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Abstract

We propose a modified threshold dynamics method for wetting dynamics, which significantly improves

behavior near the contact line compared to the previous method (J. Comput Phys 330, 510-528, 2017).

The new method is also based on minimizing the functional weighted interface over an extended domain

includes the solid phase. However, each interface area is approximated by the Lyapunov functionality

with a different Gaussian kernel. We show that a correct contact angle (Young angle) is obtained in the

leading order by choosing a correct Gaussian kernel variance. We also show the Gamma convergence of

the weighted functional to the total surface energy. The method is simple, unconditionally stable with

O(NlogN) complexity per time step and is not sensitive to the inhomogeneity or roughness of the solid

surface. It is also shown that the dynamics of the contact point is consistent with the dynamics of the

interface away from the contact point. Numerical examples have shown significant improvements in the

accuracy of the contact angle and the hysteresis behavior of the contact angle.
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1. Introduction

Wetting describes how a liquid drop spreads on a solid surface. The study of wetting is of critical

importance for many applications and has attracted much interest in the physics and applied mathemat-

ics communities[2, 10, 15, 34, 46]. The equilibrium configuration of the liquid drop can be obtained by

minimizing the total interface energy

E = γLV |ΣLV |+ γSL|ΣSL|+ γSV |ΣSV |, (1)

where γSV , γSL and γLV are the solid-vapor, solid-liquid and liquid-vapor surface energy densities, re-

spectively and |ΣSV |, |ΣSL| and |ΣLV | are the corresponding interface areas. When the solid surface is
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Figure 1: Left: Original domain Ω = D1 ∪D2. Right: Extended computational domain Ω̃ = Ω ∪D3.

homogeneous, the contact angle for a static drop is given by the famous Young’s equation:

cos θY =
γSV − γSL

γLV
, (2)

where θY is the so-called Young’s angle [47]. Analytic solution of the minmization problem of (1) is difficult

and the numerical solution is also challenging. There have been many numerical methods proposed for

simulating the free interface problem using front-tracking [24, 44] , level set method [48] or the phase-field

method [8, 16] .

The threshold dynamics method developed by Merriman, Bence, and Osher (MBO) [28] is an efficient

numerical method for the motion of the interface driven by the mean curvature. The method alternately

diffuses and sharpens characteristic functions of regions and is easy to implement and highly efficient. The

MBO method has been shown to converge to the continuous motion by mean curvature [3, 5, 14, 40] when

the interace is away from the solid boundary. Esedoglu and Otto[12] generalize this type of method to

multiphase flow with general mobility. The method has attracted much attention and becomes very popular

due to its simplicity and unconditional stability. It has been subsequently extended to deal with many other

applications. These applications include the multi-phase problems with arbitrary surface tensions [12], the

problem of area or volume preserving interface motion [20, 39, 44], image processing [11, 27, 42], problems

of anisotropic interface motions [4, 9, 30, 37], generating quad mesh [41] ,and auction dynamics[18]. Various

algorithms and rigorous error analysis have been carried out to refine and extend the original MBO method

and related methods for the aforementioned problems (see, for example, [13, 17, 25, 29, 35, 36, 38]). Some

mesh free methods are also considered to accelerate this type of method[19] based on non-uniform fast

Fourier transform(NUFFT)[7, 23]. Laux et al. [21, 22] rigorously proved the convergence of the method

proposed in [12]. Recently, a generalized target-valued diffusion generated method is studied in [32, 33, 43].

In [45],we proposed an efficient threshold dynamics method for the wetting and interface motion on
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rough solid surface. The domain is extended to include the solid phase as the third phase and the method

is based on minimization of the approximate energy to (1) (as h→ 0)

Eh(χD1 , χD2) =

γLV
√
π√

h

∫
Ω̃

χD1
Gh ∗ χD2

dx +
γSL
√
π√

h

∫
Ω̃

χD1
Gh ∗ χD3

dx +
γSV
√
π√

h

∫
Ω̃

χD2
Gh ∗ χD3

dx. (3)

where

Gh(x) =
1

(4πh)n/2
exp(−|x|

2

4h
) (4)

is the Gaussian kernel. χD1 , χD2 are characteristic functions of domain D1, D2 in Fig. 1. An efficient

iterative algorithm is then designed to find the minimizer of (3) (with volume constraint on D1, D2). The

method is simple, efficient, unconditionally stable and insensitive to the inhomogeneity of the solid surface.

However, numerical experiments in [45] have shown that, although the apparent (macroscopic) contact angle

satisfies the Young’s equation, the microscopic contact angle at the contact point deviates from the correct

Young’s angle. There seems to be a boundary layer on the solid surface around the contact points.

In this paper, we show that the method can be improved by using heat kernel with different variance h

for different surface energy terms in (3), i.e.

Eh1,h2(χD1
, χD2

) =

γLV
√
π√

h1

∫
Ω̃

χD1Gh1 ∗ χD2dx +
γSL
√
π√

h2

∫
Ω̃

χD1Gh2 ∗ χD3dx +
γSV
√
π√

h2

∫
Ω̃

χD2Gh2 ∗ χD3dx, (5)

where we use h1 for approximating liquid-vapor interface energy and h2 for approximating solid-liquid and

solid-vapor interface energy. We perform asymptotic analysis to show that the boundary layer near the

contact point can be removed if by choosing h2 = λh1 with proper choice of a constant λ (depends on

the three surface tension coefficients) so that the microscopic contact angle satisfies the Young’s equation

(2). We then derive the dynamic of the contact point which is consistent with the dynamic of the interface

away from the contact point. We show that the improved threshold dynamics method still enjoys the

energy decaying property and is unconditionally stable. Furthermore, we also prove the Γ-convergence of

the weighted functional (5) with h2 = λh1 to the functional (1). This extends the analysis in [12].

This paper is organized as follows. In Section 2, we derive the modified threshold dynamics method and

prove that the modified method has energy decaying property which implies the unconditional stability. In

Section 3, we use asymptotic analysis to derive the dynamic law of the contact point. In Section 4, we prove

the Γ-convergence result. We present several numerical examples to verify the improvement of our modified

method in Section 5. We then conclude in Section 6.
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2. A modified threshold dynamics method for the wetting problem

In this section, we introduce a modified threshold dynamics method based on the recent work by Xu

et al.[45]. The main idea in [45] is to extend the fluid domain Ω to a larger domain Ω̃(see Figure 1)

containing the solid phase. In the extended domain, the interface energies between different phases in (1)

can be approximated by a convolution of characteristic functions and a Guassian kernel Gh(x)(see details

below). In this paper, the interface energies between different phases are approximated by the convolution

of characteristic functions and a Gaussian Kernel with different h′s (e.g. h1 for approximating liquid-vapor

interface energy and h2 for approximating solid-liquid and solid-vapor interface energy). Using the relaxation

and linearization procedure introduced in [12], we derive a modified threshold dynamics method for wetting

problems. From the consistency analysis, we derive the relationship between h1 and h2 so that the contact

angle satisfies the Young’s equation at the contact point both microscopically and macroscopically.

2.1. Representation of interface energies in the extended domain

In the following, we let D1, D2 ⊂ Ω ⊂ Rn be the liquid and vapor phases(see Figure 1), respectively. Let

ΣLV = ∂D1 ∩ ∂D2 be the liquid-vapor interface. When h1 � 1, the area of ΣLV can be approximated by

(see [1, 31])

|ΣLV | ≈
√
π√
h1

∫
χD1

Gh1
∗ χD2

dx, (6)

where χDi is the characteristic function of Di and

Gh1(x) =
1

(4πh1)n/2
exp(−|x|

2

4h1
) (7)

is the Gaussian kernel. Gh2 and G1 in the subsequence are similarly defined.

In the total energy (1), the second and third terms are interface energies defined on the solid surface Γ.

They are the solid-liquid interfacial energy term on ΣSL = ∂D1 ∩ Γ and the solid-vapor interfacial energy

term on ΣSV = ∂D2 ∩Γ. To approximate these two terms using the Gaussian kernel, we extend the domain

Ω beyond Γ (see Figure 1). The extended domain is Ω̃ = Ω ∪D3 where D3 is the solid region. Then, the

solid surface is Γ = ∂Ω ∩ ∂D3, the solid-liquid interface is ΣSL = ∂D1 ∩ ∂D3 and the solid-vapor interface

is ΣSV = ∂D2 ∩ ∂D3.

From the observation and numerical experiments in [45], the apparent (macroscopic) angle always satisfies

the Young’s equation while the microscopic angle deviates from the correct Young’s angle. There seems to

exist a boundary layer on the solid surface around the contact points. To modify the scheme, we use the

convolution of characteristic functions with a Gaussian kernel with a different parameter h2 to approximate

|ΣSV | and |ΣSL|. That is,

|ΣSV | ≈
√
π√
h2

∫
χD2

Gh2
∗ χD3

dx, (8)

|ΣSL| ≈
√
π√
h2

∫
χD1

Gh2
∗ χD3

dx. (9)
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Then, the total energy E in (1) can be approximated by

Eh1,h2(χD1
, χD2

) =

γLV
√
π√

h1

∫
Ω̃

χD1
Gh1
∗ χD2

dx +
γSL
√
π√

h2

∫
Ω̃

χD1
Gh2
∗ χD3

dx +
γSV
√
π√

h2

∫
Ω̃

χD2
Gh2
∗ χD3

dx. (10)

Denote u1 = χD1 and u2 = χD2 . We define an admissible set

B = {(u1, u2) ∈ BV (Ω) | ui(x) = 0, 1, and u1(x) + u2(x) = 1, a.e. x ∈ Ω,

∫
Ω

u1dx = V0}. (11)

The wetting problem can be approximated by

min
(u1,u2)∈B

Eh1,h2(u1, u2). (12)

This is a non-convex minimization problem since B is not a convex set and the energy functional Eh1,h2(u1, u2)

is concave.

2.2. Derivation of the modified threshold dynamics method

In this section, we present the derivation of a threshold dynamics method for the minimization problem

(12). The derivation is based on the relaxation and linearization procedure introduced in [12]. Note that the

problem (12) is to minimize a concave energy functional defined on a non-convex admissible set. However,

we can relax this problem to an equivalent minimization problem in a convex admissible set. The relaxed

problem is given by

min
(u1,u2)∈K

Eh1,h2(u1, u2). (13)

where K is the convex hull of the admissible set B:

K = {(u1, u2) ∈ BV (Ω)|0 ≤ ui ≤ 1, u1(x) + u2(x) = 1, a.e. x ∈ Ω,

∫
Ω

u1dx = V0}. (14)

The following lemma shows that the relaxed problem (13) is equivalent to the original problem (12).

Lemma 2.1.

min
(u1,u2)∈K

Eh1,h2(u1, u2) = min
(u1,u2)∈B

Eh1,h2(u1, u2).

Proof. Let (ũ1, ũ2) ∈ K be a minimizer of the functional

Eh1,h2(u1, u2).

Since B ⊂ K, we have

Eh1,h2(ũ1, ũ2) = min
(u1,u2)∈K

Eh1,h2(u1, u2)

≤ min
(u1,u2)∈B

Eh1,h2(u1, u2).
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Therefore, we need only to prove that (ũ1, ũ2) ∈ B.

We prove by contradiction. If (ũ1, ũ2) 6∈ B, there is a set A ∈ Ω and a constant 0 < C0 <
1
2 , such that

|A| > 0 and

0 < C0 < ũ1(x), ũ2(x) < 1− C0, for all x ∈ A.

We divide A into two sets A = A1 ∪ A2 such that A1 ∩ A2 = ∅ and |A1| = |A2| = |A|/2. Denote

ut1 = ũ1 + tχA1 − tχA2 and ut2 = ũ2 − tχA1 + tχA2 . When 0 < t < C0, we have 0 < ut1, u
t
2 < 1 and

ut1 + ut2 = ũ1 + ũ2 = 1, and

∫
Ω

ut1dx =

∫
Ω

ũ1dx = V0.

This implies that (ut1, u
t
2) ∈ K. Furthermore, direct computations give,

d2

dt2
Eh1,h2(ut1, u

t
2) =

√
π√
h1

∫
Ω̃

d

dt
ut1Gh1

∗ d
dt
ut2dx

=

√
π√
h1

∫
Ω̃

(χA1
− χA2

)Gh1
∗ (χA2

− χA1
)dx

= −
√
π√
h1

∫
Ω̃

(χA1
− χA2

)Gh1
∗ (χA1

− χA2
)dx

= −
√
π√
h1

∫
Ω̃

(
Gh1/2 ∗ (χA1 − χA2)

) (
Gh1/2 ∗ (χA1

− χA2
)
)

dx

≤ 0.

The penultimate step comes from the fact that heat kernel is a self-adjoint operator which consists a semi-

group with different h1. From above inequality, the functional is concave on the point (ũ1, ũ2). Thus,

(ũ1, ũ2) cannot be a minimizer of the functional. This contradicts the assumption.

The above lemma implies that we can solve the relaxed problem (13) instead of the original one (12). In

the following, we show that the problem can be solved iteratively using a threshold dynamics method.

Suppose we solve problem (13) using an iterative method. In the kth step, we have an approximated

solution (uk1 , u
k
2). The energy functional Eh1,h2(u1, u2) can be linearized near the point (uk1 , u

k
2) as follows:

Eh1,h2(u1, u2) ≈ Eh1,h2(uk1 , u
k
2) + L̂(u1 − uk1 , u2 − uk2 , uk1 , uk2) + h.o.t.

with

L̂(u1, u2, u
k
1 , u

k
2) =

√
π

(∫
Ω̃

u1

(
γLV√
h1

Gh1
∗ uk2 +

γSL√
h2

Gh2
∗ χD3

)
dx +

∫
Ω̃

u2

(
γLV√
h1

Gh1
∗ uk1 +

γSV√
h2

Gh2
∗ χD3

)
dx

)
. (15)

Note that, when uk1 and uk2 are given, the minimization of L̂(u1 − uk1 , u2 − uk2 , uk1 , uk2) is equivalent to the

minimization of L̂(u1, u2, u
k
1 , u

k
2). Thus, instead of minimizing Eh1,h2(u1, u2), we minimize the linearized

functional

min
(u1,u2)∈K

L̂(u1, u2, u
k
1 , u

k
2) (16)
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and set the solution to (uk+1
1 , uk+1

2 ).

The following lemma shows that the minimizing problem (16) is solved via a simple threshold dynamics

method.

Lemma 2.2. Denote

φ =
1√
h1

Gh1 ∗ (uk2 − uk1)− cos θY√
h2

Gh2 ∗ χD3 . (17)

Let

Dk+1
1 = {x ∈ Ω| φ < δ} (18)

for some δ such that |Dk+1
1 | = V0. Define Dk+1

2 = Ω \ Dk+1
1 . Then (uk+1

1 , uk+1
2 ) = (χDk+1

1
, χDk+1

2
) is a

solution to (16).

Proof. Since L̂ is a linear functional, we need only to prove

L̂(uk+1
1 , uk+1

2 , uk1 , u
k
2) ≤ L̂(u1, u2, u

k
1 , u

k
2), (19)

for all (u1, u2) ∈ B.

For each (u1, u2) ∈ B, we know u1 = χD̂1
and u2 = χD̂2

for some open sets D̂1, D̂2 in Ω, such that

D̂1∩D̂2 = ∅, D̂1∪D̂2 = Ω and |D̂1| = V0. Let A1 = D̂1\Dk+1
1 = Dk+1

2 \D̂2 and A2 = D̂2\Dk+1
2 = Dk+1

1 \D̂1.

We must have |A1| = |A2| due to the volume conservation property. Since A1 ⊂ Dk+1
2 , we have

φ(x) ≥ δ, uk+1
1 (x)− u1(x) = −1, ∀x ∈ A1.

Similarly, since A2 ∈ Dk+1
1 , we have

φ(x) < δ, uk+1
1 (x)− u1(x) = 1, ∀x ∈ A2.

Therefore, using uk+1
1 − u1 + uk+1

2 − u2 = 0 and cos θY = γSV −γSL
γLV

, we have

L̂(uk+1
1 , uk+1

2 , uk1 , u
k
2)− L̂(u1, u2, u

k
1 , u

k
2)

=
√
π

∫
Ω̃

(uk+1
1 − u1)

(
γLV√
h1

Gh1 ∗ uk2 +
γSL√
h2

Gh2 ∗ χD3

)
+ (uk+1

2 − u2)

(
γLV√
h1

Gh1 ∗ uk1 +
γSV√
h2

Gh2 ∗ χD3

)
dx

=
√
π

∫
Ω̃

(uk+1
1 − u1)

(
γLV√
h1

Gh1
∗ (uk2 − uk1) +

γSL − γSV√
h2

Gh2
∗ χD3

)
dx

=
√
πγLV

(∫
A2

φdx−
∫
A1

φdx

)
≤δ
∫
A2

dx− δ
∫
A1

dx = 0.

Now, we are led to the following threshold dynamics algorithm:
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Algorithm 1 A modified threshold dynamics method for solid wetting dynamics.

Given initial D0
1, D

0
2 ⊂ Ω and solid domain D3, such that D0

1 ∩ D0
2 = ∅, D0

1 ∪ D0
2 = Ω and

|D0
1| = V0. Set a tolerance parameter ε > 0, equilibrium angle θY , time step h1, and time step

h2.

1: For given sets (Dk
1 , D

k
2 ), calculate

φk =
1√
h1

Gh1 ∗ (χDk2 − χDk1 )− cos θY√
h2

Gh2 ∗ χD3 . (20)

2: Find a δ such that the set

D̃δ
1 = {x ∈ Ω|φ < δ} (21)

satisfies |D̃δ
1| = V0. Denote Dk+1

1 = D̃δ
1 and Dk+1

2 = Ω \Dk+1
1 .

3: If |Dk
1 −Dk+1

1 | ≤ ε, stop; otherwise, go back to Step 1.

Remark 2.1. 1. The choice of h1 and h2 will be studied in the consistency analysis in Section 3.

2. The convolutions at the Step 1 can be efficiently computed by using Fast Fourier transform (FFT).

3. At the Step 2, it is easy to check that φ(x) we defined is monotone along the liquid-vapor, solid-liquid,

and solid-vapor interface. Denote V (δ) = |D̃δ
1|, then V (δ) is strictly monotone with respect to δ when

δ is around 0 and therefore the root of V (δ) − V0 uniquely exists. One may apply some traditional

iterative methods (e.g. bisection method, Newton’s method, fixed point iteration, and so on) to find the

unique root of V (δ) − V0 which is the value preserving the volume of D1. However, bisection method

usually converges slow while Newton’s method or fixed point iteration is sensitive to the initial guesses.

In [45], we proposed an efficient and stable algorithm to find the root of V (δ)− V0 based on the quick

sort algorithm (See also [9, 18]).

2.3. Stability analysis

In this subsection, we will show that Algorithm 1 is stable, in the sense that the total energy of Eh1,h2

always decreases in the algorithm for any h1 > 0 and h2 > 0. We have the following theorem.

Theorem 2.1. Denote (uk1 , u
k
2) = (χDk1 , χDk2 ), k = 0, 1, 2, ..., obtained in Algorithm 1. We have

Eh1,h2(uk+1
1 , uk+1

2 ) ≤ Eh1,h2(uk1 , u
k
2), (22)

for all h1 > 0 and h2 > 0.
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Proof. By the definition of the linearization L̂ and Lemma 2.2, we know that

Eh1,h2(uk1 , u
k
2) +

√
πγLV√
h1

∫
Ω̃

uk1Gh1 ∗ uk2dx = L̂(uk1 , u
k
2 , u

k
1 , u

k
2)

≥ L(uk+1
1 , uk+1

2 , uk1 , u
k
2) = Eh1,h2(uk+1

1 , uk+1
2 )

+

√
πγLV√
h1

(∫
Ω̃

uk+1
1 Gh1

∗ uk2dx +

∫
Ω̃

uk+1
2 Gh1

∗ uk1dx−
∫

Ω̃

uk+1
1 Gh1

∗ uk+1
2 dx

)
.

This leads to

Eh1,h2(uk1 , u
k
2) ≥ Eh1,h2(uk+1

1 , uk+1
2 ) + I, (23)

with

I =
γLV
√
π√

h1

(∫
Ω̃

uk+1
1 Gh1 ∗ uk2dx +

∫
Ω̃

uk+1
2 Gh1 ∗ uk1dx

−
∫

Ω̃

uk+1
1 Gh1

∗ uk+1
2 dx−

∫
Ω̃

uk1Gh1
∗ uk2dx

)
= −γLV

√
π√

h1

∫
Ω̃

(uk+1
1 − uk1)Gh1

∗ (uk+1
2 − uk2)dx.

By the fact that uk1 + uk2 = uk+1
1 + uk+1

2 , we have

I =
γLV
√
π√

h1

∫
Ω̃

(uk+1
1 − uk1)Gh1 ∗ (uk+1

1 − uk1)dx

=
γLV
√
π√

h1

∫
Ω̃

(
Gh1/2 ∗ (uk+1

1 − uk1)
) (
Gh1/2 ∗ (uk+1

1 − uk1)
)

dx ≥ 0.

This inequality together with (23) implies (22).

3. Consistency analysis

In this section, we perform asymptotic analysis to determine h1 and h2 in Algorithm 1 with a very

basic level of consistency with the correct contact angle at the contact point, in the sense that one step

of algorithm 1, acting on a set of liquid domain with smooth liquid-vapor interface and fixed solid surface

(See Figure 2). As for the dynamic of liquid-vapor interface away from the contact point, it is easy to check

that our algorithm reduces the original two-phase volume preserving MBO method due to the exponentially

decaying property of Gh2 (i.e. the effect from χD3 can be neglected when considering the behaviour of

the interface away from the solid surface). As for the behavior around the contact point, we perform the

asymptotic analysis to derive the condition for the contact angle and the dynamic law of the contact point.

For simplicity, we focus on the 2-dimensional case. Without loss of generality, we assume the liquid-

vapor interface is represented by x2 = g(x1) (x1 ≥ 0) where g(0) = 0 and g(x) is a smooth function defined

on [0,+∞), the solid-liquid interface is represented by x1 = 0 (x2 ≥ 0), and the solid-vapor interface is

represented by x1 = 0 (x2 < 0). The main idea is to formally expand φ(x) into φ̃(x) and find the δ
D1,2

h1,2
level

9



Figure 2: Set up for the consistency analysis.

set of φ̃(x) which is the updated interface at one time step according to Algorithm 1. Here, δ
D1,2

h1,2
depending

on h1, h2, D1, and D2, is the value for volume preserving at the Step 2 in Algorithm 1. Now, we first write

φ(x) =
1√
h1

Gh1
∗ (χD2

− χD1
)− cos θY√

h2

Gh2
∗ χD3

=
1√
h1

(∫∫
R2

Gh1
(x− y)(χD2

(y)− χD1
(y))dy − cos θY

√
h1√

h2

∫∫
R2

Gh2
(x− y)χD3

(y)dy

)
=

1√
h1

(
1

4πh1

∫∫
D2

exp(−|x− y|2

4h1
)dy − 1

4πh1

∫∫
D1

exp(−|x− y|2

4h1
)dy

−cos θY
√
h1√

h2

1

4πh2

∫∫
D3

exp(−|x− y|2

4h2
)dy

)
(24)

=
1√
h1

(
1

4πh1

∫ +∞

0

∫ g(y1)

−∞
exp(− (x1 − y1)2 + (x2 − y2)2

4h1
)dy2dy1

− 1

4πh1

∫ +∞

0

∫ +∞

g(y1)

exp(− (x1 − y1)2 + (x2 − y2)2

4h1
)dy2dy1

−cos θY
√
h1√

h2

1

4πh2

∫ 0

−∞

∫ +∞

−∞
exp(− (x1 − y1)2 + (x2 − y2)2

4h2
)dy2dy1

)
.

Evaluating φ(x) at x1 = 0 (i.e. the contact point only moves on the solid surface), we have

φ(0, x2) =
1√
h1

(I1 − I2 − I3) (25)

where

I1 =
1

4πh1

∫ +∞

0

∫ +∞

−∞
exp(− (y1)2 + (x2 − y2)2

4h1
)dy2dy1,

I2 =
1

2πh1

∫ +∞

0

∫ +∞

g(y1)

exp(− (y1)2 + (x2 − y2)2

4h1
)dy2dy1,

I3 =
cos θY

√
h1√

h2

1

4πh2

∫ 0

−∞

∫ +∞

−∞
exp(− (y1)2 + (x2 − y2)2

4h2
)dy2dy1.
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Direct calculation gives

I1 =
1

2
, (26)

I3 =
cos θY

√
h1

2
√
h2

. (27)

Now, we only need to evaluate I2 in the rest. For the convenience, we denote ε =
√
h1, ỹ1 = y1

ε , and ỹ2 = y2
ε .

Also, we assume that x2 ∼ O(ε2) (i.e. the motion of contact point is at the O(h1) time scale) and denote

x̃2 = x2

ε2 which is the velocity of the contact point along the tangential direction of the solid surface. Then,

we have

I2 =
1

2π

∫ +∞

0

∫ +∞

g(εỹ1)
ε

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1

=II1 − II2 − II3 (28)

where

II1 =
1

2π

∫ +∞

0

∫ +∞

0

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1,

II2 =
1

2π

∫ +∞

0

∫ ỹ1g
′(0)+ε

ỹ21
2 g
′′(0)

0

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1,

II3 =
1

2π

∫ +∞

0

∫ g(εỹ1)
ε

ỹ1g′(0)+ε
ỹ21
2 g
′′(0)

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1.

Note that because of the exponentially decaying and smoothness of the Gaussian kernel, we have for a given

ε, there exists M > 0 with Mε = o(1) such that∫
|x|>M

G1(x)dx = exp(−M
2

4
) = o(ε). (29)

Also, given a M , since g(x) is smooth at [0,+∞), we have∣∣∣∣g(εỹ1)

ε
− ỹ1g

′(0)− ε ỹ
2
1

2
g′′(0)

∣∣∣∣ ≤ Cε2ỹ3
1 (30)

for any ỹ1 ∈ [0,M ] and some constant C > 0. Here, for ỹ1 ∈ [0,M ], we have εỹ = o(1) from Mε = o(1).

Hence the constant C can be chosen as the maximum value of g(3)(ξ) for ξ ∈ [0, 1] which is independent of

M and ε.
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Then, using (29) and (30), we have the following estimate on II3:

II3 =
1

2π

∫ M

0

∫ g(εỹ1)
ε

ỹ1g′(0)+ε
ỹ21
2 g
′′(0)

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1

+
1

2π

∫ +∞

M

∫ g(εỹ1)
ε

ỹ1g′(0)+ε
ỹ21
2 g
′′(0)

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1

=
1

2π

∫ M

0

∫ g(εỹ1)
ε

ỹ1g′(0)+ε
ỹ21
2 g
′′(0)

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1 + o(ε)

≤ 1

2π

∫ M

0

∫ ỹ1g
′(0)+ε

ỹ21
2 g
′′(0)+Cε2ỹ31

ỹ1g′(0)+ε
ỹ21
2 g
′′(0)−Cε2ỹ31

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1 + o(ε) (31)

=
1

2π

∫ M

0

exp(− ỹ
2
1

4
)

∫ ỹ1g
′(0)+ε

ỹ21
2 g
′′(0)+Cε2ỹ31

ỹ1g′(0)+ε
ỹ21
2 g
′′(0)−Cε2ỹ31

exp(− (εx̃2 − ỹ2)2

4
)dỹ2dỹ1 + o(ε)

≤Cε
2

π

∫ M

0

ỹ3
1 exp(− ỹ

2
1

4
)dỹ1 + o(ε)

=
Cε2

π

[(
−2ỹ2

1 exp(− ỹ
2
1

4
)

)∣∣∣∣M
0

−
(

8 exp(− ỹ
2
1

4
)

)∣∣∣∣M
0

]
+ o(ε)

=
Cε2

π

[
−2M2 exp(−M

2

4
)− 8 exp(−M

2

4
) + 8

]
+ o(ε) = o(ε).

For II1, we have

II1 =
1

2π

∫ +∞

−εx̃2

∫ +∞

0

exp(− ỹ
2
1 + ỹ′22

4
)dỹ1dỹ

′
2

=
1

2π

∫ +∞

0

∫ +∞

0

exp(− ỹ
2
1 + ỹ′22

4
)dỹ′2dỹ1 +

1

2π

∫ 0

−εx̃2

∫ +∞

0

exp(− ỹ
2
1 + ỹ′22

4
)dỹ1dỹ

′
2

=
1

2
+

1

2π

∫ 0

−εx̃2

∫ +∞

0

exp(− ỹ
2
1 + ỹ′22

4
)dỹ1dỹ

′
2 (32)

=
1

2
+

1

2
√
π

∫ 0

−εx̃2

exp(− ỹ
′2
2

4
)dỹ′2

=
1

2
+

1

2
√
π

∫ 0

−εx̃2

(1− ỹ′22
4

+
ỹ′42
422!

− ỹ′62
433!

+ · · · )dỹ′2 =
1

2
+

εx̃2

2
√
π

+ o(ε)

For II2, using (29) to make the integrating range of ỹ1 belong to the radius of convergence of the expansion

of G1(x), we then have

II2 =
1

2π

∫ M

0

∫ ỹ1g
′(0)+ε

ỹ21
2 g
′′(0)

0

exp(− ỹ
2
1 + (εx̃2 − ỹ2)2

4
)dỹ2dỹ1 + o(ε)

=
1

2π

∫ M

0

∫ ỹ1g
′(0)+ε

ỹ21
2 g
′′(0)−εx̃2

−εx̃2

exp(− ỹ
2
1 + ỹ′22

4
)dỹ′2dỹ1 + o(ε) (33)

=
1

2π

∫ M

0

exp(− ỹ
2
1

4
)(III1 + III2 + III3)dỹ1 + o(ε)
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where

III1 =

∫ 0

−εx̃2

exp(− ỹ
′2
2

4
)dỹ′2,

III2 =

∫ ỹ1g
′(0)

0

exp(− ỹ
′2
2

4
)dỹ′2,

III3 =

∫ ỹ1g
′(0)+ε

ỹ21
2 g
′′(0)−εx̃2

ỹ1g′(0)

exp(− ỹ
′2
2

4
)dỹ′2.

For III1, we have

III1 =

∫ 0

−εx̃2

(1− ỹ′22
4

+
ỹ′42
422!

− ỹ′62
433!

+ · · · )dỹ′2 = εx̃2 + o(ε).

Then,

1

2π

∫ M

0

exp(− ỹ
2
1

4
)III1dỹ1 =

εx̃2

2
√
π

+ o(ε). (34)

Similarly, for III3, we have

III3 =

∫ ỹ1g
′(0)+ε

ỹ21
2 g
′′(0)−εx̃2

ỹ1g′(0)

(1− ỹ′22
4

+
ỹ′42
422!

− ỹ′62
433!

+ · · · )dỹ′2

=ε

(
ỹ2

1

2
g′′(0)− x̃2 −

(
ỹ21
2 g
′′(0)− x̃2)(ỹ1g

′(0))2

4
+

(
ỹ21
2 g
′′(0)− x̃2)(ỹ1g

′(0))4

422!
− · · ·

)
+ o(ε)

=ε

(
ỹ2

1

2
g′′(0)− x̃2

)
exp(− (ỹ1g

′(0))2

4
) + o(ε).

Then,

1

2π

∫ M

0

exp(− ỹ
2
1

4
)III3dỹ1 =

ε

2π

∫ +∞

0

(
exp(− ỹ

2
1(1 + (g′(0))2)

4
)

)(
ỹ2

1

2
g′′(0)− x̃2

)
dỹ1 + o(ε)

=
ε

2
√
π
√

1 + (g′(0))2

(
g′′(0)

1 + (g′(0))2
− x̃2

)
+ o(ε). (35)

For III2, we have

1

2π

∫ M

0

exp(− ỹ
2
1

4
)III2dỹ1 =

1

2π

∫ +∞

0

exp(− ỹ
2
1

4
)

∫ ỹ1g
′(0)

0

exp(− ỹ
′2
2

4
)dỹ′2dỹ1 + o(ε)

=
1

2π

∫ π
2−Θ

0

∫ +∞

0

exp(−r
2

4
)rdrdθ + o(ε) (36)

=
π
2 −Θ

π
+ o(ε)

where Θ = π/2− arctan(g′(0)) (see also in Figure 2).
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Combining (34), (35), and (36) yields:

II2 =
εx̃2

2
√
π

+
ε

2
√
π
√

1 + (g′(0))2

(
g′′(0)

1 + (g′(0))2
− x̃2

)
+

π
2 −Θ

π
+ o(ε)

=
π
2 −Θ

π
+

ε

2
√
π

((
1− 1√

1 + (g′(0))2

)
x̃2 +

g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε). (37)

Combining (31), (32), and (37) yields:

I2 =
1

2
+

εx̃2

2
√
π
−

π
2 −Θ

π
− ε

2
√
π

((
1− 1√

1 + (g′(0))2

)
x̃2 +

g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε)

=
1

2
−

π
2 −Θ

π
+

ε

2
√
π

(
x̃2√

1 + (g′(0))2
− g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε). (38)

Combining (26), (27), and (38) yields:

φ(0, x2) =
1

ε

(
π
2 −Θ

π
− cos θY

√
h1

2
√
h2

− ε

2
√
π

(
x̃2√

1 + (g′(0))2
− g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε)

)
. (39)

Let

φ(0, x2) = δ
D1,2

h1,2
(40)

with δ
D1,2

h1,2
∼ O(1), collecting all the terms at the order of O( 1

ε ) in (40), we have:

π
2 −Θ

π
=

cos θY
√
h1

2
√
h2

(41)

which is

Θ =
π

2
(1− cos θY

√
h1√

h2

). (42)

Defining

λ(θY ) =

√
h2√
h1

=
π cos θY
π − 2θY

, θY ∈ [0, π] (43)

with λ(π2 ) = π
2 (see Figure 3) and therefore

h2 =

(
π cos θY
π − 2θY

)2

h1. (44)

Submitting (44) into (42) gives us Θ = θY for any θY ∈ [0, π]. Note that, when h1 = h2, Algorithm 1

reduces to the original threshold dynamics method proposed in [45]. Then, the contact angle Θ satisfies

Θ =
π

2
(1− cos θY ) (45)

as plotted in Figure 4. It is consistent with the observation and numerical experiments in [45].
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Figure 3: Relationship between λ and θY where λ =
√
h2√
h1

.

Collecting all the terms at the order of O(1) in (40), we have:

x̃2√
1 + (g′(0))2

− g′′(0)

(1 + (g′(0))2)
3
2

= −2
√
πδ

D1,2

h1,2
. (46)

Then, we further have

x̃2 =
√

1 + (g′(0))2

(
g′′(0)

(1 + (g′(0))2)
3
2

− 2
√
πδ

D1,2

h1,2

)
. (47)

From the definition of g(x1) and Θ, fundamental calculations give that
√

1 + (g′(0))2 =
√

1 + cot(Θ)2 =
1

sin Θ
and κ =

g′′(0)

(1 + (g′(0))2)
3
2

where κ is the mean curvature defined at (0, 0) by the limit along the

liquid-vapor interface. Then, we have:

x̃2 =
1

sin Θ

(
κ− 2

√
πδ

D1,2

h1,2

)
. (48)

where 2
√
πδ

D1,2

h1,2
is a parameter being dependent on D1, D2, h1 and h2 for the volume preserving. Formally,

2
√
πδ

D1,2

h1,2
= κ̄ where κ̄ is the average of κ along the liquid-vapor interface. Since x̃2 is the velocity of the

contact point moving along the solid surface which is consistent with the motion law at the interface away

from the solid surface (see Figure 5 and see [25] for more details on the derivation of the motion law for the

two-phase interface with no contact points).

4. Gamma-Convergence of the weighted functional

In this section, we will study the Γ-convergence of the weighted functional Eh1,h2 with h2 = λh1 to the

total surface energy density E . For clarity, we first introduce some notations. Denote the functional space

X := {u ∈ BV (Ω̃) : u = χΩ1
,Ω1 ⊂ Ω, |Ω1| = V0}. (49)
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Figure 4: Relationship between Θ and θY when h1 = h2.

Figure 5: The diagram for the motion law at the contact point and liquid-vapor interface away from the solid surface.

In X, the norm of a function v is defined as

‖u‖BV = ‖u‖L1(Ω̃) +

∫
Ω̃

|Du|.

By definition, ∫
Ω̃

|Du| = sup
φ

{∫
Ω̃

udivφdx : φ ∈ C1
c (Ω̃,Rn)

}
.

We also rewrite the modified energy functional Eh1,h2(Ω1,Ω2) with h2 = λh1 as a functional on u = χΩ1 ∈ X,

Ẽh(u) =

√
πγLV√
h

∫
Ω̃

uGh ∗ (χΩ − u)dx+

√
πγSL√
λh

∫
Ω̃

uGλh ∗ χΩ3
dx+

√
πγSV√
λh

∫
Ω̃

(χΩ − u)Gλh ∗ χΩ3
dx.

Using the Young’s equation γSV − γSL = γLV cos θY , a simple computation leads to

Ẽh(u) =

√
πγLV√
h

∫
Ω̃

uGh ∗ (χΩ− u)dx−
√
πγLV cos θY√

λh

∫
Ω̃

uGλh ∗χΩ3
dx+

√
πγSV√
λh

∫
Ω̃

χΩGλh ∗χΩ3
dx. (50)

16



Similarly, the functional (3) without rescaling reduces to

Eh(u) =

√
πγLV√
h

∫
Ω̃

uGh ∗ (χΩ − u)dx−
√
πγLV cos θY√

h

∫
Ω̃

uGh ∗ χΩ3
dx+

√
πγSV√
h

∫
Ω̃

χΩGh ∗ χΩ3
dx. (51)

We note the energy functional E can be rewritten as

E(u) = γLV |ΣLV | − γLV cos θY |ΣSL|+ γSV |Γ|

= γLV

∫
Ω̃

(|Du|+ |D(χΩ − u)| − |DχΩ|)− γLV cos θY

∫
Ω̃

(|Du|+ |D(χΩ3
)| − |D(u+ χΩ3

)|) + γSV |Γ|

(52)

with Γ is the interface between Ω and Ω3.

We first state a result on the convergence of Eh to E , as given in the following proposition.

Proposition 4.1. The functional Eh Γ-converges to E in X as h goes to zero.

The proof of the proposition is essentially given in [12], where the Γ-convergence is proved for a multi-

phase problem. Here we will not repeat the details of the proof but refer to the Appendix in [12].

We aim to show the Γ-convergence of Ẽh to E . It turns out the result can not be proved directly by the

method in [12]. In the following we will use an indirect method to prove the result. We introduce a few

more notations. Denote

Fh(u) = −
√
πγLV cos θY√

h

∫
Ω̃

uGh ∗ χΩ3dx+

√
πγSV√
h

∫
Ω̃

χΩGh ∗ χΩ3dx, (53)

and

F(u) = −γLV cos θY

∫
Ω̃

(|Du|+ |D(χΩ3)| − |D(u+ χΩ3)|) + γSV |Σ|. (54)

We will prove the following proposition.

Proposition 4.2. The functional Fh converges to F continuously in X as h goes to zero.

We recall the definition of continuous convergence in [26]. A series of functional Fh converge to F

continuously in X, if for given u ∈ X and for any small positive number ε, there exists a h0 > 0 and a

neighbourhood N (u) of u such that

|Fh(v)−F(u)| < ε, ∀v ∈ N (u). (55)

To prove proposition 4.2, we need a few more preparations. We will prove two simple lemmas.

Lemma 4.1. For any χΩ̂1
, χΩ̂2

∈ X, if Ω̂1 ∩ Ω̂2 = ∅, we have∫
Ω̃

|D(χΩ̂1
− χΩ̂2

)| =
∫

Ω̃

|D(χΩ̂1
)|+

∫
Ω̃

|D(χΩ̂2
)|.
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Proof. Since Ω̂1 ∩ Ω̂2 = ∅, for any φ ∈ C1
c (Ω̃), we have∫

Ω̃

(χΩ̂1
− χΩ̂2

)divφdx =

∫
Ω̂1

divφdx−
∫

Ω̂2

divφdx =

∫
∂∗Ω̂1

φ · n1dHn−1(x)−
∫
∂∗Ω̂2

φ · n2dHn−1(x),

where ∂∗Ω̂i is the reduced boundary of Ω̂i and ni are the outer normal of corresponding domain Ω̂i, i = 1, 2.

Suppose ∂∗Ω̂1 ∩ ∂∗Ω̂2 = Γ̂, then we have n1 = −n2 on Γ̂. Suppose we can choose a φ ∈ C1
c (Ω̃) such that

φ = n1 on ∂∗Ω̂1 and −n2 on ∂∗Ω2 \ Γ̂. When the boundary ∂∗Ω̂i are smooth, such a φ always exists in

C1
c (Ω̃). Otherwise, we can choose a series of functions in C1

c (Ω̃) to approximate φ. For such a choice of φ,

we have ∫
Ω̃

(χΩ̂1
− χΩ̂2

)divφdx = |∂∗Ω̂1|+ |∂∗Ω̂2|

Using the basic relation
∫

Ω̃
|DχΩ̂i

| = |∂∗Ωi|, the above equation reads∫
Ω̃

(χΩ̂1
− χΩ̂2

)divφdx =

∫
Ω̃

|DχΩ̂1
|+
∫

Ω̃

|DχΩ̂2
|.

By the definition, we deduce ∫
Ω̃

|D(χΩ̂1
− χΩ̂2

)| ≥
∫

Ω̃

|DχΩ̂1
|+
∫

Ω̃

|DχΩ̂2
|.

Together with the triangle inequality,∫
Ω̃

|D(χΩ̂1
− χΩ̂2

)| ≤
∫

Ω̃

|DχΩ̂1
|+
∫

Ω̃

|DχΩ̂2
|,

we have proved the lemma.

The statement in the next lemma is already given in [12]. Here we state it clearly for convenience of

readers.

Lemma 4.2. For any χΩ̂ ∈ X, we have

|
√
π√
h

∫
Ω̃

χΩ̂Gh ∗ χΩ̂cdx| ≤
∫

Ω̃

|D(χΩ̂1
)|,

where Ω̂c = Ω̃ \ Ω̂ and c0 is a constant independent of the choice of Ω̂.

Proof. Use the definition of the Guassian kernel. A direct computation shows that
√
π√
h

∫
Ω̃

χΩ̂Gh ∗ χΩ̂cdx =

√
π√
h

∫
Ω̃

χΩ̂(x)

∫
Rn
Gh(y − x)χΩ̂c(y)dydx

=

√
π√
h

∫
Ω̃

χΩ̂(x)

∫
Rn
Gh(ξ)χΩ̂c(x+ ξ)dξdx

=

√
π√
h

∫
Ω̃

χΩ̂(x)

∫
Rn
G1(ξ)χΩ̂c(x+

√
hξ)dξdx

=

√
π√
h

∫
Rn
G1(ξ)

∫
Ω̃

χΩ̂(x)χΩ̂c(x+
√
hξ)dxdξ

=
√
π

∫ ∞
0

rnG(r)
1

r
√
h

∫
Sn−1

∫
Ω̃

χΩ̂(x)χΩ̂c(x+
√
hξ)dxdSdr

≤
√
π

∫ ∞
0

rnG(r)dr sup
r

∣∣∣ 1

r
√
h

∫
Sn−1

∫
Ω̃

χΩ̂(x)(χΩ̂c(x+
√
hξ)− χΩ̂c(x))dxdS

∣∣∣
18



Further calculation gives

| 1

r
√
h

∫
Sn−1

∫
Ω̃

χΩ̂(x)(χΩ̂c(x+
√
hξ)− χΩ̂c(x))dxdS

∣∣∣
≤| 1

r
√
h

∫
Sn−1

∫
Ω̃

|(χΩ̂c(x+
√
hξ)− χΩ̂c(x))dxdS

∣∣∣
≤|Sn−1|

∫
Ω̃

|DχΩ̂|.

Notice that |Sn−1|
∫∞

0
rnG(r)dr =

√
π, we have proved the lemma.

Proof of Proposition 4.2. We will prove the proposition by definition. Firstly, it is known that (see [1, 31])

lim
h→0

√
πγSV√
h

∫
Ω̃

χΩGh ∗ χΩ3dx = γSV |Σ|.

Therefore, for any ε, there exists a constant h0 such that for any h < h0,∣∣∣√πγSV√
h

∫
Ω̃

χΩGh ∗ χΩ3dx− γSV |Σ|
∣∣∣ ≤ ε

4
. (56)

Similarly, for any given u ∈ X and for any ε, there exists a h1 > 0, such that for any h < h1,∣∣∣− √πγLV cos θY√
λh

∫
Ω̃

uGh ∗ χΩ3
dx+ γLV cos θY

∫
Ω̃

(|Du|+ |D(χΩ3
)| − |D(u+ χΩ3

)|)
∣∣∣ ≤ ε

4
. (57)

Combine them together, we have

|Fh(u)−F(u)| ≤ ε

2
, (58)

for all h < h∗ = min(h0, h1).

Denote u = χΩ1 . For any v ∈ X, we know that v = χΩ̂1
for some Ω̂1 ⊂ Ω. Then u − v = χΩ1 − χΩ̂1

=

χΩ1\Ω̂1
− χΩ̂1\Ω1

, with (Ω1 \ Ω̂1) ∩ (Ω̂1 \ Ω1) = ∅. Then we have

|Fh(u)−Fh(v)| =
√
πγLV | cos θY |√

h

∣∣∣ ∫
Ω̃

(u− v)Gh ∗ χΩ3dx
∣∣∣

=

√
πγLV | cos θY |√

h

∣∣∣ ∫
Ω1\Ω̂1

Gh ∗ χΩ3
dx−

∫
Ω̂1\Ω1

Gh ∗ χΩ3
dx
∣∣∣

≤
√
πγLV | cos θY |√

h

(∫
Ω1\Ω̂1

Gh ∗ χ(Ω1\Ω̂1)cdx+

∫
Ω̂1\Ω1

Gh ∗ χ(Ω̂1\Ω1)cdx
)

≤ γLV | cos θY |
(∫

Ω̃

|Dχ(Ω1\Ω̂1)|+
∫

Ω̃

|Dχ(Ω̂1\Ω1)|
)

= γLV | cos θY |
∫

Ω̃

|Dχ(Ω1\Ω̂1) −Dχ(Ω̂1\Ω1)| = γLV | cos θY |
∫

Ω̃

|D(u− v)|,

where we have used Lemma 4.2 in last third equation and Lemma 4.1 in the last equation. Therefore, for

any ε and u, we choose a neighbourhood N (u) := {v ∈ X, ‖u − v‖BV ≤ ε
2γLV | cos θY |} of u. Then for any

v ∈ N (u), we have

|Fh(v)−Fh(u)| ≤ ε

2
. (59)
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Combine the above analysis, we have

|Fh(v)−F(u)| ≤ |Fh(v)−Fh(u)|+ |Fh(u)−F(u)| ≤ ε

2
+
ε

2
= ε,

for any v ∈ N 0(u) and h < h∗. This finishes the proof.

By the proposition 4.1 and 4.2, we are led to the following Γ-convergence result for the modified functional

Ẽh.

Theorem 4.1. Ẽh(u) Γ-converges to E(u) in X.

Proof. The basic idea is to use the following property of Γ-convergence(see Proposition 6.20 in [26]) that,

if F
(1)
ε Γ-converges to F (1) and F

(2)
ε continuously converges to F (2) in the same topology space, and both

F
(2)
ε and F (2) are finite everywhere, then F

(1)
ε + F

(2)
ε Γ-converges to F (1) + F (2).

Notice that Ẽh = (Eh − Fh) + Fλh. By the Propositions 4.1 and 4.2, we use the property twice and the

proof is done.

5. Numerical experiments

In this section, we use several numerical experiments to illustrate the improvement of the modified

algorithm. We implemented the modified algorithm in Matlab using fast Fourier transform (FFT) to evaluate

the convolution at the Step 1 in the Algorithm 1.

5.1. Example: contact angle in the dynamics.

In this example, we check the accuracy of the contact angle when h2 = λ2h1 (see (44)) and h2 = h1 (i.e.

original algorithm in [45]). In the asymptotic analysis in Section 3, we assume the value of δ
D1,2

h1,2
is at O(1)

and thus has no effect on the angle. Also, from (42), we see the angle condition satisfies at the O( 1
ε ) scale.

Hence, we set the equilibrium angle θY = π/3 and θY = 2π/3, and we get λ = 1.5. Then, we perform the

following experiment when h2 = λ2h1 = 2.25h1 and h2 = h1 for different values of h1:

1. Set the initial condition as a half circle liquid droplet with radius π/2 on the solid surface, y = −π/2 (see

Figure 6).

2. Evaluate

φ =
1√
h1

Gh1 ∗ (χD2 − χD1)− cos θY√
h2

Gh2 ∗ χD3 ,

3. Find one contact point C1 = (x1, y1), and on the discretized zero levelset of φ, we find the closest point,

C2 = (x2, y2), to C1 ( this can be realized by a function named contour in Matlab),

4. Calculate θ = arctan( y2−y1x2−x1
).

In Table 1, we list the errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY = π/3 and

h1 = π/128, π/256, π/512, and π/1024, separately. When h2 = 2.25h1, it is obvious to see that the angle
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Figure 6: The half circle initial condition on the solid surface.

converges to π/3 ≈ 1.04720 when we decrease the value of h1. However, when h2 = h1, the angle converges

to an incorrect angle. Interestingly, we note that the angles are close to π/4 ≈ 0.78540 which is consistent

with the results in (45) and Figure 4.

In Table 2, we list the errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY = 2π/3 and

h1 = π/64, π/128, π/256, and π/512, separately. Again, when h2 = 2.25h1, the contact angle converges

to 2π/3 ≈ 2.09440. When h2 = h1, the angle seems to converge to an incorrect angle which is close to

3π/4 ≈ 2.35619 showed in (45) and Figure 4.

In both numerical experiments, we use 2048× 2048 grid points to discretize the computational domain

[−π, π]× [−π, π].

Table 1: Errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY = π/3 and h1 = π/128, π/256, π/512, and

π/1024.

h1 Contact angle Error Contact angle Error

when h2 = 2.25h1 when h2 = h1

π/128 0.99268 0.05452 0.65591 0.39129

π/256 1.00067 0.04653 0.66724 0.37996

π/512 1.02581 0.02139 0.67887 0.36833

π/1024 1.04227 0.00493 0.70139 0.34581
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Table 2: Errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY = 2π/3 and h1 = π/64, π/128, π/256, and π/512.

h1 Contact angle Error Contact angle Error

when h2 = 2.25h1 when h2 = h1

π/64 2.04747 0.04693 2.42925 0.33485

π/128 2.06753 0.02687 2.43441 0.34001

π/256 2.07450 0.01990 2.43628 0.34188

π/512 2.07585 0.01855 2.44176 0.34736

5.2. Example: contact angle in the equilibrium state of the solid wetting problem

In this example, we check the accuracy of the contact angle for the equilibrium state. We apply the

adaptive in time strategy proposed in [45] on Algorithm 1 to get the equilibrium state when θY = π/3 and

2π/3 on discretized grids with mesh size dx = π/64, π/128, π/256, and π/512 when h2 = λ2h1 and h2 = h1,

respectively. Here, we choose a relatively large initial h1 = 3dx since we use the adaptive in time strategy.

We refer the details of the adaptive in time strategy to [45]. Table 3 and 4 list the errors of the contact

angle when h2 = λ2h1 and h2 = h1 with the equilibrium angle θY = 2π/3 and π/3. In these two cases,

λ = 1.5. Obviously, from both tables, the angles converge to the corresponding expected angles θY when

h2 = 2.25h1 while the angles deviate to the correct angles when h2 = h1.

Table 3: Errors of the contact angle at equilibrium state when h2 = 2.25h1 and h2 = h1 with θY = π/3.

dx Initial h1 Contact angle Error Contact angle Error

when h2 = 2.25h1 when h2 = h1

π/64 3π/64 0.8004 0.2468 0.7100 0.3372

π/128 3π/128 0.8570 0.1902 0.6614 0.3858

π/256 3π/256 0.9960 0.0512 0.6244 0.4228

π/512 3π/512 1.0227 0.0245 0.6053 0.4419

Table 4: Errors of the contact angle at equilibrium state when h2 = 2.25h1 and h2 = h1 with θY = 2π/3.

dx Initial h1 Contact angle Error Contact angle Error

when h2 = 2.25h1 when h2 = h1

π/64 3π/64 1.8127 0.2817 2.2554 0.1610

π/128 3π/128 1.9232 0.1712 2.4058 0.3114

π/256 3π/256 2.0205 0.0739 2.4995 0.4051

π/512 3π/512 2.1225 0.0281 2.5247 0.4303
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(a) Diagram of the solid surface

-3 -2.5 -2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

θ

(b) Diagram of the effective angle

Figure 7: Diagrams of the solid surface and the effective angle.

5.3. Example: contact angle hysteresis on a rough surface

In this section, we compare the improved algorithm to the original algorithm [45] in the simulation of

the contact angle hysteresis on geometrically rough surfaces. To simulate the hysteresis process, we consider

the quasi-static spreading of a drop as volume of the drop is gradually increased (advancing) or decreased

(receding). We compute the equilibrium state of the drop after liquid is added or extracted in each time

step.

In this experiment, the computational domain is [−π, π]× [−π, π], and the solid surface of is then given

by a sawtooth function

y = −π
2

+
π tan(α)

2k
s(2kx)

where s(x) is a sawtooth periodic function with period 2π defined as

s(x) =

−1− x−π
π −π ≤ x ≤ 0;

x
π 0 < x ≤ π,

α is the angle between solid surface and horizontal direction, and 2k denotes the number of the period of

the sawtooth on the solid surface (See Figure 7 (a) for an example when k = 10 and α = π/6.). For a rough

surface, it is more meaningful to see how the effective contact angle behaves when the volume of the drop

is increased or decreased [6]. The effective contact angle is defined as the angle between the contact line

and the horizontal surface (See Figure 7 (b)). The computational domain [−π, π]× [−π, π] is discretized by

4096× 4096 grid points and the initial time step is h1 = π
2048 .

Figure 8 displays the behavior of the effective contact angle when k = 10, α = π
6 . In this case, the Young’s

angle of the solid surface is θY = π
3 , the theoretic advancing angle is π/3+π/6 = π/2 and the receding angle
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Figure 8: Advancing and receding contact angles for rough surfaces with θY = π/3 and k = 10 when h2 = λ2h1 and h2 = h1,

separately.

is π/3− π/6 = π/6. In Figure 8, we use solid lines to denote the line of the theoretic advancing angle and

the theoretic receding angle. The results show significant improvement of hysteresis behaviour obtained by

the new algorithm.

The red dashed line represents the behavior of advancing angle when we increase the volume gradually

from 0.2 to 8 and the blue dashed line represents the behavior of the receding angle when we decrease the

volume gradually from 8 to 0.2 using the improved threshold dynamics method proposed. It matches the

theoretic results well.

However, if we use the original algorithm (i.e. h2 = h1) to add volume gradually from 0.2 to 8 and the

decrease from 8 to 0.2, the results are displayed by the green dashed line and the light blue dashed line.

They deviate the theoretic result a lot. In fact, the advancing angle is close to π/4 + π/6 = 5π/12 and the

receding angle is close to π/4− π/6 = π/12. This observation is also consistent with the asymptotic results

in (45) and Figure 4.

6. Conclusions and future work

In this paper, we developed a modified threshold dynamics method for wetting dynamics. The method

is simple, efficient, and unconditionally stable. We showed that the contact angle is consistent with the

Young’s angle and the dynamics at the contact point is consistent with the dynamics of the interface away

from the contact point. We extended the analysis in [12] to prove the modified functional Γ-converges to the
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original functional. We used some numerical examples to verify the improvement of the modified method

comparing to the method in [45].
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