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Abstract. In this paper, we study a numerical method for the solution of partial differential equations on evolving
surfaces. The numerical method is built on the stabilized trace finite element method (TraceFEM) for the spatial
discretization and finite differences for the time discretization. The TraceFEM uses a stationary background mesh,
which can be chosen independent of time and the position of the surface. The stabilization ensures well-conditioning of
the algebraic systems and defines a regular extension of the solution from the surface to its volumetric neighborhood.
Having such an extension is essential for the numerical method to be well-defined. The paper proves numerical
stability and optimal order error estimates for the case of simplicial background meshes and finite element spaces of
order m ≥ 1. For the algebraic condition numbers of the resulting systems we prove estimates, which are independent
of the position of the interface. The method allows that the surface and its evolution are given implicitly with the
help of an indicator function. Results of numerical experiments for a set of 2D evolving surfaces are provided.
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1. Introduction. Partial differential equations on evolving surfaces arise in a number of math-
ematical models in natural sciences and engineering. Well-known examples include the diffusion and
transport of surfactants along interfaces in multiphase fluids [18, 30, 42], diffusion-induced grain
boundary motion [5, 28] and lipid interactions in moving cell membranes [11, 32]. Thus, recently
there has been a significant interest in developing and analyzing numerical methods for PDEs on
time-dependent surfaces; see, for example, the review articles [10, 34]. The present paper con-
tributes to the field with an unfitted finite element methods for PDEs posed on implicitly defined
time-dependent surfaces and its complete stability and error analysis.

Geometrically unfitted finite element methods exploit the idea of using a time-independent
background finite element space to approximate the solution of a PDE posed on an embedded surface.
The background finite element space is defined on an ambient triangulation, which is not fitted to the
surface. There are several approaches that fit this framework. In the PDE extension approach, one
extends the PDE off the surface to a volumetric computational domain in a special way such that the
solution of the ambient PDE restricted to the surfaces solves the original problem. Further one solves
this new PDE by a conventional discretization method in R3; see [2], and [44] for the extension to
evolving surface case. In the trace finite element method, one takes an opposite approach. Instead
of extending the surface PDE, one takes the traces of the background volumetric finite element
functions on the embedded surface for the purpose of PDE approximation [35]. In the TraceFEM,
one also may add stabilization terms which involve the restrictions of the background functions to
the tetrahedra cut by the surface [3]. Several authors have treated PDEs on time-dependent surfaces
using this framework. Thus, a method based on a characteristic-Galerkin formulation combined with
the TraceFEM in space was proposed in [21]. An interesting variant of TraceFEM and narrow-band
FEM for a conservation law on an evolving surface was devised in [6]. A mathematically sound
approach which entails rigorous stability and error analysis was investigate in [36, 33]. In those
papers, a PDE on an evolving closed surface Γ(t) ⊂ R3 was studied as an equation posed on a fixed
space–time manifold G =

⋃
t∈(0,T ) Γ(t)×{t} ⊂ R4. Further a space–time trace finite element method

was applied to approximate the PDE posed on G. While the space–time TraceFEM was shown to be
provably accurate, its implementation requires the numerical integration over the time slices of G.
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An algorithm for piecewise tetrahedral reconstruction of G from the zero of a level-set function can
be found in [15, 24], but these reconstruction methods are not a part of standard scientific computing
software. Moreover, it remains a challenging problem to build a higher order reconstruction of G.
Recent attempts to build geometrically unfitted finite element method that avoids numerical recovery
of G are reported in [22, 13, 39]. At time of writing this paper, the authors are unaware of stability
or error analysis of any of these most recent methods. Therefore, building an accurate, efficient and
reliable unfitted finite element method for PDEs posed on surfaces is still a challenge. In particular,
one may want the method to benefit from higher order elements, to avoid a reconstruction of G, and
to admit rigorous analysis.

The present paper addresses the challenge by suggesting a hybrid finite difference (FD) in
time / TraceFEM in space method, which uses the restrictions of surface independent background FE
functions on a steady discrete surface Γh(tn) for each time node tn. A standard FD approximation
is applied to treat the time derivative. Hence, a reconstruction of G is not needed. Instead one
needs an extension of the TraceFEM solution (but not of the PDE!) from Γh(tn) to a narrow band
of tetrahedra containing Γh(tn). In [39] it was suggested that a quasi-normal extension of the
discrete solution by a variant of the fast marching method (FMM) can be used allowing the modular
application of the standard tools: steady-surface TraceFEM and FMM. Numerical experiments in
[39] demonstrated that the piecewise linear TraceFEM combined with BDF2 in time and a variant
of the FMM from [18] is second-order accurate for h = ∆t, unconditionally stable and capable to
handle the case of surfaces undergoing topological changes. Here we build on the approach from
[39], with the following important modification: The finite element formulation is augmented with
a volumetric integral that includes derivatives of test and trial functions along the quasi-normal
directions to Γh(tn). The integral is computed over tetrahedra cut by the surface at the given
time tn and possibly (depending on the surface normal velocity and the time step size) over a few
more layers of the tetrahedra. The benefit of the augmentation is threefold: first, it implicitly
defines an extension of the solution to a narrow band of the surface hence eliminating the need for
FMM or any other additional modulus; second, it stabilizes the method algebraically leading to
well-conditioned matrices; finally, it leads to a concise variational formulation of the method and
so allows numerical stability and error analysis. The paper presents such analysis as well as the
analysis of algebraic stability for the fully discrete method (no simplified assumptions are made
such as numerical integration over exact surface). The analysis allows background finite element
spaces of arbitrary order m ≥ 1. We notice however that for m > 1 and optimal order convergence,
numerical integration with higher order accuracy is required which is a non-trivial task; cf. remark
4.1 below. For the time discretization we apply the backward Euler method. Higher order in time
discretizations are straightforward, and we illustrated them in numerical example section, but they
are not covered by the presented analysis.

The remainder of the paper is organized as follows. In section 2 we review the surface transport–
diffusion equation as an example of a PDE posed on an evolving surface. To elucidate the main
ideas behind the method and analysis, section 3 introduces a semi-discrete method (FD in time
/ continuous in space) and presents its stability analysis. Further, in section 4 we devise a fully
discrete method. In section 5 the core analysis of the paper is given. The section opens with
several important preparatory results, then proceeds to the stability analysis of the fully discrete
method and closes up with the error analysis in the energy norm. For the error analysis, one has
to handle approximation errors in time and space together with geometric errors resulting from
numerical recovery of the surface (we do not assume that any explicit patchwise parametrization of
Γ(t) is known). In section 6 we prove bounds on condition numbers of resulting matrices, which are
independent of how the surface cuts through the background mesh. Results of several numerical
experiments, which illustrate the theoretical findings and show optimal convergence order also in
weaker norms, are collected in section 7. Section 8 gives some conclusions and discusses interesting
open problems.

2. Mathematical problem. Consider a surface Γ(t) passively advected by a smooth velocity
field w = w(x, t), i.e. the normal velocity of Γ(t) is given by w · n, with n the unit normal on Γ(t).
We assume that for all t ∈ [0, T ], Γ(t) is a smooth hypersurface that is closed (∂Γ = ∅), connected,
oriented, and contained in a fixed domain Ω ⊂ Rd, d = 2, 3. In the remainder we consider d = 3,
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but all results have analogs for the case d = 2.
As an example of the surface PDE, consider the transport–diffusion equation modelling the

conservation of a scalar quantity u with a diffusive flux on Γ(t) (cf. [23]):

(1) u̇+ (divΓw)u− ν∆Γu = 0 on Γ(t), t ∈ (0, T ],

with initial condition u(x, 0) = u0(x) for x ∈ Γ0 := Γ(0). Here u̇ denotes the advective material
derivative, divΓ := tr

(
(I − nnT )∇

)
is the surface divergence, ∆Γ is the Laplace–Beltrami operator,

and ν > 0 is the constant diffusion coefficient. The well-posedness of suitable weak formulations of
(1) has been proven in [9, 36, 1].

The equation (1) can be written in several equivalent forms, see [10]. In particular, for any
smooth extension of u from the space–time manifold

G =
⋃

t∈(0,T )

Γ(t)× {t}, G ⊂ R4,

to a neighborhood of G, one can expand u̇ using the Cartesian derivatives

u̇ =
∂u

∂t
+ w · ∇u.

In this paper, we assume that Γ(t) is the zero-level set of a smooth level-set function φ(x, t),

Γ(t) = {x ∈ R3 : φ(t,x) = 0},

such that |∇φ| ≥ c > 0 in O(G), a neighborhood of G. Note that we do not assume that φ is a signed
distance function. The method that we introduce can deal with more general level set functions.
However, the analysis (sections 3.3, 4 and 5) uses the assumption of a level set function with the
signed distance property in order to keep the amount of technical details at a comprehensive level,
cf. the introductory part of section 3.3.

For a smooth u defined on G, a function ue denotes the extension of u to O(G) along spatial
normal directions to the level-sets of φ, it holds ∇ue · ∇φ = 0 in O(G), ue = u on G. The extension
ue is smooth once φ and u are both smooth. Further, we use the same notation u for the function
on G and its extension to O(G). We shall write O(Γ(t)) to denote a neighborhood of Γ(t) in R3,
which is the time cross-section of G , O(Γ(t)) := {x ∈ R3 : (t,x) ∈ O(G)}.

We can rewrite (1) as follows:

(2)

{
∂u
∂t + w · ∇u+ (divΓw)u− ν∆Γu = 0 on Γ(t),

∇u · ∇φ = 0 in O(Γ(t))
t ∈ (0, T ].

This formulation will be used for the discretization method.

3. Discretization in time.

3.1. Preliminaries and notation. We introduce notation for the surfaces at discrete time
levels. For simplicity of notation, consider the uniform time step ∆t = T/N , and let tn = n∆t and
In = [tn−1, tn). Denote by un an approximation of u(tn), define Γn := Γ(tn) and φn(x) := φ(x, tn),
n = 0, . . . , N . We assume that O(G) is a sufficiently large neighborhood of G such that

(3) Γn ⊂ O(Γn−1) for n = 1, . . . , N, cf. Fig. 1.

In this case, un−1 is well-defined on Γn. Further, we use the following abbreviations in norms
and scalar products for functions u, v in a domain G: (u, v)G := (u, v)L2(G), ‖u‖G := ‖u‖L2(G),

‖u‖∞,G := ‖u‖L∞(G). We also introduce the decomposition w = wT + wNn where wT and wNn
denote the tangential and normal parts of the velocity vector field w on Γ(t). Further, for a function
v defined on Γ(t) or on O(Γ(t)) we introduce several abbreviated maximum norms at time levels,
intervals and the whole time domain:

‖v‖∞,n := ‖v‖∞,Γn , ‖v‖∞,In := sup
t∈In
‖v‖∞,Γ(t), ‖v‖∞ := sup

t∈[0,T ]

‖v‖∞,Γ(t),(4a)

‖v‖∞,n,O := ‖v‖∞,O(Γn), ‖v‖∞,In,O := sup
t∈In
‖v‖∞,O(Γ(t)), ‖v‖∞,O := sup

t∈[0,T ]

‖v‖∞,O(Γ(t)).(4b)
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O(Γn−1)

Γn−1

Γn ⊂ O(Γn−1)

Fig. 1. Sketch of interface positions at different time instances and the neighborhood of one of these interfaces.

3.2. Time discretization method. The implicit Euler method for (2) is

(5)


un − un−1

∆t
+ wn · ∇un + (divΓ wn)un − ν∆Γu

n = 0, on Γn,

∇un · ∇φn = 0, in O(Γn).

Obvious modifications are required to devise higher order time discretizations. For example, for

the O(∆t2) method one can use BDF2 approximation of the time derivative, replacing un−un−1

∆t by
3un−4un−1+un−2

2∆t in (5) and additionally assuming Γn ⊂ O(Γn−2), cf. also Remark 5.2.

Variational formulation in space. The basis for the spatial discretization is a variational formu-
lation in space. For every time instance t we denote by V(t) the Hilbert space of functions which are
defined in a neighborhood of Γ(t) and are constant in the direction of the gradient of φ (the normal

direction), V(t) := V∗(t)
‖·‖V

with

V∗(t) = {v ∈ C1(O(Γ(t))) | ∇v · ∇φ = 0} and ‖v‖V :=
(
‖v‖2H1(Γ(t)) + ‖∇φ · ∇v‖2L2(O(Γ(t)))

) 1
2

.

Note that on V(t) there holds ‖ · ‖H1(Γ(t)) = ‖ · ‖V and thus ‖ · ‖H1(Γ(t)) is a norm. Assume
un−1 ∈ L2(Γn−1) is given, with un−1 ∈ V(tn−1) and (3). We seek for un ∈ V(tn) such that for all
v ∈ V(tn) there holds

(6)

∫
Γn

(
1

∆t
un + w · ∇un + (divΓ w)un

)
v ds+ ν

∫
Γn
∇Γu

n ·∇Γv ds =

∫
Γn

1

∆t
un−1v ds.

Note that the second equation of (5) is hidden in the definition of space V(tn) in (6). Below, in the
finite element method we will impose it weakly through the variational formulation.

Integration by parts characterization of the convection term. Since Γ(t) is smooth and closed,
we have the integration by parts identity:∫

Γ(t)

(w · ∇u)v ds =

∫
Γ(t)

(wT · ∇Γu)v ds = −
∫

Γ(t)

(wT · ∇Γv + (divΓ wT )v)u ds

=
1

2

∫
Γ(t)

(wT · ∇Γuv −wT · ∇Γvu) ds− 1

2

∫
Γ(t)

(divΓ wT )uv ds

for u, v ∈ V(t). Note that we exploited n = ∇φ/|∇φ| on Γ(t) and so n · ∇u = n · ∇v = 0 here.
We will use the integration by part characterization (7) in our analysis and also to define the finite
element method.

Unique solvability. To guarantee unique solvability in every time step, we ask for coercivity of
the left-hand side bilinear form in (6) with respect to ‖ · ‖H1(Γn). Testing (6) with v = un and
exploiting (7) clarifies that a sufficient condition for coercivity is

(7) ∆t ≤ (2ξ)−1 with ξ := ‖ divΓ(w − 1

2
wT )‖∞.
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Using the notation κ(t) = divΓ nΓ for the mean curvature, we have divΓ w = divΓ wT +κ(t)wN and
can also express condition (7) with

ξ = ‖1

2
divΓ wT + κ(t)wN‖∞.

3.3. Stability of the semi-discrete method. We now show a numerical stability bound
for un. The goal of this paper is the study of a fully discrete method, but the treatment of the
semi-discrete problem (5) gives some insight and serves for the purpose of better exposition. From
now on we assume that φ is the signed distance function for Γ(t) in O(Γ(t)) for t ∈ [0, T ]. Although
this assumption is not essential, it simplifies our further (still rather technical) analysis. We assume
Γ(t) and its evolution are smooth such that φ ∈ C2(O(G))

Denote by p(x, t) : O(Γ(t)) → Γ(t) the closest point projection on Γ(t). Then using that φ
is the signed distance function the second equation in (5) can be written as un(x) = un(pn(x)) in
O(Γn), pn(x) = p(x, tn); and the passive advection of Γ by the velocity field yields

(8)
∂φ

∂t
= −wN ◦ p in O(G).

We need the following result.

Lemma 1. For v ∈ L2(Γn−1) the following estimate holds:

(9) ‖v ◦ pn−1‖2Γn ≤ (1 + c1∆t)‖v‖2Γn−1 with c1 = c(‖wN‖∞,In + ∆t‖∇ΓwN‖∞,In)

and a constant c independent of ∆t, n, v.

Proof. For y ∈ Γn−1 denote by κi(y), i = 1, 2, two principle curvatures, and let

(10) κi(x) = κi(p
n−1(x))

[
1 + φn−1(x)κi(p

n−1(x))
]−1

x ∈ O(Γn−1).

The surface measures on Γn−1 and Γn satisfy, see, e.g., [7, Proposition 2.1],

µn(x)dsn(x) = dsn−1(pn−1(x)), x ∈ Γn, with

µn(x) = (1− φn−1(x)κ1(x))︸ ︷︷ ︸
=:a1

(1− φn−1(x)κ2(x))︸ ︷︷ ︸
=:a2

∇φn(x)T∇φn−1(x)︸ ︷︷ ︸
=:b

.(11)

We want to bound |µn(x) − 1|. There is a constant c > 1, satisfying c−1 ≤ a1, a2, b ≤ c, such that
we can split the estimate as follows:

|µn(x)− 1| ≤ |a1a2b− 1| ≤ |a1 − 1|a2b+ |a2 − 1|b+ |b− 1| ≤ c (|a1 − 1|+ |a2 − 1|+ |b− 1|) .(12)

We start with |ai − 1| = |φn−1(x)||κi(x)|, i = 1, 2. Using φn(x) = 0 for x ∈ Γn and (8), we get

(13) |φn−1(x)| = |φn−1(x)− φn(x)| ≤ ‖wN‖∞,In∆t.

Using the smoothness of φ and (8), we also get with weN := wN ◦ p

|1− b| = |1−∇φn(x)T∇φn−1(x)| = 1

2
|∇φn(x)−∇φn−1(x)|2 ≤ 1

2
‖∇weN‖2∞,In,O|∆t|

2.(14)

We further note the identity, see, e.g., [7, (2.2.16)],

∇weN (x) =
(
I− φn−1(x)∇2φn−1(x)

)
∇ΓwN (pn−1(x)).

From this and (14) we conclude

(15) |1− b| ≤ 1

2
c ‖∇ΓwN‖2∞,In |∆t|

2,

with a constant c that depends only on the curvatures of Γ. Now (11), (13) and (15) imply

(16) |1− µn(x)| ≤ c1∆t, for x ∈ Γn,

and so (9) holds.
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In the next lemma we show numerical stability of the semi-discrete scheme.

Lemma 2. For {uk}k=1,...,N the solution of (6) with initial data u0 ∈ L2(Γ0) there holds

(17) ‖uk‖2Γk + 2∆tν

k∑
n=1

‖∇Γu
n‖2Γn ≤ exp(c2tk)‖u0‖2Γ0 , for k = 0, . . . , N,

for a constant c2 that is independent of ∆t and k.

Proof. We test (6) with 2un and apply (7) to get

‖un‖2Γn + ‖un − un−1‖2Γn + 2∆tν‖∇Γu
n‖2Γn + 2∆t(divΓ(w − 1

2
wT )un, un)Γn = ‖un−1‖2Γn .

Now we recall that the second equation in (5) implies un−1(x) = un−1(pn−1(x)) on Γn and we use
(9) for the right-hand side term; we also estimate the divergence term using the definition of ξ in
(7). This gives

(18) (1− 2ξ∆t)‖un‖2Γn + 2∆tν‖∇Γu
n‖2Γn ≤ (1 + c1∆t)‖un−1‖2Γn−1

We sum up these inequalities for n = 1, . . . , k, k ≤ N , and get

α‖uk‖2Γk + 2∆tν

k∑
n=1

‖∇Γu
n‖2Γn ≤ ‖u0‖2Γ0 + (c1 + 2ξ)∆t

k−1∑
n=0

‖un‖2Γn , with α = 1− 2ξ∆t > 0.

The quantities c and ξ depend only on the PDE problem data such as w and Γ, but not on numerical
parameter ∆t. In particular, one can always assume ∆t sufficiently small such that α > 1

2 . Applying
discrete Gronwall’s inequality leads to the stability estimate (17).

Remark 3.1. The stability estimate (17) admits exponential growth. This is rather natural,
since the divergence term in (1) is not sign definite and the concentration u may grow exponentially
if the (local) area of Γ(t) shrinks when the surface evolves; see, e.g., analysis and a priori estimates
in [36]. The exponential growth does not happen if the divergence term is non-negative or if the
tangential diffusion of u is strong enough to suppress such growth; cf. Proposition 4.5 in [36].
Stability analysis may account for this phenomena by invoking conservation of total mass principle
and the Friedrichs inequality,∫

Γ(t)

|∇Γu|2 ds ≥ cF (t)

∫
Γ(t)

(u− 1

|Γ(t)|
ū)2 ds for all t ∈ [0, T ],

with cF (t) > 0 and ū(t) :=
∫

Γ(t)
u(s, t) ds. If no additional care is taken, the numerical method (5)

conserves mass only approximately. One way to ensure total mass conservation for the numerical
solution is to introduce a Lagrange multiplier from R and to add the constraint ūn − ū0 = 0 to
the system (5). The alternative is to augment the left-hand side of (5) with the penalty term
σ(ūn − ū0)v̄, with an augmentation parameter σ ≥ 0, as was done in [33] for the analysis of the
space–time method. The stabilizing term improves the mass conservation property and helps to
make use of the Friedrichs inequality in the stability estimate. We skip the arguments here, which
largely repeat the analysis above and the one in [33]. These arguments bring one to the numerical
stability estimate,

‖uk‖2Γk +
1

2
∆tν

k∑
n=1

‖∇Γu
n‖2Γn ≤ ‖u0‖2Γ0 +

1

2
∆tν‖∇Γu

0‖2Γ0 + tkσ|ū0|2, for k = 0, . . . , N.

Now we turn to the fully discrete case. Besides standard technical difficulties of passing from dif-
ferential equations to algebraic and finite element functional spaces, we need to handle the situation,
when the smooth surface Γn is approximated by a set of piecewise smooth Γnh, n = 0, . . . , N .
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4. Discretization in space and time. In order to reduce the repeated use of generic but
unspecified constants, further in the paper we write x . y to state that the inequality x ≤ cy holds
for quantities x, y with a constant c, which is independent of the mesh parameters h, ∆t, time
instance tn, and the position of Γ over the background mesh. Similar we give sense to x & y; and
x ' y will mean that both x . y and x & y hold. However, we shall continue to monitor the explicit
dependence of the estimate on the (norms of) normal surface velocity wN .

4.1. Fully discrete method. Assume a family of consistent subdivisions of Ω into shape
regular tetrahedra. This constitutes our background time-independent triangulations {Th}h>0, with
max
T∈Th

diam(T ) ≤ h. Vh denotes the bulk time-independent finite element space,

(19) Vh := {vh ∈ C(Ω) : vh|S ∈ Pm(S),∀S ∈ Th}, m ≥ 1.

Let φh be a given continuous piecewise polynomial approximation (with respect to Th) of the level
set function φ for all t ∈ [0, T ], which satisfies

(20) ‖φ− φh‖∞,Ω + h‖∇(φ− φh)‖∞,Ω . hq+1, ∀ t ∈ [0, T ],

with some q ≥ 1. For this estimate to hold, we assume that the level set function φ has the
smoothness property φ ∈ Cq+1(Ω). Moreover, we assume that φh is sufficiently regular in time, s.t.
with φnh(x) = φh(x, tn), n = 0, . . . , N there holds

‖φn−1
h − φnh‖∞,Ω . ∆t‖wN‖∞,In ,(21a)

‖∇φn−1
h −∇φnh‖∞,Ω . ∆t (‖wN‖∞,In + ‖∇wN‖∞,In) , for n = 1, . . . , N.(21b)

We define the discrete surfaces Γnh approximating Γn as the zero level of φnh,

Γnh := {x ∈ R3 : φnh(x) = 0}.

Γnh is an approximation to Γn with

(22) dist(Γnh,Γ
n) = max

x∈Γnh

|φn(x)| = max
x∈Γnh

|φn(x)− φnh(x)| ≤ ‖φn − φnh‖∞,Ω . hq+1.

Furthermore, nnh = ∇φnh/|∇φnh| the normal vector to Γnh and nn = ∇φn the extended normal vector
to Γn satisfy for x ∈ Γnh

|nnh(x)− nn(x)| =
∣∣∣∣ ∇φnh(x)

|∇φnh(x)|
− ∇φn(x)

∣∣∣∣ ≤ 1

|∇φnh(x)|︸ ︷︷ ︸
≤c

∣∣∇φnh(x)−∇φn(x)|∇φnh(x)|
∣∣

≤ c|∇φnh(x)−∇φn(x)|+ |∇φn(x)|︸ ︷︷ ︸
=1

·
∣∣ 1︸︷︷︸
|∇φ|

−|∇φnh(x)|
∣∣(23)

≤ c|∇φnh(x)−∇φn(x)| . hq

In the following we assume that integrals on Γnh can be computed accurately. In practice, this is only
straightforward for piecewise linear φnh, i.e. q = 1, while for higher order φnh more care is needed, cf.
Remark 4.1 below.

The numerical method provides an extension of a finite element solution to a narrow band
around Γnh, which is defined as the union of tetrahedra from

S(Γnh) := {S ∈ Th : |φh(x)| ≤ δn for some x ∈ S}, O(Γnh) = int

(⋃
S∈S(Γnh)

S

)
,

where

(24) δn := cδ‖wN‖∞,In ∆t

7



OΓ(Γnh)

O(Γnh)

Γnh
Γnh,±δn

Fig. 2. Sketch of discrete domains and interfaces.

is the minimum thickness of the extension layer and cδ ≥ 1 is an O(1) mesh-independent constant.
Recall that φh is an approximate distance function, so that |φnh| ≤ δn describes a discrete tubular
neighborhood to Γnh. We refer to Figure 2 for a sketch.

In the analysis below, we make use of lifting operators from exact to discrete surfaces. For
n = 1, . . . , N and k = n− 1, 1 we define the lift operator from Γn to Γkh,

(25) ln,k : Γn → Γkh, ln,k(x) = x + dn(x)nn(x),

where dn(x) ∈ R is the smallest (in absolute value) value so that x + dn(x)nn(x) ∈ Γkh. For k = n
we also write ln = ln,n. To ensure that these liftings are well-defined bijection mappings we assume
that h is sufficiently small. Further, we require that δn ≤ c for a constant c that only depends on
the temporal resolution of the surface dynamics and the roughness of the surface. We assumed that
the surface is smooth at all time so that ‖κ‖∞,In . 1. Hence, we formulate the following condition
on the time step size:

(26) ∆t ≤ cl(cδ‖wN‖∞,In)−1, n = 1, . . . , N,

so that δn‖κ‖∞,In . δn . 1 and the lifting ln,n−1 is well-defined for sufficiently small cl .
We also denote by T nΓ the set of elements intersected by Γnh,

T nΓ := {S ∈ Th : H2(S ∩ Γnh) > 0} and OΓ(Γnh) := int

(⋃
S∈T nΓ

S

)
.

We assume that O(Γn) is such that

(27) O(Γnh) ⊂ O(Γn) and OΓ(Γn+1
h ) ⊂ O(Γn).

Note that (20), (21a) and (24) ensure that

(28) cδ sufficiently large implies Γnh ⊂ OΓ(Γnh) ⊂ O(Γn−1
h ).

This condition is the discrete analog of (3) and it is essential for the well-posedness of the method.
We define finite element spaces

(29) V nh = {v ∈ C(O(Γnh)) : v ∈ Pm(S),∀S ∈ S(Γnh)}, m ≥ 1.

These spaces are the restrictions of the time-independent bulk space Vh on all tetrahedra from S(Γnh).
The numerical method is based on the semi-discrete formulation (6) and identity (7). It reads:

For a given u0
h ∈ V 0

h find unh ∈ V nh , n = 1, . . . , N , satisfying

(30)

∫
Γnh

{
unh − u

n−1
h

∆t
vh +

1

2
(we

T · ∇Γh
unhvh −we

T · ∇Γh
vhu

n
h) + divΓh

(we − 1

2
we
T )unhvh

}
dsh

+ ν

∫
Γnh

∇Γh
unh · ∇Γh

vh dsh + ρn

∫
O(Γnh)

(nh · ∇unh)(nh · ∇vh)dx = 0,

8



for all vh ∈ V nh . Here nh = ∇φh/|∇φh| in O(Γnh), ρn > 0 is a parameter, we(x) = w(pn(x)) is lifted
data on Γnh from Γn. The first term in (30) is well-defined thanks to condition (28). As we discussed
in the introduction, the term ρn

∫
O(Γnh)

(nh · ∇unh)(nh · ∇vh)dx plays several roles. We shall see that

for ρn not too small, it ensures the form on the left hand side to be elliptic on V nh , rather than only on
the space of traces. Therefore, on each time step we obtain a FE solution defined in O(Γnh) (this can
be seen as an implicit extension procedure). Furthermore, it stabilizes the problem algebraically, i.e.
the resulting systems of algebraic equations are well-conditioned in a suitable sense, see section 6.

Remark 4.1 (Numerical integration). The discrete surface Γnh is described only implicitly via
the zero-level of a discrete level set function. In general, it is a non-trivial task to obtain a
parametrized representation of Γnh which would allow for a straightforward application of numerical
quadrature rules. On simplices and in the low order case where φh is a piecewise linear approxima-
tion of the level set function φ (q = 1 in (20)), an explicit reconstruction of Γnh is easily available, cf.
e.g. [29]. On hyperrectangles, a low order case where the accuracy of the implicit representation is
q = 1 in (20) can be dealt with a marching cube [27] approximation. However, the higher order case
q > 1 is more involved and requires special approaches for the construction of quadrature rules. We
do not extend this discussion here but refer to the literature instead, cf. [14, 25, 31, 38, 41, 43].

5. Analysis of the fully discrete method. In this section we carry out the numerical anal-
ysis of the fully discrete method. Before we can perform the stability and consistency analysis
(subsections 5.3 and 5.4) to derive a priori error bounds in subsection 5.5, we require two results
that are technically more involved. The first one gives control in the L2 norm in a narrow band
volume based on a combination of the L2 norm on the surface and the normal gradient in the volume
that is provided by the stabilization. The result is treated in subsection 5.1 and is a generalization
of a result from [4] which is also found in [16, Lemma 7.6]. The second result provides bounds for
the evaluation of a lifting of a function that is naturally defined on Γn−1

h to Γnh. The result is the
counterpart to Lemma 1 on the discrete level and is treated in subsection 5.2.

5.1. Volume control by the normal diffusion stabilization. Before we can state and
prove the lemma on the normal diffusion stabilization we need some preparation.

We denote the limiting level sets of φh with |φh| = δn as Γnh,±δn := {φh(x) = ±δn}. The
corresponding set of elements cut by Γnh,±δn is denoted by OΓ(Γnh,±δn), cf. Figure 2. Now, we
introduce a mapping Φ : O(Γnh)→ O(Γn) that allows to map from approximated level sets to exact
level sets. For x ∈ O(Γnh) we define Φ(x) := x+(φnh(x)−φn(x))n(x) with n(x) = ∇φ(x) = n(pn(x))
which has φn ◦ Φ = φnh in O(Γnh), i.e.

(31) φn(x + (φnh(x)− φn(x))n(x)) = φn(x) + φnh(x)− φn(x) = φnh(x) ∀ x ∈ O(Γnh).

Lemma 3. The mapping Φ is well-defined, continuous and Φ|S ∈ Cq+1(S) for any S ∈ S(Γnh).
There hold Φ(Γnh) = Γn and

‖Φ− id ‖∞,O(Γnh) . hq+1, ‖DΦ− I‖∞,O(Γnh) . hq.(32)

Further, for h sufficiently small Φ is invertible.

Proof. The smoothness is obtained by construction. To see Φ(Γnh) = Γn we recall that φn ◦Φ =
φnh holds also for x ∈ Γnh = {φnh = 0} which implies that Φ(x) ∈ Γn = {φn = 0}. Finally, (32) follows
from (20).

We use this mapping to map from the discrete surface to the exact one. We introduce the
following notation. For u ∈ V nh we define ũ := u◦Φ−1, Õ(Γnh) := Φ(O(Γnh)) and Γ±δn := Φ(Γnh,±δn) =
{φ(x) = ±δn}. Due to (32) we have that

(33) ‖ũ‖2Õ(Γnh)
=

∫
Õ(Γnh)

ũ2 dx =

∫
O(Γnh)

det(DΦ)︸ ︷︷ ︸
'1

u2 dx ' ‖u‖2O(Γnh)

and similarly one easily shows (see, e.g., [26, Lemma 3.7])

(34) ‖u‖2Γnh ' ‖ũ‖
2
Γn .
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Lemma 4. On a quasi-uniform family of triangulations, for sufficiently small h, for ũ ∈ V nh ◦Φ−1

there hold

(35) ‖ũ‖2ÕΓ(Γnh,±δn )
. h‖ũ‖2Γn±δn + h2‖n · ∇ũ‖2ÕΓ(Γnh,±δn )

.

Proof. The technical proof is given in [16, section 7.2]. The main idea is the application of the
co-area formula combined with estimates along paths which are normal to the interfaces Γn±δn and
cross the interfaces Γn±δn . Below in Theorem 5 we apply similar techniques.

Theorem 5. For h sufficiently small and ∆t so that (26) is fulfilled, the following uniform with
respect to δn, h and n estimate holds:

(36) ‖u‖2O(Γnh) . (δn + h)‖u‖2Γnh + (δn + h)2‖nh · ∇u‖2O(Γnh) for all u ∈ V nh ,

with δn from (24).

Proof. We start on the mapped domain by an overlapping decomposition of Õ(Γnh) into Uδn(Γ) :=

{x ∈ R3 : |φn(x)| < δn} and ÕΓ(Γnh,±δn) and apply Lemma 4:

‖u‖2O(Γnh) ' ‖ũ‖
2
Õ(Γnh)

≤ ‖ũ‖2Uδn (Γ) + ‖ũ‖2ÕΓ(Γnh,±δn )
(37)

. ‖ũ‖2Uδn (Γ) + h‖ũ‖2Γn±δn + h2‖n · ∇ũ‖2ÕΓ(Γnh,±δn )
.

To treat the integral on Uδn and Γn±δn , we proceed similar to [16, Lemma 7.4] and use the co-area
formula, cf. e.g. [10, Theorem 2.9]. To this end we introduce the coordinates x = (ξ, s) so that
x = rξ(s) = ξ + sn(ξ) and introduce the line Rξ := {rξ(s), s ∈ [−δn, δn]}. Then, there holds∫

Uδn

f(x) dx =

∫
Γn

∫ δn

−δn
J(x)−1f(ξ + sn(ξ)) ds dξ

with the normal-Jacobian J and J(x)−1 = det(I + s(x)H(ξ)) where H = D2s is the Hessian of
s(x) = φn(x). We have with (26)

(38) J−1 = det(I − s(x)H(x)) . 1 + δn tr(H(x))︸ ︷︷ ︸
=κ(ξ)

. 1.

Thus, we can estimate the integral over Uδn in (37) based on iterated integrals. There holds with
the Cauchy-Schwarz and Young’s inequality

ũ(ξ, s)2 = ũ(ξ, 0)2 + 2

∫ s

0

ũ(ξ, t) ∂sũ(ξ, t)︸ ︷︷ ︸
=n(ξ)·∇ũ(ξ,t)

dt ≤ ũ(ξ, 0)2 +
1

γ
‖ũ‖2Rξ + γ‖n · ∇ũ‖2Rξ .(39)

For the integral over Uδn , we choose γ = 8δn and integrate over (−δn, δn), where we choose γ = 4h
to estimate ũ(ξ,±δn) which yields

‖ũ‖2Rξ + h
∑
±
ũ(ξ,±δn)2 ≤2δnũ(ξ, 0)2 +

2δn
8δn
‖ũ‖2Rξ + 16δ2

n‖n · ∇ũ‖2Rξ

+ 2hũ(ξ, 0)2 +
h

4h
‖ũ‖2Rξ + 4h2‖n · ∇ũ‖2Rξ

≤4(δn + h)ũ(ξ, 0)2 + (32δ2
n + 8h2)‖n · ∇ũ‖2Rξ .

and integrating over ξ ∈ Γ gives

(40) ‖ũ‖2Uδn (Γ) + h‖ũ‖2Γn±δn . (δn + h)‖ũ‖2Γ + (δn + h)2‖n · ∇ũ‖2Uδn (Γ).

Plugging this into (37) we have

‖u‖2O(Γnh) ' ‖ũ‖
2
Õ(Γnh)

. (δn + h)‖ũ‖2Γ + (δn + h)2‖n · ∇ũ‖2Õ(Γnh)

. (δn + h)‖u‖2Γnh + (δn + h)2‖n · ∇ũ‖2Õ(Γnh)
(41)
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n = ∇φn−1(x)

x

xn = ln−1,n(x)

xn−1= ln−1,n−1(x)
Γn−1
h

Γnh

Γn−1

Fig. 3. Sketch of the geometries in the proof of Lemma 6.

Finally, we have to bound the normal derivative part on the mapped domain:

‖n · ∇ũ‖2Õ(Γnh)
. ‖nh · ∇u‖2O(Γnh) + ‖DΦ−1 · n ◦ Φ− nh‖2∞,O(Γnh)‖∇u‖

2
O(Γnh)

(∗)
. ‖nh · ∇u‖2O(Γnh) + h2q‖∇u‖2O(Γnh) . ‖nh · ∇u‖

2
O(Γnh) + h2q−2‖u‖2O(Γnh).(42)

Here, we used the following estimate in (∗) for x ∈ O(Γnh)

|DΦ−1 · n ◦ Φ− nh| . |DΦ−1 · n ◦ Φ− n ◦ Φ|︸ ︷︷ ︸
.|DΦ−1−I|.hq

+ |n ◦ Φ− n|︸ ︷︷ ︸
.|n|W1,∞ |Φ−id |.hq+1

+ |n− nh|︸ ︷︷ ︸
.hq

. hq.

The final term in (42) can be absorbed by the left hand side due to c h2q−2(δn + h)2 ≤ 1
2 for h and

∆t sufficiently small which concludes the proof.

5.2. Stability of shift operations and the normal diffusion stabilization. To control
the effect of the geometric error, we require the following very mild condition in our analysis,

(43) h2q ≤ ch∆t,

for some ch independent of ∆t and h. We recall that q ≥ 1 is defined in (20).
Now, we turn our attention to a discrete analogue of Lemma 1 which we prove in two steps.

Lemma 6. For v ∈ L2(Γn−1), ∆t so that (26) is fulfilled and the lifting operaros in (25) are
well-defined and h so that (43) is fulfilled, it holds

(44) ‖v ◦ pn−1‖2Γnh ≤ (1 + c6∆t) ‖v ◦ pn−1‖2
Γn−1
h

with some c6 independent of h, ∆t, and n.

Proof. For x ∈ Γn−1, we make use of the lift operators ln−1,k : Γn−1 → Γkh, cf. (25) in section
4.1, such that ln−1,k(pn−1(x)) = x on Γkh, k = n− 1, n. For x ∈ Γn−1, denote xk = ln−1,k(x) ∈ Γkh,
k = n− 1, n, cf. Figure 3. Similar to (11), the surface measures on Γkh, k = n− 1, n, satisfy

µkh(xk)dskh(xk) = dsn−1(x), x ∈ Γn−1,

µkh(xk) = (1− φn−1(xk)κ1(xk))︸ ︷︷ ︸
=:ak1

(1− φn−1(xk)κ2(xk))︸ ︷︷ ︸
=:ak2

nkh(xk) · nn−1(xk)︸ ︷︷ ︸
=:bk

,(45)

where we recall (23), nkh = ∇φkh/|∇φkh| and set nn−1 := ∇φn−1. We need to estimate the term
|1− µnh(xn)/µn−1

h (xn−1)| for x ∈ Γn−1. To this end, we split this term into several parts:

|1− µnh(xn)/µn−1
h (xn−1)| = 1

|µn−1
h (xn−1)|

|µnh(xn)− µn−1
h (xn−1)| ≤ c|an1an2 bn − an−1

1 an−1
2 bn−1|

≤ c|(an1 − an−1
1 )an2 b

n + an−1
1 (an2 − an−1

2 )bn + an−1
1 an−1

2 (bn − bn−1)|
≤ c

(
|an1 − an−1

1 |+ |an2 − an−1
2 |+ |bn − bn−1|

)
,(46)

11



where we exploited that there is a constant c > 1 independent of h, ∆t and n so that c−1 ≤ aki , bk ≤
c, i = 1, 2, k = n− 1, n. We start with bounds for |ani − a

n−1
i |. Since φn−1(x) is the signed distance

function for Γn−1, and ln−1,k is the lift operator along the normal directions to Γn−1, it holds

|φn−1(xn−1)− φn−1(xn)| = |xn−1 − xn|.

To estimate the distance on the right-hand side, we note that

(xn−1 − xn) · ∇φn−1
h (y) ≤ |φn−1

h (xn−1)− φn−1
h (xn)| = |φn−1

h (xn)| for some y ∈ conv(xn−1,xn).

For the same y we have (xn−1 − xn) ‖ ∇φn−1(y) which together with |∇φn−1| = 1 and (20) yields

|xn−1 − xn| = |(xn−1 − xn) · ∇φn−1(y)|
≤ |(xn−1 − xn) · ∇φn−1

h (y)|+ |(xn−1 − xn) · ∇
(
φn−1(y)− φn−1

h (y)
)
|

≤ |φn−1
h (xn)|+ chq|xn−1 − xn| = |φn−1

h (xn)− φnh(xn)|+ chq|xn−1 − xn|

≤ cδn + chq|xn−1 − xn| =⇒ |xn−1 − xn| . δn
1− chq

,

(47)

where for the last estimate we made use of (21a) and (24). We note that (47) estimates the ‘distance’
between Γnh and Γn−1

h measured in the normal directions to Γn−1. From (10) we find

|(xn − xn−1) · ∇κi(y)| = |xn − xn−1||n · ∇κi(y)| = κ2
i (y)|xn − xn−1|

for any y ∈ conv(xn−1,xn). We use this to estimate,

|ani − an−1
i | = |φn−1(xn)κi(x

n)− φn−1(xn−1)κi(x
n−1)|

= |∇(φn−1(y)κi(y)) · (xn − xn−1)| for some y ∈ conv(xn−1,xn),

≤ |∇φn−1(y)||κi(y)||xn − xn−1|+ |φn−1(y)||(xn − xn−1) · ∇κi(y)|
≤ |κi(y)||xn − xn−1|+ |φn−1(y)||κi(y)|︸ ︷︷ ︸

.δnκ(y).1

|κi(y)||xn − xn−1| . cδ‖κ‖∞,In‖wN‖∞,In∆t.(48)

From (20), (47) and the smoothness of φ, ‖φ‖C2(G) ≤ cφ we also conclude

|bk−1− bk|= |nn−1
h (xn−1)·nn−1(xn−1)− nnh(xn)·nn−1(xn)|

≤ |nn−1
h (xn−1)·nn−1(xn−1)− nnh(xn)·nn(xn)|+ |nnh(xn)·

=(nn(xn)−nn−1(xn))︷ ︸︸ ︷
(∇φn(xn)−∇φn−1(xn)) |

. |nn−1
h (xn−1)·nn−1(xn−1)− nnh(xn)·nn(xn)|+ cφ∆t

. |nn−1
h (xn−1)− nn−1(xn−1)|2 + |nnh(xn)− nn(xn)|2 + cφ∆t . h2q + cφ∆t,(49)

where in the last step we made use of |nk(xk)| = |nkh(xk)| = 1, k = 1, 2 and hence

nkh(xk)·nk(xk) = 1− 1

2
|nkh(xk)− nk(xk)|2.

Plugging (48) and (49) into (46) and exploiting (43) completes the proof.

The following lemma is an analogue to Lemma 6, where a discrete normal gradient in the volume
is used to replace the closest point projection.

Lemma 7. Under the conditions of Lemma 6 the following estimate holds for all vh ∈ V n−1
h ,

(50) ‖vh‖2Γnh ≤ (1 + c7a∆t)‖vh‖2Γn−1
h

+ c7bδn(δn + h)‖nh · ∇vh‖2O(Γn−1
h )

,

for some c7a and c7b independent of h, ∆t and n.
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Proof. We first note that Γnh ⊂ O(Γn−1
h ), cf. condition (28). From condition (28) and O(Γn−1

h ) ⊂
O(Γn−1) we know that both Γnh and Γn−1

h are in O(Γn−1). Hence, we can define a lift v` ∈ L2(Γnh)
for v ∈ L2(Γn−1

h ) along normal directions to Γn−1, i.e., v`(x) = v`(ln−1,npn−1(x)), x ∈ Γnh. We start
with the splitting

‖vh‖2Γnh =

∫
Γnh

(|vh|2 − |v`h|2) dx + ‖v`h‖2Γnh

and bound the first term on the right-hand side:∫
Γnh

(|vh|2 − |v`h|2) ds

.δn

∫
O(Γn−1

h )

n · ∇(|vh|2 − |v`h|2) dx (with (47), v2
h = |v`h|2 on Γn−1

h )

= δn

∫
O(Γn−1

h )

nh · ∇|vh|2 dx + δn

∫
O(Γn−1

h )

(n− nh) · ∇|vh|2 dx (as n · ∇|v`h|2= 0)

.δn‖nh · ∇vh‖O(Γn−1
h )‖vh‖O(Γn−1

h ) + δn‖n− nh‖∞,O(Γn−1
h )‖∇vh‖O(Γn−1

h )‖vh‖O(Γn−1
h )

.δn(δn + h)‖nh · ∇vh‖2O(Γn−1
h )

+ δn(hq−1 + (δn + h)−1)‖vh‖2O(Γn−1
h )

(Young, (20), FE inv. ineq.)

.δn
(
(δn + h) + hq−1(δn + h)2

)
‖nh · ∇vh‖O(Γn−1

h ) + δn
(
1 + hq−1(δn + h)

)
‖vh‖2Γn−1

h

(Thm. 5)

.δn
(

(δn + h)‖nh · ∇vh‖2O(Γn−1
h )

+ ‖vh‖2Γn−1
h

)
(hq−1 . 1, δn+ h . 1)

Next, we apply (44), ‖v`h‖2Γnh ≤ (1 + c6∆t) ‖vh‖2Γn−1
h

so that we obtain

‖vh‖2Γnh ≤ (1 + c6∆t+ cδn︸ ︷︷ ︸
c7a∆t

)‖vh‖2Γn−1
h

+ c7bδn(δn + h)‖nh · ∇vh‖2O(Γn−1
h )

.

5.3. Stability analysis. For the well-posedness and numerical stability we need some addi-
tional conditions on the discretization parameters. First, we formulate a condition on the time step
size analogously to (7):

(51) ∆t ≤ (4ξh)−1 with ξh := max
n=0,..,N

‖ divΓh
(we − 1

2
we
T )‖L∞(Γh(tn)).

From the definition of ξh and geometrical approximation condition (20), it follows that

(52) ξh ≤ C0,

with some C0 independent of ∆t and h.
For the stability analysis we formulate the following condition on ρn:

(53) ρn ≥ cδc7b‖wN‖∞,In(δn + h),

with c7b as in Lemma 7 (which is a constant independent of ∆t and h). This condition and (24)
imply ρn∆t ≥ c7bδn(δn + h).

With conditions (43) and (53) fulfilled estimate (50) simplifies to

(54) ‖vh‖2Γnh ≤ (1 + c7a∆t)‖vh‖2Γn−1
h

+ ρn∆t‖nh · ∇vh‖2O(Γn−1
h )

, vh ∈ V n−1
h .

For the notation convenience, we introduce the bilinear form,

an(u, v) :=

∫
Γnh

(
1

2
(we

T · ∇Γh
u)v − 1

2
(we

T · ∇Γh
v)u+ (divΓh

(we − 1

2
we
T ))uv

)
ds

+ ν

∫
Γnh

(∇Γh
u) · (∇Γh

v) ds+ ρn

∫
O(Γnh)

(nh · ∇u)(nh · ∇v)dx
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for u, v ∈ H1(O(Γnh)). We estimate an(vh, vh) from below,

an(vh, vh) = ν‖∇Γh
vh‖2Γnh + ((divΓh

(we − 1

2
we
T )vh, vh)Γnh

+ ρn‖nh · ∇vh‖2O(Γnh)

≥ ν‖∇Γh
vh‖2Γnh − ξh‖vh‖

2
Γnh

+ ρn‖nh · ∇vh‖2O(Γnh)

(55)

for any vh ∈ V nh . Using (55) and (51) we check that the bilinear form on the left-hand side of (30)
is positive definite,∫

Γnh

1

∆t
v2
h ds+ an(vh, vh) ≥ 1

2∆t
‖vh‖2Γnh + ν‖∇Γh

vh‖2Γnh + ρn‖nh · ∇vh‖2O(Γnh)(56)

Hence, due to the Lax-Milgram lemma, the problem in each time step of (30) is well-posed.

We next derive an a priori estimate for the finite element solution to (30).

Theorem 8. Assume conditions (26), (28), (43), (51) and (53), then the solution of (30) sat-
isfies the following estimate for ∆t sufficiently small:

(57) ‖unh‖2Γnh+

n∑
k=1

∆t
(
2ν‖∇Γh

ukh‖2Γ0
h
+ρn‖nh·∇ukh‖2O(Γkh)

)
≤ 3

2
exp(c8tn)

(
‖u0

h‖2Γ0
h

+ρ1‖nh·∇u0
h‖2O(Γ0

h)

)
.

with c8 independent of h, ∆t and n.

Proof. We test (30) with vh = unh. This leads us to the identity

1

2∆t
(‖unh‖2Γnh + ‖unh − un−1

h ‖2Γnh ) + an(unh, u
n
h) =

1

2∆t
‖un−1

h ‖2Γnh .

We drop out the second term, use the lower bound (55) and apply (54) and assumption (52)

‖unh‖2Γnh + 2∆tν‖∇Γh
unh‖2Γnh + 2∆tρn‖nh · ∇unh‖2O(Γnh)(58)

≤ ‖un−1
h ‖2Γnh + 2ξh∆t‖unh‖2Γnh

≤ (1 + c7a∆t‖un−1
h ‖2

Γn−1
h

) + ∆tρn‖nh · ∇un−1
h ‖2O(Γn−1

h )
+ 2C0∆t‖unh‖2Γnh

where the constants c7a and C0 are independent of h, ∆t and n. We define c∗ = c7a + 2C0 and sum
up the inequalities for n = 1, . . . , k to get

(1−∆tc∗)‖ukh‖2Γkh + ∆t

k∑
n=1

(
2ν‖∇Γh

unh‖2Γnh + ρn‖nh · ∇unh‖2O(Γnh)

)
≤ ‖u0

h‖2Γn−1 + ρ1‖nh · ∇u0
h‖2O(Γ0

h) + ∆t

k−1∑
n=0

c∗‖unh‖2Γnh .

Finally, we apply the discrete Gronwall inequality with ∆t ≤ (2c∗)−1 to get (57) with c8 = 2c∗.

Now we are ready to devise an error estimate in the energy norm. The proof of the error estimate
combines the arguments we used for stability analysis in section 5.3 with geometric and interpolation
error estimates. The geometric and interpolation error estimates are treated at each time instances
tn for ‘stationary’ surfaces Γnh and so the developed analysis (cf. [40, 34]) is of help. We start with
consistency estimate for (30).

5.4. Consistency estimate. While stability analysis dictated us the lower bound (53) for ρn,
we shall see that the consistency and error analysis leads to the following natural upper bound:

(59) ρn . (h+ δn)−1.

We assume (59) for the rest of section 5. Furthermore, in the consistency and error bounds we shall
need estimates on derivatives of the solution u in the strip O(G). By differentiating the identity
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u(x, t) = u(p(x), t), (x, t) ∈ O(G), k ≥ 0 times one finds that for Ck+1-smooth manifold G the
following bound holds:

(60) ‖u‖Wk,∞(O(G)) . ‖u‖Wk,∞(G).

With a little bit more calculations, see, for example, [40, Lemma 3.1], one also finds

(61) ‖u‖Hk(Uε(Γ(t))) . ε
1
2 ‖u‖Hk(Γ(t))

for t ∈ [0, T ] and any such ε > 0 that Uε(Γ(t)) ⊂ O(Γ(t)), where Uε(Γ(t)) is the ε-neighborhood in
R3.

We next observe that the smooth solution un = u(tn) of (2) satisfy the identities

(62)

∫
Γnh

(
un − un−1

∆t

)
vh ds+ an(un, vh) = EnC(vh), ∀ vh ∈ V nh ,

where EnC(vh) collects consistency terms due to geometric errors and time derivative approximation,
i.e.

EnC(vh) =

∫
Γnh

(
un − un−1

∆t

)
vh dsh −

∫
Γn
ut(tn)v`h ds︸ ︷︷ ︸

I1

+ ρn

∫
O(Γnh)

((nh − n) · ∇un)(nh · ∇vh)dx︸ ︷︷ ︸
I2

+
1

2

∫
Γnh

we
T · ∇Γh

unvh −we
T · ∇Γh

vhu
n dsh −

1

2

∫
Γn

w · ∇unv`h −w · ∇v`hun ds︸ ︷︷ ︸
I3,a

+

∫
Γnh

divΓh
(we − 1

2
we
T )unvh dsh −

∫
Γn

divΓ(w − 1

2
wT )unv`h ds︸ ︷︷ ︸

I3,b

+ ν

∫
Γnh

∇Γh
un · ∇Γh

vh dsh − ν
∫

Γn
∇Γu

n · ∇Γv
`
h ds︸ ︷︷ ︸

I4

.

We give the estimate for consistency terms in the following lemma.

Lemma 9. Assume u ∈W 2,∞(G), then consistency error has the bound

(63) |EnC(vh)| . (∆t+ hq)‖u‖W 2,∞(G)

(
‖vh‖Γnh + ν

1
2 ‖∇Γvh‖Γnh + ρ

1
2
n‖(nh · ∇vh)‖O(Γnh)

)
.

Proof. We treat EnC(vh) term by term, starting with I1:

I1 = −
∫

Γnh

∫ tn

tn−1

t− tn−1

∆t
utt dt vh ds+

∫
Γnh

ut(tn)vh ds−
∫

Γn
ut(tn)v`h ds.

We have∣∣∣∣∣−
∫

Γnh

∫ tn

tn−1

utt
t− tn−1

∆t
dt vh ds

∣∣∣∣∣ ≤ 1

2
∆t‖utt‖∞,O(G)‖vh‖L1(Γnh) . ∆t‖u‖W 2,∞(G)‖vh‖Γnh ,

and using uet (x, t) = ut(p(x), t)− φ(x, t)nt · ∇Γu(p(x), t) (cf. (6.8) in [33]),∫
Γnh

ut(tn)vh dsh −
∫

Γn
ut(tn)v`h ds =

∫
Γnh

((ut ◦ p)(1− µh)− φnt · ∇Γu ◦ p) vh dsh

. hq+1(‖ut‖Γn + ‖∇Γu‖Γn)‖vh‖Γnh ,
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where we used (22), ‖φ‖∞,Γnh . hq+1, and µnh(x)dsh(x) = ds(p(x)), x ∈ Γnh, with ‖1 − µh‖∞,Γnh .
hq+1; see, e.g., [40]. We now turn to estimating the second term,

|I2| ≤ ρn‖(nh − n) · ∇un‖O(Γnh)‖nh · ∇vh‖O(Γnh)

. ρnh
q‖∇un‖O(Γnh)‖nh · ∇vh‖O(Γnh) . ρnh

q(δn + h)
1
2 ‖∇Γu

n‖Γnh‖nh · ∇vh‖O(Γnh).

In the last inequality we used (61). Recalling the condition (59) for ρn, we find

|I2| . hqρ
1
2
n‖∇Γu

n‖Γnh‖nh · ∇vh‖O(Γnh).

The consistency terms I3,a, I3,b, I4 are standard in TraceFEM on steady surfaces. One has the
bounds, see [17, Lemma 7.4] or [40, Lemma 5.5],

|I3,a|+ |I4| . hq+1
(
‖∇Γu

n‖Γn‖vh‖Γnh + ‖∇Γu
n‖Γn‖∇Γh

vh‖Γnh
)
.

We fix t = tn and skip the dependence on time in our notation up to the end of the proof. To handle
the term with divergence, introduce orthogonal projectors,

P(x) := I− n(x)n(x)T , for x ∈ O(Γn),

Ph(x) := I− nh(x)nh(x)T , for x ∈ Γnh.

For the surface divergence one has the following representation:

(64) divΓ w = tr(∇Γw) = tr(P∇w) and divΓh
w = tr(∇Γh

w) = tr(Ph∇w).

Take x ∈ Γh, not lying on an edge. Using ∇u(x) = (I− φ(x)H)∇Γu(p(x)), x ∈ O(Γn), we obtain

divΓh
we(x) = tr(Ph∇we(x)) = tr (Ph(I− φ(x)H)∇Γw(p(x)))

= tr (P∇Γw(p(x))) + tr ((Ph −P)∇Γw(p(x)))− φ(x) tr (PhH∇Γw(p(x)))

= divΓ w(p(x)) + tr ((Ph −P)∇Γw(p(x)))− φ(x) tr (PhH∇Γw(p(x))) .

Thanks to (22) and (23), we bound the last two terms at the right-hand side

|Ph −P| . hq, |φ(x)PhH| . hq+1.

We proved the estimate |divΓh
we− divΓ w ◦p| . hq on Γnh. With the help of this estimate and the

similar one with w replaced by wT , we bound I3,b term,

|I3,b| =

∣∣∣∣∣
∫

Γnh

(
divΓh

(we − 1

2
we
T )− µh divΓ(w − 1

2
wT ) ◦ p

)
unvh dsh

∣∣∣∣∣
. hq‖un‖Γn‖vh‖Γnh .

Remark 5.1. The h-dependence of the consistency estimate in (63) is due to the geometric
errors. Increasing the accuracy of the surface recovery leads to better consistency in (63). The order
of the estimate can be improved with respect to h if more information about Γ is available. For
example, if one can use (divΓ(w− 1

2wT ))e instead of divΓh
(we − 1

2we
T ) on Γh, then the O(hq) term

on the right-hand side of (63) is replaced by O(hq+1).

5.5. Error estimate in the energy norm. Denote the error function En = un − unh, En ∈
H1(O(Γnh)). From (30) and (62) we get the error equation,

(65)

∫
Γnh

(
En − En−1

∆t

)
vh ds+ an(En, vh) = EnC(vh), ∀ vh ∈ V nh ,

We let unI ∈ V nh be an interpolant for un in O(Γnh); we assume un sufficiently smooth so that the
interpolation is well-defined. Following standard lines of argument, we split En into finite element
and approximation parts,

En = (un − unI )︸ ︷︷ ︸
en

+ (unI − unh)︸ ︷︷ ︸
enh

.

16



Equation (65) yields

(66)

∫
Γnh

(
enh − e

n−1
h

∆t

)
vh ds+ an(enh, vh) = EnI (vh) + EnC(vh), ∀ vh ∈ V nh ,

with the interpolation term

EnI (vh) = −
∫

Γnh

(
en − en−1

∆t

)
vh dsh − an(en, vh).

We give the estimate for interpolation terms in the following lemma.

Lemma 10. Assume u ∈Wm+1,∞(G) and G is sufficiently smooth, then it holds

(67) |EnI (vh)| . hm ‖u‖Wm+1,∞ (‖vh‖Γnh + ν
1
2 ‖∇Γhvh‖Γnh ).

Proof. We need Hansbo’s trace inequality [20],

(68) ‖v‖S∩Γnh
≤ c(h− 1

2 ‖v‖S + h
1
2 ‖∇v‖S), v ∈ H1(S), S ∈ T Γ

h ,

with some c independent of v, T , h, Γnh. Under mild assumptions on the resolution of the smooth
surface Γnh by the mesh (cf. [40, Assumption 4.1(A2)]) the inequality has been proven in [40, Lemma
4.3]. We use interpolation properties of polynomials and their traces. In particular,

(69) min
vh∈V h

(
‖ve − vh‖Γnh + h‖∇(ve − vh)‖Γnh

)
. hm+1‖v‖Hm+1(Γn) for v ∈ Hm+1(Γn);

see, e.g., [17, 40, 34]. With the help of (68) we treat the first term in EnI (vh),∣∣∣∣∣
∫

Γnh

(
en − en−1

∆t

)
vh dsh

∣∣∣∣ ≤ ∥∥∥∥en − en−1

∆t

∥∥∥∥
Γnh

‖vh‖Γnh

.
(
h−

1
2 ∆t−1‖en − en−1‖OΓ(Γnh) + h

1
2 ∆t−1‖∇(en − en−1)‖OΓ(Γnh)

)
‖vh‖Γnh .

(70)

Now, using condition (28) we handle the first term on the right-hand side of (70),

‖en − en−1‖2OΓ(Γnh) = ‖e(tn)− e(tn−1)‖2OΓ(Γnh) =

∥∥∥∥∥
∫ tn

tn−1

et(t
′) dt′

∥∥∥∥∥
2

OΓ(Γnh)

≤ ∆t

∫ tn

tn−1

‖et(t′)‖2OΓ(Γnh) dt
′ . |∆t|2 h2m sup

t∈[tn−1,tn]

‖ut‖2Hm(OΓ(Γnh)) (Cauchy-Schwarz and (69))

. |∆t|2 h2m+1 sup
t∈[tn−1,tn]

‖ut‖2Hm(Γnh) . |∆t|
2 h2m+1‖u‖2Wm+1,∞(G). (by (61))

We estimate the second term on the right-hand side of (70), using similar arguments,

‖∇(en − en−1)‖OΓ(Γnh) . |∆t|2 h2m−1‖u‖2Wm+1,∞(G).

We handle the term an(en, vh) using the Cauchy-Schwarz inequality and interpolation properties of
vh in the straight-forward way. This leads to the estimate

|an(en, vh)| . hm‖u‖Hm+1(Γn)(‖vh‖Γnh + ν
1
2 ‖∇Γhvh‖Γnh ).

We summarize the above bounds into the estimate of the interpolation term as in (67).

Now we are prepared to prove the main result of the paper. Let u0
h = u0

I ∈ V 0
h be a suitable

interpolant to u0 ∈ O(Γ0
h).
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Theorem 11. Assume (20)–(21b), (26)–(28), (43), (51), (53), and (59), and ∆t is sufficiently
small, u is the solution to (1), u ∈ Wm+1,∞(G), m ≥ 1, G is sufficiently smooth. For unh, n =
1, . . . , N , the finite element solution of (30), and En = unh − un the following error estimate holds:

(71) ‖En‖2Γnh +∆t

n∑
k=1

(
ν‖∇Γh

Ek‖2Γkh + ρn‖nh · ∇Ekh‖2O(Γkh)

)
. exp(c11tn)R(u)(∆t2 +h2 min{m,q}),

with R(u) := ‖u‖2Wm+1,∞(G) and c11 independent of h, ∆t, n and of the position of the surface over
the background mesh.

Proof. The arguments largely repeat those used to show the stability result in Theorem 8 and
involve estimates from Lemmas 9 and 10 to bound the arising right-hand side terms. We set vh =
2∆tenh in (66). This gives

‖enh‖2Γnh − ‖e
n−1
h ‖2Γnh + ‖enh − en−1

h ‖2Γnh + 2∆tan(enh, e
n
h) = 2∆t(EnI (eh) + EnC(eh))

Dropping the third term, using the lower bound (55) for an and estimating ‖en−1
h ‖2Γnh with (54) yields

‖enh‖2Γnh + 2∆tν‖∇Γh
enh‖2Γnh + 2∆tρn‖nh · ∇enh‖2O(Γnh)

≤ (1 + c∗7∆t)‖en−1
h ‖2Γn−1 + ∆tρn‖nh · ∇en−1

h ‖2O(Γn−1
h )

+ 2ξh∆t‖enh‖2Γnh + 2∆t(EnI (eh) + EnC(eh)).

We recall assumption (52) and the defintion c∗ = c∗7 + 2C0 (cf. the proof of Theorem 8) to obtain

(72) (1− c∗∆t)‖enh‖2Γnh + 2∆tν‖∇Γh
enh‖2Γnh + 2∆tρn‖nh · ∇enh‖2O(Γnh)

≤ (1 + c∗∆t)‖en−1
h ‖2Γn−1 + ∆tρn‖nh · ∇en−1

h ‖2O(Γn−1
h )

+ 2∆t(EnI (eh) + EnC(eh)).

To estimate the interpolation and consistency terms, we apply Young’s inequality to the right-hand
sides of (63) and (67) yielding

2∆tEnC(eh) ≤ c∆t(∆t2 + h2q)‖u‖2W 2,∞(G) +
∆t

2

(
‖enh‖2Γnh + ν‖∇Γhe

n
h‖2Γnh + ρn‖(nh · ∇enh)‖2O(Γnh)

)
,

2∆tEnI (eh) ≤ c∆t h2m‖u‖2Wm+1,∞(G) +
∆t

2

(
‖enh‖2Γnh + ν‖∇Γhe

n
h‖2Γnh

)
,

with a constant c independent of h, ∆t, n and of the position of the surface over the background
mesh. Substituting this in (72) and summing up the resulting inequalities for n = 1, . . . , k and
noting e0

h = 0 in O(Γ0
h) we get

(1− (c∗ + 1)∆t)‖ekh‖2Γkh + ∆t

k∑
n=1

(
ν‖∇Γh

enh‖2Γnh + ρn‖nh · ∇enh‖2O(Γnh)

)
≤ ∆t

k−1∑
n=0

c∗‖enh‖2Γnh + c ‖u‖Wm+1,∞(∆t2 + h2q + h2m).

We apply the discrete Gronwall inequality with ∆t ≤ (2 + 2c∗)−1 to get

‖ekh‖2Γkh +

k∑
n=1

∆t
(
ν‖∇Γh

enh‖2Γnh + ρn‖nh · ∇enh‖2O(Γnh)

)
(73)

. exp(c11tk)‖u‖Wm+1,∞(G)(∆t
2 + h2 min{m,q}) =: exp(c11tk)Qe,

with c11 = 2(c∗ + 1). Now the triangle inequality, standard FE interpolation properties, (69) and
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(59) give

‖Ek‖2Γkh +

k∑
n=1

∆t
(
ν‖∇Γh

En‖2Γnh + ρn‖nh · ∇En‖2O(Γnh)

)
≤ Qe + ‖ek‖2Γkh +

k∑
n=1

∆t
(
ν‖∇Γh

en‖2Γnh + ρn‖nh · ∇en‖2O(Γnh)

)
. Qe + ‖u‖Hm+1(Γk)h

2m (1 + ρn(δn + h))︸ ︷︷ ︸
.1

.

This completes the proof.

Remark 5.2 (Extension of the analysis to BDF2). The method is extendable to higher order
time stepping methods. To keep the analysis manageable, we restricted to the backward Euler
discretization. Here, we briefly summarize what needs to be considered for an extension of the
analysis to higher order schemes. We consider the BDF2 schemes here. Obviously the finite difference

stencil for the time derivative is changed from un−un−1

∆t to 3un−4un−1+un−2

2∆t in the semi-discrete
method in (5),(6) and for the fully discrete method in (30). Accordingly, the layer width of the
extension has be increased so that Γn ⊂ O(Γn−1)∩O(Γn−2) and Γnh ⊂ O(Γn−1

h )∩O(Γn−1
h ). To this

end, we have to change δn in (24) to δn = 2cδ supt∈[tn−2,tn] ‖wN‖L∞(Γ(t))∆t. Further, in the proof
of the coercivity in the (spatially) continuous and discrete setting we have to change the time step
restrictions (7) and (51) according to the changed coefficient in the BDF formula. The Gronwall-type
arguments in section 3.3 and in Theorem 8 have to be replaced with corresponding versions for the
BDF scheme. To handle the time derivative terms, a special norm should be used [19], which is a
linear combination of L2 surface norm at n and n−1 time steps. Finally, the consistency analysis in
section 5.4 can then be improved, specifically the term I1 leading to a higher order (in ∆t) estimate
in Lemma 9 and Theorem 11.

6. Algebraic stability. In every time step we have to solve a linear system of the form

Ax = f with A ∈ RN×N , f ,x ∈ RN ,

where N = dim(V nh ), A and f are the matrix and vector corresponding to the involved bilinear form
and the right-hand side linear form, whereas x is the solution vector. We split the left-hand side
bilinear form into its symmetric and skew-symmetric part and define

An(u, v) :=Bn(u, v) + Cn(u, v)
(

=

∫
Γnh

1

∆t
uv ds+ an(u, v)

)
, u, v ∈ V nh ,(74a)

Bn(u, v) :=

∫
Γnh

(
1

∆t
+ divΓh

(we − 1

2
we
T ))uv ds(74b)

+ ν

∫
Γnh

(∇Γh
u) · (∇Γh

v) ds+ ρn

∫
O(Γnh)

(nh · ∇u)(nh · ∇v)dx, u, v ∈ V nh ,

Cn(u, v) :=

∫
Γnh

1

2
(we

T · ∇Γh
u)v − 1

2
(we

T · ∇Γh
v)u ds, u, v ∈ V nh .(74c)

Correspondingly we denote by B and C ∈ RN×N the matrices to the bilinear forms Bn and Cn.
To bound the spectral condition number of A we use the following result from the literature:

Lemma 12. With A ∈ RN×N , B = 1
2 (A + AT ) and C = 1

2 (A−AT ), for the spectral condition
number of A there holds

(75) κ(A) ≤ λmax(B) + ρn(C)

λmin(B)

where ρn(·) denotes the spectral radius and λmax(B) and λmin(B) are the largest and smallest eigen-
values of the symmetric and positive definite matrix B.
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Proof. A proof is given in [12, Theorem 1].

To derive bounds for κ(A) we derive bounds for ρ(C) and λmin(B) and λmax(B) in the next two
lemmas.

Lemma 13. There holds

(76) ρn(C) . ‖w‖∞hd−2.

Proof. We note that C is skew-symmetric and hence a normal matrix. Thus, we have

(77) ρn(C) = max
x∈CN

xTCx

xTx
.

Now let x ∈ Cn and v be the corresponding finite element function in Vh + iVh (where i is the
imaginary unit), then we have

(78) xTCx = Cn(v, v) ≤ ‖w‖∞‖∇Γv‖Γh‖v‖Γh . ‖w‖∞h−2‖v‖O(Γnh) ' ‖w‖∞hd−2‖x‖22,

where we made use of inverse inequalities and ‖v‖O(Γnh) ' hd‖x‖22.

Lemma 14. Under conditions (26) and (51), there holds

λmax(B) . hd−2

(
h

∆t
+
ν

h
+ ρn

)
,(79a)

λmin(B) & hd
(

(δn + h)

(
∆t+

δn + h

ρn

))−1

.(79b)

Proof. Estimate (79a) follows with (51), ∆t < (4ξh)−1, standard FE inverse and trace inequali-
ties similar to (78). Then again, with (56) and Theorem 5 we easily obtain (79b) with

hd‖x‖22 ' ‖u‖2O(Γnh) . (δn + h)‖u‖2Γnh + (δn + h)2‖nh · ∇u‖2O(Γnh)(80)

≤ (δn + h) max
{

∆t,
δn + h

ρn

}
·Bn(u, u) ≤ (δn + h)

(
∆t+

δn + h

ρn

)
·Bn(u, u)︸ ︷︷ ︸

=xTBx

.

Corollary 15. The estimates in Lemma 13 and Lemma 14 plugged into Lemma 12 result in
the following condition number bound:

(81) κ(A) .
δn + h

h︸ ︷︷ ︸
K1

( 1

∆t
+

ν

h2
+
‖w‖∞
h︸ ︷︷ ︸

K2,a

+
ρn
h︸︷︷︸
K2,b

)(
∆t+

δn + h

ρn

)
︸ ︷︷ ︸

K3

Remark 6.1 (Discussion of Corollary 15). Let us discuss the terms on the r.h.s. of (81). The
first term, K1 describes the layer thickness in terms of elements. We note that this term is bounded
by a constant for ∆t . h. Otherwise the condition number will increase with an increasing (element)
layer thickness. In the second term, K2 = K2,a + K2,b, we first note that the latest contribution
K2,b = ρn

h can be absorbed by ν
h2 if condition (59) is fulfilled and ν = O(1). For the last term, K3,

we can use condition (53) to bound K3 . 1. Assume ∆t is the dominating summand in K3. Then,

there holds K2 ·K3 ' 1 + ν∆t
h2 + ‖w‖∞∆t

h which is the usual condition number scaling known from
fitted convection diffusion equation discretizations on stationary domains which is the best that we
can expect in our setting. We conclude that it is desirable to choose ρn sufficiently large so that
ρn & δn+h

∆t . In view of (59) this however is only possible if ∆t & h2. Next, we discuss possible
choices for ρn and resulting scalings of the condition number.

6.1. Choices for ρn. We want to make a choice for ρn based on the stability, consistency and
conditioning analysis. For the ease of presentation we set ν, ‖w‖∞ = O(1) in this paragraph and
recall δn ' ‖wN‖∞,In∆t. From the stability analysis and consistency analysis we have conditions
(53) and (59), yielding the bounds

(δn + h) . ρn . (δn + h)−1.(82)

We consider three scalings: ρn ∼ 1 and the limit cases ρn ∼ (δn + h)−1 and ρn ∼ (δn + h). In all
these three cases we have K2,b . K2,a, i.e. K2 ' K2,a.
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Table 1
L2(H1)- and L2(L2)-norm error in Experiment 1 with backward Euler and ρn = 4.

L2(H1)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

∆t = 1/8 9.3· 10−1 6.1· 10−1 3.8· 10−1 2.4· 10−1

∆t = 1/32 9.2· 10−1 6.3· 10−1 3.5· 10−1 1.8· 10−1

∆t = 1/128 9.2· 10−1 6.4· 10−1 3.5· 10−1 1.8· 10−1

∆t = 1/512 9.2· 10−1 6.4· 10−1 3.5· 10−1 1.8· 10−1

L2(L2)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

1.9· 10−1 9.9· 10−2 1.2· 10−1 1.4· 10−1

2.7· 10−1 1.2· 10−1 3.2· 10−2 3.5· 10−2

3.0· 10−1 1.4· 10−1 2.7· 10−2 1.0· 10−2

3.1· 10−1 1.4· 10−1 3.0· 10−2 7.4· 10−3

1. Scaling ρn ∼ δn + h. There holds K3 ' 1 so that the best bound is κ(A) . K1K2,a. For the
special cases ∆t ∼ h and ∆t ∼ h2, this gives κ(A) . h−2

2. Scaling ρn ∼ 1. Now, we have K3 ' ∆t+h so that the best bound is κ(A) . K1K2,a(∆t+h).
This is already an improvement over the previous scaling as it predicts κ(A) . h−1 for the special
cases ∆t ∼ h and ∆t ∼ h2.

3. Scaling ρn ∼ (δh + h)−1. Finally, we have K3 ' ∆t + h2 so that the best bound is κ(A) .
K1K2,a(∆t + h2). For the cases ∆t ∼ h this gives the same prediction as in the previous scaling,
κ(A) . h−1. However, for ∆t ∼ h2 we have the optimal bound κ(A) . 1.

In the numerical experiments below we consider two choices

ρn ∼ 1,(83a)

ρn ∼
ν

δh + h
+ ‖w‖∞,(83b)

where the latter scaling is motivated by scaling arguments w.r.t. w and ν.

7. Numerical experiments. In this section, we will show some numerical experiments for
the proposed method. The results demonstrate the accuracy of the stabilized TraceFEM and verify
the analysis results on error estimates and condition number bounds.

All implementations are done in the finite element package DROPS [8]. We applied both the
backward Euler scheme and the BDF2 scheme to approximate the time derivative. At each time step,
we assemble the stiffness matrix and the right-hand side by numerical integration over the discrete
surfaces Γnh which is obtained by piecewise linear interpolation φnh of the exact level set function φn,
Γnh = {x ∈ R3 : φnh(x) = 0}, i.e. q = 1 in (20). For the disretization in space we consider piecewise
linears, i.e. k = 1 in (19). The computational domain in all considered examples is Ω = [−2, 2]3

which contains Γ(t) (and Γh(t)) at all times t ∈ [0, T ]. To arrive at a computation mesh, we use
a combination of uniform subdivision into cubes with side length h and a Kuhn subdivision into 6
tetrahedra. This results in the shape regular background triangulation Th. The temporal grid is
chosen uniform in all experiments, tn = n∆t with ∆t = T

N . For the narrow band zone we choose
cδ = 2.5 in (24) which is sufficient for the backward Euler and the BDF2 scheme. All linear systems
are solved using GMRES with a Gauss–Seidel preconditioner to a relative tolerance of 10−15.

In the experiments we are interested in the L2(0, T ;H1(Γh(t)) and L2(0, T ;L2(Γh(t)) surface
norms for the error which we approximate using the trapezoidal quadrature rule in time. To inves-
tigate the rates of convergence we apply successive refinements in space and in time.

For the different test problems, below, we apply the backward Euler scheme and the BDF2
scheme. For reasons of compactness, only in the first experiment we apply the two different scalings
for ρn, cf. (83), where we choose the constants so that ρn = 4 and ρn = ν

δh+h + ‖w‖∞ and evaluate

errors as well as condition numbers. In the other experiments we only consider ρn = ν
δh+h + ‖w‖∞.

Experiment 1. We consider the transport–diffusion equation (1) on a unit sphere Γ(t) moving
with the constant velocity w = (0.2, 0, 0) for t ∈ [0, T ], T = 1. The level-set function φ,

φ = |x− c(t)| − 1,

with c(t) = tw describes a sphere with radius 1 that moves along w. We notice that φ is a signed
distance function. The initial data is given by

Γ0 := {x ∈ R3 : |x| = 1}, u(x, 0) = 1 + x1 + x2 + x3.
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Table 2
L2(H1)- and L2(L2)-norm error in Experiment 1 with backward Euler and ρn = ‖w‖∞ + ν(δh + h)−1.

L2(H1)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

∆t = 1/8 9.5· 10−1 6.0· 10−1 3.8· 10−1 2.5· 10−1

∆t = 1/32 9.2· 10−1 6.1· 10−1 3.5· 10−1 1.9· 10−1

∆t = 1/128 9.1· 10−1 6.2· 10−1 3.5· 10−1 1.8· 10−1

∆t = 1/512 9.1· 10−1 6.2· 10−1 3.6· 10−1 1.8· 10−1

L2(L2)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

1.3· 10−1 1.0· 10−1 1.2· 10−1 1.3· 10−1

1.8· 10−1 1.0· 10−1 3.1· 10−2 3.3· 10−2

2.0· 10−1 1.2· 10−1 2.8· 10−2 8.3· 10−3

2.0· 10−1 1.2· 10−1 3.1· 10−2 7.2· 10−3

Table 3
Maximum condition number in Experiment 1 for two different choices for ρn.

κ(A) for ρn = 4

h = 1/2 h = 1/4 h = 1/8 h = 1/16

∆t = 1/2 5.7· 101 1.1· 102 3.3· 102 1.8· 103

∆t = 1/4 6.2· 101 9.0· 101 1.8· 102 6.3· 102

∆t = 1/8 7.2· 101 7.7· 101 1.6· 102 3.4· 102

∆t = 1/16 1.1· 102 8.3· 101 1.6· 102 3.0· 102

∆t = 1/32 1.9· 102 1.0· 102 1.4· 102 2.9· 102

∆t = 1/64 3.5· 102 1.5· 102 1.5· 102 2.9· 102

∆t = 1/128 6.9· 102 2.8· 102 1.8· 102 2.9· 102

κ(A) for ρn = ‖w‖∞+ ν(δh + h)−1

h = 1/2 h = 1/4 h = 1/8 h = 1/16

∆t = 1/2 1.8· 102 2.4· 102 4.8· 102 2.1· 103

∆t = 1/4 1.9· 102 1.7· 102 2.3· 102 7.4· 102

∆t = 1/8 2.3· 102 1.7· 102 1.8· 102 3.3· 102

∆t = 1/16 3.6· 102 1.8· 102 1.7· 102 2.1· 102

∆t = 1/32 6.7· 102 2.2· 102 1.7· 102 1.7· 102

∆t = 1/64 1.3· 103 3.3· 102 1.7· 102 1.6· 102

∆t = 1/128 2.6· 103 6.1· 102 2.0· 102 1.7· 102

One easily checks that the exact solution is given by u(x, t) = 1 + (x1 +x2 +x3− 0.2t) exp(−2t) and
that ξ = 0.1 in (7). For sufficiently small h we can assume that ξh ≈ 0.1 (cf, (51)) which ensures
unique solvability of every time step for ∆t ≤ 2.

The error measures for the backward Euler method are shown in Tables 1 and Table 2 for the
different scalings for ρn. In both cases we observe an O(h)-convergence in the L2(H1)-norm. The
initial temporal resolution is already so high that the spatial error is always dominating and we
do not observe the linear convergence in time, yet. However, for the L2(L2)-norm we observe a
convergence with h2 + ∆t. The impact of the scaling of ρn on the results is very small which can
be seen as some robustness of the method (in view of accuracy) with respect to the stabilization
parameter ρn.

The maximal condition numbers for each simulation are shown in Table 3 for the different
scalings. We first discuss ρn = 4. For fixed ∆t = 1/2, we observe that the condition number
increases likeO(h−2) which is slightly better than predicted. For fixed h = 1/2, the condition number
increases with order O(∆t−1). When we refine h and ∆t simultaneously, we observe the predicted
O(h−1) behavior for both cases with ∆t ∼ h and ∆t ∼ h2. For the scaling ρn = ‖w‖∞ + ν

δh+h we
observe slightly higher condition numbers, the same behavior for fixed h or fixed ∆t, but a better
scaling for ∆t ∼ h and ∆t ∼ h2. For ∆t ∼ h the condition number only grows slowly with h−1 (not
even linear as predicted) and is constant for ∆t ∼ h2.

Finally, we do experiments for the BDF2 scheme, cf. Remark 5.2. In this case, we expect that
the method is of O(∆t2) accuracy. This is clearly shown in Table 4 when we refine both h and ∆t
(with ∆t ∼ h). In these tests, we only considered ρn = 4. We notice that the system matrix is
different from that of the backward Euler scheme only by a different coefficient in front of the mass
matrix. Therefore, the algebraic stability of the BDF2 scheme is the same as that of the backward
Euler scheme, and is covered by the analysis in Section 6. These results indicate that the stabilized
TraceFEM method can be generalized to higher order time discretization schemes.

Experiment 2. The setup of this experiment is similar to the previous one. The transport velocity
is given by a standing vortex, w = (−0.2πx2, 0.2πx1, 0) for t ∈ [0, T ], T = 1. Initially, the sphere
with radius 1 is located off the center. The initial data is

Γ0 := {x ∈ R3 : |x− x0| = 1}, u|t=0 = 1 + (x1 − 0.5) + x2 + x3,

with x0 = (0.5, 0, 0). As the level-set function we choose

φ = (x1 − 0.5 cos 0.2πt)2 + (x2 − 0.5 sin 0.2πt)2 + x2
3 − 1.
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Table 4
L2(H1)- and L2(L2)-norm error in Experiment 1 with BDF2 scheme and ρn = 4.

L2(H1)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

∆t = 1/8 1.0 6.8· 10−1 3.7· 10−1 1.9· 10−1

∆t = 1/16 9.8· 10−1 6.7· 10−1 3.6· 10−1 1.8· 10−1

∆t = 1/32 9.5· 10−1 6.5· 10−1 3.6· 10−1 1.8· 10−1

∆t = 1/64 9.3· 10−1 6.5· 10−1 3.5· 10−1 1.8· 10−1

L2(L2)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

3.2· 10−1 1.6· 10−1 4.3· 10−2 2.8· 10−2

3.1· 10−1 1.5· 10−1 3.3· 10−2 1.3· 10−2

3.1· 10−1 1.5· 10−1 3.1· 10−2 8.2· 10−3

3.1· 10−1 1.5· 10−1 3.1· 10−2 7.6· 10−3

Table 5
L2(H1)- and L2(L2)-norm error in Experiment 2 with backward Euler and ρn = ‖w‖∞ + ν(δh + h)−1.

L2(H1)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

∆t = 1/8 1.0 6.5· 10−1 3.8· 10−1 3.4· 10−1

∆t = 1/32 9.9· 10−1 6.5· 10−1 3.5· 10−1 1.8· 10−1

∆t = 1/128 9.9· 10−1 6.6· 10−1 3.5· 10−1 1.8· 10−1

∆t = 1/512 10.0· 10−1 6.6· 10−1 3.5· 10−1 1.8· 10−1

L2(L2)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

2.7· 10−1 1.4· 10−1 1.5· 10−1 2.1· 10−1

2.9· 10−1 1.1· 10−1 4.2· 10−2 4.0· 10−2

3.1· 10−1 1.2· 10−1 3.2· 10−2 1.1· 10−2

3.2· 10−1 1.2· 10−1 3.4· 10−2 8.4· 10−3

which is not a signed distance function. Now w revolves the sphere around the center of the domain
without changing its shape. One checks that the exact solution to (1) is given by

u(x, t) = (x1(cos(0.2πt)− sin(0.2πt)) + x2(cos(0.2πt) + sin(0.2πt)) + x3 + 0.5) exp(−2t).

and that there hold the bounds ξ ≤ 0.6 and ‖wN‖∞ ≤ π
10 . Hence, for h sufficiently small ∆t ≤ 0.4

ensures unique solvability in every time step.
The numerical results are similar to those in Experiment 1. For simplicity, we show only the

errors for the backward Euler scheme with ρn = ‖w‖∞+ ν
δh+h in Table 5. If one refines both ∆t and

h with constraint ∆t ∼ h2, the first order of convergence in the surface L2(H1)-norm and the second
order in the surface L2(L2)-norm with respect to h are again observed. This example demonstrates
that the numerical method works well even if the level-set function is not a signed distance function.

Experiment 3. In this experiment, we consider a shrinking sphere and solve (1) with a source term
on the right-hand side. The bulk velocity field is given by w = − 3

4e
−t/2n, for t ∈ [0, T ], T = 0.5.

Here n is the unit outward normal on Γ(t). Γ0 is the sphere with radius r0 = 1.5. The level-set
function is chosen as a signed distance function φ = |x| − r(t), with r(t) = r0e

−t/2. One computes
ξ = −1 and ‖wN‖∞ = 3

4 and with the right-hand side f(x, t) = (−1.5et + 16
3 e

2t)x1x2x3. the exact
solution u(x, t) = (1 +x1x2x3)et. Table 6 shows the error norms for various time steps ∆t and mesh
sizes h. The results are consistent with the previous experiments and our analysis.

Experiment 4. Additionally, we consider a problem where two initially separated spheres merge
to only surface. The numerical results are similar to that by the method based on a fast matching
extension in [39], i.e. a stable numerical solution. This indicates that proposed method is robust
also problems with topology changes (which is not covered by our numerical analysis).

8. Conclusions and open problem. In this paper we introduced a new numerical method
for PDEs for evolving surfaces on the example of a scalar transport diffusion equation. The main
feature of the method is its simplicity. With the help of the stabilization which also provides a
meaningful extension, standard time integration methods based on finite differences can be applied
and combined with a TraceFEM for the spatial discretization. The two components, time and space
discretizations can be exchanged so that higher order in space and/or in time methods can be used,
if desired (and available). Besides the introduction of the method, we carried out a careful a priori
error analysis yielding optimal order estimates and reasonable condition number bounds. For the
accessibility of the paper we made several restrictions and simplifications. We mention aspects where
we think that an extension of our results beyond these restrictions is worth pursuing.

The geometry in the analysis part of the paper is always described by a level set function which
has the signed distance property. We made this assumption as it simplified the - still technical
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Table 6
L2(H1)- and L2(L2)-norm error in Experiment 3 with backward Euler and ρn = ‖w‖∞ + ν(δh + h)−1.

L2(H1)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

∆t = 1/8 9.3· 10−1 6.0· 10−1 3.4· 10−1 2.1· 10−1

∆t = 1/32 9.2· 10−1 6.1· 10−1 3.3· 10−1 1.7· 10−1

∆t = 1/128 9.2· 10−1 6.2· 10−1 3.3· 10−1 1.7· 10−1

∆t = 1/512 9.2· 10−1 6.2· 10−1 3.3· 10−1 1.7· 10−1

L2(L2)-norm of the error

h = 1/2 h = 1/4 h = 1/8 h = 1/16

1.5· 10−1 8.5· 10−2 9.2· 10−2 1.1· 10−1

2.0· 10−1 7.6· 10−2 2.7· 10−2 2.5· 10−2

2.2· 10−1 8.6· 10−2 2.2· 10−2 7.1· 10−3

2.2· 10−1 8.8· 10−2 2.4· 10−2 5.8· 10−3

enough - analysis. However, we believe that this assumption could be replaced with the much
milder assumption c ≤ ‖∇φ‖ ≤ c−1 for some 0 < c < 1 in the vicinity of the surface.

The exponential growth in the a priori error analysis is due to the divergence term in (1) which is
not sign definite. For a non-negative divergence or strong diffusion the exponential growth vanishes
which can be used for improved stability and error bounds, cf. Remark 3.1.

Often practically relevant transport–diffusion equations are transport dominated. In these cases
additional convection stabilizations may be desired. For stationary surfaces this can be dealt with a
streamline–diffusion–type stabilization for TraceFEM as in [37] or a discontinuous Galerkin Trace-
FEM discretization as in [4]. These techniques can be combined with our time marching method.

The analysis in this paper only treats the backward Euler time discretization method although
the methodology allows for a larger class of time stepping schemes. In Remark 5.2 we also commented
on adaptations of the analysis for a BDF2 scheme. The application and analysis of Crank–Nicolson
or Runge–Kutta type schemes for this discretization has not been considered yet, but is an interesting
natural extension of the method.

The a priori error results presented in section 5.5 give bounds for the error at fixed times and an
L2(H1)-type bound in space–time using energy-type arguments. We expect that the application of
duality techniques can improve these bounds yielding an additional order in space in weaker norms
such as L2(L2)-type space–time norms.

The method and its analysis allow for higher order discretizations in space. However, the
realisation of geometrically high order accurate discretizations is a non-trivial task, cf. Remark 4.1.
A combination of recent developments in the accurate numerical integration on level set domains
with this time discretization approach is an interesting topic for future research.

Finally, we are not aware of an analog of the presented approach for PDEs posed in evolving
volumetric domains or volumetric domains with evolving interfaces. Moving in this directions would
require new extension results for finite element functions for implicitly defined and geometrically
unfitted domains. This is a topic of a forthcoming paper.
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