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Abstract In this paper, an explicit formulation for multivariate truncated power func-
tions of degree one is given firstly. Based on multivariate truncated power functions of
degree one, an formulation is presented which counts the number of non-negative integer
solutions of s × (s + 1)linear Diophantine equations and it can be considered as a multi-
dimensional versions of the formula counting the number of non-negative integer solutions
of ax + by = n which is given by Popoviciu in 1953.
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1 Introduction

LetM be ans×n integer matrix with columnsm1, · · · , mn ∈ Zs such that[{m1, · · · ,mn}]
does not contain the origin, where[A] denotes the convex hull of a given setA. The vector
partition functionst(b|M) is defined as follows

t(b|M) = #{x ∈ Zn
+|Mx = b},

where#{·} denotes the cardinality of the set{·}, Z+ denotes the non-negative integer set
andb is the vector inZs. The vector partition function,which is also calleddiscrete trun-
cated powers, has many applications in various mathematical areas including Algebraic
Geometry[1], Representation Theory[2], Number Theory[3], Statistics [4] and Random-
ized Algorithm [5] among others.

Supposea ∈ Z+ andb ∈ Z+ are relatively prime and then we considet(n|(a, b)), n ∈
Z which is a special case of the vector partition function. According to the definition
of the vector partition function,t(n|(a, b)) counts the non-negative integer solutions of
ax + by = n. In 1953, Popoviciu gave a very beautiful formulation fort(n|(a, b)),i.e.

t(n|(a, b)) =
n

ab
− {b−1n

a
} − {a−1n

b
}+ 1,

where,{·} denotes the fraction part, i.e.{x} := x − [x], b−1, a−1 denote two integers
satisfyingb−1b ≡ 1 mod a, a−1a ≡ 1 mod b([6]). The formulation is surprising and has
many important applications([7]). Furthermore, several different methods for proving the
formulation are also given ([8,9]). But it seems to be difficult for extending the formulation
to multi-dimension by using these methods.



76 Science in China: Series A Mathematics

The aim of the paper is to give a simple formulation fort(b|M) whenM is ans×(s+
1) integer matrix, which can be regarded as a generalization of Popoviciu’s formulation.

We firstly review some results aboutt(b|M), whereM is ans× n integer matrix. For
the general matrixM , the nature oft(b|M) is investigated and the piecewise structure
of t(b|M) is given in [10]. In [13], based on multivariate truncated power functions
T (x|M), an explicit formulation fort(b|M) is presented. However, the formulation
involves multivariate truncated power functionsT (x|M), which are not in explicit form.
Furthermore, the non-polynomial part in the formulation is also very complex.

In this paper, we firstly give an explicit formulation forT (x|M) whenM is ans ×
(s + 1) integer matrix. Based on the formulation and the discrete Fourier transform, we
generalize the Popoviciu’s formulation to high dimension.

2 Multivariate Truncated Power Functions

To describe multivariate truncated power functions, we introduce some definitions and
notations firstly. LetM be ans × n real matrix andrank(M) = s, whose column
vectors are denoted asm1, · · · ,mn ∈ Zs \ {0}. M is also viewed as the multiset of
its column vectors. We always assume that the convex hull ofM does not contain the
origin. After discarding theith column vector inM we obtain a new matrix, which is
denoted asMi, i.e. Mi = (m1, · · · ,mi−1,mi+1, · · · ,mn). For the vectormi we use
mi,j to denote thejth element inmi. We usecone(M) to denote the cone produced by
M , i.e. cone(M) := {∑m∈M amm : am > 0 for all m} and usecone◦(M) to denote
the interior points ofcone(M). Moreover,we letY(M) denote the set consisting of those
submultisetsY of M for whichM\Y does not spanRs. Let A andB be two subsets of
Rm andc ∈ R. ThenA − B is the set of all elements of the forma − b, wherea ∈ A
andb ∈ B. The setsA + B andcA are defined analogously.

Let c(M) be the union of all the sets cone(M \Y ), asY runs overY(M). A connected
component ofcone◦(M) \ c(M), according to [10], is called afundamentalM -cone.
Given two setsD1, D2, let 1D1(D2) = 0 if D1 ∩D2 = ∅, otherwise let1D1(D2) = 1.

The multivariate truncated powerT (·|M) associated withM, first introduced by W.
Dahmen [11], is the distribution given by the rule∫

Rs

φ(x)T (x|M)dx =
∫

Rn
+

φ(Mu)du,∀φ ∈ D(Rs) (1)

whereD(Rs) is the space of test functions onRs, i.e. the space of all compactly supported
and infinitely differentiable functions onRs.

According to the definition ofT (x|M), T (x|M) = 1
|det(M)|1cone(M)({x}) whenM

is ans× s matrix. If n > s, there exists an elementm such that{M \m} still spansRs.
Then we have the following recurrence formulation

T (x|M) =
∫ ∞

0

T (x− tm|M \m)dt,x ∈ Rs.

The following theorem describes the piecewise structure of the multivariate truncated
power (see [12]).

THEOREM 1 ([12]) Let M be ans×n real matrix with rankM = s 6 n. Suppose
the convex hull ofM does not contain0. ThenT (·|M) agrees with some homogeneous
polynomial of degreen − s on each fundamentalM -cone. T (x|M) is a continuous
function whenn > s.



Multi-dimensional versions of a formula of Popoviciu 77

In the rest of the paper, we always supposen = s + 1, i.e. M is ans× (s + 1) matrix.
We shall give an explicit formulation forT (x|M). To describe conveniently, we suppose
the column vectors inM are in the general position, i.e. for each submatrixY ⊂ M of
cardinalitys it follows thatdet(Y ) 6= 0.

Before discussing the explicit formulation forT (x|M) we deal with the fundamental
M -cone. We can select a hyper-planeH ⊂ Rs such thatH ∩ {tmi : t > 0} 6= ∅ since
the convex hull ofM does not contain the origin point, and we denote the intersection
point asm̃i. Hence,̃M := {m̃1, m̃2, · · · , m̃s+1} is the set ofs + 1 distinct points inH,
andM can be considered as the point set inRs−1 also. Consider the convex hull of the
s + 1 points onH, i.e. [M̃ ]. Then we have two cases: the first case is thats points locate

the boundary of[M̃ ] and another point locates the interior of[M̃ ] ; the second case is

that all thes + 1 points locate the boundary of[M̃ ]. Figure 1 shows the two cases when
M = (e1, e2, e3, e4), where,ei ∈ R3.
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� ���

� ���
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Fig.1. Two cases of the fundamentalM−cones.

For fundamentalM -coneΩi, supposẽΩi = H ∩ Ωi. Notice thatΩ̃i is as − 1 sim-
plex,which has an edge which overlaps with one of edges of[M̃ ], for each case. Hence,Ωi

must have a face which overlaps with one of faces ofcone(M). Without loss of generality,
we suppose the face is spanned by{m1, · · · ,ms−1}, i.e. cone(m1, · · · , ms−1). So, the
fundamentalM− coneΩi = cone(m1, · · · ,ms−1, ms) ∩ cone(m1, · · · ,ms−1,ms+1),
i.e. Ωi = cone(Ms+1) ∩ cone(Ms), by the definition of fundamentalM−cone.

According to the analysis above, we have

LEMMA 1 SupposeM is an s × (s + 1) integer matrix. For any fundamental
M−coneΩ, there exist integersj, i, 1 6 j < i such that

Ω = cone(Mi) ∩ cone(Mj).

In the rest of the paper, without loss of generality, we always suppose the fundamental
M−cone iscone(Ms+1) ∩ cone(Ms). We can swap the column elements inMs,Ms+1

such that bothdet(Ms) anddet(Ms+1) are non-negative. To describe conveniently, we
denote the matrixes after swaping column vectors asMs,Ms+1 still. If the column vector
ms+1 in Ms is replaced byx ∈ Rs, we obtain a new matrix which is denoted asMs(x),
such as ifMs = (ms+1,m1, · · · ,ms−1), thenMs(x) = (x, m1, · · · ,ms−1). Similarly,
we useMs+1(x) to denote the matrix which is produced by replacing the elementms+1

by x in Ms+1.



78 Science in China: Series A Mathematics

According to the analysis of fundamentalM−cone, we have

THEOREM 2 Suppose the fundamentalM−coneΩ = cone(Ms+1) ∩ cone(Ms).
Then,whenx ∈ Ω

T (x|M) =
det(Ms(x))

det(Ms)det(Ms+1)
.

proof: SinceT (x|M)is continuous, we only need to prove

T (x|M) =
det(Ms(x))

det(Ms)det(Ms+1)
,

whenx ∈ Ω. Notice thatM \ms+1 is a square matrix. Hence

T (x|M\ms+1) =
1

|det(M \ms+1)|1cone(M\ms+1)({x}) =
1

det(Ms+1)
1cone(M\ms+1)({x}).

Consider the iterative formulation forT (x|M)

T (x|M) =
∫ ∞

0

T (x− tms+1|M \ms+1)dt.

Notice thatx ∈ cone(Ms). Hence, there exista1, · · · , as−1, t0 > 0, such that

x = a1m1 + · · ·+ as−1ms−1 + t0ms+1. (2)

So,{x− tms+1 : t > 0} andcone(m1, · · · ,ms−1) intersect atx− t0ms+1.

Solving linear equations (2), we have

t0 =
det(Ms(x))

det(Ms)
.

Hence,whenx ∈ Ω,

T (x|M) =
∫ t0

0

T (x− tms+1|M \ms+1)dt =
det(Ms(x))

det(Ms)det(Ms+1)
.

Remark Notice that the simplex inRs−1 hass faces. So, the numbers of fundamental
M− cones of the first case and the second case ares and2s− 2 respectively.

3 VECTOR PARTITION FUNCTIONS

In this section, we shall describe some results about vector partition functions. We
supposeM is ans×n integer matrix. Forθ := (θ1, · · · , θs) ∈ Cs, let Mθ := {y ∈ M :
θy = 1}, whereθy := θy1

1 · · · θys
s . Furthermore, we letA(M) := {θ ∈ (C \ {0})s :

span(Mθ) = Rs}, e := (1, 1, · · · , 1) ∈ Zs. Sinceey = 1 for any y ∈ M, we have
e ∈ A(M). Let [[M ]] := {∑n

j=1 ajmj : 0 6 aj 6 1, ∀j} andv(Ω|M) := Ω− [[M ]],

The piecewise structure is given in the following theorem.

THEOREM 3 ([10]) Let M = {m1, · · · ,mn} ∈ Zs×n. Suppose the convex hull of
M does not contain the origin. For any fundamentalM− coneΩ, there exists a unique el-
ementfΩ(α|M) =

∑
θ∈A(M)

θαpθ,Ω(α), such that such thatfΩ(α|M) agrees witht(α|M)

onv(Ω|M), wherepθ,Ω(·) is polynomial with degree not more than#Mθ − s.
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Furthermore, an explicit formulation forfΩ(α|M) is presented in [13,14]. The formu-
lation can be simplified whenM satisfy some special properties. To describe the results,
we firstly introduce the definition of1− prime matrix. We call theM as the1− prime
matrix provided for anys×(s+1) submatrixQ in M it follows thatgcd{|det(Y )| : Y ∈
B(Q)} = 1, whereB(Q) denotes the set consisting of thes× s matrix inQ. Especially,
the1−prime matrixM means the integers inM are relative prime whens = 1.

WhenM is a 1− prime matrix, an explicit formulation forfΩ(α|M) is given in the
following theorem

THEOREM 4 ([13]) Under the condition of Theorem 3, whenM is a 1-prime ma-
trix,

fΩ(α|M) = PefΩ(α|M) +
∑

θ∈A(M)\e
θα 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ω),

where,PefΩ(α|M) is defined inductively as followPefΩ(α|M) =
∑n−s

k=0 pk,Ω(x), where
pk,Ω(x) is homogeneous polynomial of degreen− s− k defined inductively as follows

pk,Ω(x) =





T (x|M), k = 0,

−
k−1∑
j=0

(
∑

|v|=k−j

Dvpj,Ω(x)(−i)|v|DvB̂(0|M)/v!), 1 6 k 6 n− s,

where,x ∈ Ω.

In Theorem 4,̂B(ζ|M) denotes the Fourier transform of Box spline,i.e.

B̂(ζ|M) =
n∏

j=1

1− exp(−iζT mj)
iζT mj

, ζ ∈ Cs.

4 Multi-dimensional versions of a formula of Popoviciu

In this section, we shall generalize Popoviciu’s formulation to multi-dimension. To
describe conveniently, we suppose the determinants of any twos× s submatrix inM are
relatively prime. We have

THEOREM 5 Let M = {m1, · · · , ms+1} ∈ Zs×(s+1). Suppose the convex hull of
M does not contain the origin point and the determinants of any twos × s submatrix in
M are relatively prime. Moreover,suppose the fundamentalM−coneΩ = cone(Ms) ∩
cone(Ms+1). Then, whenn ∈ v(Ω|M) ∩ Zs,

t(n|M) =
det(Ms(n))

det(Ms)det(Ms+1)
− {det(Ms+1)−1det(Ms(n))

det(Ms)
}

− {det(Ms)−1det(Ms+1(n))
det(Ms+1)

}+ 1,

wheredet(Ms)−1det(Ms) ≡ 1 mod det(Ms+1), det(Ms+1)−1det(Ms+1) ≡ 1 mod det(Ms).

proof: Notice thatΩ ⊂ v(Ω|M) and the function in the form of
∑

θ∈A(M)

θαpθ,Ω(α) can

be determined by the values onΩ ∩ Zs. Hence, we only need to prove the formulation
holds onΩ ∩ Zs.
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According to Theorem 4, the polynomial part oft(n|M)isp0,Ω(n)+p1,Ω(n) whenn ∈
Ω∩Zs, where,p0,Ω(n) = T (n|M), p1,Ω(n) = −(

∑
|v|=1 Dvp0,Ω(n) (−i)|v|DvB̂(0|M)/v!).

SinceT (·|M) is continuous, whenn ∈ Ω ∩ Zs

T (n|M) =
det(Ms(n))

det(Ms)det(Ms+1)
,

by Theorem 2.

Notice that

B̂(ζ|M) =
n∏

j=1

1− exp(−iζT mj)
iζT mj

, ζ ∈ Cs.

After a brief calculation, we havep1,Ω(n) = 1
2
( 1

det(Ms)
+ 1

det(Ms+1)
). Hence,whenn ∈ Ω,

the polynomial part oft(n|M) is det(Ms(n))

det(Ms)det(Ms+1)
+ 1

2
( 1

det(Ms)
+ 1

det(Ms+1)
).

According to Theorem 4, the non-polynomial part oft(n|M) is
∑

θ∈A(M)\e
θn 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ω)

=
∑

θ∈A(M)\e
Mθ=Ms+1

θn 1
det(Ms+1)

1
1− θ−ms+1

+
∑

θ∈A(M)\e
Mθ=Ms

θn 1
det(Ms)

1
1− θ−ms

.

To prove the theorem, we need to simplify the summation formulation. We firstly con-
sider ∑

θ∈A(M)\e
Mθ=Ms+1

θn 1
det(Ms+1)

1
1− θ−ms+1

. (3)

According to the conclusions in [15], the elements in{θ|θ ∈ A(M) \ e,Mθ = Ms+1}
are in the form of

θ = (e2πiαj
1/det(Ms+1), · · · , e2πiαj

s/det(Ms+1)), (4)

where,αj := (αj
1, · · · , αj

s) ∈ Zs, 1 6 j 6 det(Ms+1)− 1.

Consider theθms+1 := e2πi
Ps

l=1 αj
l ms+1,l/det(Ms+1) in (3). Let k :=

∑s

l=1 αj
l ms+1,l.

Whenθ runs over the set{θ|θ ∈ A(M)\e,Mθ = Ms+1}, k runs overZ∩[1, det(Ms+1)−
1], since the determinant ofs× s submatrix inM are relatively prime.

Notice thatθml = 1, 1 6 l 6 s whenθ ∈ {θ|θ ∈ A(M),Mθ = Ms+1}. Hence, the
integer vectorαj satisfy the following equations

αj
1m1,1 + αj

2m1,2 + · · ·+ αj
sm1,s ≡ 0 mod det(Ms+1),

αj
1m2,1 + αj

2m2,2 + · · ·+ αj
sm2,s ≡ 0 mod det(Ms+1),

... (5)

αj
1ms,1 + αj

2ms,2 + · · ·+ αj
sms,s ≡ 0 mod det(Ms+1),

αj
1ms+1,1 + αj

2ms+1,2 + · · ·+ αj
sms+1,s ≡ k mod det(Ms+1).

Notice that the determinant ofs × s submatrixes inM are relatively prime. We can
discard any equation in the firsts equations of (5) and the solutions of (5) are not changed.
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Here, we discard thesth equation and hence obtain a new linear equations which have
the same solution with (5). Using Cramer rule for solving the new linear equations and
substituting the solutions intoθn := e2πi

Ps
l=1 αj

l nl/det(Ms+1), we have
s−1∑
l=1

nlα
j
l ≡ det(Ms)−1det(Ms+1(n))k mod det(Ms+1).

Hence, (3) can be written as

1
det(Ms+1)

det(Ms+1)−1∑
k=1

e2πidet(Ms)−1det(Ms+1(n))k/det(Ms+1)
1

1− e−2πik/det(Ms+1)
. (6)

According to the discrete Fourier formulation

−{ t

a
} =

1− a

2a
+

1
a

a−1∑
k=1

e
2πitk

a

1− e
−2πik

a

, t, a ∈ Z, (7)

(5) can be reduced to

−{det(Ms)−1det(Ms+1(n))
det(Ms+1)

} − 1
2det(Ms+1)

+
1
2
.

By similar method, we can prove
∑

θ∈A(M)\e
Mθ=Ms

θn 1
det(Ms)

1
1− θ−ms

= −{det(Ms+1)−1det(Ms(n))
det(Ms)

} − 1
2det(Ms)

+
1
2
.

After a brief calculation, we haven ∈ v(Ω|M) ∩ Zs,

t(n|M) =
det(Ms(n))

det(Ms)det(Ms+1)
− {det(Ms+1)−1det(Ms(n))

det(Ms)
}

− {det(Ms)−1det(Ms+1(n))
det(Ms+1)

}+ 1.

Remark:

1.We require the determinants of all thes× s square matrix inM are relatively prime.
In fact, we can give a similar formulation fort(·|M) whenM is the1− prime matrix by
using the similar method.

2. If ans × s matrix is singular, we can also present a simple formulation fort(·|M)
by using the similar method in this paper.
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