = 1, λi+m = λi,
(2). n = 2m+1,m>1,∠qiq0qi+1 = 2π

2m+1 , ‖qi−q0‖=‖qi+1−q0‖,
∑m

i=1 λi= 1,
λi+1 = λi,∑n

i=1 λini,i+1 approximates the unit normal of the surface at the point p0 to
the accuracy O(h2).

Proof. Without loss of generality, we may assume q0 =(0, 0) and qi =(ri cos(θi)h,
ri sin(θi)h). Since S(x, y) is a regular surface, we can use the notations and
formulas proposed in Section 2.

It follows from (2) that,

ni,i+1 = n0(1 − Ai(yuzv − yvzu)h − Bi(xuzv − xvzu)h + Ci(xuyv − xvyu)h

sin(θi+1 − θi)riri+1
+ O(h2)).

Consider
∑n

i=1 λini,i+1. By the explicit formulation of ni,i+1, to prove the
theorem,we merely need to prove

n∑
i=1

λi
Ai

(sin θi+1 − θi)riri+1
= 0,

n∑
i=1

λi
Bi

(sin θi+1 − θi)riri+1
= 0,
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n∑
i=1

λi
Ci

(sin θi+1 − θi)riri+1
= 0.

Firstly, we consider the case where n = 2m. Since qi+m = q0 − (qi − q0), we
have θi+m = π + θi, ri+m = ri. Hence,

n∑
i=1

λi
ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)

=

m∑
i=1

λi
ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)
+

n∑
i=m+1

λi−m
ri+1−m cos2(π + θi+1−m) sin(π + θi−m)

sin(θi+1−m − θi−m)

=
m∑

i=1

λi
ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)
+

m∑
i=1

λi
−ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)

≡ 0.

Using similar method,
∑n

i=1 λi
Ai

(sin θi+1−θi)riri+1
≡ 0.

Secondly, we consider the case where n = 2m + 1. In this case, λi, ri and
θi+1 − θi are all constant. Hence, to prove

∑n
i=1 λi

Ai

(sin θi+1−θi)riri+1
≡ 0, we only

need prove
∑n

i=1 cos2 θi sin θi+1 = 0,
∑n

i=1 cos2 θi cos θi+1 = 0,
∑n

i=1 cos θi sin θi

sin θi+1 = 0,
∑n

i=1 cos θi sin θi cos θi+1 = 0,
∑n

i=1 cos θi+1 sin2 θi = 0, and∑n
i=1 sin θi+1 sin2 θi = 0. We only prove one equation, with the proof of other

equations being similar. Consider

n∑
i=1

cos2 θi sin θi+1 =
2m∑
i=0

cos2
i − 1

2m + 1
2π sin

i

2m + 1
2π

= 2
2m∑
i=1

sin
i

2m + 1
2π cos

2(i − 1)
2m + 1

2π −
2m∑
i=1

sin
i

2m + 1
2π.

Using the equality
∑2m

k=1 sin(a0 + kd) = cos(d/2+a0)−cos(a0+2md+d/2)
2 sin d/2 , we have

2
2m∑
i=1

sin
i

2m + 1
2π cos

2(i − 11)
2m + 1

2π −
2m∑
i=1

sin
i

2m + 1
2π

=
2m∑
i=1

(sin
3i − 2
2m + 1

2π + sin
−i + 2
2m + 1

2π) −
2m∑
i=1

sin
i

2m + 1
2π

= 0.

Using the similar derivation above, we can prove
∑n

i=1 λi
Bi

(sin θi+1−θi)riri+1
= 0

and
∑n

i=1 λi
Ci

(sin θi+1−θi)riri+1
= 0.

Hence, under the condition (1) or (2),
∑n

i=1 λini,i+1 has quadratic conver-
gence rate. The theorem is proved.
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Corollary 1. Under the conditions of Theorem 1, if the weight λi is defined as
the arithmetic mean or the area-weighted averaging

∑n
i=1 λini,i+1 approximates

the unit normal of the surface at the point p0 to accuracy O(h2).

Proof. When λi is selected as arithmetic mean, λi = 1
n . Obviously, in this case

λi = λj ,∀i, j. By Theorem 1, the Corollary holds, when λi is defined as the
arithmetic mean. Denote the area of �pip0pi+1 as A(pip0pi+1). Then, we have
A(pip0pi+1) = 1

2‖ni,i+1‖. Under the condition of Theorem 1, it is easy to see
that the coefficient of h in

∑n
i=1 A(pip0pi+1) and

∑n
i=1 ni,i+1 is cancelled. The

Corollary holds.

Corollary 2. Under the condition (1) of Theorem 1, if the weight λi is defined
as the angle-weighted averaging

∑n
i=1 λini,i+1 approximates the unit normal of

the surface at the point p0 to accuracy O(h2).

Proof. Let θi,i+1 be the planar angle pip0pi+1 and let it be positive by convention.
Then we can derive, θi,i+1 = θi+1 − θi + a(i)h + O(h2). Under the condition (1)
of Theorem 1, a(i+m) = −a(i). Hence, it is easy to see that the coefficient of h
in λini,i+1 is cancelled. The Corollary is proved.

Remark 1. The convergence results are established under particular conditions.
As pointed out in [11], these special cases are very useful and important. A
number of numerical simulations of geometric partial differential equations are
conducted over a triangulated domain formed by a uniform three-directional or
four-directional partition. Both partitions satisfy the condition in Theorem 1.

Remark 2. An interesting observation is that the condition of the discretiza-
tion scheme of normals having quadratic convergence is exactly the same as the
condition of a discretization of gradient having quadratic convergence proposed
in [11]. (Theorem 4.1 in [11] presents only the condition (1). In fact, by using
similar method with [11], under the condition (2), the discretization of gradient
has also quadratic convergence. )

4 Counterexamples to Convergence of Curvature and
Normals

In the previous section, we have studied the convergence of the discrete unit
normal. The convergence property of the discrete Gaussian curvature and mean
curvature has been considered in [9],[10],[11] and [5]. But none of discretization
schemes has been proved to be convergent over any non-degenerate triangle
surfaces. A natural questions is raised: can one build a discretization scheme
of Gaussian curvature and mean curvature converging over any non-degenerate
triangle surfaces? In this section, by a counterexample we shall give a negative
answer for the question.

Let p0 be a vertex of M where the Gaussian curvature is are to be approx-
imated and pi, i = 1, · · · , n be its neighbor vertices. We make a hypothesis
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that the discretization scheme of Gaussian curvature involving one-ring neigh-
bor vertices of p0, denoted as H(M,p0; p1, · · · , pn), is convergent for any triangle
mesh surface M. Suppose M is a given triangle surface approximating the sur-
face S(x, y) = (x, y, f(x, y))T , f(x, y) = B02x

2 + B11xy + B02y
2 and the origin

p0 = (0, 0, 0) is a vertex of M. Assume the valence of the origin point is 4
and the neighbor points are pi = S(qi), i = 1, · · · , 4, where q1 = h(1, 2),q2 =
h(−1,−2),q3 = h(−1, 2) and q4 = h(1,−2)(see fig.1.a). Since Gaussian curva-
ture of S(x, y, z) at p0 equals to 4B02B20 −B2

11, by the convergence property of
H(M,p0; p1, · · · , pn), we have limh→0 H(M,p0; p1, p2, p3, p4) = 4B02B20 − B2

11.

Suppose M̂ is another given mesh surface approximating the surface Ŝ(x, y) =
(x, y, f̂(x, y))T , f̂(x, y) = (4B02 + B20)x2 + B11xy, and the origin O : (0, 0, 0)
is a vertex of M̂ where the curvature needs to be approximated. The neigh-
bor points of the origin are p̂i = Ŝ(qi), i = 1, · · · , 4, where q1 = h(1, 2),q2 =
h(−1,−2),q3 = h(−1, 2) and q4 = h(1,−2). The Gaussian curvature of Ŝ at
O is −B2

11. By the convergence property of H, we have limh→0 H(M̂, p0; p̂1, p̂2,
p̂3, p̂4) = −B2

11. Obviously, by the formulation of f(x, y) and f̂(x, y), for any h,
pi = p̂i, i = 1, · · · , 4. Since the discretization scheme H merely involves one-ring
neighbor vertices of p0, by pi = p̂i, H(M̂, p0; p̂1, p̂2, p̂3, p̂4)=H(M,p0; p1, p2, p3, p4)
for any h. Hence, limh→0 H(M̂, p0; p̂1, p̂2, p̂3, p̂4) = limh→0 H(M,p0; p1, p2, p3, p4).
But −B2

11 is not always equal to 4B02B20 −B2
11. Therefore, a contradiction ap-

pears. So, the hypothesis with H(M,p0; p1, · · · , pn) being convergent for any
mesh surface does not hold.

Since the mean curvature of S(x, y) and Ŝ(x, y) at the origin equals to B02 +
B20 and 4B02 + B20 respectively, we can show that one can not construct a
discretization scheme of mean curvature converging over any mesh surface by
using the similar method with the above,

From above, if merely using one-ring vertices, we can not build discretiza-
tion schemes of Gaussian curvature and mean curvature converging over any
mesh surface. For fixed integer k, using k−ring vertices, can we construct a

�� ��

�� ��

�

��� ���

��� ���

��� ���

��� ���

�

� �

Fig. 1. A counterexample to convergence of curvature and normal
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discretization scheme of Gaussian and mean curvature converging over any mesh
surface?

Suppose the j-th ring vertices around p0 is pj,i = S(qj,i), where j ≤ k,qj,i =
jqi, i = 1, · · · , 4 (Fig.1.b shows the case where k = 2). Obviously, for any h,

S(qj,i) = Ŝ(qj,i), j ≤ k, i = 1, · · · , 4. Hence, by using similar method with the
above, we can show that for fixed integer k, if only use k-ring vertices, we can
not build discretization schemes of mean curvature converging over any mesh
surface. It is well known that Laplace-Beltrami operators relates closely to the
mean curvature normal. Let p be a surface point on two-dimensional manifold
M. Then ‖∆Mp‖ = 2H(p), where ∆Mp is the Laplace-Beltrami operator and
H(p) is the mean curvature at p. Hence, by above results, for fixed integer k, if
only k-ring vertices are used, we can not build discretization schemes of Laplace-
Beltrami operators converging over any mesh surface.

In [5], a open question is raised: Find a linear combination of the normals
of the triangular faces, based on geometric considerations, that approximates
the normal of the surface to O(h2). We shall give a negative answer for the
open question. Suppose that the vertexes S(q1i), i = 1, · · · , 4 (see Fig.1.b) are
the vertexes of M where the unit normals are to be approximated. We make a
hypothesis that there exits a linear combination of the normal of the triangular
faces that approximates the normal at S(q1i) to O(h2). By Lemma 1, under the
hypothesis, we can build a discretization schemes involving 2-ring vertexes which
approximates the Gaussian curvature at O to accuracy O(h). The conclusion
contradicts to the above results. Hence, the hypothesis does not hold i.e. for
any mesh surface, one can not find a linear combination of the normals of the
triangular faces that approximates the normal of the surface to O(h2).

Remark 3. In this counterexample, the valence of p0 and p11 is 4 and 6 re-
spectively. In fact, by using similar method, we can show one can not build a
discretization schemes of Gauss and mean curvature which convergent at p11.
Hence, even if the valence of vertexes in mesh surface is bigger than 4, we also
can not build convergent discretization schemes of Gauss and mean curvature
for any mesh surface.

Remark 4. The points pi or pji in this counterexample are under-determined
for quadratic fit. As pointed out in [5] and [11], if the quadratic fit method has a
unique solution, one can approximate the Gaussian curvature and mean curva-
ture to accuracy O(h) and the unit normal to accuracy O(h2). Then, when the
quadratic fit method has a unique solution, can one find a convergence discretiza-
tion scheme of Gaussian and mean curvature depending only on edge length, an-
gles, and areas of triangle faces? We conjecture that the answer to the question
is negative. If the conjecture holds, quadratic fit methods can be the most general
method for finding convergent discretization schemes for geometry operators.
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