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Abstract. When two distinct ordered phases contact, the interface may exhibit rich
and fascinating structures. Focusing on the Cylinder-Gyroid interface system, transi-
tion pathways connecting various interface morphologies are studied armed with the
Landau–Brazovskii model. Specifically, minimum energy paths are obtained by com-
puting transition states with the saddle dynamics. We present four primary transition
pathways connecting different local minima, representing four different mechanisms
of the formation of the Cylinder-Gyroid interface. The connection of Cylinder and Gy-
roid can be either direct or indirect via Fddd with three different orientations. Under
different displacements, each of the four pathways may have the lowest energy.
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1 Introduction

Modulated phases of similar patterns can be formed by block copolymer melts [1, 2] and
many totally distinct materials, such as biological cells [3] and metal nanoparticles [4,
5]. Of these modulated phases, the most commonly observed patterns include Lamellae
(L), Cylinder (C), Sphere (BCC, FCC), Gyroid (G) and Fddd, for which extensive studies
have been carried out both experimentally [6–8] and theoretically [9–13]. These phases,
while possessing distinct symmetries, can coexist in many cases. The interface between
two phases would exhibit fascinating structures, which also characterize first-order phase
transitions [14–16].
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Because of the intrinsic ordered structures, their relative positions and orientations are
essential to the interface, which is evidenced by several epitaxial relations [17–20]. In par-
ticular, multiple interface morphologies and epitaxies are found for the C-G coexistence
systems [18], which result in distinct processes of phase transitions. These experimen-
tal findings bring us a number of glamorous phenomena, meanwhile raise theoretical
problems on the formation mechanisms that require enlightening perspectives.

Some theoretical attempts have been made to understand the underlying mechanism
of interfaces. One convenient approach is to follow relaxation dynamics, typically car-
ried out in a large cell, to let interface emerge and evolve [21–23]. Usually, the results
from the dynamic approach contain multiple interfaces that might interact one another.
Furthermore, it is not easy to fix the relative orientation and displacement in large cell
simulations. To arrive at closer examinations of the interfacial structures, some posed
two phases delicately in a small computational box with special orientations and dis-
placements. Using this approach, grain boundaries of L [24–26], BCC [27] and cubic
phases [28] were examined.

Interfaces of general relative positions and orientations are also studied. For exam-
ple, to provide insights on epitaxy, an artificial mixing ansatz is adopted followed by
searching the minimum exceeding energy [29–31]. However, the interfacial morphology
obtained from this approach may be far from optimal in many cases. A framework deal-
ing with general relative positions and orientations was proposed later [32], where the
boundary conditions and basis functions are carefully chosen to fix the bulk phases at
certain positions and orientations consistently. This framework is further equipped with
delicate numerical methods that can successfully deal with quasiperiodic interface [33].
The interfacial structures obtained from this framework prove to be much more compli-
cated than simple mixing. Even in the simplest cases, a series of energy minima can occur
depicting the process of phase transition. Moreover, when we alter the relative positions
and orientations, a few fascinating results are then obtained, implying that the underly-
ing mechanism can be quite complex in the formation of interfaces, such as deformation,
wetting by a third phase, zigzagging, etc.

The above results indicate that the interface system could possess multiple energy
minima. The relationships between minima can be characterized by the minimum energy
paths (MEPs) on the free-energy landscape, which represent the most probable transition
pathways [34–36]. The crest of a MEP connecting two minima is regarded as the tran-
sition state that is an (Morse) index-1 saddle point. Thus, if multiple minima exist, one
could imagine that the interface shall be moving along the transition pathways through
a series of transition states and minima. Nevertheless, the existing results are far from
well-understood on the transition pathways in the interface systems.

In this work, we examine the transition pathways connecting different interface mor-
phologies using the Landau–Brazovskii (LB) model which is a generic model for modu-
lated phases. Specifically, we apply an efficient numerical method based on the index-1
saddle dynamics to the LB model in order to obtain MEPs connecting various local min-
ima. Our focus is the C-G interface system. We present four primary transition path-
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ways, representing four different mechanisms of the formation of the C-G interface. The
connection of C and G can be either direct or indirect via Fddd with three different ori-
entations. We demonstrate that, when altering the relative positions of C and G, each of
the four pathways may have the lowest energy.

The paper is organized as follows. In Section 2, we briefly describe the LB model,
interface system and the numerical methods for computing the transition pathways. The
results are presented in Section 3, where we examine transition pathways in the C-G
interface systems with different displacements. Discussion and conclusion are given in
Section 4.

2 Model and numerical methods

2.1 LB free energy and interface system

The LB model provides a framework for systems that are undergoing microphase separa-
tions [37–39], described by the modulation of a scalar φ. It has been studied numerically
for various modulated phases [31, 32, 40–42]. The LB free energy density (energy per
volume) consists of a term featuring a preferred wavelength and a bulk term given by a
quartic polynomial,

E[φ]=
1

V

∫

Ω
dr

{

ξ2

2
[(∇2+q2

0)φ]
2+

τ

2
φ2− γ
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}

, (2.1)

where q0=1 is a characteristic wavelength scale, and ξ, τ, γ are phenomenological coeffi-
cients. The free energy is combined with the conservation of φ, given by (1/V)

∫

Ω
φdr=0.

In general, for a periodic phase α, its profile can be obtained by minimizing Eq. (2.1)
in a unit cell, which can typically be chosen as a cube. The size of the unit cell can either
be estimated [13] or optimized during minimization [40]. Since we need to utilize the
profile of the periodic phases in the C-G interface system, the estimated unit cell is chosen
so that two phases can be well matched. Such a choice is also supported by experimental
results [17, 18, 43].

Once the profiles of the two phases α and β (denoted by φα and φβ, respectively) are
obtained, we can formulate the system for an interface between them, as illustrated in
Fig. 1. The whole space is divided into three regions by two parallel planes z= L− and
z=L+ for some L− and L+, with the phase α occupying the region z<L− and the phase β
occupying z> L+. Hence, an interface will be formed in the interface region L−≤ z≤ L+.
We may manually set φα and φβ to be displaced and rotated into the positions and ori-
entations that we desire to pose. Meanwhile, we assume that, under such positions and
orientations, two phases have the same periods Lx×Ly in the x-y plane. Correspond-
ingly, the computational box in the x- and y-directions is chosen as [0,Lx]×[0,Ly] and the
periodic boundary conditions are imposed. Next, a suitable interval [L−,L+] is chosen
to contain the interfacial region in the z-direction, and the information for z = L− and
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Figure 1: Setting of the interface system. Phase α and phase β are lying along z-axis, and the system always
keep periodic in the x-y plane.

z = L+ can be translated into the Cauchy boundary conditions, which are given by the
following,

φ(L−)=φα(L−), ∂zφ(L−)=∂zφα(L−);

φ(L+)=φβ(L+), ∂zφ(L+)=∂zφβ(L+).

The conservation of φ in the computational domain [0,Lx]×[0,Ly]×[L−,L+] then becomes

∫ Lx

0
dx

∫ Ly

0
dy

∫ L+

L−
dzφ(r)=

∫ Lx

0
dx

∫ Ly

0
dy

(

∫ L0

L−
dzφα(r)+

∫ L+

L0

dzφβ(r)

)

, (2.2)

where for the initial state, α phase occupies [L−,L0] and β phase [L0,L+] in the z-direction.

2.2 Spatial discretization

Since the interface system is periodic in the x-y plane, we discretize these two directions
by Fourier modes. That is, we write φ as

φ(x,y,z)=∑
G

φG(z)exp
(
√
−1G·r′

)

, (2.3)

where r′=(x,y), and the reciprocal vectors G=(2πm/Lx,2πn/Ly) with the summation
truncated at |m|,|n|≤Np. Then, we apply the finite difference method in the z-direction.
We define the grid points zj = L−+(j−1)∆z, where ∆z=(L+−L−)/(N−1), j= 1,··· ,N.
The second-order derivative about z is discretized as

∂2
zφ(zj)≈

zj+1−2zj+zj−1

∆z2
. (2.4)
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The discrete boundary conditions are given by

φ(z0)=φα(z0), φ(z1)=φα(z1),

φ(zN)=φβ(zN), φ(zN+1)=φβ(zN+1). (2.5)

Here z0 and zN+1 are two ghost points. In this way In this way, the free energy density
(2.1) can be discretized as a function of the Fourier coefficients φG(zj) at several grid
points zj. Such a discretization is also suitable for calculating the phase profiles φα and φβ

(just substitute the boundary conditions (2.5) with periodic ones). Thus, we could obtain
the phase profiles under the above discretization and set the boundary conditions (2.5)
directly.

The gradient vector is then calculated as

F(φG(zj))=[ξ2(−G2+δ2
z +1)2+τ]φG(zj)−

γ

2 ∑
G1+G2=G

φG1
(zj)φG2

(zj)

+
1

6 ∑
G1+G2+G3=G

φG1
(zj)φG2

(zj)φG3
(zj)−λδ(G=0), (2.6)

where a projection, with the Lagrange multiplier λ, on the gradient vector is incorporated
to guarantee the conservation of φ.

2.3 Numerical methods for transition pathways

It has been noticed that multiple local minima exist in the C-G interface system illustrated
above. Thus, it is natural to investigate the transition pathways connecting different min-
ima via the transition states, which depict how the C-G interface moves. There are two
classes of numerical methods for the calculation of the transition pathways connecting
local minima: chain-of-state methods [34, 44–48] and surface walking methods [49–54],
both having various versions in implementation. The chain-of-state methods would re-
quire knowledge of both initial final states, and a decent initial path connecting them.
The surface walking methods, on the contrary, are able to explore the transition states
starting from an initial state. In the interface system, since we aim to search possible local
minima and transition pathways without a priori assumption on the final state, we prefer
the index-1 saddle dynamics (SD) to compute the transition states [51, 55]. The specific
dynamics we adopt is governed by











∂φG

∂t
=−(I−2vv⊤)F(φG), (2.7a)

∂v

∂t
=−(I−vv⊤)G(φG)v, (2.7b)

where I is the identity matrix, F(φG) is the gradient vector in Eq. (2.6) and G is the Hes-
sian matrix at φG. The vector v represents the ascending direction corresponding to the
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eigenvector of the smallest eigenvalue of the Hessian G(φG). Such SD is built on the fact
that an index-1 saddle point is a maximum along the lowest curvature mode and a mini-
mum along all other modes. In particular, when v=0, the SD (2.7a) leads to the gradient
dynamics, which is utilized to search the connected new local minima.

To avoid direct computation of the Hessian [50], the shrinking dimer technique is
applied to approximate the action of Hessian at the dimer center along the direction v,
i.e.,

G(φG)v≈
F(φG+lv)−F(φG−lv)

2l
,

F+−F−
2l

, (2.8)

where the dimer length satisfies dl/dt=−l. The above dynamics is further discretized in
time, using a semi-implicit scheme for φG and an explicit scheme for v,
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where

F1

(

φn+1
G (zj)

)

=−[ξ2(−G2+δ2
z+1)2+τ]φn+1

G (zj),

F2

(

φn
G(zj)

)

=
γ

2 ∑
G1+G2=G

φn
G1
(zj)φ

n
G2
(zj)−

1

6 ∑
G1+G2+G3=G

φn
G1
(zj)φ

n
G2
(zj)φ

n
G3
(zj)

+λδ(G=0); (2.10)

δ is a positive constant to ensure that ln →0 when n→+∞, for which we take δ=0.01 in
the simulation; the time step ∆tn is chosen adaptively by [33, 56]

∆tn =max



∆tmin,
∆tmax

√

1+η|En(t)−En−1(t)|2/∆t2
n−1



, (2.11)

with ∆tmin,∆tmax,η taking 0.005,0.1,105, respectively. In the updating of the ascending di-
rection v, the stepsize γn is given by Barzilai-Borwein as [57] γn=(∆vn)⊤∆dn/(∆dn)⊤∆dn ,

where ∆vn =vn−vn−1 and ∆dn =(I−(vn)⊤vn)
(Fn

+−Fn
−)

2ln
−(I−(vn−1)⊤vn−1)

(Fn−1
+ −Fn−1

− )
2ln−1

.

To obtain the transition pathways, we start from an energy minimum φ0 and apply
the SD (2.9) to find a transition state. We choose an initial ascending direction v0 and set
the initial state of φ to be φ0=φ0±εv0, where ε is a small positive constant. If the SD (2.9)
converges, we then find a transition state φ1 and its unstable direction v1. Next, starting
from this transition state φ1, we apply the gradient flow (using Eq. (2.9) with {vn}= 0)
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with two initial conditions φ1±εv1 to find the two connected minima, which leads to the
transition pathway between them. In most cases, these two minima are φ0 and a new
local minimum φ1, so we could confirm that φ1 is the transition state along the transition
pathway connecting φ0 and the other energy minimum.

In practice, different initial searching directions are needed in order to search distinct
transition states and the transition pathways connecting different local minima. Here,
we choose the eigenvectors corresponding to the six smallest eigenvalues of its Hessian,
which give twelve initial ascending directions. As we can see later, from one local min-
imum we find at most three transitions states connecting to three distinct local minima,
so that we believe that our choice of initial ascending directions is enough.

3 Results

3.1 Bulk phases

We first need to obtain the bulk profiles of C and G in order to formulate the C-G interface
system. We choose the coefficients in the energy (2.1) such that both phases C and G are
energy minima, i.e., ξ2=0.0389, τ=−0.0121, γ=0.0681. These coefficients can be derived
from physical parameters of diblock copolymer from self-consistent field theory (SCFT):
volume fraction f =0.43 and segregation χN=12 [1]. The phase profiles for both phases
are discretized by 32 grid points in the z-direction and 32×32 Fourier modes in the x-y
plane, and they are calculated in a unit cell of the size 2

√
6π×2

√
6π×2

√
6π, which is

estimated but turns out to be very close to the optimized one for both phases.
The configurations of C and G are presented in Fig. 2 by drawing the isosurface of

their profiles. We also show the Fddd phase, which has been reported in Refs. [58–60] and

Figure 2: C, G and Fddd phases. Specifically, (b), (e) and (g) are profiles lying in the plane (01̄0) of (a), (d)
and (f), respectively; (c) is (a) lying in the plane (111); (h) is (f) lying in the plane (001̄); (i) is obtained by
rotating (g) clockwise 90◦. The horizontal directions of (b), (e), (g)-(i) are (100),(100),(100),(100),(001), and
the vertical directions of those are (001),(001),(001),(01̄0),(1̄00). Here 1̄ represents its negative number −1.
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will appear frequently in the C-G interface system. In particular, we provide the Fddd
structure viewing from three different directions, in order to be compared with the inter-
face morphologies below, which are labelled as Fddd-1, Fddd-2, Fddd-3 to distinguish
each other. It is also notable that, under this parameter setting, G is the stable phase with
E=−1.5403×10−4, while C and Fddd are the metastable phases with E=−1.5190×10−4,
−1.5186×10−4, respectively. The energy density of Fddd is greater than but close to C,
while that of G is the lowest.

3.2 Interface morphologies under different displacements

We pose C and G in the orientations shown in Fig. 2. Specifically, C has the axis along
the direction (111). The relative orientation between C and G is consistent with that in
the epitaxial relation reported both theoretically [31, 61] and experimentally [18, 62]. The
C-G interface system possesses three unit cells along the z-direction, and the initial state
is given by a sharp interface, with the lower one unit cell filled with the bulk profile of
G, and the upper two unit cells filled with C, i.e. L−=−2

√
6π, L0 = 0, and L+= 4

√
6π.

By applying the gradient dynamics, the interface could be relaxed towards an energy
minimum to optimize the interface.

Although the orientations of C and G have been fixed, the displacement between C
and G can be altered. The gradient dynamics can be regarded as two large region of C and
G contact initially under certain displacement followed by the relaxing of the interfacial
structure to a local energy minimum. It turns out that the displacement makes a great
difference to the interface morphology. We investigate eight displacements along the z-
direction and present them in Fig. 3(a). The epitaxially matching case is labelled by Z0. Z1

is obtained by displacing G one eighth of the period along the z-direction, and Z2 is the
result of further displacing G one eighth of the period from Z1, and so on. While initially
possessing two unit cells of C and one of G, the energies of the resulting minima, shown
in Fig. 3(b), are eminently distinct due to dissimilar interface morphologies formed to
connect C and G.

Let us turn to the interface morphologies. First, the interface may prefer certain types
of connections that are maintained by bulk deformation under displacements. This is
noticed in Z0,Z1 and Z7, for which the connections are similar except for the interface
locations and deformation degrees. As a result, their energies are quite close, and we
would like to view them as the same connection mechanism.

Another mechanism is to connect two ordered phases by a third phase. Of the eight
cases displayed in Fig. 3(a), we notice that the structures of Z3, Z4 and Z6 in the middle
are not identical to either C or G. If we only look at these local minima, one might believe
that different connections could only appear under specific displacements. However,
under certain displacement, the corresponding interface morphology gives merely one of
several local minima in the transition pathways. By investigating the transition pathways
further, we will demonstrate that these connection mechanisms can occur under different
displacements.
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Figure 3: (a) Eight local minima Zi (i=0,1,··· ,7) under different displacements. For each Zi, the corresponding
initial state is set where C is fixed and G is moved down by i eighths of one period. (b) The energy plot of
Zi (i=0,1,··· ,7).

3.3 Four primary transition pathways from Z0

We first investigate the transition pathways starting from Z0. Four primary transition
pathways are drawn in Fig. 4, which we use arrows associated with different colors to
represent. We place the local minima in the lower row and the transition states in the
upper row, to mimic the energy running upwards or downwards. The corresponding
free energy of each pathway is shown in Fig. 5. A special notice is that part of the green
and blue curves overlap, which are drawn in cyan.

In Fig. 4, the blue arrows together compose a transition pathway showing how G is
growing towards C. The solution B8 resembles Z0 by moving the connection structures
approximately one period towards C. The four local minima Z0, B2, B4, B6 within one pe-
riod are exactly those reported previously [32]. Thus, this blue path depicts the moving
of interface towards the region of C, overcoming four energy barriers in one period. Fur-
thermore, since the transition states are accurately identified, the energy barriers shown
in Fig. 5 are much lower than the previous findings in Ref. [32].

There are other transition pathways, where C and G are wetted by a third phase Fddd
gradually. In these cases, Fddds in red, yellow and green paths emerge in three different
orientations, which resemble the three structures shown in Fig. 2(g), (h) and (i), labelled
by Fddd-1, Fddd-2, Fddd-3, respectively. For the energy curves shown in Fig. 5, the
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Figure 4: Four primary transition pathways starting from Z0. In (a) and (b), figures in the upper row (odd
subscripts) are the transition states and those in the lower row (even subscripts) are local minima. Arrows of
the same color indicate a transition pathway. The figures B1 and G1 are identical, so are B2 and G2.

Figure 5: The free energy of four transition pathways in Fig. 4. The circles and squares stand for transition
states and local minima, respectively. The colors are the same as those in Fig. 4. The cyan lines are the overlap
of green and blue lines.

green and yellow ones show a descending tendency by looking at the energy minima on
the curves. Moreover, it is noticed that G4 has higher energy than G2, but G6 has lower
energy than G2 in the green curve. The red curve exhibits an ascending tendency, which
implies that this path is not favored despite its neatly grown Fddd structure.

As the blue energy curve is the lowest one in the sense that other energy curves are
wholly above it, we believe that it is the most probable transition path among the four
paths depicted above. However, other paths are also possible to happen as long as their
energy exhibit a decreasing tendency. Moreover, once a state in a path is reached, it could
be difficult to switch to another path. The reason is that it might need to go back through
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Table 1: The main reciprocal vectors of the related bulk phases shown in Fig. 2. ·̄ represents its negative number
and (·)a denotes the sign of Fourier coefficients is opposite.

Profiles The main reciprocal vectors

C (12̄1),(2̄11),(1̄1̄2)

G (1̄12),(21̄1),(12̄1),(2̄11),(1̄1̄2),(1̄2̄1),

(112)a,(121)a,(211)a,(1̄21)a,(11̄2)a,(2̄1̄1)a

Fddd-1 (1̄2̄1),(1̄12),(2̄1̄1)a,(211)a,(121)a,(11̄2)a

Fddd-2 (1̄1̄2),(121),(2̄1̄1)a,(21̄1̄)a,(11̄2̄)a,(12̄1)a

Fddd-3 (12̄1),(211),(11̄2)a,(112̄)a,(121̄)a,(21̄1̄)a

one path to the starting point, and then move along another path, which has to overcome
a higher energy barrier than keeping in the current path. Although this comprehension
seems counterintuitive, the numerical results indeed support this statement, because it is
unable to find any transition state connecting local minima in different pathways. This is
also the case for the results for other Zi’s.

To comprehend the wetting by the Fddd phase, we pay attention to the main recip-
rocal vectors of single profiles C and G, as well as Fddd in three orientations (see Table
1). The three main reciprocal vectors of C are part of those of G, and those of Fddd in
three orientations also show resemblances. It indicates the structural similarity between
the three phases, so that the wetting by Fddd is not that surprising. However, the spec-
tral information is insufficient to explain the difference in energy curve. Actually, under
other displacements between C and G, we will see in the following that the red, yellow
and green paths could become the one with the lowest energy.

3.4 Transition pathways for displaced cases

Next, we will present the transition pathways starting from the other minima in Fig. 3.
In Fig. 6(a) we find two transition pathways connecting Z2, both of which are inserting
Fddd. By comparing them with Fig. 2, we find out that along the yellow path Fddd-2 is
inserted, while along the red path Fddd-1 is inserted. We still label the solutions as Y1,
Y2, etc., but they are not the same as those in Fig. 4 and other figures below. Along the
yellow transition pathway, Y2 is at lower energy than Z2, shown in Fig. 6(b). The Fddd
structure can further grow with Y4 at almost the same energy as Y2, but when it grows to
Y6, the energy increases. Thus, along the yellow path, the transition is likely to stop at Y2

or Y4. In other words, the Fddd-2 in the middle is more like a local connecting structure
than a wetting phase. In contrast, for the red transition pathway, Fddd-1 is inserted. The
energy curve also behaves in another manner. From Z2 to R2, the energy increases with
a higher energy barrier than that from Z2 to Y2. After that, the energy decreases notably
when successive minima are reached. This is totally different from the energy curve in
Fig. 5, where the energy is growing when Fddd-1 is inserted into the interface. It should
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Figure 6: Two transition pathways starting from Z2 are shown in (a), and the corresponding free-energy wave
of each path in (a) is depicted in (b).

be noted that the energy barrier of Z2→Y1 is lower than that of Z2→R1. If we only focus
on a single transition, it is easier for the transition Z2→Y2 to happen, although the energy
can reach a lower value along the red path.

We turn to the transition pathways starting from Z3 and Z4 (see Fig. 7). In both cases,
we only find the paths where Fddd-3 emerges in between, so we use the color green
for them. Recall that we use the same labels to represent states in transition pathways
under different displacements, so here Gi in (a, c) and (b, d) are different states. While
the connection structures for Z3 and Z4 are similar, their energy curves in Fig. 7(c, d) are
different. In the Z3 path, the energy is descending as Fddd-3 grows, showing that Fddd-
3 is wetting. Instead, the energy is ascending when Fddd-3 grows in the Z4 path. The
results imply that Z4 is the state to be stopped at and the Fddd-3 acts as a local connection.

When starting from Z5, three transition pathways are found in Fig. 8(a). In the two
blue paths in the top (Z5→B6 and Z5→B′

6), G is growing towards C while G is evidently
deformed. The main distinction between the two blue paths is that a twin-loop structure
occurs in G in the Z5→B′

6 path. According to the energy curve from Z5 to B′
6 in Fig. 8(b),
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Figure 7: Transition pathways starting from (a) Z3 and (b) Z4 are shown, and the corresponding free-energy
waves are depicted in (c) and (d), respectively. Take notice of Gi starting from Z3 in (a) and (c) are different
from those starting from Z4 in (b) and (d).

the emergence of twin-loop structure draws the system to a higher free energy, while the
development of G towards C makes the energy decline rapidly. There is a green path with
much higher free energy, where Fddd-3 is inserted into the interface after the emergence
of twin-loop.

At last, let us look into the transition pathways starting from Z6. The insertion of
Fddd-1 is observed from two paths in Fig. 9(a). The difference between them is the con-
nection between G and Fddd-1. The path Z6→R′

4 possesses a breaking of loop in G. The
energy curves indicate that the path Z6 →R′

4 has higher energy than Z6 →R4, although
both paths have descending tendencies (Fig. 9(b)).

4 Discussion and conclusion

In this work, we systematically investigate the transition pathways in the interface sys-
tems between C and G with different displacements. We apply the SD method to effi-
ciently compute the transition states and local minima successively to obtain transition
pathways. Application of the numerical method to the LB model reveals an interest-
ing set of transition pathways, which describe the evolution of the C-G interfaces and
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Figure 8: Three transition pathways starting from Z5 are shown in (a), and the corresponding free-energy of
each path is depicted in (b).

Figure 9: Two transition pathways starting from Z6 are shown in (a), and the corresponding free-energy is
depicted in (b).



824 X. Yao, J. Xu and L. Zhang / Commun. Comput. Phys., 32 (2022), pp. 810-828

reveal novel mechanisms. The results provide a much more comprehensive understand-
ing on the C-G phase transitions than only finding out a few local energy minima as
shown in Ref. [32]. We demonstrate that there exist two types of transition pathways in
Cylinder-Gyroid interface: one is the direct pathway connected C and G, and the other is
the indirect pathway between C and G by inserting Fddd phases with different orienta-
tions. When C and G match well, such as Z0, it is more probable for G to grow gradually
towards C with notable energy decline. However, when C or G is displaced so that the
matching is broken, wetting by Fddd is favored and the orientation of Fddd show various
possibilities.

By choosing the current parameters setting in the LB model, G has the lowest energy,
and the energy of C is lower than Fddd but they are very close. This should be necessary
for the wetting to emerge. To connect two phases by a third phase wetting, one needs to
consider the excess energy of the volume occupied by the third phase and two connec-
tions between two phases and the third phase. If the third phase wetting is preferred, it
indicates that these altogether contribute less energy than a direct connection of the two
phases. This finding is consistent with the transition pathway connecting crystals and
quasicrystals, in which the lamellar quasicrystalline state serves as the third phase dur-
ing the phase transition [63]. Thus, our results demonstrate that the flexibility of Fddd
provides more possibilities on the connections between C and G phases.

Although we have identified various transition pathways in the interface system,
there is no guarantee that the results are complete. Other transition pathways might
exist, showing unrealized mechanisms for the interface transition. It may be interesting
to use the solution landscape approach [64,65] to identify more transition states and local
minima, which has been successfully applied to liquid crystals [66–69] and polymers [70].
On the other hand, this work only focuses on one preferred relative orientation between
C and G phases. We will investigate the interface systems with other relative orientations
in forthcoming works. In addition, it would be interesting to investigate other models,
such as SCFT or Ohta-Kawasaki model [71, 72], and compare with the results in the cur-
rent work. Computer-assisted rigorous proofs may also be possible, as carried out for
bulk phases [73, 74].
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