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Abstract In this paper, an explicit formulation for multivariate truncated power func-
tions of degree one is given firstly. Based on multivariate truncated power functions of
degree one, an formulation is presented which counts the number of non-negative integer
solutions of s x (s 4+ 1)linear Diophantine equations and it can be considered as a multi-
dimensional versions of the formula counting the number of non-negative integer solutions
of ax 4+ by = n which is given by Popoviciu in 1953.
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1 Introduction

Let M be ansxn integer matrix with columnsa, - - -, m,, € Z* suchthaf{m,,---,m,}|
does not contain the origin, whelid] denotes the convex hull of a given skt The vector
partition functions'(b|M) is defined as follows

t(b|M) = #{x € Z}|Mx = b},

where#{-} denotes the cardinality of the se, Z, denotes the non-negative integer set
andb is the vector ifZ*. The vector partition function,which is also calldibcrete trun-
cated powershas many applications in various mathematical areas including Algebraic
Geometry[1], Representation Theory[2], Number Theory[3], Statistics [4] and Random-
ized Algorithm [5] among others.

Supposer € Z, andb € Z are relatively prime and then we conside|(a, b)), n €
Z which is a special case of the vector partition function. According to the definition
of the vector partition functiont(n|(a, b)) counts the non-negative integer solutions of
ax 4+ by = n. In 1953, Popoviciu gave a very beautiful formulation #6r|(a, b)).i.e.

tnl(a,)) = @ n

A L

ab ' oa
where{-} denotes the fraction part, i.¢z} := = — [z],b~*, ' denote two integers

satisfyingb='b = 1 mod a,a'a = 1 mod b([6]). The formulation is surprising and has

many important applications([7]). Furthermore, several different methods for proving the

formulation are also given ([8,9]). But it seems to be difficult for extending the formulation
to multi-dimension by using these methods.



76 Science in China: Series A Mathematics

The aim of the paper is to give a simple formulation#f@s| )/ ) whenM is ans x (s+
1) integer matrix, which can be regarded as a generalization of Popoviciu’s formulation.

We firstly review some results abot{b| M), whereM is ans x n integer matrix. For
the general matri¥\/, the nature ot(b|)) is investigated and the piecewise structure
of ¢(b|M) is given in [10]. In [13], based on multivariate truncated power functions
T'(x|M), an explicit formulation fort(b|M) is presented. However, the formulation
involves multivariate truncated power functiof$x| /), which are not in explicit form.
Furthermore, the non-polynomial part in the formulation is also very complex.

In this paper, we firstly give an explicit formulation f@(z|M) when M is ans x
(s + 1) integer matrix. Based on the formulation and the discrete Fourier transform, we
generalize the Popoviciu’s formulation to high dimension.

2 Multivariate Truncated Power Functions

To describe multivariate truncated power functions, we introduce some definitions and
notations firstly. LetM be ans x n real matrix andrank(M) = s, whose column
vectors are denoted as,,---,m, € Z°\ {0}. M is also viewed as the multiset of
its column vectors. We always assume that the convex hulllofloes not contain the
origin. After discarding thath column vector inM/ we obtain a new matrix, which is
denoted ad\/;, i.e. M, (ml, M1, Mis1, -+, Mmy,). FOr the vectorm,; we use
m; ; to denote theth element inm;. We usecone(M) to denote the cone produced by
M, i.e.cone(M) := {>_  cps @Gmm : an > 0forallm} and usecone® (M) to denote
the interior points ofone(M). Moreover,we lef) (M) denote the set consisting of those
submultisets” of M for which M\Y does not spalR®. Let A and B be two subsets of
R™ andc € R. ThenA — B is the set of all elements of the formm— b, wherea € A
andb € B. The setsd + B andcA are defined analogously.

Letc(M) be the union of all the sets cofi¥ \ Y'), asY runs over) (M ). A connected
component ofcone® (M) \ ¢(M), according to [10], is called &undamental) -cone
Given two setd);, Dy, let1p, (Do) = 0if D; N Dy = (), otherwise leflp, (D) = 1.

The multivariate truncated powdr(-|M ) associated withV/, first introduced by W.
Dahmen [11], is the distribution given by the rule

/ & ()T (z|M)dz —/ o(Mu)du,Yé € D(R?) 1)

whereD(R?) is the space of test functions &7, i.e. the space of all compactly supported
and infinitely differentiable functions oR?*.
According to the definition of (x| M), T'(z|M) = Wlwne(w({m}) when M

is ans x s matrix. If n > s, there exists an elememt such tha{ M/ \ m} still spansR*.
Then we have the following recurrence formulation

T(x|M) = / T(x —tm|M \ m)dt,x € R°.
0

The following theorem describes the piecewise structure of the multivariate truncated
power (see [12]).

THEOREM 1 ([12]) Let M be ans x n real matrix with rankl/ = s < n. Suppose
the convex hull of\/ does not contaif). ThenT'(-|M ) agrees with some homogeneous
polynomial of degreex — s on each fundamental/-cone. T'(z|M) is a continuous
function whem > s.
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In the rest of the paper, we always suppase s+ 1,i.e. M isans x (s + 1) matrix.
We shall give an explicit formulation fdF (z:| /). To describe conveniently, we suppose
the column vectors i/ are in the general position, i.e. for each submatfixc M of
cardinalitys it follows thatdet(Y") # 0.

Before discussing the explicit formulation f@i(x| M) we deal with the fundamental
M-cone. We can select a hyper-plaheC R* such that{ N {tm; : t > 0} # () since
the convex hull ofM does not contain the origin point, and we denote the intersection
point asm;. HenceM := {m;, my,---,m4y1} is the set ofs + 1 distinct points in,
and M can be considered as the point seRfi~! also. Consider the convex hull of the
s + 1 points onH, i.e. [M]. Then we have two cases: the first case is shaaints locate

the boundary of M| and another point locates the interior [@f/] ; the second case is

that all thes + 1 points locate the boundary @#/]. Figure 1 shows the two cases when
M = (61, €9, €3, 64), Whereﬁi € RS.

€1
€3

€4

€2 ~

€1
Fig.1. Two cases of the fundamenfdl—cones.

For fundamental\/-conef};, supposeﬁi = H N ;. Notice thatﬁi isas — 1 sim-

plex,which has an edge which overlaps with one of edges/df for each case. Henc®,
must have a face which overlaps with one of facesafe (V). Without loss of generality,
we suppose the face is spanned{by,, - --,m,_1}, i.e. cone(my,---,ms_1). So, the
fundamentall/ — cone(?; = cone(my, -, ms_1,my) Ncone(my, -+, Ms_1,Ms11),
i.e.Q; = cone(M,1) N cone(Mj), by the definition of fundamental/ —cone.

According to the analysis above, we have

LEMMA 1 SupposeM is ans x (s + 1) integer matrix. For any fundamental
M —conef?, there exist integerg, i, 1 < j < 4 such that

Q = cone(M;) N cone(M;).

In the rest of the paper, without loss of generality, we always suppose the fundamental
M —cone iscone(M,,1) N cone(M,). We can swap the column elementsiify, M,
such that bothlet(M,) anddet(M,, ) are non-negative. To describe conveniently, we
denote the matrixes after swaping column vectordfasM,_, still. If the column vector
msy1 iN M, is replaced by: € R*, we obtain a new matrix which is denoted k& (),
such as ifM, = (mgy1,mq, -+, mq_1), thenMy(z) = (x,mq,---,m,_1). Similarly,
we useM, . (x) to denote the matrix which is produced by replacing the element
byLIZ in MS+1.
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According to the analysis of fundamenfal—cone, we have

THEOREM 2 Suppose the fundamentsl —cone) = cone(M,, 1) N cone(My).
Then,when: € Q

det(M,(z))
T(x|M) = .
@IM) = O det (M)
proof: SinceT (z|M)is continuous, we only need to prove
det(M,(x))
T(x|M) =
@IM) = A L) det(Mory)
whenz € €. Notice thatM \ m,, is a square matrix. Hence
1 1

T(x|M = 1 =—1 / .
(CL’| \m5+1) \det(M\ms+1)| cone(M\m5+1)({x}) det(MS+1) cone(h[\ms+1)({l'})

Consider the iterative formulation fa@r(z|1/)

T(x|M) = / T(x —tmgp | M\ mgyq)dt.
0

Notice thatr € cone(M,). Hence, there exist,, - - -, as_1,%y > 0, such that
rT=amy+ -+ a_1Me_1 +LoMey1. 2
So{x —tmgyy : t = 0} andcone(my, - -+, mg_1) intersect atr — tomsy1.
Solving linear equations (2), we have
_ det(M(x))
" det(M,)

Hence,wherx € (,
det(M(x))
det(M,)det(M, 1)

to
T(:c|M):/ T — tma | M\ my, s )dt =
0

Remark Notice that the simplex ilR*~! hass faces. So, the numbers of fundamental
M — cones of the first case and the second case arel2s — 2 respectively.

3 VECTOR PARTITION FUNCTIONS

In this section, we shall describe some results about vector partition functions. We
supposél/ is ans x n integer matrix. Fof := (0,,---,0,) € C*, let My :={y € M :
0v = 1}, wheref¥ := 0}* - .- 0%, Furthermore, we lefA(M) := {6 € (C\ {0})* :
span(My) = R*},e := (1,1,---,1) € Z*. Sincee? = 1 for anyy € M, we have
e € A(M). Let[[M]] := {377_, aym; : 0 < a; < 1,Vj} andv(QM) := Q — [[M]],

The piecewise structure is given in the following theorem.

THEOREM 3 ([10]) Let M = {my,---,m,} € Z**". Suppose the convex hull of
M does not contain the origin. For any fundamentél- cone(?, there exists a unique el-
ementfo(a|M) = > 60%pyqo(a), such that such thaf, (| M) agrees witht(a| M)
6 A(M)
onv(Q2| M), wherepy o(-) is polynomial with degree not more thahl/, — s.
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Furthermore, an explicit formulation fgf, (| M) is presented in [13,14]. The formu-

lation can be simplified whef/ satisfy some special properties. To describe the results,

we firstly introduce the definition of — prime matrix. We call the\/ as thel— prime
matrix provided for any x (s+ 1) submatrix@ in M it follows thatgcd{|det(Y)| : Y €

@)} = 1, whereB(Q) denotes the set consisting of thex s matrix in Q). Especially,
the 1—prime matrixA/ means the integers i are relative prime when = 1.

When M is a1— prime matrix, an explicit formulation fofq (| M) is given in the
following theorem

THEOREM 4 ([13]) Under the condition of Theorem 3, whéd is a 1-prime ma-
trix,

1
M P, M) E 0 —— —1 Q
fQ(a| ) fQ Oé| \det( )‘ H 1_0-w cone(]er)( )’
0cA(M)\e weM\ Mg

whereP. fo(a| M) is defined inductively as follow, fo(a|M) = >, " pr.o(x), where
pr.o(z) is homogeneous polynomial of degree- s — k defined mductlvely as follows

T(x|M), k=0,
B k-1
(@) = _N ST Dpya(a)(—) DU BOIM) o), 1 <k <n—s,
j=0 |v|=k—j

where,xz € Q.

In Theorem 4B (¢| M) denotes the Fourier transform of Box spline,i.e.

iCij

j=1

4 Multi-dimensional versions of a formula of Popoviciu

In this section, we shall generalize Popoviciu’s formulation to multi-dimension. To
describe conveniently, we suppose the determinants of any twe submatrix inM are
relatively prime. We have

THEOREMS5 LetM = {my,---,m. 1} € Z**TD. Suppose the convex hull of
M does not contain the origin point and the determinants of anystwos submatrix in
M are relatively prime. Moreover,suppose the fundamehfalconeQ? = cone(M,) N
cone(M,.1). Then, whem € v(QM) N Z?,

_ det(M,(n)) det(My1) ™ det(M(n))
M) = L) det M) del(M.) !
_ {det( c)let{ietg(+1)g+1( ))}—H,

wheredet(M,) tdet(M,) =1 mod det(Mgy,),det(My 1) det(M, 1) =1 mod det(

proof: Notice that(2 C v(2|M) and the function in the form of >  6%pg () can
0cA(M)
be determined by the values 6hn Z°. Hence, we only need to prove the formulation
holds on2 N Z*.

M,).
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According to Theorem 4, the polynomial parttéh| M )is po o (n)+p1 o(n) whenn €
QNZ*,wherepgo(n) = T'(n|M), pro(m) = —(32,=; D'Poo(n) (—i)"'D*B (O\M)/v').
SinceT'(-|M) is continuous, whem € Q) N Z*

det(M;(n))
TWlM) = o Ly det M)’

by Theorem 2.

Notice that
~ 1 — exp(—i¢Tmy)
B((|M) = J C*.
() = ==, e e
After a brief calculation, we have, o (n) = 3 (57 ] + Zmiar ) Hence,whem € ©,

det(Ms(n)) 1
det(Ms)det(Ms41) +3 (det (Ms) + det(MSJrl))'

the polynomial part of (n|M) is
According to Theorem 4, the non-polynomial part.of|A/) is

1 1
e — _ - 1 Q0
Z ]det(M9)| H 1 gfw cone(]\/fe)( )

0cA(M)\e wEM\IW
1 1 1
= o o .
Z det(Mgi1) 1 — (9 Mot Z det(M,) 1 — 6—ms
9EA(M)\e pEA(M)\e
Mp=Mg 1 Mg=Ms

To prove the theorem, we need to simplify the summation formulation. We firstly con-

sider ) )
o° . 3
) P T R 3

e A(M)\e
Mg=Mg

According to the conclusions in [15], the elementg6hd € A(M)\ e, My = M, 1}
are in the form of

0 = (627ria{/det(Ms+1) . leriaZ,/det(]\/ISJrl))’ (4)
where,o/ := (af,---,ad) € Z°,1 < j < det(M,y,) — 1.

Consider thgm=+ = 27 Xiy aimeri/det(Mat) jn (3). Letk = =3 alme
Whend runs over the seftf|0 € A(M)\e, My = M1}, k runs overZnll, det(My1)—
1], since the determinant af x s submatrix in}M are relatively prime.

Notice thaty™ = 1,1 < I < swhenf € {00 € A(M), My = M,,,}. Hence, the
integer vecton’ satisfy the following equations

a{mm + aéml,g +-+admy =0 mod det(M,,,),
a{mm + aémm + agm% =0 mod det(Mgy,),

_ _ 5)
aimsy + aymg o+ -+ o Im s =0 mod det(Ms,1),

J J
Mg 1+admeio+ -+ alme s =k mod det(M,,).

Notice that the determinant af x s submatrixes in\/ are relatively prime. We can
discard any equation in the firsequations of (5) and the solutions of (5) are not changed.
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Here, we discard theth equation and hence obtain a new linear equations which have
the same solution with (5). Using Cramer rule for solving the new linear equations and

substituting the solutions int@P := e27i iz @lm/det(Mei1) e have

anagzdet( o) tdet(M, 1 (n))k mod det(M,,,).

Hence, (3) can be written as

1 det(MS+1)—l 1
2midet(Ms) ™ 'det(Ms41(n))k/det(Msy1)
det(M1) Z ‘ 1 — e—2mik/det(Ms41) ©)

k=1

According to the discrete Fourier formulation

- - - omik 7t € Z 7
(1= Z s o ™
(5) can be reduced to
det(M,) *det(My,1(n)) 1 1
¢ det(Mi1) .

2d€t( 9+1) 2

By similar method, we can prove
1 1

2 e 1=

6 A(M)\e
My=Mg

Cdet(M,,)) " det(M,(n)) ! 1
= det (M) - i)

2det(M,) 2

After a brief calculation, we have € v(Q|M) N Z*,
det(M,(n)) {det( M)~ 1det(Ms(n))}
det(M,)det(M,, 1) det(M,)

det(M,)~'det(My1(n))
- { det(M.) 4+ 1.

t(n[M)

Remark:

1.We require the determinants of all thex s square matrix in\/ are relatively prime.
In fact, we can give a similar formulation fof-| M) when M is thel— prime matrix by
using the similar method.

2. If ans x s matrix is singular, we can also present a simple formulatiori fon/)
by using the similar method in this paper.
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