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Onset of thin film meniscus along a fiber
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The dynamics of spreading of a macroscopic liquid droplet over a wetting surface is often
described by a power-law relaxation, which is known as Tanner’s law. Here we report
a combined experimental and theoretical study on how a freely suspended soap film
wets and spreads along a micron-sized glass fiber in contact with the soap film. When
the film thickness ℓ becomes smaller than the fiber diameter d, the strong hydrodynamic
confinement effect of the soap film gives rise to a logarithmic relaxation with fiber draining
time t. Such a slow dynamics of spreading is observed for hours both in the measured time-
dependent height of capillary rise h(t) on the fiber surface and viscous friction coefficient
ξs(t) felt by the glass fiber in contact with a soap film. A new theoretical approach based
on the Onsager variational principle is developed to describe the dynamics of thin film
spreading along a fiber. The newly derived equations of motion provide the analytical
solutions of h(t) and contact angle θ(t), which are found to be in good agreement with the
experimental results. Our work thus provides a common framework for understanding
the confinement effect of thin soap films in the dynamics of spreading along a fiber.

1. Introduction

Spreading of a liquid droplet over a flat or curved surface is a common phenomenon
in nature and technology, which is relevant to many practical applications ranging from
spreading of droplets, lubricants, and coatings to microfluidic devices, inkjet printing and
the extraction of oil from sandstone by injecting water or gas (Bonn et al. 2013; Snoeijer
& Andreotti 2013). Droplet spreading over an ambient solid surface is complicated and
not well understood, because it involves the motion of a contact line (CL) at the edge
of the spreading droplet. A moving CL between the liquid interface and solid surface is
incompatible with the non-slip boundary condition and would lead to unphysical infinite
dissipation (Dussan & Davis 1974). As a classical example of the moving CL problem,
droplet spreading is an outstanding problem in interfacial dynamics and has been with
us for many years (de Gennes 1985; Leger & Joannyde 1992; Decker & Garoff 1997;
Quéré 2008; Bonn et al. 2013; Snoeijer & Andreotti 2013; Ramiasa et al. 2014). The CL
dynamics is known to be extremely sensitive to the physical roughness and/or chemical
heterogeneity on the solid surface, which cause the dynamic contact angle θ between the
liquid and solid surfaces to depend on the direction of fluid motion (Leger & Joannyde
1992), with the advancing contact angle θa being larger than the receding angle θr.
The dynamics of spreading of a wetting liquid on an ambient solid surface is a relaxation

process for the liquid interface to reach its equilibrium shape. In addition to the difficulty



2 S. Guo, X.-M. Xu, T.-Z. Qian, Y.-N. Di, M. Doi and P. Tong

involved in the solution of a moving CL at the edge of the advancing liquid, the behavior
of the liquid in the vicinity of the CL presents further complications. The hydrodynamic
friction coefficient ξin in the wedge-shaped region away from the CL has the form (de
Gennes et al. 2004)

ξin ≃
3 ln ε

θ
πdη ≡ αinπdη, (1.1)

for liquids with a small contact angle θ. In the above, πd is the contact line length, η is
the fluid viscosity, and ε ≃ R/a is a cut-off parameter with R being a macroscopic size
of the system and a (∼1 nm) being a microscopic cut-off length to avoid the dissipation
divergence of the moving CL. The value of αin in Eq. (1.1) is αin ≃ 27.6/θ (for ε ≃ 104),
which is very large for liquids with small θ and even becomes divergent when θ → 0.
For liquid drops of radius R smaller than the capillary length λc = (γ/ρg)1/2, which is

a measure of importance of the liquid-air interfacial tension γ relative to the gravitational
force ρg, the effect of gravity can be ignored and liquid spreading is driven primarily by
the imbalanced interfacial force per unit length normal to the CL,

Fd = γ (cos θ − cos θeq) ≃
γ

2
θ2. (1.2)

The last equality in Eq. (1.2) is obtained by assuming that the dynamic contact angle θ is
small and equilibrium contact angle θeq = 0. For a water-air interface with γ ≃ 73mN/m,
liquid density ρ = 103 kg/m3, and gravitational acceleration g = 9.8 m/s2, we have
λc ≃ 2.7 mm. In the simple case when the solid surface is smooth and homogeneous so
that CL pinning can be ignored, the approach to equilibrium is determined by a balance
between the capillary force given in Eq. (1.2) and viscous dissipation given in Eq. (1.1).
This force balance gives rise to a power-law relaxation as manifested by Tanner’s law,
R(t) ∼ tm, for the viscous spreading of small liquid drops of radius R(t) as a function of
time t (Tanner 1979; de Gennes et al. 2004). The power-law exponent m = 1/10 was
observed in various spreading experiments (Bonn et al. 2013).
For many ambient solid surfaces of interest, however, they are not homogeneous and the

motion of a CL is often pinned by the physical roughness and/or chemical inhomogeneity
on the solid surface. As a result, the relaxation of the liquid interface to its equilibrium
shape is no longer determined by the viscous dissipation near the edge of the advanc-
ing liquid (Pagonabarraga 2012). Instead, the relaxation is accomplished by activated
hopping of the CL over a complex potential landscape generated by nano-scale surface
heterogeneities (Kaz et al. 2012; Guan et al., 2016a,b). In this case, the CL was found
to relax logarithmically in time t [i.e., go as ln(Γt)] at the long-time limit. The relaxation
rate Γ is determined by the barrier crossing dynamics with Γ ∼ k0 exp(−Eb/kBT ), where
Eb is the energy barrier height, kBT is the thermal energy of the system, and k0 is a
typical attempt frequency.
In this paper, we consider a different scenario of the CL relaxation, which also leads to

a logarithmic aging of the CL. As shown in Fig. 1(a), when a thin glass fiber of diameter
d (∼ 2 µm) intersects a free-standing soap film, the liquid (water) in the soap film wets
the fiber surface and two soap film menisci develop with two advancing CLs moving in
the opposite directions along the fiber. When the film thickness ℓ > d (thick film limit),
the fluid flow toward the fiber is not confined very much by the soap film so that the film
meniscus can develop quickly. It was shown by Clanet & Quéré (2002) that the rising
time for a liquid-air interface to creep along a vertical fiber and reach its equilibrium
shape scales as Γ−1

0
with Γ0 = γ/[η(d/2)] being the interface relaxation rate. Because

the capillary speed γ/η is very fast (∼23 m/s for an interface with γ = 23 mN/m and
η = 1 cP ), it only takes a few microseconds for the interface to reach its equilibrium
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Figure 1. (a) Sketch of the AFM-based hanging fiber probe intersecting a thin soap film.
The dashed circles on the fiber surface show the two contact lines formed on each side of the
soap film. Inset shows the geometry near the contact line and the coordinate system used in the
experiment. (b) A microscope picture of a glass fiber of diameter d = 8 µm and length ∼ 300 µm
intersecting a thin soap film.

shape (de Gennes et al. 2004)

x(z) + d/2

b
= cosh

[

z

b
− ln

(

2λc

b

)]

, (1.3)

where z is the meniscus height, x is its radial location, and b = (d/2) cos θeq. Here we
use a coordinate system with x = 0 at the fiber surface and z = 0 at the unperturbed
liquid-air interface, as shown in the inset of Fig. 1(a).
Equation (1.3) was obtained by assuming the liquid interface is stationary so that the

two principle curvatures of the meniscus cancel out with each other, leading to a zero
Laplace pressure at any point of the meniscus. The capillary length λc is used to set
the cut-off length of the horizontal extent of the meniscus. The height of capillary rise,
heq ≡ z(x = 0), on the fiber surface can be obtained by inverting Eq. (1.3) (Wang et al.,

2016)

heq =
d cos θeq

2
ln

[

4λc

d(1 + sin θeq)

]

. (1.4)

At this meniscus height, the capillary force is balanced by the weight of the wetting liquid
and the interface reaches equilibrium.
When the film thickness ℓ < d (thin film limit), the fluid flow in the soap film is found

to be strongly confined by the soap film thickness. As a result, the film meniscus creeps
slowly along the vertical fiber and reaches its equilibrium height logarithmically in time t
(at the long-time limit). It is shown that the relaxation rate Γ in this case is determined
by the viscous dissipation in the bulk region of the soap film with Γ ≃ Γ0[ℓ/(d/2)]

2. In
the experiment, we find that the confinement factor [ℓ/(d/2)]2 can be as small as 10−4.
The main aim of this work is twofold. First, we conduct systematic measurements of the
height of capillary rise h(t) along the glass fiber and the viscous friction coefficient ξ(t)
felt by the glass fiber in contact with a soap film, both as a function of fiber draining
time t. Second, we present a new theoretical approach based on the Onsager variational
principle (Doi 2011, 2013), which is used to describe the dynamics of spreading of a
thin soap film along the glass fiber. The newly derived equations of motion provide the
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Figure 2. A metal ring of diameter 1 cm is used to support a soap film.

analytical solutions of the height of capillary rise h(t) and contact angle θ(t), which are
found to be in good agreement with the experimental results. Our work thus provides
a common framework for understanding the confinement effect of thin soap films in the
dynamics of spreading along a fiber.
The remainder of the paper is organized as follows. We first describe the experimental

methods in § 2. Experimental results are presented in § 3. Further theoretical analysis is
given in § 4. Finally, the work is summarized in § 5.

2. Experiment

2.1. Preparation of soap films

The experimental apparatus and procedures used in this experiment are similar to those
described previously (Guo et al., 2015), and here we only mention some key points.
The soap solution is prepared by mixing a commercial detergent (Ultra Joy dishwashing
liquid) with a solution of glycerine and deionized water of resistivity 18 MΩ·cm (purified
by a Barnstead three-column e-pure system). For all the solutions used in the experiment,
the concentration of the detergent is kept at 1 wt.%. The viscosity η of the soap solution
thus depends only on the amount of glycerine in the aqueous solution and is not affected
much by the detergent. By varying the mass concentration of glycerine from 20 to 65
wt.%, the viscosity η of the soap solution changes from 1.65 to 13.7 cP.
A glass pipette containing the soap solution is used to blow soap bubbles, which are

then transferred to a supporting substrate for optical imaging and AFM measurement.
A metal ring of diameter 1 cm is used to support the soap film, as shown in Fig. 2. The
liquid in the soap film drains very slowly along the metal ring to a plastic container on
the bottom (not shown). It is found that the initial value of the soap film thickness ℓ can
vary from micrometers to tens of nanometers, depending on the film viscosity η. Soap
films with a higher viscosity tend to be thicker initially.
The film thickness ℓ is measured using a UV-visible spectrophotometer (Perkin Elmer,

Lambda 20), following a standard procedure (Huibers & Shah 1997). When a laser beam
passes through a transparent film, the amplitude of the transmitted light is determined
by the interference effect between the reflected beams from the two film-air interfaces.
From the measured transmission spectrum, one can determine the film thickness ℓ. The
minimum value of ℓ measurable by this spectrophotometer is 35 nm. Typically, the soap
film can last for about an hour before it bursts. At the final stage of draining, the soap
film becomes a Newton black film with a thickness of several nanometers (Poulin et al.,

1996). To speed up the draining process, one may use a filter paper to touch the soap
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Figure 3. Side view of the optical imaging setup. The two black solid circles indicate the metal
ring used to support the soap film. The radius of the soap film is w (≃0.5 cm) and its thickness
is ℓ. The vertical glass fiber intersecting the soap film has a diameter d in the range of 4-20 µm.
The dashed circles on the surface of the glass fiber show the two contact lines formed on each
side of the soap film.

film for 4-5 s and soak the liquid away. A soap film with ℓ . 100 nm can be prepared
in this way without much waiting time. Previously, we measured the film thickness ℓ
at different draining times using the spectrophotometer (Guo et al., 2015). With the
same procedure, we measure the time-dependence of ℓ in this experiment and use it as a
guideline to estimate the initial value of the film thickness ℓ.

2.2. Optical imaging of soap film meniscus along a fiber

Figure 3 shows a homemade optical imaging setup for the study of temporal evolution of
soap film meniscus along a thin glass fiber. An LCD light source (Schott KL2500) is used
for bright field illumination. A plasma-cleaned glass fiber of diameter d in the range of 4-
20 µm is held vertically with a three-dimensional micromanipulator and pierces through
the soap film with a penetration tip (∼ 40 µm) below the soap film. This penetration
tip is long enough for the soap film meniscus to develop on each side of the soap film.
A pinhole of 2 mm in diameter is placed between the light source and the film meniscus
to collimate the light beam and allow a clear observation of the film meniscus under a
stereo-microscope (Leica MZ16 with ×57.5 magnification). The images of a growing film
meniscus are recorded by a CCD camera (Photometrics CoolSNAP EZ) with a spatial
resolution 1392×1040. The movie recording of the microscope images is typically taken
at the sampling rate of 0.5 frames per second (fps) and is controlled by the µManager
software.

2.3. Operation of the “long needle” atomic force microscope

In the experiment, we use a recently developed hanging fiber probe (Xiong et al. 2009;
Guo et al., 2014) based on atomic force microscopy (AFM) to measure the change of
the friction coefficient ξ(t), when a soap film creeps along the hanging fiber probe. As
shown in Fig. 1(b), the “long needle” AFM consists of a vertical glass fiber of diameter
d in the range of 0.4-4 µm and length 100-300 µm, which is glued onto the front end of
a rectangular cantilever beam. The AFM cantilever is mounted on a piezoelectric tube
scanner to provide vertical motion with accuracy down to nanometers. The other end
of the fiber is in contact with the soap film. The intersection between the soap film and
the fiber surface forms two circular contact lines, as shown by the two dashed lines in
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Fig. 1(a). The assembly and calibration of the hanging fiber probe have been described
elsewhere (Xiong et al. 2009; Guo et al., 2014).
The hanging fiber probe can measure two important properties of the CL. First, it acts

as an accurate force sensor capable of measuring the capillary force (Wang et al., 2016;
Guan et al., 2016a,b),

f = −πdγ cos θ, (2.1)

acting on the CL of length πd, which is formed on the fiber surface with a single liquid
interface of surface tension γ and contact angle θ. Here the sign of f is defined as f ≤ 0
for θ ≤ 90◦ and f > 0 for θ > 90◦. With an accurate calibration of the cantilever, the
AFM can measure the capillary force down to ∼10 pN at the accuracy of 0.2%.
Second, the hanging fiber probe can be used as a high-quality mechanical resonator,

which oscillates vertically (along the z-axis) with a resonant frequency ω0 = (k/m)1/2

(∼600 kHz), where m is the effective mass of the modified cantilever and k is its spring
constant. Being operated at a resonant state, the hanging fiber amplifies the fluctuation
spectrum and thus can accurately detect minute changes of the friction coefficient ξ(t)
caused by the viscous damping in the soap film. The quantity measured in the experiment
is the power spectrum of the vertical deflections of the cantilever, |z(ω)|2, which has an
analytical form (Ma et al. 2000; Xiong et al. 2009)

|z(ω)|2 =
2kBTξ/m

2

(ω2 − ω2
0
)2 + (ωξ/m)2

, (2.2)

where ω = 2πf is the angular frequency. By fitting the measured |z(ω)|2 (or |z(f)|2) to
Eq. (2.2), one obtains the fitted values of k, m and ξ.
Measurements of |z(f)|2 are conducted using an AFM (MFP-3D, Asylum Research

Inc.) operated under the thermal power spectral density (PSD) mode. Typically, |z(f)|2

is taken with a frequency resolution of 152 Hz and the averaging time for each |z(f)|2

is set for approximately 1 min. To determine the absolute value of |z(f)|2, the output
voltage signal from the position-sensitive detector is calibrated against known values of
the cantilever deflection. The experimental uncertainties of the measured |z(f)|2 can
be kept at the level of 5-10%. The hanging fiber probe has been thoroughly tested in
previous experiments and more experimental details about how to obtain the value of ξ
at the liquid-air interfaces have been reported elsewhere (Guo et al., 2013, 2014). More
recently, this technique was used to measure the friction coefficient ξc of a fluctuating
CL at equilibrium for a soap film (Guo et al., 2015).

2.4. AFM measurements of the soap film thickness ℓ and the height of capillary rise h

Figure 4(a) shows a typical evolution curve of the measured capillary force f , when the
hanging fiber probe pierces through a soap film. The black curve (→) shows how the
measured f changes when the glass fiber is pushed downward at a constant speed U =
10 µm/s. Once the fiber tip touches the upper surface of the soap film at Z ≃ 12.3 µm, a
capillary force, f ≃ −125.4 nN , is detected. The minus sign indicates that the capillary
force pulls down the fiber (θ < 90◦). In a previous experiment (Guo et al., 2015), we
found that when the soap film is thick enough (ℓ ≥ 1.6 µm), the measured f can reach a
plateau value before the fiber tip touches the lower surface of the soap film. This plateau
value of f agrees well with that obtained when the hanging fiber was in contact with a
single liquid-air interface of the soap solution, of which the soap film is made. From the
measured capillary force [see Eq. (2.1)], we found the contact angle θ ≃ 0◦ and surface
tension γ = 23.2 mN/m for all the soap solutions used on a clean glass fiber. In Fig. 4(a),
however, no plateau region is observed for the measured f in the advancing direction and
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Figure 4. Variations of the measured capillary force f when a glass fiber pierces through (a) a
thick soap film with thickness ℓ ∼ 1 µm and (b) a thinner soap film with ℓ < 35 nm. The black
curves (→) show how the measured f changes when the glass fiber is pushed downward at a
constant speed U = 10 µm/s. The red curves (←) show how the measured f changes when the
glass fiber is pulled upward at the same speed.

only a short transient of f is observed when the fiber tip pierces through the entire soap
film. We therefore conclude that the film thickness in this case is smaller than 1.6 µm.

When the fiber tip touches the lower surface of the soap film at Z ≃ 12.3 µm, another
CL forms on the fiber surface with an initial contact angle θl = 90◦. Now the total
force acting on the fiber is, f = πdγ(1 − cos θl), which is a sum of two capillary forces
of opposite signs. As the fiber further moves downward, the value of θl decreases and
reaches its equilibrium value, θl ≃ 0◦, at Z ≃ 18.9 µm. Thus the total force is canceled
out and we have f = 0. This is shown in Fig. 4(a) for Z ≥ 18.9 µm. In this case, the
fiber is under zero external force, as if it is in air.

The red curve (←) in Fig. 4(a) shows how the measured f changes when the glass fiber
is pulled back upward at the same speed U . The value of f starts to decrease from zero
when the fiber tip retracts back to the lower surface of the soap film at Z ≃ 18.9 µm. As
the fiber further moves upward, the contact angle θl of the lower capillary rise changes
continuously from 0◦ to 90◦ and finally the lower surface snaps off from the fiber tip. The
maximum force measured is f = πdγ when only the upper surface of the soap film is in
contact with the fiber at the contact angle θ ≃ 0◦. Before the fiber tip detaches from
the soap film, the capillary force increases slightly and then drops quickly to zero. This
round-off feature was also observed for a single liquid-air interface (Yazdanpanah et al.,

2008), indicating that the thick soap film used to obtain Fig. 4(a) shares some common
properties of the liquid-air interface. The round-off feature is absent for a thin film as
shown in Fig. 4(b). The distance h (≃ 5.4 µm) between the black and red vertical lines in
Fig. 4(a) gives the height of capillary rise of the soap film meniscus on the fiber surface.
As will be shown below, the actual value of h changes with the fiber draining time after
the fiber touches the soap film.

When the film thickness ℓ << 1 µm, as shown in Fig. 4(b), the transient region of the
measured f in the advancing direction becomes even shorter. In this case, one can still get
a good estimate of the height of capillary rise h. While the capillary force measurements
shown in Fig. 4 cannot provide an accurate real-time measurement of ℓ, they nevertheless
can tell us whether the soap film is in the thick film regime (ℓ ∼ 1 µm) or in the thin
film regime (ℓ ∼ 10 nm).
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Figure 5. Microscope images of the soap film meniscus in the vicinity of a vertical glass fiber of
diameter d = 9 µm. The images are taken at different times after the fiber tip pierces through
the soap film from below (t = 0). The glass fiber is kept stationary intersecting the soap film
during the entire movie taking. The measurements are made for a soap film with viscosity η
= 1.65 cP and its thickness is estimated to be ℓ ∼ 100 nm. The scale bar for all the images is
10 µm.

3. Experimental Results

3.1. Temporal evolution of soap film meniscus along a fiber

Figure 5 shows how the soap film meniscus in the vicinity of a vertical glass fiber evolves
after the fiber tip pierces through the soap film from below (t = 0). Hereafter, we refer
to this time as the fiber draining time t. The movie recording is typically taken at the
sampling rate of 0.5 fps, and here we only show some representative images at different
fiber draining times. The thin horizontal line in the middle of the image shows the film-air
interface. The portion of the fiber above the interface is the penetration tip. Below the
interface, there is a reflection image of the penetration tip by the soap film. Two capillary
rises form around the fiber surface and they are symmetrically aligned on the two sides
of the soap film, so that the resulting capillary force acting on the fiber is zero when
the two capillary rises are fully developed (see Fig. 4). The two capillary rises change
the reflection of light, forming a dark region surrounding the fiber as observed under a
microscope. It is seen from Fig. 5 that this dark region grows with the fiber draining time
t, indicating that the soap film meniscus in the vicinity of the vertical fiber rises slowly
with t. This meniscus growth is accomplished by an inward-going flow within the soap
film toward the fiber, which then creeps along the vertical fiber in both directions.

It is found that such a creeping flow depends sensitively on the film thickness ℓ. When
ℓ & d, a fully developed capillary rise forms almost immediately (< 1 s) and no visible
change is observed for the soap film during the experimental time (1-200 s). The creeping
speed of the capillary rise in this thick-film regime is expected to be the same as that for a
single liquid-air interface. When the film thickness is reduced to the range 10 nm . ℓ . d,
we observe the time-dependence of the capillary rise formation, as shown in Fig. 5. The
meniscus growth rate in this intermediate regime is so slow that one can record the
dynamics at a sampling rate of 0.5 fps. When the film thickness is further reduced to the
range ℓ . 10 nm, the soap film becomes a Newton black film (Poulin et al., 1996). In this
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Figure 6. Microscope images of the soap film meniscus in the vicinity of a vertical glass fiber of
diameter d = 6 µm. The images are taken at different times after the fiber tip pierces through
the soap film from below (t = 0). The glass fiber is kept stationary intersecting the soap film
during the entire movie taking. The measurements are made for a soap film with viscosity η =
1.65 cP and its thickness is estimated to be ℓ < 10 nm (Newton black film). The scale bar for
all the images is 10 µm.
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Figure 7. Magnified image of the soap film meniscus near a vertical glass fiber at t = 10 s. Red
crosses show the meniscus profile of the soap film, which is detected by the edge of the contrast
difference in the image. The horizontal line at the lower-right corner in connection with the red
crosses is the undisturbed film-air interface. Also shown is the coordinate system used for the
image analysis of the meniscus profile (see text for more details).

case, the volume of liquid in the capillary rise region is small and does not change much
during the experimental time (t < 200 s). Figure 6 shows a time lapse of the soap film
meniscus at this thin-film limit with ℓ . 10 nm. No visible change is observed among
the microscope images taken at different fiber training times.
The captured images as shown in Fig. 5 are further analyzed to locate the edge of the

contrast difference using the ImageJ software, from which we obtain the profile of the
soap film meniscus near the glass fiber. Figure 7 shows an example, in which the red
crosses are used to mark the meniscus profile. In the image analysis, the meniscus profile
is extended both vertically along the +z direction to include part of the glass fiber and
horizontally along the +x direction to include part of the unperturbed film-air interface.
The typical error in determining the soap film meniscus is about 1 pixel (≃ 0.24 µm).
Figure 8(a) shows an example of the resulting meniscus profile z(x, t) of the soap film

as a function of distance x away from the fiber surface. In the plot, both the vertical axis
z and horizontal axis x are normalized by the fiber diameter d (= 9 µm). It is found that
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Figure 8. (a) Obtained meniscus profile z(x, t) as a function of distance x away from the fiber
surface at t = 12 s. The numerical data of the meniscus profile are obtained from the image
analysis as shown in Fig. 7. Both the z- and x- axes are normalized by the fiber diameter d
(= 9 µm). The solid line shows a fit of Eq. (3.1) to the data points with two fitting parameters:
the height of capillary rise h = 1.12d and contact angle θ = 0◦. (b) Variations of the meniscus
profile z(x, t) at different fiber draining times from t = 2 s to t = 350 s. The solid lines show the
fits of Eq. (3.1) to different sets of data with h(t) and θ(t) as two fitting parameters.

at a given fiber draining time t, the obtained z(x, t) has a similar functional form as the
equilibrium profile given in Eq. (1.3) but with two time-dependent parameters h(t) and
b(t). To show this more clearly, we invert the equation (x+ d/2)/b = cosh([z− h]/b) and
write the final equation as

z(x, t)

b
=

h(t)

b
− ln





x+ d/2

b
+

[

(

x+ d/2

b

)2

− 1

]1/2


 , (3.1)

where h(t) is the height of capillary rise on the fiber surface and b(t) = (d/2) cos θ(t). To
get Eq. (3.1), we chose a solution in which the boundary condition z = 0 at large values
of x is satisfied. When the two time-dependent parameters, h(t) and θ(t), reach their
equilibrium values heq and θeq, respectively, z(x, t) in Eq. (3.1) becomes the equilibrium
profile. The solid line shows a fit of Eq. (3.1) to the data points with h(t) and θ(t) as
two fitting parameters. As mentioned above, the image analysis of the meniscus profile
included a part of the fiber surface along the vertical +z direction and a part of the
unperturbed film-air interface along the horizontal +x direction. Therefore, both ends of
the meniscus profile are not included in the fitting. It is seen that the measured z(x, t)
is well described by Eq. (3.1) at a fixed time t.
Figure 8(b) shows how the meniscus profile z(x, t) evolves with the fiber draining time

t. It is seen that as t increases, the soap film creeps along the vertical glass fiber with both
the height and volume of the capillary rise increasing slowly with t. All of the meniscus
profiles at different draining times are found to be well described by Eq. (3.1) (solid lines),
indicating that the soap film meniscus is in a quasi-equilibrium state at any given time.
This is because the creeping flow is slow compared with the “instantaneous” change
of the meniscus shape, which is determined by the balance of local Laplace pressure.
There are two time-dependent fitting parameters in Eq. (3.1). It is found that all of the
meniscus profiles can be fit with a common contact angle θ = 0◦ ± 20◦. The fitted value
of θ agrees with that obtained from the direct AFM measurement of the capillary force,
as discussed in Sec. 2.4. It has a relatively larger error, because cos θ in Eq. (3.1) is not
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Figure 9. Scaling plot of the measured meniscus profile, z(x, t)−∆h(t), as a function of distance
x away from the fiber surface. Both the vertical and horizontal axes are normalized by the fiber
diameter d (= 9 µm). Black circles show the unshifted meniscus profile with ∆h = 0 at t0 = 2 s.
The solid line shows a fit of Eq. (3.1) to all the data points with θ = 0◦ and h(t) = h0 = 0.85d.
The color code used for other sets of data is the same as that used in Fig. 8.

very sensitive to small changes of θ when θ is close to zero. The temporal evolution of the
soap film meniscus is then uniquely determined by Eq. (3.1) with the time-varying height
of capillary rise h(t) as the only fitting parameter. The initial value of h(t) is h0 ≃ 0.85d
at t0 = 2 s, which is the earliest time at which we can measure the meniscus profile. As
mentioned above, the change of h(t) with t is spontaneous as the soap film slowly creeps
along the glass fiber.
As shown in Eq. (3.1), h(t) is simply an offset value of z when x = 0. To determine the

value of h(t) more accurately, we vertically shift the meniscus profiles z(x, t) obtained at
different t by an amount ∆h(t), so that all of the measured meniscus profiles overlap with
that obtained at t0 = 2 s, which is not shifted (∆h = 0). Indeed, after the subtraction
of the vertical shift ∆h(t), all of the data sets collapse on to a master curve, as shown
in Fig. 9. In the plot, those data points on the fiber surface with x = 0 and those at
the undisturbed soap film interface with z = 0 are not included. The solid line shows
a fit of Eq. (3.1) to all the data points with θ = 0◦ and h(t) = h0 = 0.85d. Figure 9
thus demonstrates that the meniscus profile z(x, t) of the soap film at any given time t
can indeed be described by a quasi-equilibrium shape with zero curvature as shown in
Eq. (3.1). This is attributed to the slowness of the film evolution. The time-dependence
of h(t) is then accurately determined by

h(t) = h0 +∆h(t), (3.2)

where h0 is the value of h(t) at the initial time t0. For the soap film shown in Fig. 9, we
find h0 = 0.85d.
Figure 10 shows how the measured h(t) varies with t. Two sets of data with different

values of ℓ and d are presented. The black circles are obtained for a soap film with
thickness ℓ ∼ 100 nm, and the red triangles are obtained for a soap film with thickness
ℓ ∼ 50 nm. It is seen that the measured h(t) is a monotonically increasing function of t
from its initial value h0 to its final value. The initial height h0 is found to increase with
the film thickness ℓ. This finding confirms that the slow evolution of h(t) is caused by
the confinement of the creeping flow inside the thin soap film; the higher the degree of
confinement is, the slower the meniscus profile evolves.
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Figure 10. Obtained height of capillary rise h(t) as a function of fiber draining time t for two
soap film systems. The black circles are obtained for a soap film with thickness ℓ ∼ 100 nm
and fiber diameter d = 9 µm. The red triangles are obtained for a soap film with thickness
ℓ ∼ 50 nm and fiber diameter d = 6 µm. In the plot, h(t) is normalized by the fiber diameter
d. The error bars show the experimental uncertainty of the measurements. The solid lines show
the fits of Eq. (4.23) to the two sets of data with c0 = 4.0 and Γ = 0.9 for the black curve and
c0 = 1.8 and Γ = 0.05 for the red curve.

As shown in Fig. 5, the image contrast of the soap film meniscus decreases with increas-
ing t (see, e.g., the t = 310 s panel), which causes deviations of the measured meniscus
profile z(x, t) from the expected quasi-equilibrium shape given in Eq. (3.1). These devi-
ations are visible in Fig. 8(b) for the curve fitting to the orange circles at t = 350 s and
also in Fig. 9. Consequently, the obtained values of h(t) at the late stage suffer relatively
larger errors. While the experimental uncertainties could be reduced by further improve-
ment in the collimation of light illumination and reduction of scattered light from the
liquid interface, the two data sets shown in Fig. 10, nevertheless, show a smooth and
continuous increase over a time span of almost three decades.

At the very late stage, the soap film meniscus is expected to reach its equilibrium
height heq, like a bulk liquid does. The value of heq is given in Eq. (1.4). For a soap
film system with surface tension γ = 23.2 mN/m, liquid density ρ = 103 kg/m3, contact
angle θ = 0◦ and d = 5 µm, we find heq ≃ 3.6d. Clearly, the two sets of data shown in
Fig. 10 have not reached their asymptotic height yet.

3.2. Temporal evolution of fiber dissipation

To further study the development of the meniscus profile of soap films along a thin fiber,
we use the ”long needle” AFM to measure the power spectrum |z(f)|2 for soap films at
different fiber draining times t. Figure 11 shows how the measured |z(f)|2 changes with t.
In the measurement, the hanging fiber is kept still after it pierces through a soap film. It is
found that the resonant peak changes continuously with increasing t; the frequency peak
broadens while the peak height decreases and peak position shifts to lower frequencies.
Figure 11 shows the changes of the measured |z(f)|2 at two representative draining times.
The measured |z(f)|2 is well described by Eq. (2.2) (solid lines) with spring constant k,
mass m and friction coefficient ξ as three fitting parameters. It is found that the fitted
values of k and m remain approximately constant for different draining times but the
fitted value of ξ changes sensitively with t. From the measured |z(f)|2 at different t, we
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Figure 11. Variations of the measured power spectrum |z(f)|2 for a soap film at two different
fiber draining times: t = 120 s (black triangles) and t = 2520 s (red circles). The measurements
are made when the hanging fiber probe of diameter d = 2.6 µm is kept stationary intersecting
the soap film of viscosity η = 1.65 cP and thickness ℓ ∼ 50 nm. The solid lines show the fits of
Eq. (2.2) to the two sets of data with the fitting parameters, ξ = 2.75 × 10−7 Ns/m, k = 31.62
N/m and m = 5.10× 10−8 g for the black triangles and ξ = 2.97× 10−6 Ns/m, k = 31.57 N/m
and m = 5.26× 10−8 g for the red circles.

obtain ξ(t) as a function of t. Similarly, we also measure |z(f)|2 when the fiber is in air
and obtain the corresponding friction coefficient ξa, which is independent of t.
By integrating Eq. (2.2), one finds that the mean-square value of soap film fluctuations

is given by the equipartition theorem, k〈z2(t)〉t = kBT . For k = 31.6 N/m, we have

〈z2(t)〉
1/2
t ≃ 1.14 × 10−2 nm. The corresponding drag force is fd ≃ ξω0〈z

2(t)〉
1/2
t ≃

26.2 pN and the capillary number Ca ≃ ηω0〈z
2(t)〉

1/2
t /γ ≃ 6.27× 10−7 for the soap film

with γ = 23.2 mN/m, ξ = 2.97× 10−6 Ns/m, ω0 = 2π×123 kHz, and η=1.65 cP. These
numbers reveal the tremendous sensitivity of the technique useful for the study of soap
film dissipation.
Figure 12 shows the obtained net friction coefficient ∆ξ(t) ≡ ξ(t)− ξa as a function of

t for five samples with different values of d and η. All the data sets reveal a general trend
that the obtained ∆ξ(t) increases with t for more than two decades of time span. It is
found that the rate of increase of ∆ξ(t) depends sensitively on the film thickness ℓ. For
thick films with ℓ ∼ 1 µm (red triangles and red circles), their rate of increase is much
faster than that of thinner films with ℓ ∼ 100 nm (black and green triangles and blue
diamonds). Here we estimate the value of ℓ based on the AFM force-curve measurements
as shown in Fig. 4.
In a previous experiment (Guo et al., 2015), it was found that the net friction coefficient

∆ξ(t) contains two contributions:

∆ξ(t) = ξc + ξs(t). (3.3)

The first term ξc is the contribution from the two (fluctuating) CLs, which is independent
of t. The measured ξc in the thin film limit (ℓ ∼ 10 nm) was found to have a scaling form
(Guo et al., 2015),

ξc = 2απdη, (3.4)

where α = 1.1 ± 0.3 is a numerical coefficient independent of the contact angle θ. The
factor of 2 accounts for the two CLs formed on the fiber surface. The second term ξs(t)
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Figure 12. Obtained net friction coefficient ∆ξ(t) as a function of fiber draining time t for five
samples with different fiber diameters d and soap film viscosities η: d = 2.6 µm and η = 1.65 cP
(red triangles); d = 2.6 µm and η = 1.65 cP (blue diamonds); d = 1.1 µm and η = 13.7 cP (red
circles); d = 2.6 µm and η = 13.7 cP (green triangles); d = 1.75 µm and η = 1.65 cP (black
triangles). The film thickness ℓ of the five samples is discussed in the text.

in Eq. (3.3) is the sidewall contribution from the fluid in contact with the hanging fiber.
As the soap film creeps along the vertical fiber, h(t) increases and so does the contact
area between the fluid and fiber. As a result, ξs(t) increases with h(t). This explains the
observed time-dependence of the measured ∆ξ(t) in Fig. 12 and the faster increase of
∆ξ(t) associated with the thicker films. It is also found that for sufficiently large values
of t, ξs(t) becomes the dominant term in the measured ∆ξ(t).

4. Theoretical analysis

The above experimental results suggest that the slow creeping flow along the vertical
glass fiber is driven by the capillary force between the soap film and fiber surface. This
creeping flow is strongly influenced by the confinement effects on viscous dissipation in
the thin soap film. With these observations, we now carry out a theoretical analysis of
the scaling properties of the creeping flow.

4.1. The Onsager principle applied to capillary rise

The flow inside the soap film is in the Stokesian regime, as its Reynolds number is small.
The basic set of equations for Stokesian hydrodynamics can be derived from the Onsager
variational principle (Doi 2011, 2013). The main ideas are outlined as follows.
From the experimental observations, we find the meniscus profile can be described by

two variables, the height of capillary rise h(t) and contact angle θ(t). The time evolution
of the system, described by the time derivatives ḣ and θ̇, is determined by the minimum
condition of the function

R(h, θ, ḣ, θ̇) = Φ(h, θ, ḣ, θ̇) +
∂A

∂h
ḣ+

∂A

∂θ
θ̇, (4.1)

where A(h, θ) is the free energy of the system, and Φ(h, θ, ḣ, θ̇) is the free-energy dissi-
pation function, which is defined as one half of the rate of free-energy dissipation in the
fluid when the meniscus evolves at rates ḣ and θ̇. Since the fluid flow obeys the Stokesian
dynamics, Φ is a quadratic function of ḣ and θ̇ in the linear response regime.
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Figure 13. Cylindrical coordinate system (r, φ, ẑ) used in the theoretical analysis of the soap
film dynamics. The origin of the coordinate system is taken at the intersection of the fiber axis
and mid-plane of the soap film of thickness ℓ. The total free-energy dissipation Φ in the soap
film contains three contributions, Φ = Φin + Φmid + Φout, where Φin is from the inner region
(r0 < r ≤ r1), Φmid is from the middle region (r1 < r ≤ rc) and Φout is from the outer region
(r > rc).

The minimum condition of Eq. (4.1),

∂Φ

∂ḣ
+

∂A

∂h
= 0

∂Φ

∂θ̇
+

∂A

∂θ
= 0,

(4.2)

represents the force balance between two kinds of forces, the hydrodynamic frictional
force ∂Φ/∂ḣ (or ∂Φ/∂θ̇) and reversible force f1 = −∂A/∂h (or f2 = −∂A/∂θ) in the
generalized coordinates. The above variational principle can be derived directly from the
basic equations of Stokesian hydrodynamics. It can also be regarded as a special form of
the Onsager variational principle, which governs the time evolution of non-equilibrium
systems characterized by a set of slow variables in the linear response regime (Doi 2011,
2013). This method as an analysis tool has been applied recently to a range of problems
(Doi 2015; Man & Doi 2016; Xu, Di & Doi 2016; Di, Xu & Doi 2016).
We now use Eq. (4.2) to derive the dynamic equations of h(t) and θ(t). For the conve-

nience of theoretical treatment, we use a cylindrical coordinate system (r, φ, ẑ), as shown
in Fig. 13. The soap film is symmetric with respect to the vertical ẑ axis. The cylindrical
coordinates (r, ẑ) used here are related to the coordinates (x, z) used in the previous
sections through r = r0 + x and ẑ = ℓ/2+ z. Here r0 = d/2 is the radius of the fiber and
ℓ is the thickness of the soap film.
The meniscus profile is described by a function ẑ = ẑ(r). We assume that ẑ(r) is still

given by Eq. (3.1), but a modification is needed. According to Eq. (3.1), ẑ decreases
continuously with increasing r, but in reality, ẑ(r) is limited by the film thickness ℓ. We
thus assume that the meniscus profile is governed by the following equation

ẑ(r; t) =

{

H(r; t) r ≤ rc(t)
ℓ/2 r > rc(t),

(4.3)

where H(r; t) is given by

H(r; t) =
ℓ

2
+ h(t)− r0 cos θ(t) ln

[

r + [r2 − r2
0
cos2 θ(t)]1/2

r0 cos θ(t))

]

, (4.4)
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in agreement with Eq. (3.1), and rc(t) is determined by

H(rc(t); t) =
ℓ

2
. (4.5)

Since the change in ℓ is small in the experiment, we consider ℓ as a constant in our
analysis. For the convenience of later analysis, the meniscus profile is also represented by
r as a function of ẑ, given by

r = R(ẑ) = r0 cos θ(t) cosh

[

h(t) + ℓ/2− ẑ

r0 cos θ(t)

]

, (4.6)

for r ≤ rc(t).

4.2. Temporal evolution of the height of capillary rise h(t)

To derive the governing equations of h(t) and θ(t) with the Onsager principle, we need
to calculate the free energy A and free-energy dissipation function Φ of the system. In
this section, we briefly present our calculations with more details given in Appendix.
We first consider the free energy A. Since the vertical length scale of the system is

much smaller than the capillary length λc, one can ignore the gravitational energy and
calculate the free energy A of the system as a sum of the interfacial energy between the
fiber and liquid, denoted by Afiber , and the surface energy of the liquid film, denoted by
Afilm. They are given by the function H(r) as

Afiber ≃ −2πγr0h̃, (4.7)

Afilm = πγ
(

2

∫ rc

r0

√

1 + (∂rH)2rdr − r2c

)

. (4.8)

where h̃ = H(r0) = h + ℓ/2 − r0 cos θ ln[(1 + sin θ)/ cos θ]. In the above equations, we
have assumed that the fiber is completely wetted by the fluid with cos θ ≃ 0.
As the contact angle θ in the experiment is small, we can compute the energies by

ignoring higher-order contributions of θ. The details are given in Appendix B. For Afiber ,
we have

Afiber ≈ −2πγr0(h+
ℓ

2
).

For Afilm, we have

Afilm ≈ πγ(r2
0
ln

rc
r0
− r2

0
).

Using the relation between h and rc (see Eq. (A 4) in Appendix A), we have

Afilm ≈ πγr0(h− r0 ln 2− r0).

Therefore, the reversible force f1 is given by

f1 = −
∂A

∂h
= −

∂Afilm

∂h
−

∂Afiber

∂h
≈ πr0γ. (4.9)

It is interesting to note that ∂Afiber/∂h ≈ −2∂Afilm/∂h, so that the resulting generalized
(capillary) force f1 is a half of the local capillary force f ≃ 2πr0γ [see Eq. (2.1)] acting on
the CL without including the effect of the free energy penalty owing to the area increase
of the liquid-air interface.
Next we consider the free-energy dissipation function Φ. As shown in Fig. 13, the total

free-energy dissipation in the soap film contains three contributions, Φ = Φin + Φmid +
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Φout, where Φin is from the inner region (r0 < r ≤ r1), Φmid is from the middle region
(r1 < r ≤ rc) and Φout is from the outer region (r > rc). Here r1 is of the same order of
magnitude as r0, but the final result is not affected by the choice of r1, as will be shown
below. In the inner region (r0 < r ≤ r1), the free-energy dissipation arises mainly from
the flow near the CL. When the CL moves at velocity ḣ, the dissipation function Φin in
the inner region has the form (de Gennes et al. 2004)

Φin ≈
1

2
ξinḣ

2 =
3πr0η ln ε

θ
ḣ2, (4.10)

where ξin is given in Eq. (1.1).
In the outer region (r > rc), the soap film has a constant thickness ℓ. The fluid velocity

is determined by the total inward flux ã flowing across any circular section of the soap
film with a constant r. The flux ã is related to the change of the fluid volume Vmeni in
the region r ≤ rc:

ã =
dVmeni

dt
. (4.11)

Direct computation leads to

ã = πr0rcṙc ≈ πr2c ḣ, (4.12)

with more details given in Appendix C. Then the radial velocity of the fluid is given by

ur =
ã

2πr(ℓ/2)
=

r2c ḣ

rℓ
. (4.13)

The free-energy dissipation function in the outer region is given by

Φout = 2πη

∫ R∞

rc

[

(∂rur)
2 +

(ur

r

)2
]

ℓ

2
rdr ≈

πr2cη

ℓ
ḣ2, (4.14)

where R∞ is the outer radius of the soap film, which is assumed to be much larger than
rc.
In the middle region (r1 < r ≤ rc), the radial velocity ur is determined by the equation

for volume conservation:

∂H

∂t
= −

1

r

∂

∂r
(rH(r)ur) , (4.15)

in which ur satisfies the boundary condition

ur(rc) =
ã

2πrc(ℓ/2)
=

rcḣ

ℓ
.

Integrating Eq. (4.15) leads to

ur =
1

rH(r)

(r2c ḣ

2
+

∫ rc

r

r
∂H

∂t
dr
)

=
ḣ

rH

(

r2c −
r2

2

)

, (4.16)

with the help of the relation ∂H/∂t ≈ ḣ (see Eq. (A 2) in Appendix A). Then the
dissipation function in the middle region is obtained as

Φmid = 2πη

∫ rc

r1

[

(∂rur)
2 +

(ur

r

)2
]

H(r)rdr ≈
πηr0r

2

c

ℓ2
ḣ2, (4.17)

with more details given in Appendix C.
Combining the above dissipation functions, we have the total free-energy dissipation
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function

Φ =
3πr0η ln ε

θ
ḣ2 + πr0η

(

r2c
ℓ2

)

ḣ2 + πrcη
(rc
ℓ

)

ḣ2. (4.18)

Since ℓ is very small, it is assumed that (ℓ/rc)
2 ≪ θ ≪ 1. Then the leading order of the

dissipation function is

Φ ≃
πr0ηr

2

c

ℓ2
ḣ2, (4.19)

from the middle region (r1 < r ≤ rc).
Using Eqs. (4.19), (4.9) and (4.2), we have

2r2c
ℓ2

ḣ =
γ

η
, (4.20)

with ḣ being smaller than the capillary speed γ/η by a factor of (ℓ/rc)
2 ≪ 1. Using

rc ≈ r0 cosh(h/r0) (see Eq. (A 7) in Appendix A), we have

r2c ≈ r20 cosh
2(h/r0) ≈ (r20/4) exp(2h/r0). (4.21)

Equation (4.20) then becomes

r20
ℓ2

exp

(

2h

r0

)

ḣ =
2γ

η
, (4.22)

and its solution is given by

h =
r0
2
ln(4Γt+ 4c0), (4.23)

where Γ = (γ/ηr0)(ℓ/r0)
2 ≡ Γ0(ℓ/r0)

2 is a rate coefficient and c0 is a constant determined
by the initial condition. Note that for thick films with ℓ > 2r0, the rate coefficient scales
as Γ0 = γ/ηr0. For thin films considered here, the rate coefficient is reduced by a factor
of (ℓ/r0)

2 ≪ 1, compared with that for thick films.
Equation (4.23) states that the height of capillary rise h(t) for a thin liquid film in-

creases logarithmically in time t. This is much slower than the standard capillary rise
for a bulk fluid, in which the height h(t) increases as a power law of t (Quéré, Di Meglio
& Brochard-Wyart 1988; Clanet & Quéré 2002). The slow capillary rise of the thin
film along a vertical fiber is caused by the fact that the liquid flow inside the soap film
is subjected to a severe confinement over a large area (∼ πr2c ). This flow thus involves
a large viscous dissipation in the middle region of the soap film, which slows down the
capillary rise. For a bulk fluid without confinement, however, the viscous dissipation of
the flow occurs mainly in the inner region near the CL, which is more localized and less
dissipative.
The solid lines in Fig. 10 show the fits of Eq. (4.23) to the two sets of data obtained

from two soap film systems. It is seen that the two data sets are well described by
Eq. (4.23) with two fitting parameters, c0 and Γ. The black circles are fit with c0 = 7.19
and Γ = 0.60 (black line), and red triangles are fit with c0 = 1.82 and Γ = 0.05 (red
line).

4.3. Friction on a hanging fiber

It is shown in Eq. (4.18) that the total free-energy dissipation Φ in the soap film contains
contributions from three regions. Correspondingly, the total friction coefficient ξtot, which
is defined by the equation Φ ≡ (1/2)ξtotḣ

2, can be written as ξtot = ξin + ξmid + ξout,
where ξin, ξmid and ξout are, respectively, the contributions from the inner, middle and
outer regions. From the above derivations, one can ready show that the dimensionless
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friction coefficient in the middle region goes as, ξmid/(2πr0η) = (rc/ℓ)
2 ≃ (γ/r0η)t, for

large values of t. Similarly, in the outer region we find ξout/(2πr0η) ≃ (ℓ/r0)(γ/r0η)t for
large values of t. For typical values of γ/r0η ∼ 107 s−1 (see introduction), t ∼ 100 s (see
Fig. 12), and ℓ/r0 ∼ 10−2 (see discussions on Fig. 14 below) used in the experiment,
we find ξmid/(2πr0η) & 109 and ξout/(2πr0η) & 107, which are too large to be excited
by a vertically oscillating thin fiber (see Fig. 14 below). As a result, the hanging fiber
probe only feels the viscous damping caused by the fluid in the inner region of the soap
film, with which it has a direct contact. The measured friction coefficient ξs, as shown
in Fig. 12, is therefore directly related to the energy dissipation Φin associated with the
fluid motion near the CL, which is given by Eq. (4.10).
From Eq. (4.10), we have the relation

ξinḣ = 2
∂Φin

∂ḣ
, (4.24)

where the factor 2 accounts for the two menisci on the upper and lower sides of the soap
film. The friction coefficient ξin is given by

ξin(t) =
12πr0η ln ε

θ(t)
, (4.25)

where the time-dependence of ξin(t) results from the temporal evolution of the dynamic
contact angle θ(t). To calculate the temporal evolution of θ(t) using Eq. (4.2), one needs
to consider higher order terms (h.o.t .) to the free energy A and dissipation function Φ
(i.e., beyond θ ≈ 0).
The computation for the free energy A is relatively easy (see Eq. (B 3) in Appendix B).

Using the formula for A, we obtain

f2 = −
∂A

∂θ
≈ πγr2

0
(
h

r0
− 1)θ − πγr2

0
θ2 + h.o.t . (4.26)

The computation for the free-energy dissipation function Φ, however, is more involved.
In Appendix C, we compute the higher-order contributions to the dissipation function
and obtain [see Eq. (C 13)]

Φ ≈
πηr0r

2

c

ℓ2
(ḣ+ αr0θθ̇)

2, (4.27)

where α = h/r0 − tanh(h/r0) ≈ h/r0 − 1. Using Eqs. (4.2), (4.26) and (4.27), we have

2πηαr2
0
r2cθ

ℓ2
(ḣ+ αr0θθ̇) = πγr2

0
(
h

r0
− 1)θ − πγr2

0
θ2. (4.28)

Using Eq. (4.20) for ḣ, we find that the first-order terms in θ cancel out and Eq. (4.28)
becomes

2ηr0r
2

c

ℓ2

( h

r0
− 1

)2

θ̇ = −γ.

Equivalently,

θ̇ = −
γℓ2

2η(h/r0 − 1)2r0r2c
= −

ḣ/r0
(h/r0 − 1)2

, (4.29)

where Eq. (4.20) is used again. This leads to

θ(t) = cθ0 +
1

h/r0 − 1
= cθ0 +

(1

2
ln(4Γt+ 4c0)− 1

)

−1

, (4.30)

where cθ0 is a constant to be determined by the initial value of θ, and the last equality
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Figure 14. Scaling plot of the normalized sidewall friction coefficient ξs/πdη as a function of
the normalized fiber draining time Γt for the five sets of data shown in Fig. 12. The color code
used here is the same as that in Fig. 12. The solid line shows a fit of Eq. (4.33) to the data
points with the fitting parameters ǫ = 1.105, cθ0 = −0.118 and c0 = 1.8.

of Eq. (4.30) is obtained using Eq. (4.23). From Eqs. (4.25) and (4.30), we find

ξin =
12πr0η ln ε

cθ0 +
(

(1/2) ln(4Γt+ 4c0)− 1
)

−1
. (4.31)

We now compare the theoretical prediction with the experiment. According to Eq. (4.31),
the normalized friction coefficient ξin/(πdη) is a universal function of Γt for all the soap
film systems with different values of fiber diameter d (= 2r0), film viscosity η, film thick-
ness ℓ and surface tension γ. Figure 14 is a scaling plot of the experimental data shown
in Fig. 12. In this plot, the vertical axis is the normalized sidewall friction coefficient
ξs/(πdη), where ξs(t) is defined as

ξs(t) ≡ ∆ξ(t)− ξc = ξ(t)− ξa − ξc. (4.32)

In the above, ξ(t) is measured total friction coefficient, ξa is the friction coefficient mea-
sured in air and ξc is the friction coefficient of the two contact lines given in Eq. (3.4). The
horizontal axis is the normalized fiber draining time Γt with Γ being the rate coefficient
given in Eq. (4.23). From the AFM force measurement, we estimate the film thickness ℓ
of the red circles to be approximately ℓ ≃ 20 nm. With this value of ℓ and the known
values of d, η and γ, we calculate the value of Γ for the red circles. For all other sets of
data, we use Γ (or equivalently ℓ) as a fitting variable to scale the data horizontally. It is
seen from Fig. 14 that all the data sets can be collapsed on to a single master curve, once
Γt is used as the scaling variable. The fitted values of Γ and the corresponding values of
ℓ are given in Table 1. The obtained values of ℓ are all in the expected range of the film
thickness.
To further test the functional form of the obtained master curve in Fig. 14, we rewrite

Eq. (4.31) as

ξin
2πr0η

=
6 ln ε

cθ0 +
(

(1/2) ln[4(Γt+ c0)]− 1
)

−1
. (4.33)

The solid line in Fig. 14 shows a fit of Eq. (4.33) to the data points with ε, cθ0 and c0
as three fitting parameters. It is seen that the experimental data are well described by
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Table 1. Five soap film samples used in the experiment with different values of fiber diameter
d and soap film viscosity η. The surface tension of all the soap films is γ = 23.2 mN/m. The
obtained values of the fitting parameter Γ used in the scaling plot shown in Fig. 14 and the
corresponding values of the film thickness ℓ are listed in the 5th and 6th columns, respectively.

Samples Symbol d (µm) η (cP) Γ(s−1) ℓ (nm)

1 △ 2.6 1.65 20808 56.90
2 3 2.6 1.65 12138 43.46
3 # 1.1 13.7 4048 20
4 △ 2.6 13.7 1445 43.30
5 △ 1.75 1.65 26.76 15028

Eq. (4.33). From the fitted value of the parameters, we find θ(t) = 0.011 (or 0.63◦) when
Γt = 107. As shown in Eq. (1.1), the value of ε in the wedge-shaped region away from
the CL is expected to be ε ≃ R/a (de Gennes et al. 2004), where R = r1 ≃ 2r0 is the
upper cut-off length of the inner range and a (≃1 nm) is the lower cut-off length away
from the moving CL. With the average value of fiber radius r0 = 1.065 µm used for the
five samples shown in Table 1, we have ξin/(2πr0η) ≃ 46/θ(t) (≃ 4180 when Γt = 107),
which is about 70 times larger than the measured value.

In deriving Eq. (4.33) [and Eq. (1.1)], one has assumed that there is a relative motion
between the solid surface and liquid layer in the entire inner range until the distance z
away from the moving CL reaches the lower cut-off length a (≃1 nm). This assumption,
however, is not valid for an oscillating fiber used in the experiment. When the fiber
oscillates along its long axis with a angular frequency ω0, the viscous shear wave can
only penetrate into a thin fluid layer of thickness δ = (2ν/ω0)

1/2 from the fiber surface
(Landau & Lifshitz 1986), where ν = η/ρ is the kinematic viscosity. This layer of fluid
will oscillate in phase with the fiber, contributing only an added mass and no dissipation
to the oscillating fiber. For liquids with η & 1 cP and ω0 ≃ 2π × 120 kHz, we have
δ & 1.6 µm. Consequently, the cut-off length a, above which the hydrodynamic friction
becomes relevant, is increased considerably. If one sets a = 1.6 µm, the value of ln ε in
Eq. (4.33) becomes ln ε ≃ ln(2.13/1.6) ≃ 0.286, which is approximately 30 times smaller
than the typical value of ln ε with a ≃ 1 nm. This estimated value of ε ≃ 1.33 is very close
to the fitted value of ǫ = 1.105 and thus explains the fitting results shown in Fig. 14. The
above discussion suggests that the Brownian motion of the glass fiber itself introduces a
new lower cut-off length a, which prevents the viscous dissipation from being divergent
at the zero contact angle limit.

There is an additional frequency-dependent friction coefficient ξac, resulting from the
vertical oscillation of the glass fiber at the angular frequency ω0 (Landau & Lifshitz
1986; Xiong et al. 2009). It was shown that ξac takes the form (Xiong et al. 2009; Guo
et al., 2013)

ξac ≃ 2πηh
(r0
δ

)

= πηr0

(r0
δ

)

ln(4Γt+ 4c0), (4.34)

where Eq. (4.23) was used to obtain the second equality in Eq. (4.34). We compute the
value of ξac with the experimental parameters given in Table 1 and find it is approxi-
mately 10 times smaller than the frequency-independent friction coefficient ξin given in
Eq. (4.31). Therefore, the contribution from ξac is ignored in the fitting shown in Fig. 14.
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5. Conclusion

We have carried out a combined experimental and theoretical study of the confinement
effect of thin soap films in the dynamics of spreading along a vertical micron-sized glass
fiber. In the experiment, we built an optical imaging system to monitor the development
of the meniscus of a freely suspended soap film in the vicinity of the vertical glass fiber
as a function of fiber draining time t after it pierces through the soap film at t = 0. For
a thin soap film with its thickness ℓ being smaller than the fiber diameter d, we find
the soap film creeps slowly along the glass fiber during the entire observation time up
to hours. The speed of the creeping flow along the glass fiber depends sensitively on the
film thickness ℓ when it is in the thin film regime (ℓ . d). The shape of the evolving film
meniscus is found to have a similar functional form as the equilibrium profile given in
Eq. (3.1) with a time-dependent height of capillary rise h(t) on the fiber surface. The slow
dynamics of thin film spreading varies logarithmically with time t [i.e., goes as ln(Γt)]
at the long-time limit, which is different from the power-law relaxation as described by
Tanner’s law for spreading of an unconfined fluid near a moving CL. Such a logarithmic
relaxation is also observed in the measured viscous friction coefficient ξs(t) felt by the
glass fiber in contact with a soap film, when the film creeps slowly along the glass fiber
with a decreasing contact angle θ(t).

To explain the observed time-dependence of the height of capillary rise h(t) and friction
coefficient ξs(t) of the soap film, we used the Onsager variational principle and obtained
the equations of motion to describe the dynamics of two important parameters in thin
film spreading, namely, the height of capillary rise h(t) and contact angle θ(t). The newly
derived equations of motion provide the analytical solutions of h(t) and θ(t), which are
found to be in good agreement with the experimental results. It is shown that the height of
capillary rise h(t) reaches its equilibrium value logarithmically in time t at the long-time
limit [i.e., h(t) ∼ ln(Γt)]. The relaxation rate Γ for a thin film is given by Γ ≃ Γ0[ℓ/(d/2)]

2,
where Γ0 is the relaxation rate for spreading of an unconfined fluid along a fiber and the
factor [ℓ/(d/2)]2 is caused by the confinement effect of the thin film. It is also shown
that the normalized friction coefficient, ξs/(πdη) ∼ 1/θ(t), is a universal function of Γt.
Indeed, the values of ξs/(πdη) obtained under different experimental conditions, such as
different values of fiber diameter d, film viscosity η, film thickness ℓ and surface tension
γ, are found to collapse on to a master curve, once they are plotted as a scaling function
of Γt, which was varied by more than three decades. The successful application of the
Onsager variational principle to the problem of thin film spreading allows us to have a
better understanding of the confinement effect of thin films in the dynamics of spreading
along a fiber. Such a understanding is relevant to many industrial processes, such as
coating on fibrous materials and development of new functional materials (Duprat et al.
2012).
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Appendix A. Approximation of some geometric parameters

Following the experimental observations, the meniscus profile is given by Eq. (4.4).
We now derive approximations for some geometric parameters of the soap film with the
assumption that θ is small. First, to the leading order, Eq. (4.4) can be written as

ẑ = H(r, t) ≈ h(t) +
ℓ

2
− r0 ln

(r +
√

r2 − r2
0

r0

)

. (A 1)

This implies that

∂H

∂t
≈ ḣ, (A 2)

and
∂H

∂r
≈ −

r0
r
, (A 3)

when r ≫ r0. Noticing that H(rc) = ℓ/2 and rc ≫ r0, we have

h(t) ≈ r0 ln
(rc +

√

r2c − r2
0

r0

)

≈ r0 ln
(2rc
r0

)

= r0

[

ln
( rc
r0

)

+ ln 2
]

. (A 4)

This equation implies that

ḣ ≈
r0
rc
ṙc, or equivalently, ṙc ≈

rc
r0

ḣ. (A 5)

Second, from Eq. (4.6), we have

r = R(ẑ) ≈ r0 cosh
(h+ ℓ/2− ẑ

r0

)

. (A 6)

This equation implies that

rc = R(
ℓ

2
) = r0 cosh(

h

r0
). (A 7)

It is easy to see that Eqs. (A 4) and (A 7) are equivalent in the leading order approxima-
tion.

Appendix B. Approximation of surface energies

The total surface energy of the system includes two parts, namely, the surface energy
on the fiber Afiber and surface energy of the liquid film Afilm:

Afiber = −2πγr0h̃, (B 1)

Afilm = πγ
(

2

∫ rc

r0

√

1 + (∂rH)2rdr − r2c

)

. (B 2)

Here h̃ = H(r0) = h+ ℓ/2− r0 cos θ ln((1 + sin θ)/ cos θ). In Afiber , we ignore a constant
term, 2πr0γSV L, with γSV and L being, respectively, the surface energy density and total
length of the fiber. In Afilm, we ignore a constant term, πγR2

∞
, with R∞ being the outer

radius of the soap film.
Leading order approximation. Suppose that θ and ℓ are small. We retain the leading

order term and ignore the higher order terms. For Afiber , we have

Afiber = −2πγr0

(

h+
ℓ

2
− r0 cos θ ln

1 + sin θ

cos θ

)

≈ −2πγr0h.
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For Afilm, we have

Afilm = πγ
(

2

∫ rc

r0

√

1 + (∂rH)2rdr − r2c

)

≈ πγ
(

2

∫ rc

r0

(

1 +
(∂rH)2

2

)

rdr − r2c

)

= πγ
(

∫ rc

r0

(∂rH)2rdr − r2
0

)

≈ πγ(r2
0
ln

rc
r0
− r2

0
).

Higher order approximation. Further calculations are needed to compute the higher
order terms in the expression of the free energy. Direct calculations of the total surface
energy A = Afiber +Afilm give [see Eqs. (B 1) and (B2)],

A = πγ
(

rc

√

r2c − r2
0
cos2 θ − r2c + (h−

ℓ

2
)r0 cos θ − 2hr0

+ r20(2− cos θ) ln
1 + cos θ

sin θ
− r20 sin θ

)

. (B 3)

Since θ ≪ 1 and exp( h
r0
)≫ 1, we have

∂A

∂θ
≈ πγr2

0
(
h

r0
− 1)(cosh(

2h

r0
)− sinh(

2h

r0
)− 1)θ + πγr2

0
θ2 + h.o.t .

≈ −πγr20(
h

r0
− 1)θ + πγr20θ

2 + h.o.t . (B 4)

Appendix C. Approximation of energy dissipation functions

Dissipation function in the outer region (r > rc). Since the thickness ℓ of the soap film
does not change much, we know, by volume conservation, that the total inward flux at
any circular section is constant and is given by

ã =
dVmeni

dt
, (C 1)

where Vmeni denotes the volume of the liquid under the meniscus. Direct computations
give

Vmeni = 2π

∫ rc

r0

H(r)rdr =
π

2

(

r0rc

√

r2c − r2
0
− r2

0
h+ ℓ(r2c −

r20
2
)
)

≈
π

2
r0r

2

c . (C 2)

This leads to

ã = πr0rcṙc ≈ πr2c ḣ, (C 3)

where we have used Eq. (A 5). The velocity in the r direction is a function of r and is
given by

ur =
ã

πrℓ
. (C 4)

The energy dissipation function in this region is given by

Φout = 2πη

∫ R∞

rc

(

(∂rur)
2 + (

ur

r
)2
) ℓ

2
rdr

= 2πη

∫ R∞

rc

ã2

π2r3ℓ
dr =

ã2

πr2c ℓ
≈

πr2cη

ℓ
ḣ2, (C 5)

where R∞ is the outer radius of the soap film, which is assumed to be much larger than
rc.
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Dissipation function in the middle region (r1 < r ≤ rc). We assume that the fluid
velocity has a radial component ur(r) only. By volume conservation, we have

∂H

∂t
= −

1

r

∂

∂r
(rH(r)ur). (C 6)

Noticing the boundary condition

ur(rc) =
ã

πrℓ
.

Direct calculations give

ur =
1

rH(r)

( ã

2π
+

∫ rc

r

r
∂H

∂t
dr
)

=
ḣ

rH
(r2c −

r2

2
). (C 7)

Here we have used Eqs. (A 2) and (C 3). This leads to

∂rur = −
ḣ

r2H(r)
(r2c +

r2

2
) +

ḣ

rH(r)2
(r2c −

r2

2
)
r0
r
.

Here we have used Eq. (A 3). Near the boundary r = rc, the height of the meniscus is
close to ℓ/2, so that the H(r)−2 term dominates. In the leading order, we have

∂rur ≈
ḣ

rH(r)2
(r2c −

r2

2
)
r0
r
. (C 8)

Then the energy dissipation function in the leading order is given by

Φmid = 2πη

∫ rc

r1

rH(r)
(

(∂rur)
2 + (

ur

r
)2
)

dr ≈ 2πηr2
0
ḣ2

∫ rc

r1

(r2c − r2/2)2

r3H(r)3
dr. (C 9)

We set z = H(r), using the relation r ≈ r0 cosh(
h−z
r0

) and rc ≈ r0 cosh(
h−ℓ/2

r0
), and

change the variable of integration, and finally we obtain

Φmid = 2πηr2cr0ḣ
2

∫ h1

ℓ/2

(cosh2((h− ℓ/2)/r0)− cosh2((h− z)/r0)/2)
2

z3 cosh2((h− z)/r0) cosh
2((h− ℓ/2)/r0)

dz

≈
πηr0r

2
c

ℓ2
ḣ2. (C 10)

Higher order approximation of the dissipation function. From the analysis in the pre-
vious section, we have shown that the energy dissipation is dominated by that in the
middle region. Here we compute the higher order terms of the energy dissipation func-
tion in the middle region. As in (C 2), the total volume in the inner and middle regions
is given by

Vmeni ≈
π

2
r0r

2

c =
πr3

0

2
cosh2(

h− ℓ/2

r0 cos θ
).

Here we have used the relation rc = r0 cosh(
h−ℓ/2
r0 cos θ ). Direct computations give the flux

ã =
dVmeni

dt
≈ πr2c (ḣ+ αr0θθ̇), (C 11)

with α = h
r0
− tanh h

r0
. This equation differs from Eq. (C 1) only by a higher order term

of θ. Similar analysis as in the previous section leads to

Φmid =
πηr0r

2
c

ℓ2
(ḣ+ αr0θθ̇)

2. (C 12)
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This implies that the total energy dissipation function,

Φ ≈ Φmid =
πηr0r

2

c

ℓ2
(ḣ+ αr0θθ̇)

2. (C 13)
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