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Abstract. We discuss the expansion of interaction kernels between anisotropic rigid
molecules. The expansion decouples the correlated orientational variables, which is
the crucial step to derive macroscopic free energy. It is at the level of kernel expansion,
or equivalently the free energy, that the symmetries of the interacting rigid molecules
can be fully recognized. Thus, writing down the form of expansion consistent with the
symmetries is significant. Symmetries of two types are considered. First, we examine
the symmetry of an interacting cluster, including the translation and rotation of the
whole cluster, and label permutation within the cluster. The expansion is expressed
by symmetric traceless tensors, with the linearly independent terms identified. Then,
we study the molecular symmetry characterized by a point group in O(3). The proper
rotations determine what symmetric traceless tensors can appear. The improper rota-
tions decompose these tensors into two subspaces and determine how the tensors in
the two subspaces are coupled. For each point group, we identify the two subspaces,
so that the expansion consistent with the point group is established.
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1 Introduction

In a system consisting of many rigid molecules, the interactions between the molecules
depend not only on the relative position, but also on the relative orientation. Such in-
teractions can lead to nonuniform orientational distribution. As a result, even in an in-
finitesimal volume, local anisotropy can be formed and further correlated spatially, which
is the typical mechanism for liquid crystals. An example that many are familiar with is
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the (uniaxial) nematic phase formed by rod-like molecules, where no positional order is
observed but an optical axis can be identified. If layer structure further arises, the smec-
tic phases could appear. The concept of liquid crystals has been expanded to a great
extent since rigid molecules of other shapes, such as bent-core molecules, have proved to
possess richer phase behaviors experimentally [16, 29].

In mathematical theory, to identify liquid crystalline phases, one needs to construct
free energy about some order parameters describing the local anisotropy. A simple ap-
proach is to construct phenomenological macroscopic models, typically a polynomial
of the order parameters and their derivatives. For rod-like molecules, the order pa-
rameter can be chosen as a second order symmetric traceless tensor, based on which
the Landau-de Gennes theory is built and has been successfully applied to both station-
ary and dynamic problems [2, 10, 25]. When discussing other types of liquid crystalline
phases, including polar, biaxial or tetrahedral order, people also attempted to construct
phenomenological models with different tensor order parameters [11,12,14,26,27,30]. In
these models, the terms are usually kept as minimum to describe specific phenomena.

Macroscopic theories can also be built upon molecular theories. Such an approach
dates back to the derivation of the equations of state for gases, where a homogeneous
system consisting of spherical molecules is considered [19, 21]. Inhomogeneous systems,
without considering the anisotropy of the molecule, have also been discussed, leading to
theories for modulated phases that can describe various materials such as amphiphilic
systems and block copolymers [7, 13, 24]. Molecular theories are characterized by in-
teraction kernel functions of several molecules, in which the variables representing the
positions of these molecules are correlated. To derive a macroscopic theory, it is neces-
sary to separate these variables, which can be done by expanding the kernel functions.
After the expansion is done, each term in the expansion corresponds to a term in the free
energy, so that the macroscopic theory is established.

When non-spherical rigid molecules are put into consideration, extra variables are
introduced for the orientation of the molecule. Most theories developed from molecular
interactions focus on the orientational variables only and are built for spatially homoge-
neous systems. In this case, the kernel functions are independent of spatial variables, and
the expansion decouples the orientational variables. Theories of this kind possibly start
from Maier–Saupe [20] for rod-like molecules. Other rigid molecules, including cuboid,
bent-core, triangular and cross-like [4, 5, 28, 35, 36], have also been discussed.

Recently, the expansion has been extended to spatially inhomogeneous cases, where
both spatial inhomogeneity and orientational anisotropy are included. This approach
combines the techniques for spatially inhomogeneous systems of spherical molecules and
for spatially homogeneous systems of non-spherical molecules. It was first proposed
for rod-like molecules [15], for which a tensor model was established for both nematic
and smectic phases. Later, it has been successfully applied to bent-core molecules [34],
resulting in a tensor model for modulated nematic phases.

Despite the success of these works, they still cannot describe the majority of exotic
liquid crystalline phases exhibited by non-spherical rigid molecules [18, 29, 39]. This is
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indeed not an easy task as we look into the mechanism of forming liquid crystalline
phases, where symmetry is a central topic. A rigid molecule has its intrinsic symmetry,
which can lead to various local orientational order of different mescoscopic symmetries.
Macroscopic structures are built upon the possible spatial variation of the local orien-
tational order. Theoretically, as we have mentioned above, order parameter tensors are
responsible for classifying the local orientational order. Different molecular symmetries
lead to different choice of order parameters [32], so that the classification of local orien-
tational order would be distinct. To fully recognize the symmetry of the macroscopic
structures, it calls for finding minimizers of specific free energy. For complex orienta-
tional order, it sometimes needs several high order tensors that are not considered in the
free energy in existing theories. In this sense, it is crucial to understand how the free
energy is constructed according to molecular symmetry. When we attempt to derive the
free energy from molecular interactions, the problem converts into understanding how
the kernel expansion is determined by molecular symmetry.

It shall now be clear that the expansion of interaction kernels is the core of building
macroscopic models from molecular theories. In particular, when complex symmetries
are considered and multiple tensors are adopted as order parameters, it is nontrivial to
build phenomenological theories directly. In this work, we derive the expansion of in-
teraction kernels for all molecular symmetries. Symmetry yields a few arguments on in-
teraction kernels. These arguments determine what terms will appear in the expansion,
and each term in the expansion leads to a term expressed by tensors in the free energy.
Thus, together with suitable truncation, the molecular symmetry determines the form of
the free energy, as well as the order parameters that are just the tensors appearing in the
free energy. When the interaction kernels are specified, the coefficients can be calculated
from the kernels [4, 15, 28, 34, 35]. Molecules with the same symmetry, such as bent-core
and star-shaped molecules [34, 37, 38], can be distinguished in this way.

The expansion of interaction kernels is carried out in two steps.

• Write down the general form of expansion without considering molecular symme-
try. In this case, the interaction kernels still possess some spontaneous symmetry
arguments. We shall figure out the role of these arguments playing on the expan-
sion.

• With certain molecular symmetry, some terms in the general expansion will vanish.
We shall identify the nonvanishing terms for all molecular symmetries.

To deal with anisotropy at molecular level, we need to introduce the orientational
variables. For this purpose, some notations and results about SO(3) are presented in
Section 2. Then, in Section 3, we study the expansion of interaction kernels in the general
case. Whatever the molecular potential is, the interaction kernel for a cluster is invariant
when the cluster is displaced or rotated as a whole, and when the labels of molecules
within the cluster are permuted. To reveal the effect of these arguments, one crucial point
is that we express the expansion by symmetric traceless tensors that have been discussed
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from various aspects [6,17,23,32]. With symmetric traceless tensors, it is easier to identify
the linearly independent terms. The orthogonality of many terms can also be recognized,
which is useful in the computation of the expansion of a specific kernel.

The use of symmetric traceless tensors also makes it clear how the molecular symme-
try plays its role, which we analyze in Section 4. The molecular symmetry is described
by orthogonal transformations leaving the molecule invariant, which form a point group
in O(3). A point group consists of proper rotations and possibly improper rotations,
whose roles are different. The proper rotations constitute a subgroup in SO(3). This
subgroup determines that only the invariant tensors of this group can appear in the ex-
pansion. The invariant tensors have been written down explicitly in [32] for each point
group in SO(3). Then, the improper rotations decompose the invariant tensors into two
orthogonal subspaces, and impose conditions on the coupling of tensors between these
two subspaces. For each point group, we will write down explicitly the subspace decom-
position. If the two point groups have the same proper rotations, the invariant tensors
are identical. However, since the decomposition by improper rotations is distinct, the
surviving terms in the free energy would be different. In other words, it is at the level of
free energy, but not at the level of order parameters, that the molecular symmetry can be
fully distinguished.

In this way, we write down the expansion of the interaction kernel for each point
group.

• For the expansion in the general case, the list of all the linearly independent terms
is provided;

• The proper rotations select tensors that could appear in these terms;

• The improper rotations set the rule of coupling.

This procedure clearly reflects how the molecular symmetry selects terms in the expan-
sion, which is summarized in Section 5.

To clearly present the idea, we focus on the pairwise kernel in the main text. The
whole procedure is also applicable to interaction kernels involving clusters of multiple
molecules, but finding out the linearly independent terms turn out to be tedious. For
this reason, the discussion about clusters of multiple molecules is left to Appendix. As
for explicit expressions, we provide them for bulk energy (without spatial derivatives)
and elastic energy (with spatial derivatives) from pairwise interaction, and bulk energy
from clusters of three and four molecules. This is expected to meet the demands for most
applications. In most previous works, only pairwise (two-molecule cluster) interaction is
taken into account.

The current work can serve as a useful handbook for studying the liquid crystalline
phases formed by any rigid molecule.

• When studying a particular rigid molecule, one could look up the list and choose
the terms needed, no matter for molecular-based theories or for Landau theories.
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The truncation criteria might be influenced by stability, symmetry of the phase, de-
grees of freedom of macroscopic parameters [22, 32, 34]. From the complete list of
terms we provide, one could choose the terms based on the need for particular sys-
tems. In a recent paper [33], the truncation is chosen to distinguish point groups at
the lowest order, and elastic terms up to second-order from the pairwise interaction
are listed. The results there are actually obtained according to the procedure in the
current work, but no derivation is provided in that work.

• The explicit expressions of orthogonal terms would greatly simplify the computa-
tion of their coefficients, which is merely utilized in previous works.

• Another note beyond the topic of the current work is that the subspace decompo-
sition of invariant tensors by improper rotations makes it available for fully clas-
sifying local anisotropy by its symmetry. Such classification is discussed previ-
ously [32] only for point groups in SO(3). With the help of the decomposition, we
are able to further classify different chiral or achiral states by the nonzero structure
of tensors. We shall discuss the classification in forthcoming works.

2 Preliminaries

We consider the system consisting of many identical rigid molecules that are generally
anisotropic, so that the orientation of each molecule affects the state of the whole system.
To describe the orientation, we mount a right-handed orthonormal frame (Ô;m1,m2,m3)
on the molecule. The position of Ô is denoted by x, and the orientation of the frame
is denoted by p. In this way, (x,p) represents the position and the orientation of the
molecule. The frame p is an element in SO(3), which can be expressed by an orthogonal
matrix, also denoted by p, with detp=1. The components of p are the coordinates of the
axes mi: if we denote by (O;e1,e2,e3) the reference frame in R

3, then the (i, j) element of
p is given by ei ·mj. We can also view mj as functions of p, and use the notation mj(p) to
represent the axis mj of certain p. The uniform probability measure on SO(3) is denoted
by dp.

The operations on tensors will appear throughout the paper, so let us introduce some
notations for tensors. A k-th order tensor U can be expressed by the basis in R

3 as follows,

U=Uj1···jk ej1 ⊗···⊗ejk . (2.1)

Hereafter, we adopt the Einstein convention on summation over repeated indices. Often-
times, we write a tensor Uk with superscript to explicitly indicate its order.

For two tensors U1 and U2, we use U1⊗U2 to represent their tensor product, where the
U1-components come first. The dot product of two tensors with the same order, giving a
scalar, is defined by

U ·V=Uj1···jk Vj1···jk . (2.2)
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Next, we define the rotation p acting on a tensor. By expanding the tensor using the basis
ej1 ⊗···⊗ejk , the rotation is done by transforming ei into mi, giving

p◦U=Uj1···jk mj1 ⊗···⊗mjk . (2.3)

Since mi can be viewed as functions of p, we regard p◦U as a function of p and denote it
as U(p). We have U(p1p2)=p1◦U(p2), and

U1(sp1)·U2(sp2)=U1(p1)·U2(p2), ∀s∈SO(3). (2.4)

We then introduce the notations for symmetric tensors. For a k-th order tensor U, define
its symmetrization as

Usym=
1

k! ∑
1≤j1,···,jk≤3

∑
σ

Ujσ(1)···jσ(k)ej1 ⊗···⊗ejk , (2.5)

where the summation inside is taken over all permutations σ of (1,··· ,k). For any sym-
metric tensor U, its trace is defined by contracting two of its components, resulting in a
(k−2)-th order tensor,

(trU)j1···jk−2
=Uj1···jk−2ii.

If a symmetric tensor U satisfies trU = 0, it is called a symmetric traceless tensor. The
symmetric and traceless properties are kept under rotations, i.e. U is symmetric trace-
less implies U(p) is. To express symmetric tensors, we introduce the monomial notation
below, like

mk1
1 mk2

2 mk3
3 =(m1⊗···

︸ ︷︷ ︸

k1

⊗m2⊗···
︸ ︷︷ ︸

k2

⊗m3⊗···
︸ ︷︷ ︸

k3

)sym. (2.6)

It is easy to see that for k1+k2+k3= k, the tensors mk1
1 mk2

2 mk3
3 give an orthogonal basis of

k-th order symmetric tensors. In this way, a polynomial about mi can be regarded as a
symmetric tensor, if every term in the polynomial has the same order.

We also use Kronecker delta and Levi-Civita symbol, which are given by

δij=

{
1, i= j,
0, i 6= j,

ǫijk =







1, (ijk)=(123),(231),(312),
−1, (ijk)=(132),(213),(321),
0, otherwise.

Two closely related tensors are the second order identity tensor,

i=m2
1+m2

2+m2
3,

and the third order determinant tensor,

ǫ=ǫijkmi⊗mj⊗mk

=m1⊗m2⊗m3+m2⊗m3⊗m1+m3⊗m1⊗m2

−m1⊗m3⊗m2−m2⊗m1⊗m3−m3⊗m2⊗m1.
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One can verify that the above two equalities hold for any right-handed orthonormal
frame (mj). If U is a symmetric tensor, we will use the notation

iqU=(iq⊗U)sym.

To construct symmetric traceless tensors, we have the following proposition (see [32]).

Proposition 2.1. For each k-th order symmetric tensor U, there exists a unique (k−2)-th sym-
metric tensor V such that U−iV is a symmetric traceless tensor, which is denoted by (U)0. The
space of k-th order symmetric traceless tensors has the dimension 2k+1.

We denote an orthogonal basis of k-th order symmetric traceless tensors by

W
k ={Wk

1 ,··· ,Wk
2k+1}. (2.7)

From any orthogonal basis of symmetric traceless tensors, we can obtain a complete or-
thogonal basis of L2(SO(3)), the space of square integrable functions. The following
proposition is the result of group representation theory (see, for example, [31]).

Proposition 2.2. The functions Wk
i (i)·Wk

j (p) of p for k = 0,1,··· and 1 ≤ i, j ≤ 2k+1 give a

complete orthogonal basis of L2(SO(3)).

The inner product is defined for tensor-valued functions about multiple p-variables:
for two tensor-valued functions A(p1,··· ,pl) and B(p1,··· ,pl), if A and B have the same
order, we define

(A,B)=
∫

A(p1,··· ,pl)·B(p1,··· ,pl)dp1 ···dpl . (2.8)

3 General form of expansion

In this section, we discuss the expansion of interaction kernels in the general case, i.e.
without considering molecular symmetry. First, we introduce the gradient expansion to
decouple the spatial variables, which has been used previously to deal with various sys-
tems without orientational variables. Then, starting from the formula after the gradient
expansion is done, we discuss how to deal with the orientational variables.

3.1 Molecular model and gradient expansion

Based on microscopic potential and statistical mechanics, one could write down a molec-
ular model, which may involve various approaches such as mean-field theory or clus-
ter expansion [19, 21]. No matter what approaches are used, the free energy typically
takes a form including the contribution of local entropy term and nonlocal interactions
of molecule clusters of two, three, and so on. Let f (x,p)≥ 0 be the number density of
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the molecule at the position x and of the orientation p, which we assume is smooth to
facilitate the expansion afterwards. The molecular model is written as

β0F [ f ]=
∫

dxdp f (x,p)ln f (x,p)+F2+F3+··· ,

where the nonlocal interactions terms are given by

F2=
1

2!

∫

dx1dp1dx2dp2G2(r2,p1,p2) f (x1,p1) f (x2,p2),

F3=
1

3!

∫

dx1dp1dx2dp2dx3dp3G3(r2,r3,p1,p2,p3) f (x1,p1) f (x2,p2) f (x3,p3). (3.1)

Here, (xj,pj) represents the position and orientation of the molecule j, rj = xj−x1 is the
relative position to the molecule 1, and β0 is the inverse of the product of the Boltzmann
constant and the absolute temperature. Since we would not like to discuss boundary
terms, we simply assume that each dxj is integrated in a periodic box Ω∈R

3. The orien-
tation variable pj is integrated on SO(3). To shorten the notations, we do not write them
out in the integrals.

The entropy is a local term that can be handled in different ways. One possible ap-
proach is to use the so-called Bingham closure for rod-like molecules [1, 3, 15], which is
actually the maximum entropy state that could be extended to general rigid molecules.
This approach can always be carried out if we are able to deal with the nonlocal interac-
tion terms. Therefore, we do not discuss this term in this paper.

Our focus is the nonlocal interaction terms Fl. The interaction kernels Gl are functions
of the molecular potential that might involve numerous types of forces, which we will not
try to specify and only assume to be square integrable. The nonlocal interaction terms Fl

are typically truncated somewhere. As an example, if the concentration is low, it would
suffice to keep the F2 term only. In this case, one could use G2=1−exp

(
−β0U (r2,p1,p2)

)

where U is the potential for a pair of molecules.
We start from doing Taylor expansions on f (xj,pj)= f (x1+rj,pj) about rj,

f (xj,pj)=∑
1

kj!
r

k j

j ·∇k j f (x1,pj). (3.2)

Here, we recall that the monomial r
k j

j represents a kj-th order symmetric tensor

rj⊗···⊗rj
︸ ︷︷ ︸

k j

.

Taking the above into the interaction terms, we obtain

Fl [ f ]= ∑
k2,···,kl

1

l!k2 !···kl !

∫

dx1dp1 ···dpl f (x1,p1)

M
k2,···,kl

l (p1 ··· ,pl)·∇k2 f (x1,p2)⊗···⊗∇kl f (x1,pl), (3.3)
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where we define the tensors M
k2,···,kl

l as follows,

M
k2,···,kl

l (p1,··· ,pl)=
∫

Gl(r2,··· ,rl ,p1,··· ,pl)r
k2
2 ⊗···⊗r

kl

l dr2 ···drl. (3.4)

In the above, we have effectively done the gradient expansion. It has been adopted in

many systems where no orientational variables are involved (such as [8]), where M
k2,···,kl

l
are constant tensors, so that F becomes a functional about f and their derivatives. In
some systems, such a manipulation is done in the Fourier space, where the expansion
is done about Fourier modes. It leads to polynomials of Fourier modes [7, 13], which is
formally equivalent to the gradient expansion after Fourier transformations. It certainly
requires some conditions for the gradient expansion to be appropriate. In this work,
however, we assume its appropriateness and start our discussion from (3.3) and (3.4).

The focus of this paper is the expansion of M
k2,···,kl

l about the orientational variables
pi. After the expansion, the variables pi are separated, so that the integrals

∫
dpi can be

decoupled. The interaction terms Fl then become functionals about several quantities
averaged by f (x,p), denoted by 〈h〉 that we define as

〈h〉=
∫

h(p) f (x,p)dp. (3.5)

The average is taken over SO(3), so that 〈h〉 is a function of x.
The expansion shall satisfy several symmetry arguments, which we will discuss

throughout the rest of paper. To clearly present the idea, we discuss M k
2 in a detailed

manner. The discussion for cluster of multiple molecules, along with explicit expressions
from M

0,0
3 and M

0,0,0
4 , will be given in Appendix. As indicated by the Landau-de Gennes

theory, this is expected to cover most applications.

3.2 Separation of orientational variables

We begin with writing down the symmetry arguments that the kernel function shall sat-
isfy. Regardless of the molecular potential, the interaction between a pair of molecules
shall only depend on their relative position and orientation, and be invariant when two
molecules interchange. When the two molecules are rotated together by t, the positions
and orientations of two molecules are converted into (tx1,tp1) and (tx2,tp2). Thus, their
relative position becomes t(x2−x1)= tr2. When the label of two molecules are switched,
(x1,p1) and (x2,p2) interchange, so that the relative position becomes x1−x2=−r2. Thus,
we arrive at natural symmetries in the kernel function G2, given by

G2(tr2,tp1,tp2) =G2(r2,p1,p2), ∀t∈SO(3), (3.6)

G2(−r2,p2,p1) =G2(r2,p1,p2). (3.7)

We first seek the expansion consistent with (3.6). By the definition (3.4), we have

M
k
2 (tp1,tp2)=

∫

rk
2G2(r2,tp1,tp2)dr2.
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Changing the dumb variable of the integral from r2 to tr2, then using (3.6), we derive that

M
k
2 (tp1,tp2)=

∫

(tr2)
k
G2(tr2,tp1,tp2)d(tr2)

=
∫

(tr2)
k
G2(r2,p1,p2)dr2

=t◦
∫

rk
2G2(r2,p1,p2)dr2

=t◦M
k
2 (p1,p2),

where we incorporate the definition (2.3).
Note that M k

2 is a k-th order symmetric tensor. Since M k
2 rotates with t, we could

choose a basis also rotating with t, so that the coefficients under this basis are invariant
of t. It is thus natural to choose the basis generated by the frame mi(p1), yielding

M
k
2 = ∑

k1+k2+k3=k

(
M

k
2 ·mk1

1 (p1)m
k2
2 (p1)m

k3
3 (p1)

) k!

k1!k2!k3!
mk1

1 (p1)m
k2
2 (p1)m

k3
3 (p1). (3.8)

Here, the monomial notation is still adopted in mk1
1 (p1)m

k2
2 (p1)m

k3
3 (p1). Indeed, the coef-

ficients M k
2 ·mk1

1 (p1)m
k2
2 (p1)m

k3
3 (p1) are scalar functions of the relative orientation p−1

1 p2,
because we have the following by noticing (2.4),

M
k
2 (tp1,tp2)·mk1

1 (tp1)m
k2
2 (tp1)m

k3
3 (tp1)

=
(

t◦M
k
2 (p1,p2)

)

·t◦
(

mk1
1 (p1)m

k2
2 (p1)m

k3
3 (p1)

)

=M
k
2 (p1,p2)·mk1

1 (p1)m
k2
2 (p1)m

k3
3 (p1).

Choosing t=p−1
1 , we get

M
k
2 (tp1,tp2)·mk1

1 (tp1)m
k2
2 (tp1)m

k3
3 (tp1)=M

k
2 (i,p

−1
1 p2)·ek1

1 ek2
2 ek3

3 .

Such an expression is ready for variable separation. We then expand the scalar

M k
2 (i,p

−1
1 p2)·ek1

1 ek2
2 ek3

3 by the orthogonal basis given in Proposition 2.2. It can be writ-

ten as the sum of some terms given by Vm
1 (i)·Vm(p−1

1 p2), where Vm
1 and Vm are two

symmetric traceless tensors of m-th order. Plugging it into (3.8), we know that (M k
2 )i1···ik

can be expanded into the sum of terms of the following form,

Yk
1 (p1)i1···ik

(
Vm

1 (i)·Vm(p−1
1 p2)

)

(use (2.4)) =Yk
1 (p1)i1···ik

(
Vm

1 (p1)·Vm(p2)
)

=
(
Yk

1 (p1)⊗Vm
1 (p1)

)

i1···ik j1 ···jm Vm(p2)j1 ···jm

,Y(p1)i1···ik j1 ···jm Vm(p2)j1 ···jm , (3.9)
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where Yk
1 (p1) can take any m1(p1)

k1 m2(p1)
k2 m3(p1)

k3 for k1+k2+k3 = k, and we denote
Y =Yk

1 ⊗Vm
1 . The above expansion is already variable separated: we could take it back

into the Taylor expansion (3.3) and obtain one term in it,
∫

f (x,p1)Y(p1)i1···ik j1···jm Vm(p2)j1 ···jm ∂i1···ik
f (x,p2)dxdp1dp2

=
∫ (∫

Y(p1)i1···ik j1 ···jm f (x,p1)dp1

)

∂i1···ik

(∫

Vm(p2)j1 ···jm f (x,p2)dp2

)

dx

=
∫

〈Y〉i1···ik j1 ···jm ∂i1···ik
〈Vm〉j1 ···jm dx. (3.10)

We can see that the last expression is already a term about two averaged tensors 〈Y〉 and
〈Vm〉. As a result, F2 has been expanded into several terms in the form (3.10), which
meets our motivation.

Since the space of k-th order symmetric tensors has the dimension (k+2
2 ), we actu-

ally expand (k+2
2 ) scalar functions on SO(3). Therefore, when Yk

1 takes the basis tensors

mk1
1 mk2

2 mk3
3 and Vm

1 , Vm take the basis tensors in W
m, the terms in (3.9) are linearly in-

dependent. When m is fixed, we note that Yk
1 has (k+2

2 ) choices, Vm
1 and Vm both have

2m+1 choices. Thus, the total number of these terms is (k+2
2 )(2m+1)2. In addition, we

know that M k
2 is square integrable since we have assumed G2 is, which implies that the

(k+1
2 ) scalars are all within L2(SO(3)). From Proposition 2.2 we know that when m takes

throughout all nonnegative integers, these terms form a complete orthogonal basis.
However, the above form is inconvenient when discussing (3.7) and molecular sym-

metries afterwards. In what follows, we decompose Y into symmetric traceless tensors
and identify the linearly independent terms after the decomposition.

3.3 Expansion by symmetric traceless tensors

We shall first focus on what types of terms might appear in the decomposition of a tensor
into symmetric traceless tensors, and write down the corresponding terms when taking
them into (3.9). Then, we shall identify the linearly independent terms.

For an s-th order tensor Xs, we could express it as the sum of several tensors whose
components are all from symmetric traceless tensors. The decomposition is described
briefly in Appendix. Here, we only present the result. If we write out the coordinates of
Xs as Xs

µ1···µs
, we have three types of terms,

δµα1
µα2

···δµα2σ−1
µα2σ

Ur
µγ1

···µγr
, (3.11a)

ǫµζ1
µζ2

νδµα1
µα2

···δµα2σ−1
µα2σ

Ur
νµγ2

···µγr
, (3.11b)

ǫµζ1
µζ2

µζ3
δµα1

µα2
···δµα2σ−1

µα2σ
Ur

µγ1
···µγr

. (3.11c)

In the above, Ur represents an r-th order symmetric traceless tensor. The indices
not repeated give exactly all the indices of Xs. For example, in (3.11a) we have
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{α1 ··· ,α2σ,γ1,··· ,γr}={1,··· ,s}. These terms are generated by a symmetric traceless ten-
sor, some identity tensors, and possibly one determinant tensor. The order of the tensor
Ur, r, and the number of identity tensors, σ, can vary, provided that the term gives a
tensor of the same order as Xs. To write down explicitly, the three terms in (3.11) shall
satisfy

2σ+r= s, in (3.11a),

2σ+r+1= s, in (3.11b),

2σ+r+3= s, in (3.11c). (3.12)

Now we apply the decomposition to the tensor Y =Yk
1 ⊗Vm

1 in (3.9). We shall keep in
mind that Yk

1 is a k-th order symmetric tensor, and Vm
1 , Vm are m-th order symmetric

traceless tensors. Let us examine the indices of δ and ǫ in the decomposition. Note that in
a symmetric tensor, every index is equivalent. Thus, we only need to examine how many
of the indices are located in Yk

1 or Vm
1 .

• If both indices in a δ are located in Vm
1 , the resulting term is zero when taking into

(3.9), because it leads to the contraction of two indices in Vm.

• For the three indices in ǫ, if any two of them are located in Yk
1 (or Vm

1 ), then the term
will vanish because Yk

1 and Vm
1 are symmetric. The nonvanishing term must have

one index in Yk
1 , one in Vm

1 , and the third can only be the ν of Uν··· in (3.11b). In
other words, (3.11c) contributes nothing in (3.9).

Thus, we can specify the following.

• Some indices of Ur are located in Vm
1 . These indices are contracted between Ur and

Vm. Suppose the number of such indices is p.

• For some δ, both indices in it are located in Yk
1 . Suppose the number of such δ is q.

• For other δ, one index is located in Yk
1 , while the other is located in Vm

1 . The number
of such δ is m−p in (3.11a), because it equals the number of indices in Vm not
contracted with Ur. Similarly, the number of such δ is m−p−1 in (3.11b).

Summarizing these cases, we obtain some terms expressed by a pair of symmetric
traceless tensors. They can be written as the symmetrization of tensors of the two types
below, which we denote by A1 and A2 respectively,

(A1)i1···ik
=δiα1

iα2
···δiα2q−1

iα2q
Ur(p1)iβ1

···iβr−p
j1 ···jp

Vm(p2)iγ1
···iγm−p j1 ···jp

, (3.13a)

(A2)i1···ik
=ǫζ1ζ2iν

δiα1
iα2
···δiα2q−1

iα2q
Ur(p1)ζ1 iβ1

···iβr−p−1
j1 ···jp

Vm(p2)ζ2 iγ1
···iγm−p−1

j1 ···jp
. (3.13b)
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The indices i··· on the right hand side also give exactly all i1,··· ,ik. Let us define two short
notations,

Ur p·Vm =(Z1)sym, (Z1)i1···ir+m−2p
=Ur

j1···jp i1···ir−p
Vm

j1···jpir−p+1···ir+m−2p
, (3.14a)

Ur
p
×Vm=(Z2)sym, (Z2)i1···ir+m−2p−1

=ǫζ1ζ2i1Ur
ζ1 j1 ···jpi2···ir−p

Vm
ζ2 j1 ···jp ir−p+1···ir+m−2p−1

, (3.14b)

where we write the number of indices shared by Ur and Vm, the integer p, over the
operator between the two tensors. Rewriting (A1)sym and (A2)sym for A1 and A2 in (3.13),
any term given by (3.9) can be expressed linearly by the following terms,

iqUr(p1)
p·Vm(p2), k=2q+r+m−2p, (3.15a)

iqUr(p1)
p
×Vm(p2), k=2q+r+m−2p−1. (3.15b)

The relation of tensor order is a direct result of (3.12).

Note that Vm is the same tensor in (3.9) and (3.15). We shall prove the following by
counting the number of terms given by (3.15).

Theorem 3.1. Let k and Vm be fixed. Let r,p,q vary and Ur∈W
r. The terms given in (3.15) are

linearly independent, and are linearly equivalent to the terms given in (3.9).

Proof. In the above derivation, we actually show that (3.9) can be linearly expressed by
the terms given in (3.15). Recall that when Vm is fixed, the total number of linearly inde-
pendent terms given by (3.9) is 1

2(k+2)(k+1)·(2m+1). Thus, we only need to prove that
this is exactly the number of terms given by (3.15) (when Ur ∈W

r).
Since k and m are fixed, the relation of tensor order in (3.15) is actually about p, q and

r. The r-th order symmetric traceless tensor Ur has 2r+1 choices. We shall count the
choices of (p,q) with a fixed r, which can be done by counting the choices of either p or q.
In (3.15), the indices shall be nonnegative integers. Moreover, it requires p≤r,m in (3.15a)
and p+1≤ r,m in (3.15b). Thus, we deduce the range for the indices,

(3.15a) : r+m−k even, max
{

0,
r+m−k

2

}

≤ p≤min{m,r};

(3.15b) : r+m−k odd, max
{

0,
r+m−k−1

2

}

≤ p≤min{m,r}−1.

If k≤m, by requiring the upper bounds no less than the lower bounds in (3.15), we deduce
that m−k≤ r≤m+k. The number of p available is given by

(3.15a) :
k−|r−m|

2
+1,

(3.15b) :
k−|r−m|−1

2
+1.
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Hence, the total number of terms is

∑
k−|r−m|≥0 even

k−|r−m|+2

2
(2r+1)+ ∑

k−|r−m|≥0 odd

k−|r−m|+1

2
(2r+1).

Let u= r−m so that r=m+u. The above number is calculated as

∑
k−|u|≥0 even

k−|u|+2

2
(2m+1+2u)+ ∑

k−|u|≥0 odd

k−|u|+1

2
(2m+1+2u)

= ∑
k−|u|≥0 even

k−|u|+2

2
(2m+1)+ ∑

k−|u|≥0 odd

k−|u|+1

2
(2m+1)

=(2m+1)
(

∑
k−|u|≥0 even

k−|u|+2

2
+ ∑

k−|u|≥0 odd

k−|u|+1

2

)

=(2m+1)· 1

2
(k+1)(k+2).

If k>m, let us do induction about k, based on k=m,m−1 that have been shown above.
Suppose that for k−2, the total number is 1

2 k(k−1)(2m+1). If q> 0, a term for k corre-
sponds to a term for k−2 by substituting q with q−1. Now we count the number of terms
where q=0. There are two cases:

• r= k−m+2p for 0≤ p≤m;

• r= k−m+2p+1 for 0≤ p≤m−1.

Summarizing the two cases, we have k−m≤ r≤ k+m and p is determined correspond-
ingly. The total number of terms when q=0 is thus

k+m

∑
r=k−m

(2r+1)=(2k+1)(2m+1)=
1

2
(k+2)(k+1)(2m+1)− 1

2
k(k−1)(2m+1).

The only case remaining is m=0, k=1, for which we can count directly.

Remark 3.1. It follows from the paragraph below (3.10) that when (Ur,Vm)∈W
r×W

m

with both r and m varying, the terms in (3.15) are linearly independent. We shall point
out that it is not always the case that the terms expressed by symmetric traceless tensors
are linearly independent, as we will see in the expansion of M

0,0,0
4 in Appendix. In that

case, the approach in the proof above is also useful.

We next deal with the property (3.7). From the definition of M k
2 , it leads to

M
k
2 (p2,p1)=(−1)k

M
k
2 (p1,p2). (3.16)
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From (3.15), it is straightforward to write down a set of basis functions for the expansion.
For (Ur,Vm)∈W

r×W
m, we consider the following two sets,

X
k
n,+1

=
{
iqUr(p1)

p·Vm(p2)+iqVm(p1)
p·Ur(p2) : k=2q+r+m−2p, r,m≤n

}

∪
{
iqUr(p1)

p

×Vm(p2)−iqVm(p1)
p

×Ur(p2) : k=2q+r+m−2p−1, r,m≤n, Ur 6=Vm
}

,

(3.17a)

X
k
n,−1

=
{
iqUr(p1)

p·Vm(p2)−iqVm(p1)
p·Ur(p2) : k=2q+r+m−2p, r,m≤n, Ur 6=Vm

}

∪
{
iqUr(p1)

p

×Vm(p2)+iqVm(p1)
p

×Ur(p2) : k=2q+r+m−2p−1, r,m≤n
}

. (3.17b)

Here, we require Ur 6=Vm in some sets to avoid zero. The terms in X
k
n,1∪X

k
n,−1 are also

linearly independent and linearly equivalent to (3.15).

Any term Φ(p1,p2)∈X
k
n,±1 satisfies Φ(p2,p1) =±Φ(p1,p2). Thus, it is easy to verify

that the two spaces are orthogonal using the definition (2.8): suppose Φ1(p1,p2)∈X
k
n,+1

and Φ2(p1,p2)∈X
k
n,−1, then

∫

Φ1(p1,p2)·Φ2(p1,p2)dp1dp2

(change dumb variables) =
∫

Φ1(p2,p1)·Φ2(p2,p1)dp1dp2

=
∫

Φ1(p1,p2)·
(
−Φ2(p1,p2)

)
dp1dp2.

It follows from (3.16) that (M k
2 ,Φ) = 0 for any Φ(p1,p2)∈X

k
n,(−1)k+1. Therefore, for odd

k, the expansion of M k
2 can only have terms in X

k
n,−1, while for even k it can only have

terms in X
k
n,+1.

Corollary 3.1. When (Ur,Vm)∈W
r×W

m for r,m≤n, the terms in X
k
n,(−1)k satisfy (3.6) and

(3.7), and are linearly independent. When n ranges throughout the integers, they give complete
basis functions for the expansion of M k

2 .

3.3.1 Summary of explicit expressions, relation to the free energy

Here, we summarize the explicit formulae for the terms in the expansion of M k
2 where

0≤k≤4 in Table 1, from X
k
n,(−1)k. When taking these terms back into (3.3), the integrals dpi

are decoupled like what is done in (3.10), leading to the terms in the free energy expressed
by tensors that are also listed in Table 1. We do not distinguish terms that coincide under
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Table 1: Linearly independent terms in the expansion and the corresponding terms in the free energy. All the
tensors are symmetric traceless. The notation 〈U〉 represents the average of U(p) about the density f (x,p).

Orientational expansion Free energy

M 0
2 Un(p1)·Vn(p2)+Vn(p1)·Un(p2) 〈Un〉i1···in〈Vn〉i1···in =Un ·Vn

M 1
2 Un−1(p1)

n−1· Vn(p2)−Vn(p1)
n−1· Un−1(p2) 〈Un−1〉i1···in−1

∂j〈Vn〉i1···in−1j

Un(p1)
n−1
× Vn(p2)+Vn(p1)

n−1
× Un(p2) ǫijk〈Un〉i1···in−1i∂k〈Vn〉i1···in−1j

M 2
2 i(Un(p1)·Vn(p2)+Vn(p1)·Un(p2)) ∂j〈Un〉i1···in ∂j〈Vn〉i1···in

Un(p1)
n−1· Vn(p2)+Vn(p1)

n−1· Un(p2) ∂j1 〈Un〉i1···in−1j1 ∂j2〈Vn〉i1···in−1j2

Un−2(p1)
n−2· Vn(p2)+Vn(p1)

n−2· Un−2(p2) ∂j〈Un−2〉i1···in−2
∂k〈Vn〉i1···in−2jk

Un(p1)
n−2
× Vn−1(p2)−Vn−1(p1)

n−2
× Un(p2) ǫijk∂l〈Un〉i1···in−2il∂k〈Vn−1〉i1···in−2j

M 3
2 iUn−1(p1)

n−1· Vn(p2)−iVn(p1)
n−1· Un−1(p2) ∂j1〈Un−1〉i1···in−1

∂j1 j2〈Vn〉i1···in−1j2

iUn(p1)
n−1
× Vn(p2)+iVn(p1)

n−1
× Un(p2) ǫijk∂l〈Un〉i1···in−1i∂kl〈Vn〉i1···in−1j

Un−1(p1)
n−2· Vn(p2)−Vn(p1)

n−2· Un−1(p2) ∂j1 〈Un−1〉i1···in−2j1 ∂j2 j3〈Vn〉i1···in−2j2 j3

Un(p1)
n−2
× Vn(p2)+Vn(p1)

n−2
× Un(p2) ǫijk∂j1 〈Un〉i1···in−2j1i∂kj2〈Vn〉i1···in−2j2 j

Un−3(p1)
n−3· Vn(p2)−Vn(p1)

n−3· Un−3(p2) ∂j1 〈Un−3〉i1···in−3
∂j2 j3〈Vn〉i1···in−2j1 j2 j3

Un−2(p1)
n−3
× Vn(p2)+Vn(p1)

n−3
× Un−2(p2) ǫijk∂k〈Un−2〉i1···in−3i∂j1 j2〈Vn〉i1···in−3j1 j2 j

M 4
2 i2(Un(p1)·Vn(p2)+Vn(p1)·Un(p2)) ∂j1 j2〈Un〉i1···in

∂j1 j2〈Vn〉i1···in

iUn(p1)
n−1· Vn(p2)+iVn(p1)

n−1· Un(p2) ∂j1 j3〈Un〉i1···in−1j1 ∂j2 j3〈Vn〉i1···in−1j2

Un(p1)
n−2· Vn(p2)+Vn(p1)

n−2· Un(p2) ∂j1 j2〈Un〉i1···in−2j1 j2 ∂j3 j4〈Vn〉i1···in−2j3 j4

iUn−2(p1)
n−2· Vn(p2)+iVn(p1)

n−2· Un−2(p2) ∂j1 j2〈Un−2〉i1···in−2
∂j1 j3〈Vn〉i1···in−2j2 j3

Un−2(p1)
n−3· Vn(p2)+Vn(p1)

n−3· Un−2(p2) ∂j1 j2〈Un−2〉i1···in−3j1 ∂j3 j4〈Vn〉i1···in−3j2 j3 j4

iUn−1(p1)
n−2
× Vn(p2)−iVn(p1)

n−2
× Un−1(p2) ǫijk∂j1 j2〈Un〉i1···in−2j2i∂kj1〈Vn−1〉i1···in−2j

Un(p1)
n−3
× Vn−1(p2)−Vn−1(p1)

n−3
× Un(p2) ǫijk∂j1 j2〈Un〉i1···in−3j1 j2i∂kj3〈Vn−1〉i1···in−3j3 j

Un−3(p1)
n−4
× Vn(p2)−Vn(p1)

n−4
× Un−3(p2) ǫijk∂kj1 〈Un−3〉i1···in−4i∂j2 j3〈Vn〉i1···in−4j1 j2 j3 j

Un−4(p1)
n−4· Vn(p2)+Vn(p1)

n−4· Un−4(p2) ∂j1 j2〈Un−4〉i1···in−4
∂j3 j4〈Vn〉i1···in−4j1 j2 j3 j4

For the notations:
p
· and

p
×, see (3.14).

integration by parts. For example, we consider

∫
(
Un−1(p1)

n−1· Vn(p2)−Vn(p1)
n−1· Un−1(p2)

)
f (x,p1) f (x,p2)dp1dp2

=〈Un−1〉i1···in−1
∂j〈Vn〉i1···in−1 j−〈Vn〉i1···in−1j∂j〈Un−1〉i1···in−1

=2〈Un−1〉i1···in−1
∂j〈Vn〉i1···in−1j−∂j

(

〈Vn〉i1···in−1 j〈Un−1〉i1···in−1

)

.
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When integrated about dx, the second term in the last line leads to a surface integral.
In this sense, we regard 〈Un−1〉i1···in−1

∂j〈Vn〉i1···in−1j and 〈Vn〉i1···in−1j∂j〈Un−1〉i1···in−1
as the

same term.
The correspondence of terms in the free energy and the terms in the expansion is

crucial for computing the coefficients in tensor model from the microscopic interac-
tion [4, 15, 28, 34, 35]. The molecular potential determines G , then determines M , on
which the expansion is done. In this way, the coefficients of the expansion, which is also
the coefficients of the free energy, can be computed as functions of parameters in the
molecular potential. When actually implementing the above procedure, it is significant
to find out the orthogonality of the terms in the expansion, which we discuss below.

3.4 Orthogonal basis

Corollary 3.1 has claimed that basis functions for the expansion of M k
2 can be given by

X
k
n,±1. Thus, we only need to find some linear combinations of them that form an orthog-

onal basis.
Note that for a fixed pair of tensors (Ur,Vm), there can be multiple terms in (3.15)

involving them. To achieve orthogonality for these terms, we derive some symmetric
traceless tensors related to these terms. We know from Proposition 2.1 that there exists a

unique symmetric traceless tensor generated by Ur
p·Vm. Below, we would like to derive

the explicit formulae.
We could express

(Ur p·Vm)0=Ur p·Vm+
min{r,m}−p

∑
l=1

a
r,m,p
l ilU

p+l· V. (3.18)

Calculating the trace using (2.5), we deduce that

tr
(

ilUr p+l· Vm
)

=2l
(
2(r+m−2p)+1−2l

)
il−1Ur p+l· Vm

+2(r−p−l)(m−p−l)ilUr p+l+1· Vm.

So we have

2l
(
2(r+m−2p)+1−2l

)
a

r,m,p
l +2(r−p−l+1)(m−p−l+1)a

r,m,p
l−1 =0.

Therefore, we solve recursively that

a
r,m,p
l =(−1)l (r−p)!(m−p)!

(
2(r+m−2p)−1−2l

)
!!

l!(r−p−l)!(m−p−l)!
(

2(r+m−2p)−1
)

!!
.

Similarly, we deduce that

(Ur
p

×Vm)0=Ur
p

×Vm+
min{r,m}−p−1

∑
l=1

b
r,m,p
l ilUr

p+l

× Vm, (3.19)
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where the coefficients are

b
r,m,p
l =(−1)l (r−p−1)!(m−p−1)!

(
2(r+m−2p)−3−2l

)
!!

l!(r−p−l−1)!(m−p−l−1)!
(

2(r+m−2p)−3
)

!!
.

Theorem 3.2. The following terms give an orthogonal basis of the space spanX
k
n,(−1)k,

iq
(

Ur(p1)
p·Vm(p2)+(−1)kVm(p1)

p·Ur(p2)
)

0
, k=2q+r+m−2p, (3.20a)

iq
(

Ur(p1)
p
×Vm(p2)−(−1)kVm(p1)

p
×Ur(p2)

)

0
, k=2q+r+m−2p−1, (3.20b)

where Ur and Vm take symmetric traceless tensors in W
r and W

m, respectively, for r,m≤n.

Proof. The expressions (3.18) and (3.19) indicate that the terms in (3.20) are linearly equiv-
alent to X

k
n,(−1)k, and are linearly independent. Therefore, we only need to show orthog-

onality.
First, we need to notice that if r 6=m or j 6= l, then we have

∫

(Wr
j (p)⊗Wm

l (p))i1···iri′1···i′m dp=
∫

(Wr
j (p))i1···ir

(Wm
l (p))i′1···i′m dp=0. (3.21)

Here, we could write

(Wr
j (p))i1···ir

=Wr
j (p)·ei1 ···eir

=Wr
j (p)·(ei1 ···eir

)0

=∑
j′

Wr
j (p)·λj′W

r
j′(i),

where in the second equality we use the fact that Wr
j is symmetric traceless, and in the

last equality we express (ei1 ···eir
)0 by the basis in W

r. Eq. (3.21) then comes directly from
the orthogonality in Proposition 2.2.

To deal with the terms in (3.20), we go back to (3.15). Let us denote in short a term
in (3.15) by Φ(Ur(p1),V

m(p2)). Consider two terms in (3.15), Φ1(U
r1
1 (p1),V

m1
1 (p2)) and

Φ2(U
r2
2 (p1),V

m2
2 (p2)), where (Uri

i ,Vmi
i )∈W

ri ×W
mi . If Ur1

1 6=Ur2
2 or Vm1

1 6=Vr2
2 , we show

the orthogonality using (3.21). To recognize this, we notice that a dot product of two
tensors can be rewritten as

R·S=Rj1···jk Sj′1···j′k δj1 j′1
···δjk j′k

=(R⊗S)·Z, (3.22)

where the tensor Z is composed by those δ. In the same way, the inner product (Φ1,Φ2)
can be written in the following form,

(Φ1,Φ2)=
∫

Ur1
1 (p1)⊗Ur2

2 (p1)⊗Vm1
1 (p2)⊗Vm2

2 (p2)·Zdp1dp2

=

(∫

Ur1
1 (p1)⊗Ur2

2 (p1)dp1

)

⊗
(∫

Vm1
1 (p2)⊗Vm2

2 (p2)dp2

)

·Z,
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where Z is some constant tensor. In the case of Ur1
1 6=Ur2

2 or Vm1
1 6=Vr2

2 , at least one of the
two integrals is zero, so (Φ1,Φ2)=0. Since the terms in (3.20) are linear combinations of
the terms in (3.15), we deduce the orthogonality if the tensor pairs are not identical in
two terms.

Next, we consider the case Ur1
1 =Ur2

2 =Ur and Vm1
1 =Vm2

2 =Vm. Under this assumption,
the different terms in the (3.20) must have different q. We shall use the following fact: for
a symmetric traceless tensor X no less than second order, it holds

(iqX)
2q+2· iq+1= atrX=0,

where a is some constant. Therefore, when calculating the inner product (Φ1,Φ2), we can
verify that the integrand will be zero.

When one attempts to compute the coefficients, one is actually doing the projection
to the function subspace. Thus, the explicit expressions of orthogonal basis are able to
greatly simplify the calculation. The coefficients are calculated for rod-like [15] analyti-
cally and bent-core molecules [34] numerically. In these works, the results presented in
this section are not utilized, so that lengthy calculation has to be done.

4 Molecular symmetry

Molecular symmetry is characterized by orthogonal transformations that leave the
molecule invariant. Under these transformations, the kernel function Gk shall also be
invariant. Therefore, the molecular symmetry enforces symmetries on the interaction
kernels, thus affects the expansion of these kernels. In the previous section, we express
the expansion by symmetric traceless tensors. This will bring conveniences when dis-
cussing molecular symmetry, since the conditions from molecular symmetry are reflected
on symmetric traceless tensors.

All the orthogonal transformations leaving the molecule invariant form a point group
G in O(3), of which all the proper rotations (determinant-one transformations) form a
SO(3)-subgroup G1. If G does not have improper rotations, then G1 = G. Otherwise, G
can be divided into the union of two cosets,

G=G1∪(−k)G1=G1∪G1(−k), (4.1)

where −k is any improper rotation in G. Here, we intentionally write the improper rota-
tion as −k so that k∈SO(3) that later will frequently act on tensors.

The effect of proper and improper rotations is different on what terms survive in the
expansion. In this section, we first derive the general rule, then discuss all the point
groups according to this rule. Still, we focus on M k

2 , but the rule can be applied directly
to clusters of multiple molecules.
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4.1 Role of proper and improper rotations

Let us first examine proper rotations. For a proper rotation s∈ SO(3) in the symmetry
group G, the kernel function shall be invariant if we rotate any molecule by s in the body-
fixed frame, i.e. p→ps. Thus, we have

G2(r2,p1,p2s)=G2(r2,p1s,p2)=G2(r2,p1,p2). (4.2)

It tells us
M

k
2 (p1s,p2)=M

k
2 (p1,p2s)=M

k
2 (p1,p2). (4.3)

Recall that for the SO(3)-subgroup G1, the l-th order symmetric traceless tensors can be
decomposed into two orthogonal subspaces A

G1,l and (AG1,l)⊥, such that [32]

A(ps)=A(p), ∀A∈A
G1,l, s∈G1;

1

#G1
∑
s∈G1

A(ps)=0, ∀A∈ (AG1,l)⊥.

Let us denote by Φ
(
U1(p1),U2(p2)

)
any term in the expansion of M k

2 , i.e. one term in

Table 1. It is easy to notice that Φ
(
U1(p1),U2(p2)

)
is bilinear about (U1,U2).

Theorem 4.1. For each term Φ
(
U1(p1),U2(p2)

)
in the expansion of M k

2 , the tensors Ui can only
take invariant tensors of G1.

Proof. From the bilinearity, we deduce that

(

M
k
2 (p1,p2),Φ

(
U1(p1),U2(p2)

))

=
∫

M
k
2 (p1,p2)·Φ

(
U1(p1),U2(p2)

)
dp1dp2

=
1

#G1
∑
s∈G1

∫

M
k
2 (p1s,p2)·Φ

(
U1(p1),U2(p2)

)
dp1dp2

=
1

#G1
∑
s∈G1

∫

M
k
2 (p1,p2)·Φ

(
U1(p1s

−1),U2(p2)
)

d(p1s)dp2

=
∫

M
k
2 (p1,p2)·Φ

( 1

#G1
∑
s∈G1

U1(p1s
−1),U2(p2)

)
dp1dp2.

Thus, when U1 ∈A
G1,l, the terms M k

2 and Φ
(
U1(p1),U2(p2)

)
are orthogonal. We could

choose the basis W
l as the combination of the basis of A

G1,l and that of its orthogonal
complement. In this way, for a general M k

2 , its complete expansion can be given by the
terms where U1 and U2 take either invariant tensors or vanishing tensors of G1. Therefore,
together with the orthogonality of the terms (see Theorem 3.2), in an M k

2 satisfying the
symmetry given by G1, those terms with vanishing tensors (i.e. in (AG1,l)⊥) must vanish.
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Next, we discuss improper rotations. Let us consider the following operations. For a
pair of molecules, we inverse them as a whole. The body-fixed frames are transformed
from (xi,pi) into (−xi,−pi). The frames are now left-handed, which can be recovered to
right-handed ones by an improper rotation −k. The final result is

(xi,pi)−→ (−xi,pik).

The interaction kernel is invariant under the above operations, so that

G2(−r2,p1k,p2k)=G2(r2,p1,p2). (4.4)

It tells us
M

k
2 (p1k,p2k)=(−1)k

M
k
2 (p1,p2). (4.5)

Following the same derivation above Theorem 4.1, we need to examine what the tensors
V(pk) are for the invariant tensors V(p)∈A

G1 ,l.

Proposition 4.1. According to the improper rotation −k∈G, the space of invariant tensors A
G1,l

can be decomposed into the sum of two orthogonal subspaces,

A
G,l
+1={V(p)∈A

G1 ,l :V(pk)=V(p)}, A
G,l
−1={V(p)∈A

G1 ,l :V(pk)=−V(p)}.

Proof. We shall notice that for any proper rotation s in the point group G, the proper
rotation ksk is also an element in G. This can be recognized by writing it as (−k)s(−k), a
composition of three elements in the group, two of which are improper rotations.

For an invariant tensor V(p), we can express it as

V(p)=
1

2
(V(p)+V(pk))+

1

2
(V(p)−V(pk)),

where V(p)+V(pk) is invariant under k, and V(p)−V(pk) is transformed into its opposite
V(pk)−V(pk2)=V(pk)−V(p).

Definition 4.1. For the tensors in A
G,l
±1, we call them tensors of type ±1.

The improper rotations impose conditions on how the tensors of the types ±1 shall
be coupled.

Theorem 4.2. In the expansion of M k
2 , when k is even, the coupling shall be between two tensors

of type +1, or two of type −1; when k is odd, the coupling shall be between one tensor of type +1
and one of type −1.

Proof. Without loss of generality, we assume k is even. For a term Φ
(
U1(p1),U2(p2)

)
in

the expansion, suppose U1 is type +1 and U2 is type −1. We shall deduce that

(

M
k
2 (p1,p2),Φ

(
U1(p1),U2(p2)

))

=0, (4.6)
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so that it vanishes.

Similar to the derivation for Theorem 4.1, we have

(

M
k
2 (p1,p2),Φ

(
U1(p1),U2(p2)

))

=
∫

M
k
2 (p1,p2)·Φ

(
U1(p1),U2(p2)

)
dp1dp2

=
∫

(−1)k
M

k
2 (p1k,p2k)·Φ

(
U1(p1),U2(p2)

)
dp1dp2

=(−1)k
∫

M
k
2 (p1,p2)·Φ

(
U1(p1k

−1),U2(p2k
−1)

)
dp1dp2.

By Definition 4.1, we have U1(p1k
−1)=U1(p1) and U2(p1k

−1)=−U2(p1). Together with
the bilinearity of Φ, we arrive at (4.6).

We pay attention to the case where the group G has the inversion, i.e. it allows the
improper rotation −i where we recall i represents the identity. In this case, the decompo-
sition of type ±1 tensors is obvious.

Corollary 4.1. If G has the inversion, then A
G,l
+1=A

G1,l and A
G,l
−1={0} where G1 is the SO(3)-

subgroup of G.

If the group G does not include the inversion, we need to identify the two spaces.

4.2 Tensors of two types for each point group

We are now ready to discuss each point group, respectively. Based on Theorem 4.2, our
task is to write down the decomposition in Proposition 4.1, i.e. to find out the tensors
of type ±1. For the point groups having the common SO(3)-subgroup, note that the in-
variant tensors A

G1,l are the same. However, since the improper rotations are different,
the resulting decomposition into type ±1 tensors would be different. It is from this de-
composition that we will see how these point groups are distinguished by the improper
rotations at the level of tensors.

To explicitly write down the decomposition, we need to calculate how the tensors are
transformed under the rotation k where −k∈G is an improper rotation. Thus, we need to
write down an element −k in each point group. To give a −k in matrix for a point group,
it is necessary to specify how to pose the body-fixed frame p= (m1,m2,m3), which we
explain below. For the sake of finding the decomposition of the space of invariant tensors,
we only write down generating elements of the SO(3)-subgroup (which reflect how the
body-fixed frame is posed), and specify an improper rotation −k in the point group. For
more information of the point groups, such the structure of generating elements and
illustrations, we refer to other works [9, 33].
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Recall that a rotation within the body-fixed frame is expressed by p→ ps. We begin
with introducing some rotations,

jθ =





1 0 0
0 cosθ −sinθ
0 sinθ cosθ



, b2=





−1 0 0
0 1 0
0 0 −1



, r3=





0 0 1
1 0 0
0 1 0



,

v5=
1

2





φ −1 φ−1
1 φ−1 −φ

φ−1 φ 1



, φ=
1+

√
5

2
. (4.7)

In the above, jθ is the rotation round m1 by the angle θ. To comprehend this rotation, we
could write out

ps=(m1,m2,m3)





1 0 0
0 cosθ −sinθ
0 sinθ cosθ





=(m1,cosθm2+sinθm3,−sinθm2+cosθm3).

Moreover, for two angles θ1 and θ2, we have

jθ1
jθ2

= jθ1+θ2
.

Thus, for an integer m we have

jmθ = jmθ.

The second one, b2, is the rotation round m2 by the angle π; r3 is the rotation round
(m1+m2+m3)/

√
3 by 2π/3, transforming (m1,m2,m3) into (m2,m3,m1); and v5 is a five-

fold rotation.
Now, let us write down the rotation subgroup and one improper rotation in each point

group. We shall present in the following way: describe a point group in SO(3) (with
only proper rotations); then, for all the groups containing it as the rotation subgroup,
we specify an improper rotation −k. Because the inversion is a special improper rotation
leading to trivial decomposition of the invariant tensor space, we pay special attention
whether inversion is allowed and always choose k= i if it is valid.

• The group C∞ consists of rotations round an axis by arbitrary angle. We choose m1

as the axis, so that C∞ ={jθ,∀θ}.

– C∞v has a mirror plane Ôm1m2, so an improper rotation is −k=diag(1,1,−1)=
−jπb2.

– C∞h has a mirror plane Ôm2m3, so an improper rotation is diag(−1,1,1)=−jπ .
We multiply it with a proper rotation jπ to recognize that the inversion −i

belongs to C∞h.
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• The group D∞ contains C∞ as a subset, and also allows b2.

– D∞h has a mirror plane Ôm2m3, so it contains the inversion.

• Cn is generated by the rotation round m1 by the angle 2π/n, i.e. is generated by
j2π/n.

– Cnv has an improper rotation diag(1,1,−1)=−jπb2.

– Cnh has an improper rotation diag(−1,1,1)=−jπ. When n is even, we multiply

it by jn/2
2π/n= jπ to get the inversion. When n is odd, we multiply it by j

(n+1)/2
2π/n =

j(n+1)π/n and let k= jπ/n.

– S2n allows a roto-reflection round m1, i.e. to rotate round m1 by the angle π/n,
followed by a reflection about the plane Ôm2m3. Such an improper rotation
can be expressed by jπ/n(−jπ) =−j(n+1)π/n. When n is odd, we multiply it

by j
(n−1)/2
2π/n = j(n−1)π/n to get the inversion. When n is even, we multiply it by

jn/2
2π/n= jπ and let k= jπ/n.

• Dn is generated by j2π/n and b2.

– Dnh has an improper rotation diag(−1,1,1)=−jπ . When n is even, the group
contains the inversion. When n is odd, we let k= jπ/n.

– Dnd has an improper rotation −jπjπ/n =−j(n+1)π/n. When n is odd, the group
contains the inversion. When n is even, we let k= jπ/n.

• T contains all the proper rotations allowed by a regular tetrahedron, which can be
generated by jπ, b2 and r3.

– Td allows the improper rotation





1 0 0
0 0 1
0 1 0



= jπ/2diag(1,1,−1)=−j3π/2b2.

We multiply it by the proper rotation jπb2 in T , so that we may let k= jπ/2.

– Th has a mirror plane Ôm2m3, so it contains the inversion.

• O contains all the proper rotations allowed by a cube, which can be generated by
jπ/2, b2 and r3.

– Oh contains all the O(3) transformations of a cube, allowing the inversion.

• I contains all the proper rotations allowed by a regular icosahedron, generated by
jπ, b2, r3, v5.
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– Ih contains all the O(3) transformations of a regular icosahedron, allowing the
inversion.

We now turn to the invariant symmetric traceless tensors. To express symmetric trace-
less tensors, we introduce the polynomials

T̃n(y,z)= zn/2Tn(y/
√

z), Ũn(y,z)= zn/2Un(y/
√

z), P̃
(µ,µ)
n (y,z)= zn/2P

(µ,µ)
n (y/

√
z), (4.8)

where Tn(cosθ)= cosnθ and Un−1(cosθ)sinθ = sinnθ are the Chebyshev polynomials of

the first and the second kind, and P
(µ,µ)
n (x) is the Jacobi polynomial with two identical

indices (µ,µ). Since the Chebyshev and Jacobi polynomials only have the terms with the
same parity as the order n (see Appendix for explicit expressions), the above definition
indeed gives polynomials of y and z. According to the monomial notation (2.6), when we
substitute y,z by some polynomials of mi, we define a symmetric tensor.

We are now ready to discuss the decomposition of the space of invariant tensors. The
invariant tensors for point groups in SO(3) have been identified completely in [32]. For
each point group in SO(3), we write down the invariant tensors, then find out the two
types of tensors using the improper rotations. For all the point groups having improper
rotations, the tensors of type ±1 are listed in Table 2, which we explain below.

4.2.1 Axisymmetries

We first look into two rotation groups C∞, D∞. The invariant tensors are given by

A
C∞,l =span

{

P̃
(0,0)
l (m1,i)

}

, (4.9)

A
D∞,l =span

{

P̃
(0,0)
l (m1,i)

}

, l even; A
D∞,l ={0}, l odd. (4.10)

For the groups C∞h, D∞h, since they possess the inversion, the type +1 tensors are just
the invariant tensors, and the only type −1 tensor is the zero tensor.

For C∞v, we have chosen k=diag(−1,−1,1). Thus, in type +1 tensors, m1 shall appear
even times, while in type −1 tensors, m1 shall appear odd times. As a result, the type +1
tensors are those whose order l are even, and the type −1 tensors are those with odd
order.

4.2.2 Finite order axial symmetries

Next, we look into point groups with the rotation subgroup Cn or Dn.

The group Cn is the rotation subgroup of Cnv, Cnh and S2n. The invariant tensors for
Cn are

A
Cn,l =span

{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1),P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3

}

. (4.11)
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Table 2: Tensors of type ±1 for point groups containing improper rotations.

Group Tensors of types ±1, two spaces A
G ,l
+1 and A

G ,l
−1

C∞h,D∞h

Cnh (n even) Improper rotation −k=−i

S2n (n odd) G=G1∪(−G1), G1 rotation subgroup

Dnh (n even) A
G ,l
+1=A

G1 ,l , A
G ,l
−1={0}

Dnd (n odd) see (4.9), (4.10), (4.11), (4.13), (4.15), (4.16), (4.17)

Th,Oh,Ih

C∞v l even, +1 : span
{

P̃
(0,0)
l (m1,i)

}

;

−1 :{0}
l odd, +1 :{0};

−1 : span
{

P̃
(0,0)
l (m1,i)

}

Cnv l even, +1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1)
}

−1 : span
{

P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3

}

l odd, +1 : span
{

P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3

}

−1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1)
}

S2n (n even) +1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1), P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3, j even
}

Cnh (n odd) −1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1), P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3, j odd
}

Dnd (n even) l even, +1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1), j even
}

−1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1), j odd
}

l odd, +1 : span
{

P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3, j even
}

−1 : span
{

P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3, j odd
}

Dnh (n odd) l even, +1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1), j even
}

−1 : span
{

P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3, j odd
}

l odd, +1 : span
{

P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3, j even
}

−1 : span
{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1), j odd
}

Td +1 : span

{{(
Si

2(m1,m2,m3)S
j
3(m1,m2,m3)

)

0
, j even, l=4i+3j

}

(see (4.14)) ∪
{(

E(m1,m2,m3)S
i
2(m1,m2,m3)S

j
3(m1,m2,m3)

)

0
, j odd, l=6+4i+3j

}}

−1 : span

{{(
Si

2(m1,m2,m3)S
j
3(m1,m2,m3)

)

0
, j odd, l=4i+3j

}

∪
{(

E(m1,m2,m3)S
i
2(m1,m2,m3)S

j
3(m1,m2,m3)

)

0
, j even, l=6+4i+3j

}}
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• For Cnv, we have chosen k=diag(−1,−1,1). Therefore, in type +1 tensors m1 and
m2 shall appear even times in total, while if m1 and m2 appear odd times in total,
the tensors are type −1. According to this requirement, the two types of tensors are
given in Table 2.

• For S2n where n is odd, and Cnh where n is even, these groups have the inversion.

• For S2n where n is even, and Cnh where n is odd, we have chosen k= jπ/n. Now, we
use the fact that

(m2+
√
−1m3)

n = T̃n(m2,i−m2
1)+

√
−1Ũn−1(m2,i−m2

1)m3. (4.12)

We substitute mi with mi(pjθ) in the above. The left-hand side gives

(
m2(pjθ)+

√
−1m3(pjθ)

)n
= e

√
−1nθ(m2+

√
−1m3)

n.

Let θ=π/n. We obtain

T̃jn

(
m2(pjπ/n),i−m2

1(pjπ/n)
)
=(−1)jT̃jn

(
m2,i−m2

1

)
,

Ũjn−1

(
m2(pjπ/n),i−m2

1(pjπ/n)
)
m3(pjπ/n)=(−1)jŨjn−1(m2,i−m2

1)m3.

Therefore, type +1 tensors are those in (4.11) where j is even, and type −1 tensors
are those where j is odd.

We turn to the point groups having the rotation subgroup Dn. The invariant tensors
of Dn are given by

A
Dn,l =span

{{

P̃
(jn,jn)
l−jn (m1,i)T̃jn(m2,i−m2

1), l− jn even
}

∪
{

P̃
(jn,jn)
l−jn (m1,i)Ũjn−1(m2,i−m2

1)m3, l− jn odd
}}

. (4.13)

• The two groups, Dnd where n is odd, and Dnh where n is even, contain the inversion.

• For Dnd where n is even, and Dnh where n is odd, the discussion is similar to S2n

and Cnh. By choosing k=jπ/n, we conclude that type +1 tensors are those with even
j, and type −1 tensors are those with odd j.

4.2.3 Polyhedral symmetries

There are three polyhedral rotation groups, T , O, I . Define

S2(m1,m2,m3)=m2
1m2

2+m2
2m2

3+m2
3m2

1, (4.14a)

S3(m1,m2,m3)=m1m2m3, (4.14b)

E(m1,m2,m3)= (m2
1−m2

2)(m
2
2−m2

3)(m
2
3−m2

1). (4.14c)
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Using these notations, the invariant tensors are given by

A
T ,l =span

{{(
Si

2(m1,m2,m3)S
j
3(m1,m2,m3)

)

0
, l=4i+3j

}

∪
{(

E(m1,m2,m3)S
i
2(m1,m2,m3)S

j
3(m1,m2,m3)

)

0
, l=6+4i+3j

}}

, (4.15)

A
O,l =span

{{(
Si

2(m1,m2,m3)S
j
3(m1,m2,m3)

)

0
, j even,l=4i+3j

}

∪
{(

E(m1,m2,m3)S
i
2(m1,m2,m3)S

j
3(m1,m2,m3)

)

0
, j odd,l=6+4i+3j

}}

, (4.16)

A
I ,l ={V(p)∈A

T ,l : V(pv5)=V(p)}. (4.17)

Here, we recall that (U)0 is the symmetric traceless tensor generated by U (see Proposi-
tion 2.1). If explicit expressions are needed, one could expand the tensors into monomials

and use the explicit expressions of (mi1
1 mi2

2 mi3
3 )0 that are provided in [32].

The three point groups Th, Oh, Ih contain the inversion, so nothing needs to be dis-
cussed.

For the group Td, we have chosen k=jπ/2. Because j2π/2=jπ, it is noticed from generat-
ing element that T ∪T jπ/2=O. Therefore, the type +1 tensors for Td are just the invariant
tensors of O.

5 Summary and examples

In this paper, we discuss the expansion of interaction kernels that are functions of molecu-
lar potential. The expansion is expressed by symmetric traceless tensors and is consistent
with symmetry arguments, including the translations, rotations and label permutations
of the whole cluster, and the molecular symmetry described by a point group. The or-
thogonality of terms is recognized, which is useful if the coefficients need to be calculated
from microscopic potential.

The form of expansion is summarized in two tables presented in the main text, to-
gether with an extra one in Appendix. If one would like to write down the expansion for
certain point group, the procedure below can be followed:

1) Choose tensors from the invariant tensors of the rotation subgroup.

2) Use Table 2 to identify the types ±1 of these tensors.

3) Insert these tensors into the terms in Table 1 (and Table 3 in Appendix). Notice that
Theorem 4.2 gives the conditions on the how many times the type −1 tensors shall
appear.



J. Xu / CSIAM Trans. Appl. Math., x (2022), pp. 1-45 29

We illustrate the procedure by a couple of examples. Consider two point groups C2v

and S4, both having the rotation subgroup C2. The invariant tensors up to second order
are picked up: 1 (zeroth order tensor), m1, m2

1− 1
3 i, m2

2−m2
3, m2m3. Then, from Table 2,

we find out the type ±1 for each tensor:

1 m1 m2
1− 1

3 i m2
2−m2

3 m2m3

C2v +1 −1 +1 +1 −1

S4 +1 +1 +1 −1 −1

For the terms in Table 1, substitute the tensors in these terms by the above five ten-

sors, with noticing Theorem 4.2. For example, let us look at the term Un(p1)
n−1
× Vn(p2)+

Vn(p1)
n−1
× Un(p2) in M 1

2 . The tensor order shall be equal for Un and Vn with n≥1. Since
we choose tensors up to second order, we have n= 1 or 2. If n= 1, the only first order
invariant tensor above is m1. But we cannot let Un(p)=Vn(p)=m1, since one of Un and
Vn needs to be type +1 while the other is type −1. When n=2, for the group C2v, there
are two choices (Un,Vn) = (m2

1− 1
3 i,m2m3) or (m2

2−m2
3,m2m3). For the group S4, there

are two different choices (Un,Vn)= (m2
1− 1

3 i,m
2
2−m2

3) or (m2
1− 1

3 i,m2m3). The difference
originates from the improper rotations in C2v and S4, which assign different type ±1 for
the tensors.
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Appendices

A Chebyshev and Jacobi polynomials

The Chebyshev polynomials of the first and second kind can be given by

Tn(x)= ∑
2j≤n

(
n

2j

)

(x2−1)kxn−2j, Un(x)= ∑
2j≤n

(
n+1

2j+1

)

(x2−1)kxn−2j. (A.1)

The Jacobi polynomials P
(µ,µ)
n , where the two indices are equal, can be given by

P
(µ,µ)
n (x)=

Γ(2µ+1)Γ(n+µ+1)

Γ(µ+1)Γ(n+2µ+1) ∑
2j≤n

(−1)j Γ(n− j+µ+1/2)

Γ(µ+1/2)j!(n−2j)!
2n−2jxn−2j, (A.2)

where Γ is the gamma function. It is clear that these polynomials have either odd order
terms only, or even order terms only.
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B Decomposition of a tensor into symmetric traceless tensors

Let us consider the decomposition of a general r-th order tensor X. We start from extract-
ing the symmetric part Xsym. The difference X−Xsym can be expressed by several terms
of the form

X···i···j···−X···j···i···.

For any second order tensor Q, its antisymmetric part is

Qij−Qji =





0 Q12−Q21 Q13−Q31

Q21−Q12 0 Q23−Q32

Q31−Q13 Q32−Q23 0



=ǫijkvk, v=





Q23−Q32

Q31−Q13

Q12−Q21



.

Thus, if X is r-th order, we have the following expression,

X···i···j···−X···j···i···=ǫijkZk···,

where Z is an (r−1)-th order tensor. Therefore, we arrive at

(X−Xsym)j1 ···jr = ∑
{τ1,τ2}∪{σ1,···σr−2}

={1,···,r}

ǫjτ1
jτ2

νZνjσ1
···jσr−2

. (B.1)

In the above, we use the notation Z for any tensor. Then, we can repeat this action for each
Z, decomposing it into its symmetric part and some tensors with lower order. We shall
keep doing it until each tensor becomes symmetric. Note that two ǫijk can be expressed
by some δ:

ǫi1 j1k1
ǫi2 j2k2

=

∣
∣
∣
∣
∣
∣

δi1i2 δi1 j2 δi1k2

δj1i2 δj1 j2 δj1k2

δk1i2 δk1 j2 δk1k2

∣
∣
∣
∣
∣
∣

.

So, if in any term there is no less than two ǫijk, we write them into some δ. For example,

ǫj1 j2νǫνj3ν′Zν′ j4 ···jr =(δj1 j3 δj2ν′−δj2 j3 δj1ν′)Zν′ j4···jr
=δj1 j3 Zj2 j4 ···jr −δj2 j3 Zj1 j4 ···jr

ǫj1 j2νǫj3 j4ν′Zνν′ j5 ···jr =(δj1 j3 δj2 j4 −δj1 j4 δj2 j3)Zννj5···jr
+δj1 j4 Zj3 j2 j5···jr +δj2 j3 Zj4 j1 j5 ···jr
−δj1 j3 Zj4 j2 j5···jr −δj2 j4 Zj3 j1 j5 ···jr .

Thus, we could write each term as the above so that there is at most one ǫijk. Eventually,
we get the following form,

Xj1 ···jr = ∑
0≤s≤r,s even

{τ1,···,τs}∪{σ1,···σr−s}
={1,···,r}

δjτ1
jτ2
···δjτs−1

jτs
Zjσ1

···jσr−s

+ǫjτ1
jτ2

νδjτ3
jτ4
···δjτs−1

jτs
Zνjσ1

···jσr−s
. (B.2)
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Here, all the tensors Z are symmetric tensors. Based on (B.2), we could write each Z as
U+iZ1 where U is symmetric traceless, using Proposition 2.1. We might obtain another
type of term. For example, when decomposing ǫj1 j2νZνj3 ···jr , it will yield a term

ǫj1 j2νδνj3(Z1)j4 ···jr =ǫj1 j2 j3(Z1)j4 ···jr .

Therefore, we arrive at the three types of terms in (3.11).

C Clusters of three or more molecules

To expand the interaction kernels for clusters of three or more molecules, we could follow
the same procedure of dealing with M k

2 , and many results are similar, as we outline be-
low. We recall that (xi,pi) represents the position and orientation of the molecule indexed
by i and ri = xi−x1. The molecular symmetry is described by a point group G, whose
SO(3)-subgroup is denoted by G1.

• The invariance when the whole cluster is displaced or rotated requires

Gl(tr2,··· ,trl ,tp1,··· ,tpl)=Gl(r2,··· ,rl,p1,··· ,pl), t∈SO(3),

yielding M
k2,···,kl

l (tp1,··· ,tpl)=M
k2,···,kl

l (p1,··· ,pl). Therefore, M k2,···,kl

l are functions

of p−1
1 pj for j = 2,··· ,l. We could then expand M

k2,···,kl

l about these variables like
in (3.9), and decompose the tensor Y(p1) into a symmetric traceless tensor. As a
result, we obtain some terms given by multi-linear maps from l symmetric traceless
tensors to another tensor (cf. (3.22)),

Φ
(
U1(p1),··· ,Ul(pl)

)
=
(
U1(p1)⊗···⊗Ul(pl)

)

i1···is
Ziτ1

···iτw j1 ···jt ,

s−w+t= k2+···kl , (C.1)

where Z is a tensor containing some δ and ǫ. The terms in (3.15), giving bilinear
maps about symmetric traceless tensors Ur(p1) and Vm(p2), are actually a special
case of (C.1).

• The proper rotations in the point group G give

Gl(r2,··· ,rn,p1,··· ,pjs,···)=Gl(r2 ··· ,rl ,p1,··· ,pj,···). (C.2)

It tells us

M
k2,···,kl

l (··· ,pjs,···)=M
k2,···,kl

l (··· ,pj,···). (C.3)

It requires that the Uj in (C.1) can only be invariant tensors of the SO(3)-subgroup
G1 (cf. Theorem 4.1).
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• The improper rotations require

Gl(−r2,··· ,−rl ,p1k,··· ,pjk)=Gl(r2 ··· ,rl ,p1,··· ,pl). (C.4)

It tells us
M

k2,···,kl

l (p1k,··· ,plk)=(−1)k2+···+klM
k2,···,kl

l (p1,··· ,pl). (C.5)

We need to look at k=k2+···+kl . It determines the number of Uj in (C.1) of type ±1:
when k is even, the number of type −1 tensors is even; when k is odd, the number
of type −1 tensors is odd (cf. Theorem 4.2).

The difficulty in expanding M
k2,···,kl

l is to identify linearly independent terms. For the
same (U1,··· ,Ul) there are multiple terms that might have complicated linear relations,
especially when combined with the arguments of switching labels (cf. (3.7)). We shall
discuss two cases, M

0,0
3 and M

0,0,0
4 , which are expected to be important in applications.

C.1 Expansion of M
0,0
3

To prepare for our discussion, we introduce the notation a3 for a scalar by contracting
indices of three symmetric traceless tensors (Un1

1 ,Un2
2 ,Un3

3 ),

a3(U
n1
1 ,Un2

2 ,Un3
3 ;l12,l13,l23)

=(Un1
1 )

i
(12)
1 ···i(12)

l12
i
(13)
1 ···i(13)

l13

(Un2
2 )

i
(12)
1 ···i(12)

l12
i
(23)
1 ···i(23)

l23

(Un3
3 )

i
(13)
1 ···i(13)

l13
i
(23)
1 ···i(23)

l23

, (C.6a)

a3(U
n1
1 ,Un2

2 ,Un3
3 ;l12,l13,l23,(123))

=ǫj1 j2 j3(U
n1
1 )

j1 i
(12)
1 ···i(12)

l12
i
(13)
1 ···i(13)

l13

(Un2
2 )

j2 i
(12)
1 ···i(12)

l12
i
(23)
1 ···i(23)

l23

(Un3
3 )

j3 i
(13)
1 ···i(13)

l13
i
(23)
1 ···i(23)

l23

. (C.6b)

The nonnegative integers lij represent the number of indices contracted between Uni
i and

U
nj

j , and (τ1τ2τ3)= (123) means that there is an ǫj1 j2 j3 such that j1 appears in U
nτ1
τ1

=Un1
1 ,

j2 appears in Un2
2 , and j3 appears in Un3

3 . The parameters lij here are actually redundant.
Actually, we have

l12+l13=n1, l12+l23=n2, l13+l23=n3, (C.7)

in (C.6a), where we require that K=n1+n2+n3 is even and K≥2ni for i=1,2,3. Similarly,
we have

l12+l13=n1−1, l12+l23=n2−1, l13+l23=n3−1, (C.8)

in (C.6b), where we require that ni ≥1, K=n1+n2+n3 is odd, and K≥2ni+1. However,
we still keep lij in the expression, because we will use similar notations for four tensors.
It is noticed that when permutating the three tensors in a3, we could get some identical
or opposite terms, such as

a3(U
n2
2 ,Un1

1 ,Un3
3 ;l12,l23,l13)= a3(U

n1
1 ,Un2

2 ,Un3
3 ;l12,l13,l23), (C.9a)

a3(U
n2
2 ,Un1

1 ,Un3
3 ;l12,l23,l13,(123))=−a3(U

n1
1 ,Un2

2 ,Un3
3 ;l12,l13,l23,(123)). (C.9b)
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Thus, once the three tensors are chosen, we can fix how they are arranged in a3. In par-
ticular, if two tensors are identical in (C.6b), the term equals zero.

Now we are ready to expand M
0,0
3 . As we have mentioned, it is a scalar function of

p−1
1 p2 and p−1

1 p3. When expanding about these two variables, the resulting terms can be
written as
(
Yn2

2 (p1)·Un2
2 (p2)

)(
Yn3

3 (p1)·Un3
3 (p3)

)
=
(
Yn2

2 (p1)⊗Yn3
3 (p1)

)
·
(
Un2

2 (p2)⊗Un3
3 (p3)

)
, (C.10)

where Yni
i and Uni

i are symmetric traceless tensors. After we decompose Yn2
2 ⊗Yn3

3 into
symmetric traceless tensors, the above terms can be expressed linearly by terms in (C.1)
where l=3, s=w and t=0. Using the notation a3, they are given by

a3

(
Un1

1 (p1),U
n2
2 (p2),U

n3
3 (p3);l12,l13,l23

)
, (C.11a)

a3

(
Un1

1 (p1),U
n2
2 (p2),U

n3
3 (p3);l12,l13,l23,(123)

)
. (C.11b)

Similar to Theorem 3.1, let us fix Un2
2 and Un3

3 , and examine the linearly independent
terms, by comparing (C.10) and (C.11). The former can be expressed linearly by the latter.
On the other hand, because lij ≥0 in (C.7) and (C.8), the tensor order n1 in (C.11) ranges
from |n2−n3| to n2+n3. Once n1 is determined, the lij are also determined, and Un1

1 has
2n1+1 choices. Hence, the total number of choices of Un1

1 is

n2+n3

∑
r=|n2−n3|

(2r+1)=(2n2+1)(2n3+1),

which is equal to the dimension of Yn2
2 ⊗Yn3

3 . Therefore, when we let Uni
i be the tensors in

W
ni , the terms given by (C.11) are linearly independent.
Then, we take the switching of labels into consideration. It requires

M
0,0
3 (pσ(1),pσ(2),pσ(3))=M

0,0
3 (p1,p2,p3) for any permutation σ of 1,2,3. Thus, the expan-

sion can only have the terms below,

∑
σ

a3(U
n1
1 (pσ(1)),U

n2
2 (pσ(2)),U

n3
3 (pσ(3));l12,l13,l23), (C.12a)

∑
σ

a3(U
n1
1 (pσ(1)),U

n2
2 (pσ(2)),U

n3
3 (pσ(3));l12,l13,l23,(123)), (C.12b)

where the σ in the summation takes all the permutations. As we mentioned in (C.9),
the terms are invariant or become opposite when interchanging the three tensors Uni

i . In
particular, in (C.12b), if any two of Uni

i are identical, then the term vanishes.

C.2 Expansion of M
0,0,0
4

We expand M
0,0,0
4 about three variables p−1

1 pj for j=2,3,4, to obtain the terms
(
Yn2

2 (p1)·Un2
2 (p2)

)(
Yn3

3 (p1)·Un3
3 (p3)

)(
Yn4

4 (p1)·Un4
4 (p4)

)

=
(
Yn2

2 (p1)⊗Yn3
3 (p1)⊗Yn4

4 (p1)
)
·
(
Un2

2 (p2)⊗Un3
3 (p3)⊗Un4

4 (p4)
)
. (C.13)
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The decomposition of Yn2
2 ⊗Yn3

3 ⊗Yn4
4 into symmetric traceless tensors is followed. Similar

to (C.6), we use the notation a4 for a scalar generated by contraction of four tensors,

a4

(

Uni
i

∣
∣
4

i=1
;l12,l13,l14,l23,l24,l34

)

, (C.14a)

a4

(

Uni
i

∣
∣
4

i=1
;l12,l13,l14,l23,l24,l34,(τ1τ2τ3)

)

, (C.14b)

where the integers lij represent how many indices are contracted between Uni
i

and U
nj

j ; (τ1τ2τ3) means that there is an ǫ to contract the indices in the way

ǫj1 j2 j3(U
nτ1
τ1

)j1···(U
nτ2
τ2

)j2 ···(U
nτ3
τ3

)j3 ···. These nonnegative integers shall satisfy

4

∑
j=i+1

lij+
i−1

∑
j=1

lji =ni−bi, bi =

{
1, i=τ1,τ2, or τ3,
0, otherwise.

(C.15)

As we explained in (C.9), when permutating the tensors Uni
i , some terms are identical or

opposite.

Together with the symmetry of switching the labels, we eventually obtain the terms

∑
σ

a4

(

Uni
i (pσ(i))

∣
∣
4

i=1
;lij

∣
∣
1≤i<j≤4

)

, (C.16a)

∑
σ

a4

(

Uni
i (pσ(i))

∣
∣
4

i=1
;lij

∣
∣
1≤i<j≤4

,(τ1τ2τ3)
)

, (C.16b)

where lij satisfy (C.15). However, unlike the cases we discussed above, the terms in (C.16)
still have linear relations. Below, we write down the linearly independent terms. Denote
K=n1+n2+n3+n4 and D=n1+n2−n3−n4. Note that in (C.16a) K and D are even with
K≥2ni, while in (C.16b) K and D are odd and K≥2ni+1.

1. The four tensors Uni
i are mutually unequal.

• For (C.16a), D is even. If D≤ 0, we require l12 ≤ 1; if D≥ 0 we require l34 ≤ 1.
Notice that when D=0, by (C.15) we have n1+n2−n3−n4=2l12−2l34=0.

• For (C.16b), D is odd. If D ≤−1, we let (τ1τ2τ3) = (134),(234) and l12 = 0; if
D≥1, we let (τ1τ2τ3)=(123),(124) and l34=0.

2. Two tensors are equal, but they are not equal to the other two. We place these two
tensors in the first two, i.e. Un1

1 =Un2
2 .

• For (C.16a), if D≤0, we require l12 ≤1 and l13 ≤ l23; if D≥0 we require l34 ≤1
and l13≤ l23.

• For (C.16b), if D ≤−1, we let (τ1τ2τ3) = (134) and l12 = 0; if D ≥ 1, we let
(τ1τ2τ3)=(123),(124) and l34=0, l13< l23.
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For the case Un1
1 =Un2

2 and Un3
3 =Un4

4 , only (C.16a) appears since D is even. The
above conditions still apply.

3. Three tensors are equal. We let Un1
1 =Un2

2 =Un3
3 .

• For (C.16a), we require l12= l13≤ l23.

• For (C.16b), let (τ1τ2τ3)=(124) and we look at D=n1−n4. If D≤−1, we require
l12= l13< l23; if D≥1, we require l34= l24< l14.

If four tensors are equal, only (C.16a) appears and the above conditions still apply.

The derivation is given afterwards. Here, we explain the conditions stated above by a
couple of examples. We consider the case 3 with n1 =n2=n3=3, and discuss two cases:
n4=3 and n4=1.

• n4 = 3. From (C.15), we derive that 2l34−2l12 = n3+n4−n1−n2 = 0. So we have
l12= l34, l13= l24, l14= l23. We also deduce from (C.15) that

2(l12+l13+l23+l14+l24+l34)=n1+n2+n3+n4.

It implies that l12+l13+l23 =3. Therefore, with the condition l12 = l13 ≤ l23, we find
two choices (l12,l13,l23)=(0,0,3), (1,1,1).

• n4=1. Similarly, we can derive that l12−l34 = l13−l24 = l14−l23=1. Since lij ≥0, we
need l12,l13,l23 ≥ 1. We can also find that l12+l13+l23 = 4, which only gives us one
choice (l12,l13,l23)=(1,1,2).

D Linearly independent terms in the expansion of M
0,0,0
4

In this section, we look into (C.16) and find out the linearly independent terms. We begin
with two equalities.

Lemma D.1. Suppose Qi are second order symmetric traceless tensors; pi are vectors. Then we
have

2tr(Q1Q2Q3Q4+Q1Q2Q4Q3+Q1Q3Q2Q4)

= tr(Q1Q2)tr(Q3Q4)+tr(Q1Q3)tr(Q2Q4)+tr(Q1Q4)tr(Q2Q3), (D.1)

(p1×p2)⊗p3+(p2×p3)⊗p1+(p3×p1)⊗p2

+p3⊗(p1×p2)+p1⊗(p2×p3)+p2⊗(p3×p1)=det(p1,p2,p3)i. (D.2)

Here, Q1Q2 is understood as matrix product, tr is the trace of a matrix, and × is the cross product
of vectors in R

3.
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Table 3: Linearly independent terms in the expansion of M
0,0
3 , M

0,0,0
4 and the corresponding terms in the free

energy. All the tensors are symmetric traceless. The notation 〈U〉 represents the average of U(p) about the

density f (x,p).

Orientational expansion Free energy

M
0,0
3 ∑σ a3

(

U
ni
i (pσ(i))

∣
∣
3

i=1
;lij

∣
∣
1≤i<j≤3

)

a3

(

〈Uni
i 〉

∣
∣
3

i=1
;lij

∣
∣
1≤i<j≤3

)

K=n1+n2+n3 even, K≥2ni

∑σ a3

(

U
ni
i (pσ(i))

∣
∣
3

i=1
;lij

∣
∣
1≤i<j≤3

,(123)
)

a3

(

〈Uni
i 〉

∣
∣
3

i=1
;lij

∣
∣
1≤i<j≤3

,(123)
)

K=n1+n2+n3 odd, K−1≥2ni; U
ni
i mutually unequal

M
0,0,0
4 ∑σ a4

(

U
ni
i (pσ(i))

∣
∣
4

i=1
;lij

∣
∣
1≤i<j≤4

)

a4

(

〈Uni
i 〉

∣
∣
4

i=1
;lij

∣
∣
1≤i<j≤4

)

K=n1+n2+n3+n4 even, K≥2ni, D=n1+n2−n3−n4=2l12−2l34

U
ni
i mutually unequal: If D≤0, then l12≤1; if D≥0, then l34≤1

U
n1
1 =Un2

2 : If D≤0, then l12≤1, l13≤ l23; if D>0, then l34≤1, l13≤ l23

U
n1
1 =Un2

2 =U
n3
3 : l12= l13≤ l23

∑σ a4

(

U
ni
i (pσ(i))

∣
∣
4

i=1
;lij

∣
∣
1≤i<j≤4

,(τ1τ2τ3)
)

a4

(

〈Uni
i 〉

∣
∣
4

i=1
;lij

∣
∣
1≤i<j≤4

,(τ1τ2τ3)
)

K=n1+n2+n3+n4 odd, K−1≥2ni, D=n1+n2−n3−n4

U
ni
i mutually unequal: If D≥1, then (τ1τ2τ3)=(123),(124) with l34=0;

if D≤−1, then (τ1τ2τ3)=(134),(234) with l12=0

U
n1
1 =Un2

2 : If D≥1, then (τ1τ2τ3)=(123),(124) with l34=0, l13< l23;

if D≤−1, then (τ1τ2τ3)=(134) with l12=0

U
n1
1 =Un2

2 =U
n3
3 : (τ1τ2τ3)=(124). If D≤−1, l12= l13< l23; if D≥1, l34= l24< l14

For the notations: a3 and a4, see (C.6), (C.14), and (C.15).

Proof. For any two symmetric traceless tensors Q and B, we have

2tr(Q3B)= tr(Q2)tr(QB). (D.3)

It can be verified by diagonalizing Q. Then, let Q=B=Q1+Q2 to derive

2tr(2Q2
1Q2

2+Q1Q2Q1Q2)=2(tr(Q1Q2))
2+tr(Q2

1)tr(Q
2
2). (D.4)

Substituting Q1 with Q1+Q3, we deduce that

2tr(2Q1Q3Q2
2+Q1Q2Q3Q2)=2tr(Q1Q2)tr(Q2Q3)+tr(Q1Q3)tr(Q

2
2). (D.5)

Finally, substitute Q2 with Q2+Q4 to obtain what is stated in the lemma.
The second equality can be verified directly.

To simplify the notation, from now on, we omit the tensor order of Uni
i , i.e. write Uni

i
in short as Ui. Although we do not write out, we always use ni as the order of Ui. The
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above lemma leads to

2a4(U1,U2,U3,U4;l12+1,l13+1,l14,l23,l24+1,l34+1)

+2a4(U1,U2,U3,U4;l12+1,l13,l14+1,l23+1,l24,l34+1)

+2a4(U1,U2,U3,U4;l12,l13+1,l14+1,l23+1,l24+1,l34)

=a4(U1,U2,U3,U4;l12+2,l13,l14,l23,l24,l34+2)

+a4(U1,U2,U3,U4;l12,l13+2,l14,l23,l24+2,l34)

+a4(U1,U2,U3,U4;l12,l13,l14+2,l23+2,l24,l34). (D.6)

In the above, n1+n2+n3+n4 is even. Thus, in a4(Ui;lij), for all the terms with l12,l34 ≥2,
they can be expressed linearly by those with min{l12,l34} ≤ 1. From (C.15), we have
n1+n2−2l12 =n3+n4−2l34. So we can choose the terms where

l12≤1 if n1+n2≤n3+n4; l34≤1, if n1+n2≥n3+n4. (D.7)

Here, we notice that l12= l34 if n1+n2=n3+n4.
For terms involving ǫ, the lemma implies

a4(U1,U2,U3,U4;l12,l13,l14+1,l23,l24,l34,(123))

−a4(U1,U2,U3,U4;l12,l13+1,l14,l23,l24,l34,(124))

+a4(U1,U2,U3,U4;l12+1,l13,l14,l23,l24,l34,(134))=0,

a4(U1,U2,U3,U4;l12,l13,l14,l23,l24+1,l34,(123))

−a4(U1,U2,U3,U4;l12,l13,l14,l23+1,l24,l34,(124))

−a4(U1,U2,U3,U4;l12+1,l13,l14,l23,l24,l34,(234))=0,

a4(U1,U2,U3,U4;l12,l13,l14,l23,l24,l34+1,(123))

+a4(U1,U2,U3,U4;l12,l13,l14,l23+1,l24,l34,(134))

−a4(U1,U2,U3,U4;l12,l13+1,l14,l23,l24,l34,(234))=0,

a4(U1,U2,U3,U4;l12,l13,l14,l23,l24,l34+1,(124))

−a4(U1,U2,U3,U4;l12,l13,l14,l23,l24+1,l34,(134))

+a4(U1,U2,U3,U4;l12,l13,l14+1,l23,l24,l34,(234))=0. (D.8)

Notice that n1+n2+n3+n4 is odd in these equalities. Similarly, in a4(Ui;lij,(τ1τ2τ3)), we
can choose the terms where

(τ1τ2τ3)=(123),(124), l34=0, if n1+n2≥n3+n4+1,

(τ1τ2τ3)=(134),(234), l12=0, if n1+n2+1≤n3+n4, (D.9)

because other terms can be linearly expressed by them.
Let us consider the linearly independent terms in a4(Ui(pi);lij) and

a4(Ui(pi);lij,(τ1τ2τ3)). Here, we use the same approach as in Theorem 3.1.
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Theorem D.1. Let U2,U3,U4 be fixed and U1 ∈ W
n1 where n1 takes all the possible values.

The terms a4(Ui(pi);lij) with the condition (D.7), and a4(Ui(pi);lij,(τ1τ2τ3)) with the condition
(D.9), are linearly independent.

Proof. Recall that these terms can express (C.13) linearly. In (C.13), the tensor Y2⊗Y3⊗Y4

has (2n2+1)(2n3+1)(2n4+1) choices. In what follows, we show that the number of terms
expressed by Ui is exactly (2n2+1)(2n3+1)(2n4+1).

We use induction on n2 and n3. When any of n2, n3 or n4 is zero, it reduces to the case
a3 (see the discussion below (C.11)). So, we discuss the case where n2,n3,n4≥1. If l23≥1,
the number of terms equals the case where U2, U3 and U4 are of the order n2−1, n3−1,
and n4, respectively, which is (2n2−1)(2n3−1)(2n4+1) by the assumption of induction.
Now let l23 = 0. To count the number, we use (C.15) and notice the constraints lij ≥ 0.
There are six cases:

1. a4(Ui(pi);lij) where l12=0 or l34=0. In this case, n1+n2+n3+n4 is even, and

l12+l24=n2, l13+l34=n3.

(a) When l12=0, we solve l24=n2, and

l34=
n3+n4−n1−n2

2
, l13=

n1+n2+n3−n4

2
, l14=

n1+n4−n2−n3

2
.

It yields
n1≤n3+n4−n2, n1≥n2+n3−n4, n1≥n4−n3−n2.

(b) When l34=0, we solve l13=n3, and

l12=
n1+n2−n3−n4

2
, l24=

n2+n3+n4−n1

2
, l14=

n1+n4−n2−n3

2
.

It yields
n1≥n3+n4−n2, n1≤n2+n3+n4, n1≥n2+n3−n4.

We combine (a) and (b). If n3+n4−n2<0, then the range of n1 is n2+n3−n4≤n1≤
n2+n3+n4. If n3+n4−n2 ≥ 0, then |n2+n3−n4| ≤ n1 ≤ n2+n3+n4. So, we have
|n2+n3−n4|≤n1≤n2+n3+n4 where n1 has the same parity as n2+n3+n4.

2. a4(Ui(pi);lij) where min{l12,l34}=1. Similar to the above, we deduce that 1+|n2+
n3−n4−1|≤n1 ≤n2+n3+n4−2 where n1 has the same parity as n2+n3+n4.

3. a4(Ui(pi);lij,(123)) where l34=0. We solve that l13=n3−1, and

l12=
n1+n2−n3−n4−1

2
, l24=

n2+n3+n4−n1−1

2
, l14=

n1+n4−n2−n3+1

2
.

It yields

n1≥n3+n4−n2+1, n1≤n2+n3+n4−1, n1≥n2+n3−n4−1.
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4. a4(Ui(pi);lij,(124)) where l34=0. We solve that l13=n3, and

l12=
n1+n2−n3−n4−1

2
, l24=

n2+n3+n4−n1−1

2
, l14=

n1+n4−n2−n3−1

2
.

It yields

n1≥n3+n4−n2+1, n1≤n2+n3+n4−1, n1≥n2+n3−n4+1.

5. a4(Ui(pi);lij,(134)) where l12=0. We solve that l24=n2, and

l34=
n3+n4−n1−n2−1

2
, l24=

n1+n2+n3−n4−1

2
, l14=

n1+n4−n2−n3−1

2
.

It yields

n1≤n3+n4−n2−1, n1≥n4−n2−n3+1, n1≥n2+n3−n4+1.

6. a4(Ui(pi);lij,(234)) where l12=0. We solve that l24=n2−1, and

l34=
n3+n4−n1−n2−1

2
, l24=

n1+n2+n3−n4−1

2
, l14=

n1+n4−n2−n3−1

2
.

It yields

n1≤n3+n4−n2−1, n1≥n4−n2−n3+1, n1≥n2+n3−n4−1.

In cases 3 to 6, n1 has the different parity from n2+n3+n4. Combine case 3 and case
6. If n2 > n4, then case 6 is empty, and we have n2+n3−n4−1≤ n1 ≤ n2+n3+n4−1. If
n2≤n4, then case 6 is |n2+n3−n4−1|≤n1≤n3+n4−n2−1, and case 3 is n3+n4−n2+1≤
n1 ≤n2+n3+n4−1. So, we arrive at |n2+n3−n4−1|≤n1 ≤n2+n3+n4−1. Similarly, we
combine case 4 and case 5 to have |n2+n3−n4|+1≤n1≤n2+n3+n4−1.

So, let us combine cases 1, 4 and 5. The range of n1 is |n2+n3−n4|≤n1≤n2+n3+n4.
The cases 2, 3 and 6 lead to |n2+n3−n4−1| ≤ n1 ≤ n2+n3+n4−1. Thus, the number of
terms is

n2+n3+n4

∑
r=|n2+n3−n4|

(2r+1)+
n2+n3+n4−1

∑
r=|n2+n3−n4−1|

(2r+1)

=4(n2+n3)(2n4+1)

=(2n2+1)(2n3+1)(2n4+1)−(2n2−1)(2n3−1)(2n4+1).

This concludes the proof.
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The theorem indicates that (D.6) and (D.8) give all the linear relations without missing
anything. Now, we consider (C.16) where label permutations are taken into considera-
tion. As we have discussed in the main text, once the tensors appearing in a4 are chosen,
we can arrange them in the order we want. When Ui are mutually unequal, the con-
ditions (D.7) and (D.9) are just those in the Table 1. However, these conditions are not
suitable if some of Ui are equal.

We omit the case where U1=U2 6=U3,U4, and only examine the case U1=U2=U3.

Problem 1: Consider (C.16a) where U1=U2=U3. It is equivalent to consider the linearly
independent terms of a4(U1,U1,U1,U4;lij). The relation (C.15) between lij can be rewritten
as

2(l12−l34)=2(l13−l24)=2(l23−l14)=n1−n4,

l14+l24+l34=n4.

Thus, we define (d1,d2,d3)= (l12,l13,l23) if n1 ≤ n4, and (d1,d2,d3)= (l34,l24,l14) if n1 ≥ n4.
We have d1+d2+d3 = min{(3n1−n4)/2,n4} , d is a constant determined by n1 and
n4. Define ψ(d1,d2,d3) = a4(U1,U1,U1,U4;lij). Similar to (C.9), we have ψ(d1,d2,d3) =
ψ(dσ(1),dσ(2),dσ(3)) for any permutation σ. The linear relation (D.6) is then written as

ψ(d1+2,d2,d3)+ψ(d1,d2+2,d3)+ψ(d1,d2,d3+2)

=2ψ(d1+1,d2+1,d3)+2ψ(d1+1,d2,d3+1)+2ψ(d1,d2+1,d3+1).

According to the conditions in Table 1, we need to show that ψ(i,i,d−2i) for 3i ≤ d are
linearly independent and can linearly express others. We use induction on d. For d=0,1,2
we verify directly. When d = 0, there is only one term ψ(0,0,0). When d = 1, by the
permutational symmetry there is only one term ψ(0,0,1). When d=2, we have

3ψ(0,0,2)=ψ(2,0,0)+ψ(0,2,0)+ψ(0,0,2)

=2ψ(1,1,0)+2ψ(1,0,1)+2ψ(0,1,1)=6ψ(1,1,0).

Thus, there is only one linearly independent term ψ(0,0,2).
Assume d ≥ 3. The linear relations between ψ where di ≥ 1 are identical to ψ(d1−

1,d2−1,d3−1) for d−3. By the assumption of induction, ψ(i,i,d−2i) for 1≤ i≤d−2i give
the linearly independent terms. Thus, let us assume that ψ(d1,d2,d3) are all known when
di ≥1, and solve ψ when some di are zero. Now let d1=0. If d2,d3≥1, then

ψ(0,d2+2,d3)−2ψ(0,d2+1,d3+1)+ψ(0,d2,d3+2)

=2ψ(1,d2+1,d3)+2ψ(1,d2,d3+1)−ψ(2,d2,d3)

is known. For d2=0, we have

ψ(0,2,d−2)−2ψ(0,1,d−1)+ψ(0,0,d)=2ψ(1,1,d−2)+2ψ(1,0,d−1)−ψ(2,0,d−2).
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Use invariance under permutation, we get

−ψ(0,2,d−2)+2ψ(0,1,d−1)=−ψ(1,1,d−2)+
1

2
ψ(0,0,d).

Define a vector z where zi =ψ(0,i,d−i) for i=1,··· ,d−1. The above linear equations can
be written as









2 −1

−1 2
. . .

. . .
. . . −1
−1 2









z=b+










1
2 ψ(0,0,d)

0
...
0

1
2 ψ(0,0,d)










,

where b satisfies bi = bd−i that is given by ψ(d1,d2,d3) with di ≥ 1. Hence, the value of
ψ(0,0,d) is needed to fully determine ψ(0,d2,d3), and the solution also satisfies zi = zd−i.

Problem 2: Consider (C.16b) where U1 =U2 =U3. Again, we shall consider the linearly
independent terms of a4(U1,U1,U1,U4;lij,(τ1τ2τ3)). Using arguments similar to (C.9), we
can deduce that

a4(U1,U1,U1,U4;l12,l13,l14,l23,l24,l34,(124))

=a4(U1,U1,U1,U4;l12,l23,l24,l13,l14,l34,(214))

=−a4(U1,U1,U1,U4;l12,l23,l24,l13,l14,l34,(124)),

a4(U1,U1,U1,U4;l12,l13,l14,l23,l24,l34,(134))

=a4(U1,U1,U1,U4;l13,l12,l14,l23,l34,l24,(124)),

a4(U1,U1,U1,U4;l12,l13,l14,l23,l24,l34,(234))

=−a4(U1,U1,U1,U4;l23,l13,l34,l12,l24,l14,(124)).

Thus, it allows us not to consider the terms with (τ1τ2τ3)=(134),(234). When (τ1τ2τ3)=
(124), the relations between lij require

2(l12−l34+1)=2(l13−l24)=2(l23−l14)=n1−n4+1,

l14+l24+l34=n4−1.

Thus, we define (d1,d2,d3)= (l12,l13,l23) if n1 ≤n4−1, and (d1,d2,d3)= (l34,l24,l14) if n1 ≥
n4+1. We have d1+d2+d3=min{n4−1,(3n1−n4−1)/2}=d. To simplify the presentation,
we only discuss the case n1≤n4−1. Define ϕ(d1,d2,d3)=a4(U

ni
i ;lij,(124)). Then we have

ϕ(d1,d2,d3)=−ϕ(d1,d3,d2). (D.10)
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Use permutational symmetry on a4(U1,U1,U1,U4;lij,(123)), the first three equations in
(D.8) become

ϕ(d1,d2,d3+1)−ϕ(d3,d2,d1+1)

=−ϕ(d1,d3,d2+1)+ϕ(d2,d3,d1+1)

=ϕ(d3,d1,d2+1)−ϕ(d2,d1,d3+1)

=a4(U1,U1,U1,U4;d1,d2,d3+c,d3,d2+c,d1+c,(123)), c=
n4+1−n1

2
. (D.11)

The fourth becomes

ϕ(d1,d2,d3)+ϕ(d2,d3,d1)+ϕ(d3,d1,d2)=0. (D.12)

Our goal is to verify that ϕ(i,i,d−2i) for 3i < d give all the linearly independent terms.
Use induction on d. When d=0, we have ϕ(0,0,0)=0. When d=1, we have ϕ(1,0,0)=0
and ϕ(0,1,0)=−ϕ(0,0,1). So, there is only one linearly independent term ϕ(0,0,1). When
d=2, we have ϕ(2,0,0)= ϕ(0,1,1)=0, and

ϕ(0,0,2)−ϕ(1,0,1)=−ϕ(0,1,1)+ϕ(0,1,1)= ϕ(1,0,1)−ϕ(0,0,2).

Together with ϕ(0,2,0)=−ϕ(0,0,2), ϕ(1,1,0)=−ϕ(1,0,1), we find that there is only one
linearly independent term ϕ(0,0,2).

Now consider d≥3. The linear relations between ϕ for di ≥1 are identical to the case
d−3. By the assumption of induction, in these terms the linearly independent ones can
be given by ϕ(i,i,d−2i) with 1≤i<d−2i. We assume that ϕ(d1,d2,d3) are known for di≥1
and solve those with some di =0. If two of di are zero, the linear relations yield

ϕ(d,0,0)=0,ϕ(0,0,d)=−ϕ(0,d,0).

Below, we consider ψ with exactly one di zero, to show that they can be solved from
ϕ(0,0,d) and ϕ(d1,d2,d3) where di ≥1.

In (D.11), let d3 = 0, d1+d2 = d−1, where 1≤ d1 ≤ d2 ≤ d−2. Then, the first and third
lines give

ϕ(0,d1,d2+1)+ϕ(0,d2,d1+1)= ϕ(d1,d2,1)+ϕ(d2,d1,1),

where the right-hand side is known. Together with ϕ(0,d1,d2) =−ϕ(0,d2,d1), we can
solve ϕ(0,d1,d2) for 1≤d1,d2≤d−1.

Next, we deal with ϕ(d1,0,d2) where d1,d2 ≥ 1. Using the second line in (D.11), we
obtain

ϕ(d2,0,d1+1)−ϕ(d1,0,d2+1)= ϕ(d1,d2,1)−ϕ(0,d2,d1+1), (D.13)
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where the right-hand side is already obtained above. Note that switching d1 and d2 leads
to the same equation, and d1 = d2 gives nothing. So, we require 0≤ d1 < d2 ≤ d−1. Here,
d1=0 gives ϕ(0,0,d)= ϕ(d−1,0,1). Then, by (D.10) and (D.12), we deduce that

ϕ(d2,0,d1)=−ϕ(d1,d2,0)−ϕ(0,d1,d2)= ϕ(d1,0,d2)−ϕ(0,d1,d2), (D.14)

where 1 ≤ d1 < d2 ≤ d−1. (D.13) and (D.14) give d−1 equations in total for ϕ(d1,0,d2)
where d1,d2≥1. They can indeed be solved by rewriting the left-hand side of (D.13) as

ϕ(d2,0,d1+1)−ϕ(d1,0,d2+1)= ϕ(d1+1,0,d2)−ϕ(d1,0,d2+1)−ϕ(0,d1+1,d2),

leading to

ϕ(d1+1,0,d2)−ϕ(d1,0,d2+1)= ϕ(d1,d2,1).

Finally, we use ϕ(d1,d2,0)=−ϕ(d1,0,d2) for 1≤d1,d2≤d−1 to finish the induction.
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