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Abstract

We propose numerical schemes for a class of Keller–Segel equations. The discretization is based on
the gradient flow structure. The resulting first-order scheme is mass conservative, bound preserving,
uniquely solvable and energy dissipative, and the second-order scheme satisfies the first three properties.
For parabolic–elliptic equations, the schemes are decoupled. Numerical examples are presented to show
that besides the above properties, the schemes are efficient and able to capture the spiky solutions for
the aggregation in chemotaxis.
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1 Introduction

The Keller–Segel equations, proposed in [24, 20, 21], describe chemotaxis in biology. Chemotaxis refers
to the motion of organisms according to signals (usually chemical, called chemoattractants) that can be
generated by the organisms themselves. The chemotaxis system has two competing mechanisms: the diffusion
from the Brownian motion, and the aggregation directed by the signals. This kind of competition can be
found in various other systems. For each organism and signal, the evolution is described by a parabolic
equation. In many cases, the signal responses to the concentration of organism much faster than the organism
responses to the signal. So it is common to simplify the parabolic equation for the signal as an elliptic
equation.

In the classical Keller–Segel system, the aggregation may lead to blow-up solutions. This property has
drawn much attention in mathematical analysis. On the other hand, blow-up does not happen in real
system. It actually implies that the concentration reaches several orders of magnitude larger and is beyond
the range that the model can describe. Thus, many modifications of the classical model have been proposed
to eliminate the blow-up. The modified models proved to exhibit spiky solutions but will not blow up. The
literature on this topic is huge, of which we only mention the book [25] and some review articles [18, 1].

Compared with the analytical works, the numerical methods for Keller–Segel equations are far from
well studied. The main difficulties in constructing suitable numerical schemes are to keep several essential
properties of the Keller–Segel equations such as positivity, mass conservation and energy dissipation. Of
these three properties, the positivity of the numerical solutions receives the most attention, but provable
energy dissipation is rarely acheived. Most existing works focus on the classical Keller–Segel system. Some
numerical schemes are developed with the discussion of positive-preserving conditions [16, 9, 15, 14, 13, 7].

∗This work is supported in part by NSF grants DMS-1620262, DMS-1720442 and AFOSR FA9550-16-1-0102.
†Department of Mathematics, Purdue University, USA, Email: shen7@purdue.edu
‡Corresponding author. NCMIS & LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing

(ICMSEC), Academy of Mathematics and Systems Science (AMSS), Chinese Academy of Sciences, Email: xujie@lsec.cc.ac.cn.
The work of this author is partly supported by AMSS grants for Outstanding Youth Project, NCMIS, and ICMSEC director
funds.

1



These schemes depend on particular spatial discretization and usually lead to strict CFL restrictions on
the time step. There exist however some unconditionally positivity-preserving schemes. One is a linear
finite-volume scheme proposed in [33] (see also [2]) where the upwind technique is utilized. The scheme is
restricted to the parabolic–elliptic system, is only applicable to finite-volume spatial discretization, and is
only a first-order approximation both in time and space. The other is a recent work which reformulates the
equation to arrive at a positive-preserving scheme [23]. The reformulation depends on the particular form
of the classical Keller–Segel equations, thus is not easily extended to modified systems. Modified systems
are examined in [22], but without effort on keeping the desired properties. In particular, in some modified
systems one can show that the concentration is bounded in certain interval. Very recently, a nonlinear
finite-volume-based scheme, which adopts the upwind technique, is proposed in [10]. This scheme is able to
bound the the solution in the desired interval and keep energy dissipation unconditionally, but it has the
same restriction metioned above for the scheme in [33].

In this work, we construct a new class of numerical schemes for the classical and modified systems with
a gradient flow structure. Generally, a gradient flow can be written as ∂ρ/∂t = G(ρ) ◦ (δE/δρ), where the
dissipation operator G is non-positive. For Keller–Segel equations, the dissipation operator is nonlinear,
taking the form ∇· (η(ρ)∇(·)) where ρ represents the concentration of the organism. To ensure this operator
be non-positive, ρ needs to be constrained in the interval where η(ρ) ≥ 0. A typical case is η(ρ) = ρ that the
classical Keller–Segel system takes. It leads to Wasserstein gradient flows, where ρ needs to be constrained
nonnegative. So, special treatment is needed for preserving its bound in numerical schemes. Therefore, the
existing approaches to gradient flows, such as the recently developed SAV approach [29, 30, 27], can not be
easily applied.

The key ingredient in our new schemes is to rewrite the term ∆ρ as ∇· ( 1
f ′′(ρ)∇f

′(ρ)) where 1
f ′′(ρ) = η(ρ),

then to discretize using this interpretation by treating f ′(ρ) implicitly and f ′′(ρ) explicitly. Then, with
a proper treatment of other terms, we can show that the solution to our scheme is the unique minimizer
of a strictly convex functional that confines the variable in the interval where η(ρ) > 0. Therefore, the
solution can be efficiently obtained by Newton’s iteration. Similar idea is adopted for Cahn-Hilliard equations
with logarithmic potential [8] and Poisson–Planck–Nernst equations [28]. In particular, our schemes satisfy
unconditionally four desired properties: (i) mass conservation; (ii) unique solvability; (iii) bound preserving;
(iv) energy dissipation, without restriction to specific spatial discretizations.

The rest of paper is organized as follows. In the next section, we describe the class of Keller–Segel systems
that will be considered in this paper and derive some basic properties which will be used later. Then
we construct our numerical schemes in Section 3. The time discretization is proposed first, followed by a
discussion on the spatial discretization. We will show that the first-order schemes satisfy the properties
(i)-(iv), and the second-order schemes satisfy (i)-(iii). In Section 4, we provide numerical examples to verify
our theoretical results, and compare the aggregation in different models. A conclusion is given in section 5.

2 Keller–Segel equations and their regularizations

We start from the simplest system where only one organism and one chemoattractant is present, and
consider the following Keller–Segel system in a bounded domain Ω:

∂ρ

∂t
=D

(
γ∆ρ− χ∇ · (η(ρ)∇φ)

)
, (2.1)

τ
∂φ

∂t
=µ∆φ− αφ+ χρ, (2.2)

with either periodic boundary conditions, or no-flux boundary conditions on ρ and the Neumann boundary
conditions on φ,

γ
∂ρ

∂n
− χη(ρ)

∂φ

∂n
= 0,

∂φ

∂n
= 0 on ∂Ω.

The boundary conditions on ρ ensure its mass conservation. In the above, the unknowns are ρ, the concen-
tration of the organism, and φ, the concentration of the chemoattractant. The first equation describes the
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motion of the organism governed by the diffusion and the attraction by the chemoattractant. The second
equation describes the distribution of the chemoattractant affected by the organism.

The parameters D, γ, χ, τ , µ, α are all positive, of which χ and τ are particularly important: χ is
the chemotactic sensitivity, and τ describes how fast the chemoattractant concentration is reacted to the
organism concentration. The model is called the parabolic–parabolic system when τ > 0, and parabolic–
elliptic system when τ = 0 as an approximation of rapid reaction.

The function η(ρ) describes the concentration-dependent mobility. It is the choice of η(ρ) that characterizes
different models. A basic assumption is that η(s) is a smooth function with η(0) = 0. Moreover, one of the
following conditions should hold:

(a) η(s) > 0 for s > 0.

(b) There exists a positive constant M such that η(M) = 0 and η(s) > 0 for 0 < s < M .

Let us denote by J = (0,+∞) with J̄ = [0,+∞) for η(s) with the condition (a), and J = (0,M) with
J̄ = [0,M ] for η(s) with the condition (b). Some typical choices of η include:

(i) In the classical Keller–Segel system, the mobility η(ρ) = ρ;

(ii) Assume that the mobility is bounded, given in [31, 32] by

η(ρ) =
ρ

1 + κρ
, (2.3)

with κ > 0;

(iii) Assume that the organism has a saturation concentration M > 0, and the mobility tends to zero when
it is near saturation [17, 11],

η(ρ) = ρ(1− ρ/M). (2.4)

Then, solutions of (2.1)-(2.2) satisfy the following bound preserving properties:

• if η(s) satisfies the condition (a), we have ρ(x, t) ≥ 0 if ρ(x, 0) ≥ 0;

• if η(s) satisfies the condition (b), we have 0 ≤ ρ(x, t) ≤M if 0 ≤ ρ(x, 0) ≤M .

Indeed, the above properties can be proved by splitting ρ into a positive part ρin and a negative part ρout
if η(s) satisfies the condition (a), or into two parts

ρin =

 0, ρ ≤ 0,
ρ, 0 < ρ < M,
M, ρ ≥M

ρout =

 ρ, ρ ≤ 0,
0, 0 < ρ < M,
ρ−M, ρ ≥M

if η(s) satisfies the condition (b), followed by considering an auxiliary problem (cf. for example, [26]),

∂ρ

∂t
= D

(
γ∆ρ− χ∇ · (η(ρin)∇φ)

)
.

It is easy to notice that η(ρin) > 0 for ρ ∈ J , and η(ρin) = 0 for ρ /∈ J . Therefore, by taking the inner
product with ρout, it can be deduced that ρout = 0, which implies that ρin also satisfies the original equation.

For the classical system (η(ρ) = ρ), many works on mathematical analysis have been done on the blow-up
behavior. In particular, in the two dimensional case, whether the blow-up may appear depends on the total
mass about ρ (a conserved quantity) m =

∫
Ω
ρdx. We do not attempt to summarize all existing results, but

only state a typical result for the case γ = µ = 1, τ = α = 0: there exists a critical value m∗ for the total
mass such that, for m < m∗, the solution exists globally in time, while for m > m∗, the solution blows up
in finite time (see [3, 5, 6]).
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The effect of mobility η(s) on the blow-up is also discussed [19]. For η bounded by a power function
η(s) ≤ csα with sufficiently small α > 0, it is guaranteed that the solution exists globally and is uniformly
bounded. Note that η is bounded in the choices (2.3) and (2.4), thus for such η no blow-up can occur.

Next, we formulate the system (2.1)–(2.2) as a gradient flow about (ρ, φ). We will see that the choice of
η(ρ) leads to different free energy that also bounds the solution in the interval J̄ . Let f ′′(s) = 1/η(s) > 0
that is defined only in the open interval J . Thus, we could define by integration a strictly convex function
f(s) in J . We shall also state some other simple properties on the function f . Notice that η(s) is smooth on
J̄ and η(0) = 0. So, under the condition (a), there exists a constant c such that 0 < η(s) < cs for sufficiently
small s > 0, leading to f ′′(s) > 1/cs. Thus, we have the estimate f ′(s) < C1+(1/c) log s for s > 0 sufficiently
small, hence lims→0+ f ′(s) = −∞. Similarly, under the condition (b), we also have lims→M− f

′(s) = +∞
since η(M) = 0. Therefore, f ′(s) is a strictly monotonely increasing function that is defined only in the open
interval J . However, it is possible that f(s) can be continuously extended to the closed interval J̄ .

Now let us write ∆ρ = ∇ ·
(

1
f ′′(ρ)∇f

′(ρ)
)
. Consider the free energy

F [ρ, φ] =

∫
Ω

(
γf(ρ)− χρφ+

µ

2
|∇φ|2 +

α

2
φ2
)
dx. (2.5)

Then, the two equations (2.1)-(2.2) can be rewritten as

∂ρ

∂t
=D∇ ·

( 1

f ′′(ρ)
∇(γf ′(ρ)− χφ)

)
= D∇ ·

( 1

f ′′(ρ)
∇δF
δρ

)
. (2.6)

τ
∂φ

∂t
=µ∆φ− αφ+ χρ = −δF

δφ
. (2.7)

Note that in the case of the no-flux boundary conditions, we can rewrite the one on ρ as

γ
∂ρ

∂n
− χη(ρ)

∂φ

∂n
= η(ρ)

∂

∂n
(γf ′(ρ)− χφ) = η(ρ)

∂

∂n

(
δF

δρ

)
= 0.

Taking the inner products of (2.6) with δF
δρ , and of (2.7) with ∂φ

∂t , and summing up, we deduce the energy
law,

dF [ρ(t), φ(t)]

dt
= −

∫ [
D

1

f ′′(ρ)

(
∇δF
δρ

)2

+ τ

(
∂φ

∂t

)2 ]
dx. (2.8)

For the above energy law to be dissipative, it is necessary that η(ρ) = 1/f ′′(ρ) ≥ 0, which is indeed true if
ρ is initially within the interval where η(s) ≥ 0 thanks to the bound preserving property.

Let us we write down the function f for the three choices (i)–(iii). Note that when f ′′(s) is known, f(s)
may differ by a linear function as+ b. Since we have mass conservation, the integral of this linear function
gives a constant, making no difference.

(i) In the classical system, f ′′(s) = 1/s, we choose f(s) = s log s− s.

(ii) For f ′′(s) = (1 + κs)/s = 1/s+ κ, we choose f(s) = s log s− s+ κs2/2.

(iii) For f ′′(s) = (s(1− s/M))−1, we choose f(s) = s log s+ (M − s) log(1− s/M).

For (i) and (ii), the function f is defined in [0,+∞), while f ′ and f ′′ are defined in (0,+∞). For (iii), the
function f is defined in [0,M ], while f ′ and f ′′ are defined in (0,M).

It has been noticed that the lower-boundedness of the free energy is directly related to whether the solution
may blow-up. Actually, it has been proved that for the classical system η(ρ) = ρ, at least for some special
cases (see [4]), there exists a critical mass m∗ such that the free energy is lower bounded if m < m∗, and the
solution exists for t ∈ [0,+∞). But m > m∗ leads to inf F = −∞. On the other hand, for η(s) satisfying
the condition (b), we can easily have the estimate

F [ρ, φ] ≥
∫

Ω

(γf(ρ)− Cρ2)dx,
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where the right-hand side is bounded from below by noticing that ρ is bounded in [0,M ] and that f(s) is
strictly convex.

The model (2.1)-(2.2) can be extended to describe multiple organisms. Below, we write down the equations
for two organisms that both response to and generate the chemoattractant with different intensity, mobility,
etc., in the gradient flow formulation,

∂ρ1

∂t
=D1∇ ·

( 1

f ′′1 (ρ1)
∇(γ1f

′
1(ρ1)− χ1φ)

)
, (2.9)

∂ρ2

∂t
=D2∇ ·

( 1

f ′′2 (ρ)
∇(γ2f

′
2(ρ2)− χ2φ)

)
, (2.10)

τ
∂φ

∂t
=µ∆φ− αφ+ χ1ρ1 + χ2ρ2. (2.11)

3 Numerical methods

We construct in this section numerical schemes satisfying unconditionally the four properties mentioned in
the introduction. We discuss parabolic–elliptic (τ = 0) and parabolic–parabolic equations (τ > 0) separately.
For parabolic–parabolic equations, our schemes are coupled between ρ and φ, but for parabolic–elliptic
equations, we are able to construct decoupled numerical schemes in which ρ and φ can be solved sequentially.
We recall that the parabolic–elliptic equations are significant, since they give a good approximation when
the chemoattractant diffuses much faster than organisms.

3.1 Parabolic–elliptic equations

3.1.1 First-order scheme

We consider first the time discretization. Let (ρn, φn) be the approximation of (ρ, φ) at tn with ρn ∈ J .
We solve for (ρn+1, φn+1) from

ρn+1 − ρn

δt
=D∇ ·

[ 1

f ′′(ρn)
∇
(
γf ′(ρn+1)− χφn

)]
, (3.1)

0 =µ∆φn+1 − αφn+1 + χρn+1. (3.2)

Note that we can solve ρn+1 first from (3.1), then φn+1 can be determined from (3.2). In the first equation,
the mobility is treated explicitly so f ′′(ρn) is well-defined since ρn ∈ J .

Recall that f ′(s) is defined only on the interval J , so we treat it implicitly to constrain ρn+1 ∈ J . The
price we pay is that (3.1) is a nonlinear equation for ρn+1, but as we shall prove below, it is equivalent to a
convex minimization problem so that it is still efficient and easy to implement.

Theorem 3.1. Assume that the initial value ρ0 ∈ J . Any solution to the above scheme satisfies:

1. Mass conservation: ∫
Ω

ρn+1dx =

∫
Ω

ρndx.

2. Bound preserving: ρn+1(x) ∈ J .

3. Energy dissipation:

En+1 − En ≤ −δt
∫

D

f ′′(ρn)
|∇
(
γf ′(ρn+1)− χφn

)
|2dx,

where En =
∫ (
γf(ρn)− χρnφn + µ

2 |∇φ
n|2 + α

2 (φn)2
)
dx.
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Proof. The mass conservation is obtained by integrating the first equation and applying the boundary
conditions.

Bound preserving is due to the presence of f ′(ρn+1), by noticing that f ′ is only defined in the interval J .
For the energy dissipation, we take the inner product of (3.2) with φn+1 and change the superscript to n

to arrive at
µ‖∇φn‖2 + α‖φn‖2 = χ(ρn, φn).

Using the above identity, we rewrite the energy En as

En =

∫
γf(ρn)− µ

2
|∇φn|2 − α

2
(φn)2dx.

Now we take the inner product of (3.1) with νn+1 = δt(γf ′(ρn+1)− χφn), yielding∫
Ω

(ρn+1 − ρn)(γf ′(ρn+1)− χφn)dx = −δt
∫

Ω

D

f ′′(ρn)
|∇νn+1|2dx.

we handle the left-hand side as follows. Using f ′′(s) > 0 for s ∈ J , we deduce that

(ρn+1 − ρn, f ′(ρn+1)) = (f(ρn+1)− f(ρn) +
f ′′(ξ)

2
(ρn+1 − ρn)2, 1) ≥ (f(ρn+1)− f(ρn), 1). (3.3)

On the other hand, using (3.2) and the equality

2a(a− b) = a2 − b2 + (a− b)2, (3.4)

we find

(ρn+1 − ρn,−χφn) =(−µ∆(φn+1 − φn) + α(φn+1 − φn),−φn)

=µ(∇(φn+1 − φn),−∇φn) + α(φn+1 − φn,−φn)

=
µ

2

(
− ‖∇φn+1‖2 + ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2

)
+
α

2

(
− ‖φn+1‖2 + ‖φn‖2 + ‖φn+1 − φn‖2

)
.

Combining the above equations, we arrive at the energy dissipation.

It is clear that if ρn+1 is known, there exists a unique solution φn+1 for (3.2). It remains to examine
whether a solution exists for (3.1). We provide below (for time before blow-up if there will be a blow-up) a
formal derivation in the spatially continuous case by formulating the scheme as the minimizer of a strictly
convex functional.

Let the linear operator Ln be defined such that for any g(x) satisfying
∫
gdx = 0, its image Lng = ψ is

the solution to the following elliptic equation under the periodic or Neumann boundary conditions,

−∇ · ( 1

f ′′(ρn)
∇ψ) = g,

∫
ψdx = 0. (3.5)

Consider the functional

Fn[ρ; ρn, φn] =
1

2δt

(
ρ− ρn,Ln(ρ− ρn)

)
+ γ(f(ρ), 1)− χ(ρ, φn). (3.6)

The first two terms on the right-hand side are strictly convex and bounded from below. The third term is
linear, and bounded if we assume that φn ∈ L∞. In this sense, the whole functional is strictly convex and
lower-bounded. One can check that under the mass conservation constraint

∫
ρdx =

∫
ρndx, the Euler–

Lagrange equation is equivalent to (3.1). Since the functional possesses a term with f(ρ), so it is only defined
for ρ taking the value in the closed interval J̄ . Furthermore, the minimizer cannot take the value on the
endpoint of J̄ because f ′ goes to infinity. Thus, the functional has a unique minimizer with ρ ∈ J .
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Below, we convert the above formal derivation into a rigorous derivation by considering a fully discretized
scheme with a Galerkin type discretization in space. More precisely, given a finite set of points Z = {z ∈ Ω̄},
we define a discrete inner product

[u, v] =
∑
z∈Z

βzu(z)v(z),

with positive weights βz > 0. The inner product can be based on a finite element, spectral or even finite
difference method. In finite element methods, the sum is calculated first on each element, then throughout
all the elements, i.e. as

∑
K⊂T

∑
z∈Z(K). We denote the corresponding finite dimensional approximation

space by XN . For each z ∈ Z, we assume that there exists a unique Lagrangian basis function ψz in XN

such that ψz(z′) = δzz′ for any z′ ∈ Z, so they form a basis of XN . Under this assumption, we can define
an interpolation operator IN as

(INg)(x) =
∑
z∈Z

g(z)ψz(x).

Then, our Galerkin method for the first-order scheme (3.1)-(3.2) is: to find (ρn+1, φn+1) ∈ XN ×XN such
that [

ρn+1 − ρn

δt
, v

]
=−

[
D

f ′′(ρn)
∇
(
IN
(
γf ′(ρn+1)− χφn)

))
,∇v

]
, v ∈ XN , (3.7)

0 =− µ(∇φn+1,∇w)− α(φn+1, w) + χ[ρn+1, w], w ∈ XN . (3.8)

Here, the (·, ·) represents the usual L2 inner product, and [·, ·] is the discrete inner product defined above.

Theorem 3.2. The fully discretized scheme (3.7)–(3.8) satisfies the following properties:

1. Mass conservation:
[ρn+1, 1] = [ρn, 1].

2. Unique solvability: the scheme possesses a unique solution (ρn+1, φn+1) ∈ XN ×XN .

3. Bound preserving: if ρn(z) ∈ J for all z ∈ Z, then ρn+1(z) ∈ J for all z ∈ Z.

4. Energy dissipation:

Ẽn+1 − Ẽn ≤ −δt
[

D

f ′′(ρn)
∇νn+1,∇νn+1

]
,

where νn+1 = IN
(
γf ′(ρn+1)− χφn

)
, and the discrete energy is given by

En = [γf(ρn), 1]− χ[ρn, φn] +
µ

2
‖∇φn‖2 +

α

2
‖φn‖2.

Proof. The mass conservation can be derived by taking v = 1 in (3.7).
Next, we prove the unique solvability for the first equation in the range ρn+1(z) ∈ J for all z ∈ Z. Denote

by ρ̃n and φ̃n the two vectors
(
ρn(z), z ∈ Z

)
and

(
φn(z), z ∈ Z

)
. Define two matrices as

An =

[
D

f ′′(ρn)
∇ψz,∇ψz′

]
, B = [ψz, ψz′ ]. (3.9)

The matrix B is diagonal with positive entries. If ρn(z) ∈ J for z ∈ Z, the matrix An is symmetric
positive semi-definite. Furthermore, Anx̄ = 0 if and only if each component of x̄ is equal. Thus, we can
write down the pseudo-inverse (An)∗ by the eigen-decomposition. More precisely, assume An = T tΛT
where Λ = diag(0, λ2, . . . , λN ), then (An)∗ = T tdiag(0, λ−1

2 , . . . , λ−1
N )T . Then, we can write (3.7) in the

matrix–vector form as

1

δt
B(ρ̃n+1 − ρ̃n) = −An

(
γf ′(ρ̃n+1)− χφ̃n

)
. (3.10)
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Multiplying the above from left by B(An)∗, noticing the null space of An, we obtain

1

δt
B(An)∗B(ρ̃n+1 − ρ̃n) + γBf ′(ρ̃n+1)− χBφ̃n = λB1, (3.11)

where 1 represents the vector with each component equal to one. It is easy to see that the above equation
is the Euler–Lagrange equation of the function

G[ρ̃n+1] =
1

2δt
(ρ̃n+1 − ρ̃n)tB(An)∗B(ρ̃n+1 − ρ̃n) + γ1tBf(ρ̃n+1)− χ(ρn+1)tBφ̃n,

under the mass conservation constraint 1tBρ̃n+1 = 1tBρ̃n. Note that the first term on the right-hand
side has a symmetric positive semi-definite coefficient matrix B(An)∗B. The second term is strictly convex
about ρ̃n+1 because f is strictly convex and B is diagonal with positive entries. The third term is linear and
bounded because of mass conservation. Thus, the function F [ρ̃n+1] is strictly convex, lower-bounded in the
domain

{ρ̃n+1 : ρ̃n+1(z) ∈ J̄ , 1tBρ̃n+1 = 1tBρ̃n}.

Hence, there exists a unique minimizer in this domain. It remains to eliminate the possibility of the minimizer
located on the boundary of the domain. In other words, we need to prove that the minimizer ρ̃0 cannot have
a component ρ̃n+1(z) taking the endpoint of the interval J̄ (0 or M). We prove this by contradiction below.

Suppose the minimizer is such that ρ̃0(z) = 0 (for the case J = (0,M), ρ̃0(z) = M leads to contradiction
in the same way) for some z. This can only occur when f(0) is defined (finite), which we assume in the
following. Let us choose another z′ such that ρ̃0(z′) > 0. Consider another vector ρ̃1 = ρ̃0 +βz′εez−βzεez′ .
Here, we use ez to represent the vector with the entry one on the component z and zero for other components.
We shall show that for ε small enough, we have G[ρ̃1] < G[ρ̃0] which is a contradiction. To this end, we split
the function G into two parts,

G1 =
1

2δt
(ρ̃n+1 − ρ̃n)tB(An)∗B(ρ̃n+1 − ρ̃n)− χ(ρn+1)tBφ̃n,

and
G2 = γ1tBf(ρ̃n+1).

Since G1 is a quadratic function, there exists a constant A1 such that for sufficiently small ε,

|G1[ρ̃1]−G1[ρ̃0]| < A1ε.

On the other hand, denoting a = ρ̃0(z′) > 0, we can compute that

G2[ρ̃1]−G2[ρ̃0] =βz
(
f(βz′ε)− f(0)

)
+ βz′

(
f(a− βzε)− f(a)

)
.

Since f ′(a) > −∞, we have another constant A2, such that for sufficiently small ε,

f(a− βzε)− f(a) < A2ε.

Now we will make use of lims→0+ f ′(s) = −∞. It implies that for any A > 0, there exists sufficiently small
ε, such that

f(βz′ε)− f(0) < −Aε.

Choose βzA > A1 + βz′A2 and ε small enough, we find that G[ρ̃1]−G[ρ̃0] < 0.
With the unique solution ρn+1 from (3.7), we can uniquely determine φn+1 from (3.8) which is the Galerkin

discretization of a linear elliptic equation.
It remains to prove the energy dissipation. We take v = δtνn+1 in (3.7), yielding

−δt
[

D

f ′′(ρn)
∇νn+1,∇νn+1

]
=[ρn+1 − ρn, IN (γf ′(ρn+1)− χφn)]

=γ[ρn+1 − ρn, f ′(ρn+1)]− [χ(ρn+1 − ρn), φn].

(3.12)
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Then, taking w = φn+1 in (3.8) and changing the superscript to n, we obtain

χ[ρn, φn] = µ‖∇φn‖2 + α‖φn‖2.

Taking w = φn in (3.7) and combining with the above, we find

2[χ(ρn+1 − ρn),−φn]

=− 2µ
(
∇(φn+1 − φn),∇φn

)
− 2α

(
(φn+1 − φn), φn

)
=µ(−‖∇φn+1‖2 + ‖∇φn‖2 + ‖∇(φn+1 − φn)‖2)

− α(−‖φn+1‖2 + ‖φn‖2 + ‖φn+1 − φn‖2).

We can then we derive the energy dissipation by combining the above with (3.12) and (3.3).

Remark 3.3. The nonlinear equation (3.7) can be efficiently solved by using a Newton’s iteration, with
damping on step size to restrain the search in the interval J . From its matrix form (3.10), we need to solve,
for each Newton’s step, a linear system in the form

(B +AnΛ)x = b,

where B and Λ are diagonal matrices with positive elements, and An is symmetric non-negative. We shall
rewrite it as

Λ−1/2(Λ1/2BΛ−1/2 + Λ1/2AnΛ1/2)Λ1/2x = b.

Thus, we can solve two diagonal systems and one symmetric positive definite system. For the symmetric
positive definite linear system, we use the preconditioned conjugate gradient method. The choice of precon-
ditioner is dependent on particular spatial discretization. For the Fourier spectral method that we will use in
this paper, the preconditioner can be chosen as discretized from PDE with constant coefficients. In particular,
when using Fourier spectral method, B is a multiple of the identity matrix I, and we could substitute Λ with
a multiple of I. For An, we substitute the variable coefficients D/f ′′(ρn) in (3.9) with a constant. In this
way, we arrive at a preconditioner that can be implemented by FFT.

Remark 3.4. In the fully discretized scheme, the mass conservation and bound preserving together imply
that the l1 norm is bounded for the solutions. Thus, even if there is a blow-up time in PDE, we will not
see an actual blow-up in numerical solutions. Instead, as we will present in numerical examples, the mass
accumulates on a very few discrete points.

Remark 3.5. Although we only discuss the Galerkin type spatial discretization in the theorem above, the
results still hold for finite difference (finite volume) discretizations if the summation by parts is valid. We
refer to [28] where a proof is provided.

3.1.2 Second-order scheme

We can also construct second-order schemes with similar properties. For example, a fully discretized
scheme based on the second-order BDF is: to find ρn+1, φn+1 ∈ XN , such that for any v, w ∈ XN ,[

3ρn+1 − 4ρn + ρn−1

2δt
, v

]
=−

[
Dān+1∇IN

(
γf ′(ρn+1)− χ(2φn − φn−1)

)
,∇v

]
, (3.13)

0 =− µ(∇φn+1,∇w)− α(φn+1, w) + [χρn+1, w]. (3.14)

In the above, ān+1 is an O(δt2) explicit approximation of 1/f ′′(ρ(tn+1)). To ensure ān+1 > 0, we choose

ān+1 =

{
1

2f ′′(ρn)−f ′′(ρn−1) , if f ′′(ρn) ≥ f ′′(ρn−1);
2

f ′′(ρn) −
1

f ′′(ρn−1) , if f ′′(ρn) < f ′′(ρn−1).
(3.15)

The scheme is also decoupled, i.e. one can solve ρn+1 first, followed by solving φn+1.
We could follow the proof of last theorem to establish the following:
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Theorem 3.6. The scheme (3.13)-(3.14) satisfies the following properties:

1. Mass conservation:
[ρn+1, 1] = [ρn, 1].

2. Unique solvability: the scheme possesses a unique solution (ρn+1, φn+1) ∈ XN ×XN .

3. Bound preserving: if ρn(z) ∈ J for all z ∈ Z, then ρn+1(z) ∈ J for all z ∈ Z.

Proof. With ān+1 > 0 explicitly determined, we could define the symmetric positive semi-definite matrix An

for the second-order scheme as in (3.9), by replacing D/f ′′(ρn) with ān+1. Then, we could similarly write
(3.13) in the matrix-vector form as follows,

3

2δt
B(ρ̃n+1 − b̃) = An(γf ′(ρ̃n+1)− χc̃), (3.16)

where b̃ = (4ρ̃n − ρ̃n−1)/3 and c̃ = 2φ̃n − φ̃n−1. The rest of the proof is the same as Theorem 3.2: we just
replace ρ̃n with b̃, and φ̃n with c̃ in (3.10) and follow the same steps afterwards. The components of the
vector b̃ might not fall in the interval J , but it does not affect the definition of the strictly convex function
G[ρ̃n+1] in the domain

{ρ̃n+1 : ρ̃n+1(z) ∈ J̄ , 1tBρ̃n+1 = 1tBb̃}.

Unfortunately, we are unable to prove the energy dissipation due to the lack of inequality similar to (3.3)
for the second-order BDF.

3.1.3 Two species

We can construct similar schemes for the two-species system (2.9)-(2.11). For example, a fully discrete
first order scheme is: to find ρn+1

1 , ρn+1
2 , φn+1 ∈ XN , such that for any v1, v2, w ∈ XN ,[

ρn+1
1 − ρn1
δt

, v1

]
=−

[ D1

f ′′1 (ρn1 )
∇IN

(
γ1f
′
1(ρn+1

1 )− χ1φ
n
)
,∇v1

]
, (3.17)[

ρn+1
2 − ρn2
δt

, v2

]
=−

[ D2

f ′′2 (ρn)
∇IN

(
γ2f
′
2(ρn+1

2 )− χ2φ
n
)
,∇v2

]
, (3.18)

0 =− µ(∇φn+1,∇w)− α(φn+1, w) + [χ1ρ
n+1
1 + χ2ρ

n+1
2 , w]. (3.19)

When applying the scheme to the above equations, we notice three equations are decoupled. One can solve
ρn+1

1 and ρn+1
2 separately, then solve φn+1.

Theorem 3.7. The above fully discretized scheme satisfies:

1. Mass conservation:
[ρn+1

1 , 1] = [ρn1 , 1], [ρn+1
2 , 1] = [ρn2 , 1].

2. Unique solvability: the scheme possesses a unique solution (ρn+1
1 , ρn+1

2 , φn+1) ∈ XN ×XN ×XN .

3. Bound preserving: if ρni (z) ∈ Ji for all z ∈ Z, then ρn+1
i (z) ∈ Ji for all z ∈ Z.

4. Energy dissipation:

Ẽn+1 − Ẽn ≤ −δt
([

D1

f ′′1 (ρn1 )
∇νn+1

1 ,∇νn+1
1

]
+

[
D2

f ′′2 (ρn2 )
∇νn+1

2 ,∇νn+1
2

])
,

where νn+1
i = IN

(
γif
′
i(ρ

n+1
i )− χiφn

)
, and the discrete energy is given by

En = [γ1f1(ρn1 ), 1]− χ1[ρn1 , φ
n] + [γ2f2(ρn2 ), 1]− χ2[ρn2 , φ

n] +
µ

2
‖∇φn‖2 +

α

2
‖φn‖2.

The proof follows the same arguments as in the case of one-species. The only point to be noticed is that
since the scheme is decoupled, we could prove the unique solvability in J for ρn+1

1 and ρn+1
2 respectively.
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3.2 Parabolic–parabolic equations

The discretization of parabolic–parabolic system is slightly different. We write the coupling term in the
free energy as the difference of two squared terms, −ρφ = 1

4 (φ− ρ)2− 1
4 (φ+ ρ)2, and construct the following

first-order scheme using an idea of convex splitting [12]:[
ρn+1 − ρn

δt
, v

]
=−

[ D

f ′′(ρn)
∇IN

(
γf ′(ρn+1) +

χ

2
(ρn+1 − φn+1)− χ

2
(ρn + φn)

)
,∇v

]
, (3.20)(

τ
φn+1 − φn

δt
, w

)
=− µ

(
∇φn+1,∇w

)
− α

(
φn+1, w

)
−
[χ

2
(φn+1 − ρn+1)− χ

2
(ρn + φn), w

]
. (3.21)

Theorem 3.8. The scheme (3.20)-(3.21) for parabolic–parabolic equations satisfies the following properties:

1. Mass conservation:
[ρn+1, 1] = [ρn, 1].

2. Unique solvability: the scheme possesses a unique solution (ρn+1, φn+1) ∈ XN ×XN

3. Bound preserving: if ρn(z) ∈ J for all z ∈ Z, then ρn+1(z) ∈ J for all z ∈ Z.

4. Energy dissipation:

Ẽn+1 − Ẽn ≤ −δt
[

D

f ′′(ρn)
∇νn+1,∇νn+1

]
− τ

δt
‖φn+1 − φn‖2,

where νn+1 = IN

(
γf ′(ρn+1) + χ

2 (ρn+1 − φn+1)− χ
2 (ρn + φn)

)
, and the discrete energy is given by

En = γ[f(ρn), 1]− χ[ρn, φn] +
µ

2
‖∇φn‖2 +

α

2
‖φn‖2.

Proof. The proof of the first three properties is essentially the same as in the proof of Theorem 3.2, so we
only describe the strictly convex function related to the scheme. Define

A0(z, z′) = (ψz, ψz), A1(z, z′) = (∇ψz,∇ψz).

Together with the definition of An and B in (3.9), we can rewrite the scheme as

1

δt
B(ρ̃n+1 − ρ̃n) =−An

(
γf ′(ρ̃n+1) +

χ

2
(ρ̃n+1 − φ̃n+1)− χ

2
(ρ̃n + φ̃n)

)
,

τ

δt
A0(φ̃n+1 − φ̃n) =− µA1φ̃

n+1 − αA0φ̃
n+1 −B

(χ
2

(φ̃n+1 − ρ̃n+1)− χ

2
(ρ̃n + φ̃n)

)
.

It can be checked that the above are the Euler–Lagrange equations of the strictly convex function

G[ρ̃, φ̃; ρ̃n, φ̃n] =
1

2δt
(ρ̃− ρ̃n)tB(An)∗B(ρ̃− ρ̃n) +

τ

2δt
(φ̃− φ̃n)tA0(φ̃− φ̃n) + γ1tBf(ρ̃)

+
µ

2
φ̃tA1φ̃+

α

2
φ̃tA0φ̃+

χ

4
(φ̃− ρ̃)tB(φ̃− ρ̃)

− χ

2
(φ̃+ ρ̃)tB(φ̃n + ρ̃n), (3.22)

under the mass conservation constraint 1tBρ̃n+1 = 1tBρ̃n. Then, we can eliminate the possibility of the
minimizer taking the values 0 or M as in the proof of Theorem 3.2. Thus, the minimizer of the function G
is the unique solution of the scheme.

For energy dissipation, we take v = δtνn+1 = δtIN

(
γf ′(ρn+1) + χ

2 (ρn+1 − φn+1)− χ
2 (ρn + φn)

)
in (3.20),

and w = φn+1 − φn in in (3.21), summing up the two equations to obtain[
ρn+1 − ρn, γf ′(ρn+1) +

χ

2
(ρn+1 − φn+1)− χ

2
(ρn + φn)

]
11
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Fig. 1: Accuracy of the first-order (left) and second-order scheme (right). The dashed lines are reference for
first-order and second-order convergence.

+ µ
(
∇φn+1,∇(φn+1 − φn)

)
+ α

(
φn+1, (φn+1 − φn)

)
+
[χ

2
(φn+1 − ρn+1)− χ

2
(ρn + φn), φn+1 − φn

]
= −δt

[ D

f ′′(ρn)
∇νn+1,∇νn+1

]
− τ

δt
‖φn+1 − φn‖2.

We rewrite the left-hand side as

χ

2

[
(ρn+1 − φn+1)− (ρn − φn), ρn+1 − φn+1

]
− χ

2

[
(ρn+1 + φn+1)− (ρn + φn), ρn + φn

]
+ µ

(
∇φn+1,∇(φn+1 − φn)

)
+ α

(
φn+1, (φn+1 − φn)

)
+ [ρn+1 − ρn, γf ′(ρn+1)].

Then, we can combine the above with the equalities (3.3) and (3.4) to arrive at the energy dissipation.

4 Numerical results

We present in this section some numerical examples to validate our schemes. We will investigate the
three choices of mobility (i)–(iii) stated in Section 2. We name the system with the mobility (ii) as bounded-
mobility system, and the system with the mobility (iii) as saturation-concentration system. For all examples,
the domain is chosen as [0, L)2 where L = 2π, and we adopt the periodic boundary conditions. The space is
discretized using the Fourier spectral method with N = 64 in each direction. We present several examples for
one species, followed by an example for two species. If not specified separately, we fix the diffusion constant
D = γ = µ = 1, and α = 0.1. The chemotactic sensitivity γ will be varied.

4.1 Accuracy and efficiency

First, we check the accuracy of the schemes. We use the first-order and second-order schemes for one-
species parabolic-elliptic (τ = 0) saturation-concentration system. The initial condition is given by

ρ(x, y, 0) = 2 exp

(
− (x− L/2)2 + (y − L/2)2

4

)
. (4.1)
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Fig. 2: Efficiency of the scheme: the number of Newton iteration in the spiky solution to saturation-
concentration system.

The chemotactic sensitivity is chosen as γ = 1, and the largest concentration is M = 100. The error is
computed at t = 0.4, with the reference solution computed using the time step δt = 10−4. We plot the L2

error in Fig. 1, where we can observe the first-order and second-order accuracy.
Next, we examine the efficiency of the scheme. In Fig. 2, we plot the number of Newton’s iteration for a

simulation of the saturation-concentration system with the spiky solution described below. We observe that,
for most time steps, we only need to run at most three Newton’s iterations, and the largest number is six.
It indicates that our nonlinear scheme is competitive to linearly implicit schemes in efficiency, but enjoy the
many advantages, such as unconditionally bound preserving and energy dissipative, that a linearly implicit
scheme does not possess.

4.2 Comparison of the classical and modified systems

Next, we compare the classical and two modified parabolic–elliptic systems. We start from a case where
the chemotaxis does not happen. In this case, the solution does not blow up in the classical system. The
initial condition and γ are chosen as in the previous section. We use the first-order scheme with the time
step δt = 10−3. For the parameters in the mobility, in bounded-mobility system we choose κ = 0.01, in
saturation-concentration system we choose M = 100. The three systems are evolved till t = 4. In Fig. 3,
we draw the concentration ρ at t = 4, and plot the evolution of max ρ and the energy. The results for three
systems are very close.

Then, we keep all the other settings, but consider another initial condition with larger total mass such
that chemotaxis happens,

ρ(x, y, 0) = 4 exp

(
− (x− L/2)2 + (y − L/2)2

4

)
. (4.2)

We calculate until t = 8 so that the three system reach steady state. The concentration at t = 8, the
evolution of max ρ and energy are shown in Fig. 4, where in line graphs we plot results from first-order
schemes and second-order schemes.

In the classical system, the mass is concentrated at four grid points, taking about 98.6% of the total mass.
Note that in the classical Keller–Segel equations, the solution may blow-up in finite time. However, since
our fully discretized schemes preserve positivity and conserve mass, therefore, instead of blowing up, the
mass will accumulate at a few grid points. So we observe indeed a blow-up-like behavior in this case.

On the other hand, in the modified systems we obtain spiky solutions, but the accumulation still occupies
some area, so they are not viewed as blow-up-like behavior. With the spiky solutions, it can be seen that
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(b) Bounded-mobility system
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(c) Saturation-concentration system

Fig. 3: Comparison for the classical and two modified systems: non-accumulating solutions.
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(c) Saturation-concentration system

Fig. 4: Comparison for the classical and two modified systems: chemotaxis solutions. In the graphs on
energy and maximum concentration, we plot results from the first-order scheme (blue) and the second-order
scheme (red).
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Fig. 5: Blow-up with spiky initial condition (4.3) in the classical system. The curves from the first-order
scheme (blue) and second-order scheme (red) are not distinguishable.

the energy dissipation is still maintained in our scheme. Besides, from the maximum value or ρ, we observe
that the accumulation is slightly slower in the modified systems than in the classical system.

It shall be clarified that the blow-up time could weight heavily on the initial conditions and possibly the
parameters. We would like to provide one example, in the classical system, with a spiky initial condition,

ρ(x, y, 0) = 500 exp
(
−30

(
(x− L/2)2 + (y − L/2)2

))
+ 0.1, (4.3)

without changing the parameters. We plot the evolution of energy and maximum concentration in Fig. 5,
where we find that blow-up occurs rapidly in comparison with the previous example.

From the above results, it can be seen that the modified systems can successfully describe chemotaxis.
Moreover, it does not lead to blow-up that is unrealistic. In what follows, we will focus on the saturation-
concentration system.

Let us first look at the role of different saturation value M . Using the initial condition (4.2) with ρmax = 4,
we study three cases M = 5, 10, 15. The energy, maximum concentration, and steady states are given in
Fig. 6. The behaviors are different for three M . For M = 5, the maximum concentration decreases with
time, showing no accumulation. For M = 15, we could identify it as a typical chemotaxis. For M = 10,
the maximum concentration does increase but still far from the saturation, and ρ is not quite close to zero
for the positions away from the center, which can be regarded as an intermediate between spreading and
chamotaxis. The example implies that the saturation value might affect whether the chamotaxis will happen,
and that a low saturation value can inhibit the chamotaxis.

In the last example for one species parabolic–elliptic saturation-concentration system, we consider an
initial condition with two bulges, given by

ρ(x, y, 0) = 3 exp

(
− (x− L/4)2 + (y − L/4)2

4

)
+ 3 exp

(
− (x− 3L/4)2 + (y − 3L/4)2

4

)
. (4.4)

We choose M = 100, and keep the other settings the same. We plot the evolution of energy, maximum
concentration for first- and second-order schemes, and four snapshots in Fig. 7. Although the total mass
is larger than the previous example, we observe slower accumulation. It takes some time before two bulges
merge into one, followed by accumulation. The energy dissipation is observed, slower in the merging stage
and faster in the accumulating stage.
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Fig. 6: Comparison of saturation-concentration system for different M . The second-order scheme is adopted.
The evolution of energy and maximum concentration are given in the first row. The snapshots at t = 8 are
given in the second row, from left to right M = 5, 10, 15, respectively.

4.3 Parabolic–parabolic system

Next, we consider the parabolic–parabolic (τ > 0) saturation-concentration system. The chemotactic
sensitivity is chosen as χ = 1. The initial condition for ρ and φ is given by

ρ(x, y, 0) = φ(x, y, 0) = 4 exp

(
− (x− L/2)2 + (y − L/2)2

4

)
, (4.5)

where (−µ∆ + α)φ(x, y, 0) 6= χρ(x, y, 0). We use the first-order scheme (3.20)–(3.21) with the time step
δt = 10−3. We choose three different τ = 1, 10−2, 10−4 and compare the results with the parabolic–elliptic
system (τ = 0). The evolution of energy and max ρ is plotted in Fig. 8. It shows that as τ goes to zero, the
curves are converging to the curve of τ = 0, which is consistent with the formal derivation in [23].

4.4 Two species

As the last example, we consider the parabolic-elliptic saturation-concentration system for two species.
The parameters are chosen as D1 = D2 = γ1 = γ2 = µ = χ1 = 1, and α = 0.1. The initial condition is

ρ1(x, y, 0) = ρ2(x, y, 0) = 4 exp

(
− (x− L/2)2 + (y − L/2)2

4

)
. (4.6)

We consider two different chemotactic sensitivities of the second species χ2. First, we set χ2 = 0.1. In Fig. 9
we plot ρ1, ρ2 and φ at t = 8. We also plot the evolution of energy and the maximum value of ρ1, ρ2, where
we find that curves from the first- and second-order schemes are not distinguishable. At t = 8, ρ1 shows
accumulation, while ρ2 is to some extent accumulated but does not exhibit typical chemotaxis. Actually,
from the evolution of its maximum values, we can see that ρ1 keeps accumulating, but ρ2 diffuses at first,
followed by accumulation after ρ1 has accumulated for a while.
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Fig. 7: Saturation-concentration system, with initial value having two bulges. The four snapshots are given
at t = 1, 2, 4, 16. The curves from the first-order scheme (blue) and second-order scheme (red) are not
distinguishable.
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Then we look at the results with χ2 = 0.01 (Fig. 10). In this case, ρ1 still shows accumulation, and the
chemoattractant φ is similar to the previous case. However, ρ2 is not actively responding to the chemoat-
tractant due to the small χ2. Actually, while ρ1 keeps accumulating, ρ2 keeps diffusing.

5 Conclusion

We proposed new numerical schemes for a class of Keller–Segel equations which possess a gradient flow
structure. The main difficulties are to keep several essential properties of the Keller–Segel equations such
as bound preserving, mass conservation and energy dissipation. By rewriting the dissipative operator into
a form which can implicitly enforce the bound, we are able to construct a class of numerical schemes which
satisfy desired properties. More precisely, our first-order schemes are mass conservative, bound preserving,
uniquely solvable and energy dissipative, and our second-order schemes satisfy the first three properties but
we can not prove that they are energy dissipative.

Although the schemes are nonlinear in nature, their solution can be efficiently obtained by Newton’s
iteration because it is the minimizer of a strictly convex functional. Furthermore, for parabolic-elliptic
equations, the schemes are decoupled.

We presented numerical results to validate the theoretical results, as well as numerical simulations to show
that our schemes are able to describe essential features of chemotaxis organisms such as mass accumulation,
which, in the classical Keller–Segel system, is the numerical version of blow-up phenomenon.
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