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Abstract

We propose a modified threshold dynamics method for wetting dynamics, which significantly improves
behavior near the contact line compared to the previous method (J. Comput Phys 330, 510-528, 2017).
The new method is also based on minimizing the functional weighted interface over an extended domain
includes the solid phase. However, each interface area is approximated by the Lyapunov functionality
with a different Gaussian kernel. We show that a correct contact angle (Young angle) is obtained in the
leading order by choosing a correct Gaussian kernel variance. We also show the Gamma convergence of
the weighted functional to the total surface energy. The method is simple, unconditionally stable with
O(NlogN) complexity per time step and is not sensitive to the inhomogeneity or roughness of the solid
surface. It is also shown that the dynamics of the contact point is consistent with the dynamics of the
interface away from the contact point. Numerical examples have shown significant improvements in the
accuracy of the contact angle and the hysteresis behavior of the contact angle.
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1. Introduction

Wetting describes how a liquid drop spreads on a solid surface. The study of wetting is of critical
importance for many applications and has attracted much interest in the physics and applied mathemat-
ics communities[2, 10, 15, 34, 46]. The equilibrium configuration of the liquid drop can be obtained by

minimizing the total interface energy

E=vv|Zv|+7vsc|Zse] + vsvIZsv], (1)

where sy, vsr and ypy are the solid-vapor, solid-liquid and liquid-vapor surface energy densities, re-

spectively and |Xgv |, |Xsr| and |Ery| are the corresponding interface areas. When the solid surface is
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Figure 1: Left: Original domain Q = D; U Do. Right: Extended computational domain = QU Ds.

homogeneous, the contact angle for a static drop is given by the famous Young’s equation:

cosfy = Ysv — 'YSL, (2)

YLV
where 6y is the so-called Young’s angle [47]. Analytic solution of the minmization problem of (1) is difficult
and the numerical solution is also challenging. There have been many numerical methods proposed for
simulating the free interface problem using front-tracking [24, 44] , level set method [48] or the phase-field
method [8, 16] .

The threshold dynamics method developed by Merriman, Bence, and Osher (MBO) [28] is an efficient
numerical method for the motion of the interface driven by the mean curvature. The method alternately
diffuses and sharpens characteristic functions of regions and is easy to implement and highly efficient. The
MBO method has been shown to converge to the continuous motion by mean curvature [3, 5, 14, 40] when
the interace is away from the solid boundary. Esedoglu and Otto[12] generalize this type of method to
multiphase flow with general mobility. The method has attracted much attention and becomes very popular
due to its simplicity and unconditional stability. It has been subsequently extended to deal with many other
applications. These applications include the multi-phase problems with arbitrary surface tensions [12], the
problem of area or volume preserving interface motion [20, 39, 44], image processing [11, 27, 42], problems
of anisotropic interface motions [4, 9, 30, 37], generating quad mesh [41] ,and auction dynamics[18]. Various
algorithms and rigorous error analysis have been carried out to refine and extend the original MBO method
and related methods for the aforementioned problems (see, for example, [13, 17, 25, 29, 35, 36, 38]). Some
mesh free methods are also considered to accelerate this type of method[19] based on non-uniform fast
Fourier transform(NUFFT)[7, 23]. Laux et al. [21, 22] rigorously proved the convergence of the method
proposed in [12]. Recently, a generalized target-valued diffusion generated method is studied in [32, 33, 43].

In [45],we proposed an efficient threshold dynamics method for the wetting and interface motion on
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rough solid surface. The domain is extended to include the solid phase as the third phase and the method

is based on minimization of the approximate energy to (1) (as h — 0)

5h(XD17XD2) =

v T o
'VL\‘;EI/XDlGh * XD, dX + ’YS\Z){/~XD1G}Z * XDy dx + 75\‘;{/)@2(?;1 * X Dy dX. (3)
Q o &
where
1 |x/?
= 2 P Tn 4

is the Gaussian kernel. xp,,xp, are characteristic functions of domain D;, Dy in Fig. 1. An efficient
iterative algorithm is then designed to find the minimizer of (3) (with volume constraint on Dy, D). The
method is simple, efficient, unconditionally stable and insensitive to the inhomogeneity of the solid surface.
However, numerical experiments in [45] have shown that, although the apparent (macroscopic) contact angle
satisfies the Young’s equation, the microscopic contact angle at the contact point deviates from the correct
Young’s angle. There seems to be a boundary layer on the solid surface around the contact points.

In this paper, we show that the method can be improved by using heat kernel with different variance h

for different surface energy terms in (3), i.e.

ghl,hz (XDI ) XDQ) =

"YLV\/?T FYSL\/% ’YSV\/TT

where we use h; for approximating liquid-vapor interface energy and ho for approximating solid-liquid and

/XDlGhl * XD, dx + /XDlGhQ * XDy dx + /XDQ Gh, * XDydx, (5)
Q Q Q

solid-vapor interface energy. We perform asymptotic analysis to show that the boundary layer near the
contact point can be removed if by choosing he = Ah; with proper choice of a constant A (depends on
the three surface tension coefficients) so that the microscopic contact angle satisfies the Young’s equation
(2). We then derive the dynamic of the contact point which is consistent with the dynamic of the interface
away from the contact point. We show that the improved threshold dynamics method still enjoys the
energy decaying property and is unconditionally stable. Furthermore, we also prove the I'-convergence of
the weighted functional (5) with ho = Ah; to the functional (1). This extends the analysis in [12].

This paper is organized as follows. In Section 2, we derive the modified threshold dynamics method and
prove that the modified method has energy decaying property which implies the unconditional stability. In
Section 3, we use asymptotic analysis to derive the dynamic law of the contact point. In Section 4, we prove
the I'-convergence result. We present several numerical examples to verify the improvement of our modified

method in Section 5. We then conclude in Section 6.



2. A modified threshold dynamics method for the wetting problem

In this section, we introduce a modified threshold dynamics method based on the recent work by Xu
et al.[45]. The main idea in [45] is to extend the fluid domain Q to a larger domain Q(see Figure 1)
containing the solid phase. In the extended domain, the interface energies between different phases in (1)
can be approximated by a convolution of characteristic functions and a Guassian kernel Gj,(x)(see details
below). In this paper, the interface energies between different phases are approximated by the convolution
of characteristic functions and a Gaussian Kernel with different h's (e.g. hy for approximating liquid-vapor
interface energy and hs for approximating solid-liquid and solid-vapor interface energy). Using the relaxation
and linearization procedure introduced in [12], we derive a modified threshold dynamics method for wetting
problems. From the consistency analysis, we derive the relationship between h; and hs so that the contact

angle satisfies the Young’s equation at the contact point both microscopically and macroscopically.

2.1. Representation of interface energies in the extended domain

In the following, we let D1, Dy C Q C R™ be the liquid and vapor phases(see Figure 1), respectively. Let
Yy = D1 N 0Ds be the liquid-vapor interface. When h; < 1, the area of ¥y can be approximated by
(see [1, 31])

T
Xrov|~ \/\/h; xD,Gh, * XD, dx, (6)
1
where xp, is the characteristic function of D, and
1 |x[?
G = — 7
h1 (X) (47Th1)n/2 eXp( 4h1) ( )

is the Gaussian kernel. Gj, and G; in the subsequence are similarly defined.

In the total energy (1), the second and third terms are interface energies defined on the solid surface T".
They are the solid-liquid interfacial energy term on Xg; = 0D; NI and the solid-vapor interfacial energy
term on Ygy = Do NT'. To approximate these two terms using the Gaussian kernel, we extend the domain
Q beyond T (see Figure 1). The extended domain is 2 = Q U Dy where Ds is the solid region. Then, the
solid surface is I' = 02 N 0 D3, the solid-liquid interface is Y g;, = dD1 N 0D3 and the solid-vapor interface
is Ygy = 0D2 N ODs.

From the observation and numerical experiments in [45], the apparent (macroscopic) angle always satisfies
the Young’s equation while the microscopic angle deviates from the correct Young’s angle. There seems to
exist a boundary layer on the solid surface around the contact points. To modify the scheme, we use the
convolution of characteristic functions with a Gaussian kernel with a different parameter ho to approximate

‘ESV| and |ESL|- That iS,
s
|Esv |~ \/\/% /XDQGM * X D3 dX, (8)
™
Sarl Y [ 0, xxmyix (©)
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Then, the total energy &£ in (1) can be approximated by

EMM2(xp,, xpy) =
FYL\‘//%/E/QXDlG;LI * XD, dx + VS\/L]%E/QXQGM * X Dy dX + %%/QXDQG;LZ * X Dy dX. (10)
Denote u; = xp, and us = xp,. We define an admissible set
B = {(u1,u2) € BV(Q) | u;(z) = 0,1, and uy(z) + uz(z) =1, a.e. z € Q7/Qu1dx =W} (11)
The wetting problem can be approximated by

( mil)lEBEhl’h2(u1,u2). (12)
Uy,u2

This is a non-convex minimization problem since B is not a convex set and the energy functional £"1"2 (uy, uy)

is concave.

2.2. Derivation of the modified threshold dynamics method

In this section, we present the derivation of a threshold dynamics method for the minimization problem
(12). The derivation is based on the relaxation and linearization procedure introduced in [12]. Note that the
problem (12) is to minimize a concave energy functional defined on a non-convex admissible set. However,
we can relax this problem to an equivalent minimization problem in a convex admissible set. The relaxed
problem is given by

i 8 ). a

where I is the convex hull of the admissible set B:
K ={(u1,uz) € BV(Q)|0 <wu; <Lup(z) +us(zr) =1, ae. x € Q,/ updx = Vo }. (14)
Q
The following lemma shows that the relaxed problem (13) is equivalent to the original problem (12).

Lemma 2.1.

min Ehl’h"‘(ul,ug): min Ehl’h"‘(ul,uQ).
(u1,u2)eK (u1,u2)€EB

Proof. Let (41, 12) € K be a minimizer of the functional
ghl’hz (ul, U;2).
Since B C K, we have

Shl’hz (’&,1,’&2) = min Ehl’hz (ul,uz)
(u1,u2)€EK

< min  EMP2 (g u).

(u1,u2)€B
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Therefore, we need only to prove that (@1, a9) € B.
We prove by contradiction. If (@1, %2) & B, there is a set A € Q and a constant 0 < Cy < %, such that
|A| > 0 and
0<Cy<t(x),tz(z) <1—Ch, forall xze A

We divide A into two sets A = A; U Ay such that 41 N Ay = 0 and |A;| = |A2] = |A|/2. Denote

ul =y +txa, —txa, and ub = s — txa, +txa,. When 0 <t < Cp, we have 0 < ul,ul < 1 and
ut1+u§:111 +1uo =1, and uﬁdx:/aldXZVO.
Q Q

This implies that (uf,u}) € K. Furthermore, direct computations give,

d725h1 hao

d
dit2 (u17u2 r / dt 1Gh1 dtUQdX

= 0 XAl_XA2G1*XA2_XA1 dx
vy )G, # )

= —\/\/%\/(:2 (Ghl/Q * (XAI - XAz)) (Gh1/2 * (XA1 - XAz)) dx

<0.

The penultimate step comes from the fact that heat kernel is a self-adjoint operator which consists a semi-
group with different hy. From above inequality, the functional is concave on the point (a1, us). Thus,

(11, Uz) cannot be a minimizer of the functional. This contradicts the assumption. O

The above lemma implies that we can solve the relaxed problem (13) instead of the original one (12). In
the following, we show that the problem can be solved iteratively using a threshold dynamics method.
Suppose we solve problem (13) using an iterative method. In the k** step, we have an approximated

solution (u¥,u%). The energy functional £#:72(uy,us) can be linearized near the point (u¥,u5) as follows:

Mtz (yy ug) = EMoh2 (Wb ub) + L(uy — ub g — ub, uk ub) + h.o.t.
with

ﬁ(ul,ug,u’f,ug) =

v (/ﬁ Uy (%Ghl * ub 4 }%Gh * XDs) dx+/QuQ <%Ghl ub + ’\Y/S—XG;12 *XD3> dx> . (15)

Note that, when u} and u% are given, the minimization of £(u; — u¥,us — uk, u¥ uk) is equivalent to the
minimization of L£(uy,ug,u¥,u%). Thus, instead of minimizing £"1""2(uy,us), we minimize the linearized
functional

“ qu;ir)lelc ﬁ(ul,ug,u’f,ug) (16)
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and set the solution to (u¥*! ub™1).

The following lemma shows that the minimizing problem (16) is solved via a simple threshold dynamics

method.

Lemma 2.2. Denote
cos by

Vha

1
¢ = \/T—lGhl * (u’j _Ulf) -

Ghz * XD3‘ (17)
Let
DEl = {2 € Q| ¢ < 6} (18)

for some § such that |D¥*Y| = Vi. Define D5** = Q\ D¥TL. Then (ufth ub™h) = (XD’f“7XD§“) is a
solution to (16).

Proof. Since L is a linear functional, we need only to prove
E(ulf+1 USJA ulf7u2) ﬁ(ulvu%ulfﬁug)v (19)

for all (u1,ug) € B.
For each (u1,us) € B, we know u; = Xp, and ug = XD, for some open sets lA)l7 ﬁg in , such that
f)lmf)z = @, [)1UD2 = Q and |b1‘ = ‘/0 Let A1 = [)1\le+1 = D§+1\D2 and A2 = f)Q\D];J'_l = le+1\[)1.

We must have |A;| = |As| due to the volume conservation property. Since A; C D5, we have

() >0, ubtH(z) —ui(z) = -1, VzeA.

k1
Dl

Similarly, since Ay € , we have

(x) <6, uftH(z) —ui(z) =1, Vac A,

k+1

Therefore, using uy™ —uj + uSH — ug = 0 and cosfly = ISY=TSL e have

YLv

‘é(ullc—i_l U§+1 ulfvulg) 7‘6(’“17“27“]16’“]26)

=vr | (u'fH —u1) (%Ghl uf + \/TGhz * XDS) + (us™t = ug) (%Ghl uf + %Ghz * XDS) dx

—f/ kL (Vth G+ (ub u1)+'YSL stGhz *XD3> dx
Vhi

7
Ay ( / o / | ¢dx)

< dx —¢ dx = 0.
Az A1

Now, we are led to the following threshold dynamics algorithm:



Algorithm 1 A modified threshold dynamics method for solid wetting dynamics.
Given initial DY, DY C Q and solid domain Ds, such that DY N DY = 0, DY U DS = Q and

|IDY| = Vi. Set a tolerance parameter ¢ > 0, equilibrium angle Oy, time step hi, and time step
hs.

1: For given sets (DY, D), calculate

1 cos Oy
k
=—G - - —0G . 20
0] T hy * (XD§ XD’f) N ha * XDs (20)
2: Find a § such that the set
DS ={z e Qo< b} (21)

satisfies | D}| = Vj. Denote D¥*! = D? and DET! =\ DFFL.
3: If [D¥ — D¥1| < ¢, stop; otherwise, go back to Step 1.

Remark 2.1. 1. The choice of hy and he will be studied in the consistency analysis in Section 3.
2. The convolutions at the Step 1 can be efficiently computed by using Fast Fourier transform (FFT).

3. At the Step 2, it is easy to check that ¢(x) we defined is monotone along the liquid-vapor, solid-liquid,
and solid-vapor interface. Denote V (§) = |D3|, then V (8) is strictly monotone with respect to & when
0 is around 0 and therefore the root of V(§) — Vy uniquely exists. One may apply some traditional
iterative methods (e.g. bisection method, Newton’s method, fixed point iteration, and so on) to find the
unique root of V(§) — Vi which is the value preserving the volume of Di. However, bisection method
usually converges slow while Newton’s method or fized point iteration is sensitive to the initial guesses.
In [45], we proposed an efficient and stable algorithm to find the root of V() — Vi based on the quick
sort algorithm (See also [9, 18]).

2.8. Stability analysis

In this subsection, we will show that Algorithm 1 is stable, in the sense that the total energy of £1:/2

always decreases in the algorithm for any hy > 0 and hs > 0. We have the following theorem.
Theorem 2.1. Denote (uf,uf) = (XDT,XDIQC), k=0,1,2,..., obtained in Algorithm 1. We have
ghhz (uyh ug ™) < M (uf ug), (22)

for all hy > 0 and hy > 0.



Proof. By the definition of the linearization £ and Lemma 2.2, we know that

VYLV
Vhi

k+1  k+1 _k ,k\ _ chihos, k+1 | k+1
> L(uy™ uy g, ug) = EM R (uy T up )

+ VLY (/ u" @y, >|<u2dx—&—/~ ub TG, x ubdx — [ ub Gy, *u2+1dx) .
Vhi o) o) Q

hi,h k k1w _ Ark ok ok ok
gm 2(u1,u2)+ /ulGhl*quX—ﬂ(ul,uQ,ul,uQ)
0

This leads to
EM I (uk ) 2 €M (kWb 4 T, )

with

VLV\/E(/ k41 / k+1
I= G Rdx + G kd
N Qul hy * Usdx Quz hy *ujdx
— / ub TGy, xub T dx — / ub Gy, *uédx)
Q O
=T [ (b )G,

By the fact that u¥ + w5 =« + ub™!, we have

LVVT ,
1:7 f ~(u’l‘“—u’f)Ghl (u’lHrl u’f)dx

'YLV\f

/ Gh1/2* k+1_u1)) (Gh 2 % (u k+1—u1))dx>0

This inequality together with (23) implies (22). O

3. Consistency analysis

In this section, we perform asymptotic analysis to determine h; and hs in Algorithm 1 with a very
basic level of consistency with the correct contact angle at the contact point, in the sense that one step
of algorithm 1, acting on a set of liquid domain with smooth liquid-vapor interface and fixed solid surface
(See Figure 2). As for the dynamic of liquid-vapor interface away from the contact point, it is easy to check
that our algorithm reduces the original two-phase volume preserving MBO method due to the exponentially
decaying property of G, (i.e. the effect from yp, can be neglected when considering the behaviour of
the interface away from the solid surface). As for the behavior around the contact point, we perform the
asymptotic analysis to derive the condition for the contact angle and the dynamic law of the contact point.

For simplicity, we focus on the 2-dimensional case. Without loss of generality, we assume the liquid-
vapor interface is represented by zo = g(x1) (21 > 0) where g(0) = 0 and g(z) is a smooth function defined

n [0, +00), the solid-liquid interface is represented by z; = 0 (z2 > 0), and the solid-vapor interface is
represented by z; = 0 (22 < 0). The main idea is to formally expand ¢(x) into ¢(x) and find the (55;‘22 level
9



Figure 2: Set up for the consistency analysis.

set of ¢(x) which is the updated interface at one time step according to Algorithm 1. Here, 5511’22 depending

on hy, ho, D1, and Do, is the value for volume preserving at the Step 2 in Algorithm 1. Now, we first write

cos Oy
——Gp, *
(XDQ XD, ) \/E hao XDs

(// G, (x = y)(xD,(¥) = xp, (¥))dy — COS?/%/H//W GhQ(Xy)XDS(y)dy)

Clx-yP 1 // x—yl?
<47Th1 /~/D2 4h1 )dy 47Th1 D eXp( 4h1 )dy

cosﬁy\/T 1 //D - y2)dy) (24)

2 47Th2

oo rolun) (#1 —y1)* + (22 — 3)*
(47Th1 / / 4h1 )ddeyl

1 (1 — 1) + (22 — y2)?
47rh1/ /g exp(— 1 )dyadyy

cosﬁy\/T 1 Feo z1 —y1)? + (w2 — y2)?
NIRRT / / exp(— Ty )dyady: | .

P(x) =

aw f- 5

Evaluating ¢(x) at 21 = 0 (i.e. the contact point only moves on the solid surface), we have

(0, 22) = \/% (Ih — I, — I3) (25)

where

+oo +oo 2 _ 2
Il — / / exp(_ (yl) + (xQ y2) )ddeyh

Adrhy 4hq

+oo 2 2
+ (22 — y2)
ex dyody,
27rh1/ /g(m) p(= 4hq Jdy2dy,

0089)/\/»1 1 / /+°O (y1)? + (22 — y2)?
exp(— )

2

57 2 47Th2

dysdy; .
Ahy Y201
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Direct calculation gives

1
Il S 557 (2(3)
Oy h
2v/ho
Now, we only need to evaluate I in the rest. For the convenience, we denote € = v/h1, j1 = £, and 7 = .

Also, we assume that x5 ~ O(€?) (i.e. the motion of contact point is at the O(hy) time scale) and denote

Ty = %3 which is the velocity of the contact point along the tangential direction of the solid surface. Then,

we have
+o0 5 ~ \2
T4 (eT2 —§2)%,
/;'(‘Ul) 4 2
=II, — II, — I, (28)
where
1 +oo  ptoo S 7o)2
In 2?/ exp( M)d%dﬂh
Y[y 0 0 4
1 +oo g (0)+e 5 9”(0) ~2 Fo — 710)2
ey | exp(- LT 2B 45 i,
27T 0 0 4
q(ey1)
1 oo S~ 2
Iy =— / / P Ui (= ) o
27T 0 g (O Y 4

Note that because of the exponentially decaying and smoothness of the Gaussian kernel, we have for a given

€, there exists M > 0 with Me = o(1) such that

M2
/ G1(x)dx = exp(———) = o(e). (29)
|x|> M 4
Also, given a M, since g(x) is smooth at [0, +00), we have
~ ~2
€ -
‘g(eyl) fy1g’(0)*6%1g"( ) <C€2 ~3 (30)

for any 91 € [0, M] and some constant C' > 0. Here, for §; € [0, M], we have e = o(1) from Me = o(1).
Hence the constant C' can be chosen as the maximum value of g(3) (€) for & € [0, 1] which is independent of

M and e.
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Then, using (29) and (30), we have the following estimate on II3:
q(ey1)

+ (ex
113 77/ / exp(— wmmdm
719’ (0) 6*9”(0)

g(e yl)

1 [t §? + (eXo — 7 o
+ 2* / exp(—w)dyzdyl
m 719’ ( 0)+6y19”(0)

9(691)

~9 - ~ \2
+ (€x2 — .
/ / exp(—y1 (42 ) )dg2di + o(e)
ylg(O)Jr6 g"'(0)

719 (0)+€y1 9" (0)+Ce 5} 32 + (edg — G9)2
o [ exp(- T2 20 4545, 4 o (31)
& g’ (0)+¢ 5 g (0) - Ce38
~ @% ” 2~3
1 gQ 719" (0)+e5-g" (0)+Ce* gy €Ty — 2 o
o [ [ exp(— 2P 45,05, + o)
4 §19'(0)+e g (0)—Ce2}
C62 M ~ g2 _
< gt exp(= = )dii + o(e)
™ Jo
Ce yl M ZJ% M
=== 2 _J1 _ _J1
. [( iten-1h)| = (sew-10)| | +ot0
Ce2 2 M2
= {—ZM2 exp(———) — 8exp(———) + 8] + o(€) = o(e)
For II;, we have
e y2
=g [ e g
—6112

—+o0 —+o0
/ GXp

+o0 ~2 y
Jdadis + 5 / / exp(—=— L)z,
—EZEQ

1 e yl + y2 ~

== - dijd 32
2*%/@20 exp(~ 12 gy d (3)
1,1 0 7

— P —— _— d~/
SN exp(== )
1 10 T 7SN TAC 1 €y

=4+ 1 L = = - 2
2 T oum ,652( L Ty T pa TR =5 gz el

For 115, using (29) to make the integrating range of §; belong to the radius of convergence of the expansion

of G1(x), we then have

M 19’ ( 0)+e yl g (0) ~9 =~ \2
112 / exp(—yl + (€.T2 y2) )

1 dgedir + oe)

719 ( +ey—lg”(0)76502 g% + ~/2
/ / exp(~ " dghdg + ofe) (%)
6I2

= exp( i TUIL + ITI + I15)djs + o{e)

12



where
0
111 :/ exp(—%) b,

719’ (0) 7
111, :/ exp(— 22 )dih,
0 4
79 (0)+e % " (0) s e
I3 = exp(—22)d{h.
719 (0) 4
For 111, we have
0 ~12 ~/4 ~16
_ Y2 Y2 Ya o
Hh = /652(1 ~ Ty Ty gy )R = @t olo).
Then,
1 M g% Gi‘g
il NI di = —= . 34
5 | et = 7 o0 (34)
Similarly, for 1113, we have
-2
719" (0)+eL g” (0)—eZa ~/2 ~14 ~/16
Y2 Ya Ya ~
1113 = 1—= — <o )d
s /glg,(o) U= T oy~ gy T
9t u (B 0) - 2)6:'0)) | (Bg"(0) — ) (519 (0))?
=\ 590 =T - 4 + 422 —oen | Hele
~2 ~ ~ 0 2
= (y21g”(0) — .’132) exp(—i(ylng ) )+ o(e).
Then,
M ~2 +oo ~2 / 2 ~2
n . € i+ (') (91 » e
— — =) 13dy = — — = — d
o [ e Trtndn = - [ (o= BEELOI ) (Bgr0) - ) i+ o)
€ g"(0) - >
- ARYC! (35)
2y/m/1+ (9'(0))? <1+(g’(0))2
For 1115, we have
1 M 7 1 [t T A 2
— — IO ITdjj, =— —ZL —22)\dghdy
3 | eI =g [ a2 [ e 2 again + ofo
1 [279 oo r?
=— / exp(——)rdrdd + o(e) (36)
2T 0 0 4
-0
_2
=22 4 oo

where © = 7/2 — arctan(g’(0)) (see also in Figure 2).
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Combining (34), (35), and (36) yields:

B 6‘%2 € g//(o) —F g — ole
fﬁ—%ﬁ+zwr1+wmw<1+www 0+ el

50 e (1 N\ . g0\, .
B +2ﬁ<<l 1+<g’<o>>2> 2+<1+<g'<o>>2>%>+ (€

Combining (31), (32), and (37) yields:

S
\_/
IS
N
+

—
—
—
Q <
—_— ~~
(an)
8 S~—
SN—
[$)
N
Wl
v
+
Q
—
)
NI

]_14_6532_%_@_6 1— 1
AR I+ (¢0)

1 € To _ g"(0) ole
5 . + 2\/; ( 1t (g'(O))2 (1+ (g/(o))2)§> + ( )

Combining (26), (27), and (38) yields:

¢<o,m>:1<g_®—‘3°sgym— 6 ( o M—— ) >+0(6)>.

T 2v/hy 2\/m

€

Let
D
¢(07 IQ) = 5}111‘122

with 5511’22 ~ O(1), collecting all the terms at the order of O(2) in (40), we have:

5—0  cosbyvhy

T 2Vh
which is
925(1_ cosﬁy\/m).
2 Vi
Defining
_ Vhy  mcosby
)\(9}/) = \/771 = 71__291/, 0}/ S [O,ﬂ']

with A(§) = 5 (see Figure 3) and therefore

2
7 cos Oy 2
hy = hi.
2 <7T—2(9y) !

(37)

(40)

(42)

(43)

(44)

Submitting (44) into (42) gives us © = Oy for any 0y € [0,7]. Note that, when hy = ho, Algorithm 1

reduces to the original threshold dynamics method proposed in [45]. Then, the contact angle © satisfies

0= %(1 —cosfy)

as plotted in Figure 4. It is consistent with the observation and numerical experiments in [45].
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A
L.5F .
__ mcosby
)\ _ ,’T*Qﬁ))
l 1 1 1 1 1 1
0 0.5 | 1.5 2 2oy 3
HY
Figure 3: Relationship between A and 6y where A\ = %
Collecting all the terms at the order of O(1) in (40), we have:
B g"(0) D
- = 2V (46)

1+(g'(0))?  (1+(g'(0))?)

Then, we further have

TGO (2O o
Ta =14+ (g (o))2<(1+(g/(0))2) 2\F5h112). (47)

From the definition of g(z1) and ©, fundamental calculations give that /1 + (¢/(0))2 = /1 + cot(0)2 =

1 "(0
- and Kk = g—(>3 where k is the mean curvature defined at (0,0) by the limit along the
sin© (11 (g(0)7)3

liquid-vapor interface. Then, we have:

|

(v —2vmas). (48)

Tg = —
sin ©

where 2\/7?(5,?11,’22 is a parameter being dependent on D1, Do, hy and hy for the volume preserving. Formally,
2\/?(5,?117’; = K where K is the average of k along the liquid-vapor interface. Since I, is the velocity of the
contact point moving along the solid surface which is consistent with the motion law at the interface away
from the solid surface (see Figure 5 and see [25] for more details on the derivation of the motion law for the

two-phase interface with no contact points).

4. Gamma-Convergence of the weighted functional

In this section, we will study the I'-convergence of the weighted functional £""2 with hy = Ah; to the

total surface energy density £. For clarity, we first introduce some notations. Denote the functional space

X:= {UEBV(Q) su=xo,, 0 C Q] =V} (49)
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© =0.57(1-cost

2 =0,

Figure 4: Relationship between © and 6y when hi = ho.

D,__:) a

hyoa

v(0,0) (k(0,0) — 2/76

sin ©

Figure 5: The diagram for the motion law at the contact point and liquid-vapor interface away from the solid surface.

In X, the norm of a function v is defined as

lullpv = llullpy ) + | [Dul.
Q

By definition,
/~ |Du| = sup {[ udivgde : ¢ € Ccl(Q,R")}.
Q ¢ Q

We also rewrite the modified energy functional £"1:72(Qy, Q) with hy = Ah; as a functional on u = xq, € X,

. VLY VTYsL VT sy
Enlu) = T QUGh * (xq —u)dx + W QUG)\h * Xz dT + W Q(XQ —u)Gp * X, d.
Using the Young’s equation ysy — s = v cosfy, a simple computation leads to
5 VLY VT Ly cos by Vs
En(u) = Th /QUGh * (xq —u)dxr — — 5 uGrp * X, dr + oh /QXQGM * xasdx. (50)
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Similarly, the functional (3) without rescaling reduces to

VLY / VTyLy cos Oy VTysv /
En(u) = uGy, * —u)dr — —F——— | uGy * dr + Gy, * dz. (51
n(u) N (xa —u) T | UGn* Xas Th Jo xeGnrxas (51)

We note the energy functional £ can be rewritten as

E(u) =vov|ELv| — vov cos Oy |Esr| + vsv T
=y [ (1Dul+ 1D(xa = 0] = 1Dxal) =35y cosy [ (1Dul +1Dlxa)] = IDu+ xa)) + 7011
(52)
with I' is the interface between 2 and (3.
We first state a result on the convergence of &, to £, as given in the following proposition.

Proposition 4.1. The functional E, T'-converges to € in X as h goes to zero.

The proof of the proposition is essentially given in [12], where the I'-convergence is proved for a multi-
phase problem. Here we will not repeat the details of the proof but refer to the Appendix in [12].

We aim to show the T-convergence of &, to £. It turns out the result can not be proved directly by the
method in [12]. In the following we will use an indirect method to prove the result. We introduce a few

more notations. Denote

uGh * X, dz + VTisv ~xoGh * xa,dz, (53)
Q Q

0
fh(u):_ﬁVLvCOS Y -

Vh

and
F(u) = —7Lv0089y[(|DUI+|D(X93)\ —|D(u+ xa,)]) +vsv|X]. (54)
Q

We will prove the following proposition.
Proposition 4.2. The functional Fp, converges to F continuously in X as h goes to zero.

We recall the definition of continuous convergence in [26]. A series of functional Fj, converge to F
continuously in X if for given v € X and for any small positive number ¢, there exists a hg > 0 and a

neighbourhood N (u) of u such that
| Fn(v) — F(u)] < e, Yo € N (u). (55)
To prove proposition 4.2, we need a few more preparations. We will prove two simple lemmas.

Lemma 4.1. For any xq, . Xq, € X, if Ny = 0, we have

/QID(XQl—ng)l=/Q|D(XQ1)\+/Q\D(XQQ)I~
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Proof. Since 1 NQy = 0, for any ¢ € C1(Q), we have

/~(XQ1 — Xq,)divedr = / divodr — / divgdr = ¢ - dH " (x) — / ¢ - nodH" (),
Q o] Qs 9 9

o
where 0*€); is the reduced boundary of Q); and n; are the outer normal of corresponding domain Q;,i=1,2.
Suppose 9*Q; N 9*Qy = T', then we have n; = —ny on I'. Suppose we can choose a ¢ € C(Q) such that
¢ = mny on 9*Q and —ny on 9*Qy \ I. When the boundary 8*€); are smooth, such a ¢ always exists in
C1(Q). Otherwise, we can choose a series of functions in C!() to approximate ¢. For such a choice of ¢,
we have

/Q (xar, — xa,)divid = |97 + 7G|

= |0*€);|, the above equation reads

+ / |DXQ2
Q

Using the basic relation ffz |DXQi

/(XQI — o, )divéds = / Dxo,
Q Q

By the definition, we deduce

[|D(XQI—X92)|Z/_‘DXQ1‘+/_‘DXQ2‘~
Q Q Q

Together with the triangle inequality,
106w, = xa)l < [ 1Pxa, |+ [ 1Dxa,l
Q Q Q
we have proved the lemma. O

The statement in the next lemma is already given in [12]. Here we state it clearly for convenience of

readers.

Lemma 4.2. For any xg € X, we have

7l /
~— [ x6Gh * xgedx| < D(xa. )|,
|\/EQQh o-dz| Q|(Ql)|
where Q° = Q \ Q) and cq is a constant independent of the choice of Q.
Proof. Use the definition of the Guassian kernel. A direct computation shows that
7! i doo |
-— 5Gh * Xaedr = ~—= o (T Gr(y — z)xa(y)dydz
i Jo xaGnrxa N/ ng( ) - n(y — )xqe (y)dy
o
=-— [ xoz Gr(&xae(T + &)dédx
vy RUCY ICHGIRERS
T
=Y [ @) [ Ga@)au o+ Vie)dea
Vh Ja Rn
™
~ Y2 [ 6i© [ xalolxan (o + Vig)duds

Vh Jen
T 1 A (1) x e (T rdSdr
~va [ rem— [ [ xa@hve e+ Vhgdsasa

e 1
< ﬁ/ r"G(r)dr sup‘
0 r lrvh

/5 /sta(ﬂc)(m(x + Vhe) = xq. (x))dzdS
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Further calculation gives

1
[ (1) (xore (2 + VRE) — Yo (x))dzdS
== [ | xa@) o+ VRO — xo (0)duds|
1
<|— oo (@ + VRE) = xo. (z))dzdS
== | Iaeta+ VRO = o (@) dads|
<[5 [ 1Dxal.
Q
Notice that [S"~!| [° r"G(r)dr = /7, we have proved the lemma. O

Proof of Proposition 4.2. We will prove the proposition by definition. Firstly, it is known that (see [1, 31])

lim ﬁWSV
h—0 \/E

Therefore, for any €, there exists a constant hg such that for any h < hg,

\f’st/

[ xaGh * xa,dx = vysv|X|.
)

£
QGh*dex*’YSV|E|’ 1 (56)

Similarly, for any given v € X and for any ¢, there exists a h; > 0, such that for any i < hq,

cos 6 €
— VLI [ 4Gy xade + oy costy [ (1Dul + 1D(xan)| = DG+ xa)D] < 5 67
o) o) 4’
Combine them together, we have
€
[Fn(u) = Flu)l < 3, (58)

for all h < h* = min(hg, hq).
Denote u = xq,. For any v € X, we know that v = xg, for some Q; € Q. Then u — v = X0 — Xg, =

Xona: — Xa\0p With (1) Q1) N (1 \ ) = 0. Then we have

cosf
| Fr(u) — Fr(v)] = \/WY‘/ (u—wv Gh*XQ3dx’

\F'YLV|COS‘9Y‘ ‘/

Gh * XQ3d$ — /
Q\Q C

Gh * XQSdl"
Q1\

\/%VLV|cost9y\ / /
< Gp, * 5 yedT + Gh * X,¢ dx
N (Q\Q h* X(Q1\Q) a0y h* X (€\Q1) )

S'7LV|COSHY|</Q|DX(Q1\Q1)|+/Q|DX(Q1\Q1)‘)
— oy cosby | / DX (o) = DXy | = 70v] cos Oy | / D(u—v)],

where we have used Lemma 4.2 in last third equation and Lemma 4.1 in the last equation. Therefore, for
any ¢ and u, we choose a neighbourhood N'(u) := {v € X, |ju — v||py < m} of u. Then for any
v € N(u), we have

[Fh(v) = Fu(u)| <

19

(59)
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Combine the above analysis, we have
[Fin(v) = Fu)] < [Fn(v) = Fa(w)] + [Fn(w) = F(u)| <
for any v € N°(u) and h < h*. This finishes the proof. O

By the proposition 4.1 and 4.2, we are led to the following I'-convergence result for the modified functional

En.
Theorem 4.1. &,(u) T-converges to £(u) in X.

Proof. The basic idea is to use the following property of I'-convergence(see Proposition 6.20 in [26]) that,
if Fg(l) I'-converges to F(!) and FE(Z) continuously converges to F®) in the same topology space, and both
F? and F® are finite everywhere, then FY 4+ @ I'-converges to F(1) + F(2),

Notice that &, = (En — Fn) + Fan. By the Propositions 4.1 and 4.2, we use the property twice and the

proof is done. O

5. Numerical experiments

In this section, we use several numerical experiments to illustrate the improvement of the modified
algorithm. We implemented the modified algorithm in Matlab using fast Fourier transform (FFT) to evaluate
the convolution at the Step 1 in the Algorithm 1.

5.1. Example: contact angle in the dynamics.

In this example, we check the accuracy of the contact angle when hy = A\2h; (see (44)) and hy = hy (i.e.
original algorithm in [45]). In the asymptotic analysis in Section 3, we assume the value of 5}?11,’22 is at O(1)
and thus has no effect on the angle. Also, from (42), we see the angle condition satisfies at the O(1) scale.
Hence, we set the equilibrium angle 6y = 7/3 and 0y = 27/3, and we get A = 1.5. Then, we perform the

following experiment when hy = A2h; = 2.25h; and hy = hy for different values of h;:

1. Set the initial condition as a half circle liquid droplet with radius 7/2 on the solid surface, y = —m/2 (see
Figure 6).
2. Evaluate
1 cos Oy

- G —xp) - &g ,
¢ TG * (XD, — XDy) i Cta * XD

3. Find one contact point C; = (x1,y1), and on the discretized zero levelset of ¢, we find the closest point,
Cy = (z2,y2), to Cy ( this can be realized by a function named contour in Matlab),
4. Calculate § = arctan(£2=4),
To2—T1
In Table 1, we list the errors of the contact angle when hy = 2.25h; and he = hy with 6y = 7/3 and
hy = 7 /128, 7/256, 7/512, and 7/1024, separately. When hy = 2.25h1, it is obvious to see that the angle
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-2 0 2

Figure 6: The half circle initial condition on the solid surface.

converges to /3 = 1.04720 when we decrease the value of hy. However, when hy = hq, the angle converges
to an incorrect angle. Interestingly, we note that the angles are close to w/4 ~ 0.78540 which is consistent
with the results in (45) and Figure 4.

In Table 2, we list the errors of the contact angle when he = 2.25h; and hy = hy with 0y = 27/3 and
hy = 7/64,7/128, w/256, and 7/512, separately. Again, when he = 2.25h, the contact angle converges
to 2m/3 & 2.09440. When hs = hj, the angle seems to converge to an incorrect angle which is close to
3m/4 =~ 2.35619 showed in (45) and Figure 4.

In both numerical experiments, we use 2048 x 2048 grid points to discretize the computational domain

[—7, 7] X [—7, 7]

Table 1: Errors of the contact angle when hy = 2.25h; and hy = hy with 0y = n/3 and h1 = =/128,7/256,7/512, and
7/1024.

hy Contact angle Error | Contact angle | Error
when ho = 2.25h4 when ho = hy

/128 0.99268 0.05452 0.65591 0.39129

/256 1.00067 0.04653 0.66724 0.37996

/512 1.02581 0.02139 0.67887 0.36833

/1024 1.04227 0.00493 0.70139 0.34581
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Table 2: Errors of the contact angle when ho = 2.25h1 and ha = hy with 0y = 27/3 and hy = 7/64,7/128,7/256, and 7 /512.

hy Contact angle Error | Contact angle | Error
when ho = 2.25h, when ho = h;
/64 2.04747 0.04693 2.42925 0.33485
/128 2.06753 0.02687 2.43441 0.34001
/256 2.07450 0.01990 2.43628 0.34188
/512 2.07585 0.01855 2.44176 0.34736

5.2. Ezample: contact angle in the equilibrium state of the solid wetting problem

In this example, we check the accuracy of the contact angle for the equilibrium state. We apply the
adaptive in time strategy proposed in [45] on Algorithm 1 to get the equilibrium state when 6y = 7/3 and
27 /3 on discretized grids with mesh size dr = 7/64,7/128, /256, and 7/512 when hy = A?h; and hy = hy,
respectively. Here, we choose a relatively large initial h; = 3dz since we use the adaptive in time strategy.
We refer the details of the adaptive in time strategy to [45]. Table 3 and 4 list the errors of the contact
angle when hy = A2h; and hy = hy with the equilibrium angle 6y = 27/3 and 7/3. In these two cases,
A = 1.5. Obviously, from both tables, the angles converge to the corresponding expected angles 6y when

ho = 2.25hy while the angles deviate to the correct angles when hy = h;.

Table 3: Errors of the contact angle at equilibrium state when ha = 2.25h1 and hy = h; with 6y = 7/3.

dx Initial Ay Contact angle Error | Contact angle | Error
when hy = 2.25h, when hy = hyq

/64 3m/64 0.8004 0.2468 0.7100 0.3372

w/128 | 3mw/128 0.8570 0.1902 0.6614 0.3858

/256 | 3mw/256 0.9960 0.0512 0.6244 0.4228

w/512 | 3w/512 1.0227 0.0245 0.6053 0.4419

Table 4: Errors of the contact angle at equilibrium state when ha = 2.25h1 and he = h; with 6y = 27/3.

dx Initial hy Contact angle Error | Contact angle | Error
when hgy = 2.25h when hy = by

/64 3m/64 1.8127 0.2817 2.2554 0.1610

w/128 | 37w/128 1.9232 0.1712 2.4058 0.3114

/256 | 3mw/256 2.0205 0.0739 2.4995 0.4051

w/512 | 3w/512 2.1225 0.0281 2.5247 0.4303
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MW
(a) Diagram of the solid surface (b) Diagram of the effective angle

Figure 7: Diagrams of the solid surface and the effective angle.

5.3. Example: contact angle hysteresis on a rough surface

In this section, we compare the improved algorithm to the original algorithm [45] in the simulation of
the contact angle hysteresis on geometrically rough surfaces. To simulate the hysteresis process, we consider
the quasi-static spreading of a drop as volume of the drop is gradually increased (advancing) or decreased
(receding). We compute the equilibrium state of the drop after liquid is added or extracted in each time
step.

In this experiment, the computational domain is [—m, 7] x [, 7], and the solid surface of is then given

by a sawtooth function
m  7tan(a)

y=-5 % s(2kx)

where s(z) is a sawtooth periodic function with period 27 defined as

« is the angle between solid surface and horizontal direction, and 2k denotes the number of the period of
the sawtooth on the solid surface (See Figure 7 (a) for an example when k£ = 10 and o = 7/6.). For a rough
surface, it is more meaningful to see how the effective contact angle behaves when the volume of the drop
is increased or decreased [6]. The effective contact angle is defined as the angle between the contact line
and the horizontal surface (See Figure 7 (b)). The computational domain [—m, 7] x [, 7] is discretized by
4096 x 4096 grid points and the initial time step is h1 = 5545-

Figure 8 displays the behavior of the effective contact angle when k£ = 10, « = %. In this case, the Young’s

angle of the solid surface is 6y = %, the theoretic advancing angle is 7/3+7/6 = 7/2 and the receding angle
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Figure 8: Advancing and receding contact angles for rough surfaces with 6y = 7/3 and k = 10 when hs = A?hy and hg = hy,

separately.

is /3 — /6 = w/6. In Figure 8, we use solid lines to denote the line of the theoretic advancing angle and
the theoretic receding angle. The results show significant improvement of hysteresis behaviour obtained by
the new algorithm.

The red dashed line represents the behavior of advancing angle when we increase the volume gradually
from 0.2 to 8 and the blue dashed line represents the behavior of the receding angle when we decrease the
volume gradually from 8 to 0.2 using the improved threshold dynamics method proposed. It matches the
theoretic results well.

However, if we use the original algorithm (i.e. ho = hi) to add volume gradually from 0.2 to 8 and the
decrease from 8 to 0.2, the results are displayed by the green dashed line and the light blue dashed line.
They deviate the theoretic result a lot. In fact, the advancing angle is close to 7/4 + 7/6 = 57/12 and the
receding angle is close to m/4 — /6 = w/12. This observation is also consistent with the asymptotic results

in (45) and Figure 4.

6. Conclusions and future work

In this paper, we developed a modified threshold dynamics method for wetting dynamics. The method
is simple, efficient, and unconditionally stable. We showed that the contact angle is consistent with the
Young’s angle and the dynamics at the contact point is consistent with the dynamics of the interface away

from the contact point. We extended the analysis in [12] to prove the modified functional I'-converges to the
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original functional. We used some numerical examples to verify the improvement of the modified method

comparing to the method in [45].
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