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Abstract In this paper, we derive a modified Cassie’s
equation for wetting on chemically patterned surfaces
from a homogenization approach. The derivation re-
veals that effective contact angle is a local average of
the static contact angle along the contact line which de-
scribes all possible equilibrium states including the local
minimum of the free energy of the system. The usual
Cassie’s state which corresponds to the global minimum
is only a special case. We then discuss the contact angle
hysteresis on chemically patterned surfaces.
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Introduction

The study of wetting phenomenon is of critical im-
portance for many industrial applications [2, 9, 10].
Wetting is the ability of a liquid to maintain con-
tact with a solid surface. In physics, the phenomenon
is characterized by two well-known equations, the
Young–Laplace equation and the Young equation. The
Young–Laplace equation,

pL − pG = 2γLGκ, (1)

relates the mean curvature of the interface by the
capillary pressure difference across the interface. The
Young equation [23],

γLG cos θY = γSG − γSL, (2)

on the other hand, relates the static contact angle to the
surface tensions between the three phases: solid, liquid,
and gas. In Eqs. 1 and 2, pL and pG denote the pressures
in liquid and gas respectively. κ is the mean curvature
of the interface. γLG, γSG, and γSL denote the liquid–
gas surface tension, the solid–gas, and solid–liquid sur-
face tensions, respectively. θY is the microscopic con-
tact angle between the liquid–gas interface and the
solid surfaces. The angle θY is generally called Young’s
angle.

The behavior of the droplet on rough or chemically
inhomogeneous surface are more complicated. In these
cases, the actual effective contact angle θa is generally
not equal to the Young’s angle θY given by Eq. 2.
Instead, there are two other equations describing the
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relations between θa and θY . One is the so-called the
Wenzel’s equation [18] for rough surface cases:

cos θa = R cos θY , (3)

with R being the ratio of the rough solid surface area
and the effective smooth surface area. The other is the
Cassie’s equation [4] for chemically patterned surfaces
(composed by two materials):

cos θa = ρθY1 + (1 − ρ)θY2, (4)

where θY1 and θY2 are the Young’s angle of the two
materials, and ρ is the area fraction of material 1.

The validity of the Wenzel’s equation and Cassie’s
equation has been investigated for many years (see
[1, 3, 20, 21] among many others). There are still many
controversies on the two equations [7, 8, 12, 13, 15].
The complexity of the problem also comes from the
contact angle hysteresis (CAH). The effective contact
angle of liquid drops on rough or inhomogeneous sur-
faces could take a range of values, depending on the
history of the liquid drop. It is believed that the multiple
effective contact angles are related to the local mini-
mums of the free energy of the system, which cannot
be described by Eqs. 3 or 4. Among those possible
effective angles, the largest one is called the advancing
angle and the smallest is called the receding angle,
and the difference between the advancing and receding
angle is called contact angle hysteresis. There have
been intensive studies on CAH see [11, 16, 17, 19, 22]
among many others, although the theory on CAH is still
very incomplete.

In this paper, we derive a modified Cassie’s equation
for chemically rough surfaces from the Young–Laplace
equation and the Young equation. The behavior of the
solution for a periodically patterned surface is studied
in the limit of the small ε period. The results show
that effective contact angle is a local average of the
static contact angle along the contact line which de-
scribes all possible equilibrium states including the local
minimum of the free energy of the system. The usual
Cassie’s state which corresponds to the global minimum
is only a special case. We illustrate the results by several
examples. Combine with our results on CAH for two-
dimensional results in [22], we also characterize CAH
on some chemically patterned surfaces.

The paper is organized as follows: In section
“Derivation of the modified Cassie’s equation”, we
introduce a simple model and derive the effective con-
tact angle from a homogenization approach. The mean-
ing of the rough parameter is then explained by some
examples. In section “The contact angle hysteresis

on chemically patterned surface”, we discuss CAH on
chemically patterned surfaces.

Derivation of the modified Cassie’s equation

A simple model

We first consider a simple case shown in Fig. 1. A
channel is formed by two planes parallel to the xy
plane. The bottom of the channel is composed of pe-
riodically patterned two materials, static contact angles
θY1 and θY2, respectively. We assume that the liquid–
gas interface is almost planar except near the rough
bottom surface. The top of the channel has a variable
equilibrium contact angle so that it has no affect on
the contact angle on the bottom (similar models have
been used in some recent numerical and molecular
dynamics simulations [6, 14]). We assume the pattern
is periodic in both x and y with period ε and contact
angle function

θY(x, y) =
{

θY1, if (x, y) is in material 1;
θY2, if (x, y) is in material 2.

(5)

The Young–Laplace equation and the modified
Cassie’s equation

For the above system, we may assume the liquid–gas
interface is given by

x = f (y, z) =kz + εu
( y

ε
,

z
ε

)
. (6)

Here, k is a constant, and ε is the period of the
pattern along y-axis. Introduce the fast variables
Y = y

ε
and Z = z

ε
. We suppose u(Y, Z ) is a smooth

function periodic in Y with period 1 and such
that limZ→∞ u(Y, Z ) = 0 and limZ→∞ ∇u(Y, Z ) = 0.
Equation 6 represents an interface which differs from
the plane x = kz only near the bottom surface z = 0.
In ε → 0 limit, the effective contact angle is then the

Fig. 1 The channel
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angle between the plane x = kz and the bottom z = 0,
as shown in Fig. 2a, given by

cos θa = k
1 + k2 . (7)

In addition, as shown in Fig. 2b, we can also compute
the unit normal of the interface x = f (y, z) = kz +
εu

( y
ε
, z

ε

)
pointing to the liquid domain,

n = 1√
1 + (∂y f )2 + (∂z f )2

⎛
⎝ 1

−∂y f
−∂z f

⎞
⎠

= 1√
1 + (∂Yu)2 + (k + ∂Z u)2

⎛
⎝ 1

−∂Yu
−(k + ∂Z u)

⎞
⎠ .

Notice that the mean curvature of the interface
is given by κ = ∇ · n with ∇ = (∂x, ∂y, ∂z)

T . By direct
computation, we have

κ = ε∇̃ ·
[

1√
1 + (∂Yu)2 + (k + ∂Z u)2

(
∂Yu

k + ∂Z u

)]
,

with ∇̃ = (∂Y , ∂Z )T . The Young–Laplace Eq. 1, as-
suming equal pressure across the interface, is then
given by

∇̃ ·
[

1√
1 + (∂Yu)2 + (k + ∂Z u)2

(
∂Yu

k + ∂Z u

)]
= 0. (8)

The contact line CL between the interface x = kz +
εu

( y
ε
, z

ε

)
and the solid boundary z = 0 (see Fig. 2b) is

now given by

{
x = εu(y/ε, 0),

z = 0.

The local contact angle at the contact line is given by

cos θY

( x
ε
,

y
ε

)
|(x,y)∈CL = cos θY

(
u

( y
ε
, 0

)
,

y
ε

)

= cos θY (u(Y, 0), Y) = −n|CL · e3

= k + ∂Z u(Y, 0)√
1 + (∂Yu(Y, 0))2 + (k + ∂Z u(Y, 0))2

. (9)

Here, e3 = (0, 0, 1)T is the basis along z direction.
Given a patterned surface defined by Eq. 5, we can
assume that the interface is a small perturbation of
a plane. The next order parturbation u(Y, Z ) is then
determined by Eq. 8 with the boundary condition 9 and
a decay condition for Z → ∞.

Integrating Eq. 8 in the domain of fast parameter
{(Y, Z ) | 0 < Y < 1, 0 < Z < ∞} and using the bound-
ary condition 9 and the decaying property as Z → ∞,
we have

0 =
∫ ∞

0

∫ 1

0
∇̃ ·

[
1√

1 + (∂Yu)2 + (k + ∂Z u)2

×
(

∂Yu
k + ∂Z u

)]
dYdZ

= lim
Z0→∞

∫ 1

0

k + ∂Z u√
1 + (∂Yu)2 + (k + ∂Z u)2

∣∣∣
Z=Z0

dY

+
∫ 1

0

−(k + ∂Z u)√
1 + (∂Yu)2 + (k + ∂Z u)2

∣∣∣
Z=0

dY

+
∫ ∞

0

∂Yu√
1 + (∂Yu)2 + (k + ∂Z u)2

∣∣∣
Y=1

dZ

+
∫ ∞

0

−∂Yu√
1 + (∂Yu)2 + (k + ∂Z u)2

∣∣∣
Y=0

dZ

= k√
1 + k2

−
∫ 1

0

(k + ∂Z u)√
1 + (∂Yu)2 + (k + ∂Z u)2

∣∣∣
Z=0

dY

= cos θa −
∫ 1

0
cos θY(u(Y, 0), Y)dY.

Fig. 2 Geometry properties
of the liquid–gas interface

(a) The apparent contact angle (b) The unit normal to the surface and the
Young’s angle
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Fig. 3 The case of
x-directional striped
bottom surface

Therefore, we have the effective contact angle

cos θa =
∫ 1

0
cos θY(u(Y, 0), Y)dY. (10)

In original variables of x, y, andz, the equation reads

cos θa = 1
ε

∫ ε

0
cos θY(x, y)

∣∣
x=εu( y

ε
,0)

dy. (11)

The righthand side term is the integral average of the
local static contact angle along the contact line in one
period of y. We call Eqs. 10 or 11 the modified Cassie’s
equation. It provides an explicit formula to compute the
effective contact angle once we know the patterns of
the solid surface and the contact line location which can
be solved from Eqs. 8 and 9.

A few examples

To understand the meaning of the Eq. 11, we firstly
consider two special cases with striped bottom surfaces
(see Figs. 3 and 4). We suppose that the two materials
on the bottom have different contact angle θY1 and θY2.
For the first case (Fig. 3), the stripes lie along the x
direction and the contact line goes across all the stripes.
From Eq. 11, it is easy to see that the effective contact
angle θa is given by

cos θa = λ cos θY1 + (1 − λ) cos θY2,

with λ = r1
ε

which is also consistent with Eq. 4. As
shown in Fig. 3, here r1 is the width of material 1 strip

and ε is the sum of the width of material 1 strip and
that of material 2 strip in one period. The effective
contact angle is independent of the position and the
shape of the contact line. The λ is also the area fraction
of material 1 in the bottom surface in the special case.
For the second case (Fig. 4), the stripes lie along the
y direction and u(Y, Z ) is independent of Y. From the
Eq. 11, the effective contact angle θa is either

θa = θY1

when the contact line locates in material 1, or

θa = θY2

when the contact line locates in material 2. The result
is consistent with our analysis in [22]. In this case, the
effective contact angle could not be described by the
usual Cassie’s Eq. 4, where the area fraction is used as
a roughness parameter.

From the above two examples, we see that the area
fraction of the chemically patterned surface, by itself,
cannot determine the effective contact angle. Instead,
it can be accurately described by Eq. 11. In this sense,
the effective contact angle is determined only by the
material properties along the contact line. The location
and the shape of the contact line is determined by
the function u(Y, Z ) which can be solved from Eqs. 8
and 9.

We now consider examples with more complicated
rough structures. For simplicity, we draw only the bot-
tom surface and some possible locations of the contact

Fig. 4 The case of
y-directional striped
bottom surface
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Fig. 5 The chemically patterned bottom surface and two contact
lines

line. One example is a chemically patterned surface in
two directions (see Fig. 5 and notice that we draw y
axis horizontally). The base material has a contact angle
θY1 and the material in the square patch has a contact
angle θY2. We assume two possible contact lines CL1
and CL2 which are both periodic along the y direction,
but at different locations.

According to the Eq. 11, the effective contact an-
gles corresponding the CL1 and CL2 are respectively
given by

cos θa,i = λi cos θY1 + (1 − λi) cos θY2, (12)

with λ1 = r1
ε

and λ2 = s1
ε

. Here, r1 and s1 are respec-
tively the distances of the contact line CL1 and CL2
across material 1 in one period. The Eq. 12 has a
similar form to the original Cassie’s Eq. 4. However,
the parameter λi in the equation is a length fraction of
the material along the contact line. It is quite different
from the parameter in Eq. 4, which is an area fraction
of the material.

The problem can be generalized to patterns with
more than two materials. We consider a solid surface

Fig. 6 The chemically patterned bottom surface with three
materials

Fig. 7 The chemically patterned bottom surface with three
materials

which is periodically patterned with n materials with
contact angle θYi(n > 2), see, for example, Fig. 6. When
the period ε is very small, then the effective contact
angle is given by

cos θa =
n∑

i=1

λ̃i cos θYi, (13)

with λ̃i = ri
ε

being the length fraction of material i along
the contact line.

Finally, we consider a liquid drop on a radially pat-
terned surface. Here, the contact line is almost a circle
as shown in Fig. 7. Assuming the period ε is relatively
small compared to the drop radius, then the effective
contact angle is given by, according to the Eq. 12,

cos θa ≈ λ cos θY1 + (1 − λ) cos θY2, (14)

with λ = r1
ε

being the width fraction of material 1 along
the contact line (see Fig. 7).

The contact angle hysteresis on chemically
patterned surface

In section “The CAH on striped surface”, we first
review some analytic results on CAH on chemically
patterned surfaces for a two-dimension problem. Then,
combining the results with the modified Cassie’s equa-
tion discussed in section “Derivation of the modified
Cassie’s equation”, we study the CAH for 3D wetting
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Fig. 8 The striped patterned channel and the reduced two-
dimensional channel

problems in section “Discussions of the CAH for more
general cases”.

The CAH on striped surface

We consider a channel composed by two parallel planar
surfaces. Both surfaces have the same striped chemi-
cally pattern, as shown in Fig. 8. The channel is filled
with liquid and gas. In this section, we allow the pres-
sures in liquid and in gas to be different. The three
phase contact lines are supposed to be parallel to the
strip. In this case, the model is reduced to a two dimen-
sional model as shown in Fig. 8.

We have recently studied this two-dimensional prob-
lem in [22]. Suppose the boundary is composed with
the two materials A and B, with different Young’s
angles θA and θB(θA < θB). Then, the equilibrium con-

tact angle θeq is determined only by the location of the
contact point x̃0. There are only three possible cases
(also shown in Fig. 9):

θeq =

⎧⎪⎨
⎪⎩

θA, if x̃0 ∈ A;

θB, if x̃0 ∈ B;

θζ , if x̃0 ∈ R;

(15)

with θζ such that θA ≤ θζ ≤ θB. On the joint points
of the two materials, the value of the contact angle
is not unique and has to be determined by additional
conditions.

For the above channel model (with θA < θB), we
considered a quasi-static flow in [22]. When the vol-
ume of liquid is gradually increased and decreased,
we always consider the local minimizers of the sys-
tem energy. We find that, when the chemical patterns
becomes finer and finer, the advancing contact angle
approaches to θB (the largest Young’s angle on the solid
surface) and the receding contact angle approaches to
θA (the smallest Young’s angle on the solid surface).
For proof and more explanations of the results, we
refer to Section 5 in [22]. We remark that the result
is only correct for two-dimensional wetting problems.
In the next subsection, we discuss three dimensional
situations.

Discussions of the CAH for more general cases

We now consider the contact angle hysteresis for a
channel composed by two plans with periodic pattern in

Fig. 9 The contact angles on
chemically patterned surface

(c) The contact point at

(a) The contact point on (b) The contact point on
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Fig. 10 The channel with chemically patterned solid boundary

both x and y directions, as shown in Fig. 10. The liquid–
gas interface is lying (almost) parallel to y direction.
Just as before, we assume that the base material has a
contact angle θY1 and the square patch material has a
contact angle θY2 with θY1 < θY2.

Again from homogenization (similar to the deriva-
tion of the Eq. 12), we have the following conclusion.
When the contact line is located in the base region, the
effective contact angle is

θa1 = θY1; (16)

and when the contact line intersects with the array of
the square patch in y direction (similar to the CL1 in
Fig. 5), the effective contact angle is

cos θa2 = (1 − λ) cos θY1 + λ cos θY2, (17)

with λ being the ratio of the square spot width to one
period of the pattern in y direction. When the contact
line intersects only partly with the array of the square
patch (as CL2 in Fig. 5), the effective contact angle is θζ

such that θa1 < θζ < θa2.
The result is similar to the Eq. 15 of the two-

dimensional channel in last subsection. Taken the ho-
mogenized problem as a two-dimensional model, we
can deduce that the advancing contact angle for the
channel is θa2 (given by the Eq. 16) and the receding
contact angle is θa1(given by the Eq. 17).

Fig. 11 Water on two surfaces with 50 % surface area of two
components with different contact angles(taken from [8])

At the end of the section, we study an example
given in [5, 8]. As shown in Fig. 11, we show two
configurations with equal amounts of different surface
areas. They contain circular spots of radius r which
are periodically placed with the distance between two
nearest spot centers being about 2.693r. The green
regions has a smaller contact angle than the red regions.
Denote the contact angles for the green area and the
red area are θY1 and θY2(θY1 < θY2), respectively.

Suppose that the contact line is almost straight as
shown in Fig. 11. By the analysis in last section, it is
easy to compute the maximum and minimum effective
contact angles for the two configurations. For the left
one, the minimum effective contact angle, which is also
the receding contact angle, is

θrec = θY1;

and the maximum effective contact angle, which is also
advancing contact angle, is such that

cos θadv = λ cos θY1 + (1 − λ) cos θY2,

with λ = (2.693r − 2r)/(2.693r) ≈ 0.257. For the right
configuration, the receding contact angle is

cos θ̃rec = (1 − λ) cos θY1 + λ cos θY2,

and the advancing contact angle is

θ̃adv = θY2.

The two configurations have very different wetting
properties, although their area ratio is the same. This is
consistent in principle with some existing analytic and
experimental results [5, 7, 8].

Conclusion

From a simple wetting model with chemically patterned
surafce, we derive, by homogenization, a modified
Cassie equation by homogenization which describes
the apparent contact angle. We give some examples to
show that the effective contact angle is a local aver-
age of the static contact angle along the contact line.
Combining the modified Cassie equation with some ex-
isting results on CAH for the two-dimensional wetting
problem in [22], we then discuss CAH for the general
three-dimensional wetting phenomena on chemically
patterned surfaces with some examples. We show that
the modified Cassie equation can be used to describe
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CAH while the usual Cassie’s state, which only corre-
sponds to the global minimum of the total energy of the
system, is unable to explain the CAH phenomena.
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