
ANALYSIS FOR VELOCITY-DEPENDENT CONTACT ANGLE
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Abstract. Contact angle hysteresis is an interesting phenomenon in wetting. While it is be-
lieved that roughness or chemically inhomogeneity of the solid surface can cause the phenomenon,
quantitative study of the problem is difficult. In this paper, we use a phase field equation with a
relaxed boundary condition on a rough boundary to model contact angle hysteresis. By asymptotic
analysis, we derive an ordinary differential system for the apparent contact angle and the contact
point. Numerical examples show that the ordinary differential equation can be used to understand
the contact angle hysteresis, including the asymmetric dependence of the advancing and receding
contact angles on velocity, which is observed recently in experiments.
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1. Introduction. Contact angle hysteresis is an interesting phenomenon in wet-
ting problem[6, 7, 3]. When a liquid is moving on a solid surface, the advancing angle is
usually different from the receding angle, as shown in Figure 1.1. This is called contact
angle hysteresis(CAH). CAH is an unsolved problem in fluid dynamics[10, 19, 17, 22].
In general, CAH is believed to be mainly induced by the roughness or inhomogeneity
of the solid surface, although there exists slight hysteresis even on atomically smooth
surface. However, quantitative understanding of the phenomenon is still on the way,
especially for the case that CAH might depend on velocity[12].

Fig. 1.1. Contact angle hysteresis: the advancing angle is larger than the receding angle.

Physical study of the CAH problem has been done extensively[3]. There are plenty
of experiments on various properties of CAH and also on its many applications in
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biology and technology[16, 21, 17, 31, 12]. Theoretical analysis of the problem is quite
complicated. Most studies concentrate on the quasi-static process of CAH[11, 26].
The study on the dynamic CAH is limited to a few cases with special geometric
or chemical properties of the solid surface. For example, Joanny and de Gennes
considered a smooth surface with very dilute defects so that the analysis for pinning
of the contact line by one defect can be applied[13].

From the mathematical point of view, theoretical study of CAH is also very chal-
lenging. It is not only because this is a difficult moving contact line problem[2], but
also because its multiscale feature that microscopic roughness or inhomogeneity of
the solid surface might affect the macroscopic properties of the contact angle. Due
to the complication of the problem, mathematical analysis of CAH mainly focuses
on a simplified problem without flow effect. Then the problem will be modelled by
minimizing the total surface energy in the system. The existence of many local mini-
mizers of the energy minimization problem has been analyzed in [14, 4] and this can
be used to understand CAH. In [1, 8, 23], some effective models are derived assuming
an energy barrier when minimizing the energy. In [29], we did analysis for a quasi-
static proces of CAH for a two-dimensional problem with chemically inhomogeneous
surfaces. This can be generalized to the three dimensional case by using a modified
Wenzel and Cassie equation[30, 27]. To study the velocity dependence of CAH, we
study a phase-field model with relaxed boundary condition on chemically-patterned
surfaces[25].

In this paper, we generalize the analysis in [25] to a more general situation that
the solid surface could be both geometrically rough and chemically inhomogeneous.
We consider a phase-field boundary equation with a relaxed boundary condition. To
study the velocity dependence, we assume the solid boundary is moving with some
given velocity. We derive the sharp-interface limit of the phase-field equation by
asymptotic analysis. The dynamics for the contact point and the apparent contact
angle are derived from the the sharp-interface limit. It is a much complicated ordinary
differential system. The system can be reduced to the one in [25] when the geometrical
roughness does not appear. By solving the ordinary differential system numerically, we
observe the clear CAH behavior for various rough surfaces. Interestingly, the system
can give quite similar phenomena of asymmetric dependence of CAH on velocity to
that in experiments[12]. This indicates that our analysis captures some essential
features of CAH.

The structure of the paper is as follows. In Section 2, we introduce the phase-field
model for the wetting problem. In Section 3, asymptotic analysis is given to derive
the sharp interface limit of the phase field equation. An ordinary differential system
for the apparent contact angle and the contact points is derived in Section 4. Some
numerical examples are illustrated in Section 5. Conclusions and a few discussions
are given in the last section.

2. The phase field model for wetting problem. We consider a two-phase
flow in a channel with geometrically rough boundary as shown in Figure 2.1. The
upper and lower boundaries are given by y = ±(h0 + δH(xδ )). Here H(·) is a periodic
and differentiable function. Here δ � h0 is a small positive number. We assume that
the boundary might also be chemically inhomogeneous in the sense that the Young’s
angle θY , which is the static contact angle of a liquid on a flat surface, is not a constant
on the boundary. For simplicity, we assume θY (x) is also a periodic function with
period δ. Suppose the average horizontal velocity of the fluid is U . For convenience,
we choose a frame moving with velocity U , and consider the problem in a domain
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Fig. 2.1. A free interface in a channel with periodically rough and inhomogeneous surface.

Ω(t), whose boundaries moves with a velocity −U horizontally. The domain Ω(t) is
given by

Ω(t) = (0, L)× (−h(x, t), h(x, t)), (2.1)

with h(x, t) = h0 + δH((x+Ut)/δ). We assume L/ε is an integer so that the volume
of Ω(t) does not change with time.

On rough of chemically patterned surface, the interface will oscillates due to the
stick-slip behaviours of the contact points[24]. The problem is quite complicated
due to the existence of the moving contact line and the microscopic roughness of
the boundary. In general, the moving contact line problem can be modelled by a
coupled Navier-Stokes-Cahn-Hilliard system with a generalized Navier slip boundary
condition[18]. When the fluid velocity is small, one can ignore the fluid effect and use
a Cahn-Hilliard equation with a relaxed boundary condition to model the evolution
of the contact angle[5]. To study the evolution of the contact angle, we consider the
following Cahn-Hilliard equation,{

εφt = ∆µ

µ = −ε∆φ+ F ′(φ)
ε

(2.2)

with an initial condition φ(x, 0) = φ0(x). Here φ is the phase-field function, µ is the

chemical potential, and F (φ) = (1−φ2)2

4 is the free energy density. The parameter
ε � δ measures the interface thickness. The boundary condition on the upper and
lower boundary Γ1,2 := {(x, y)|y = ±h(x, t), 0 < x < L} are given by

∂nµ = 0, ε(φt + uw,τ∂τφ) = −α(ε∂nφ+ γ′(x, t, φ)). (2.3)

Here the normal derivative ∂n = n · ∇ and n is the unit exterior normal to the
boundary of Ω; τ is the unit tangential direction of the boundary pointing right and
uw,τ = (−U, 0) · τ is the tangential velocity of the wall; α is a relaxation parameter.
The surface energy γ(x, t, φ) = γSV −γSL

2 − γSV −γSL
4 (3φ − φ3). By Young’s equation

γSV − γSL = σ cos θY with the Young’s angle θY (x+ Ut), it can be simplified as

γ(x, t, φ) =
γSV − γSL

2
− σ cos θY (x+ Ut)

4
(3φ− φ3).

Here σ = 2
√

2
3 is the (dimensionless) liquid-vapor surface tension[29]. In addition,

we use the notation γ′(x, t, φ) = ∂γ
∂φ . The boundary conditions on the left and right
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boundaries Γ3,4 = {(x, y)| − h(x, t) < y < h(x, t), x = 0, L} are given by

∂nµ = 0, φ = 1, on Γ3, (2.4)

∂nµ = 0, φ = −1, on Γ4. (2.5)

Here we assume φ = 1 in the liquid domain and φ = −1 in the vapor domain.

3. Sharp-interface limit of the phase field model. We study the sharp-
interface limit of the system (2.2)-(2.5) by asymptotic matching method. In this
section, we will use a notation x = (x, y) to represent the coordinate of a point in Ω.

3.1. The bulk equation. Outer expansions. We first consider the asymptotic
expansion of the equation (2.2) far from the two-phase interface Γε(t). Suppose the
lead order approximation of Γε(t) is Γ0(t). The domain Ω is divided by Γ0 into two
parts Ω+ and Ω−. Suppose

φ± = φ±0 + εφ±1 + · · · , in Ω±, (3.1)

µ± = ε−1µ±−1 + µ±0 + εµ±1 + · · · , in Ω±. (3.2)

Here we let φ+
0 to be positive and φ−0 negative. Substitute the above expansions into

the equation (2.2). The leading order is given by

O(ε−1) : ∆µ±−1 = 0, µ±−1 = F ′(φ±0 ) = (φ±0 )3 − φ±0 , (3.3)

and the next order is

O(1) : ∆µ±0 = 0, µ±0 = (3(φ±0 )2 − 1)φ±1 . (3.4)

Substitute the expansions to the boundary condition, we obtain

∂nµ
±
−1 = 0, ∂nµ

±
0 = 0, on ∂Ω±, (3.5)

φ+
0 = 1, on Γ3, (3.6)

φ−0 = −1, on Γ4, (3.7)

γ′(φ±0 ) = 0 on ∂Ω± ∩ (Γ1 ∪ Γ2). (3.8)

Inner expansions. To analyse the sharp-interface limit of the Cahn-Hilliard equa-
tion, we need consider the inner expansions near the interface Γ0. For that purpose,
we denote d(x) the signed distance function to Γ0 and let d(x) < 0 in Ω− and d(x) > 0
in Ω+. Then the unit normal of Γ0 and the signed distance curvature κ of the interface
is given by

n = ∇d, κ = ∆d. (3.9)

It is easy to see that n is the unit normal pointing into Ω+ and κ(x) is positive when
Ω− is convex near x. We introduce a stretched variable near the interface Γ0,

ξ =
d(x)

ε
.

Assume that φ and µ can be written in variables (x, ξ, t) with expansions,

φ = φ̃0(x, ξ, t) + εφ̃1(x, ξ, t) + · · · , (3.10)

µ = ε−1µ̃−1(x, ξ, t) + µ̃0(x, ξ, t) + · · · . (3.11)
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In the new coordinates, the derivative can be rewritten as

∇ = ∇x + ε−1n∂ξ,

∆ = ε−2∂ξξ + ε−1κ∂ξ + ∆x + 2n · ∇x∂ξ.

We substitute the expansions (3.10)-(3.11) into the equation (2.2) and use the above
expressions for derivatives. In leading order, we have

∂ξξµ̃−1 = 0, µ̃−1 = −∂ξξφ̃0 + F ′(φ̃0), (3.12)

and the next order is

∂ξξµ̃0 = 0, µ̃0 = −∂ξξφ̃1 + κ∂ξφ̃0 + 2(n · ∇x)∂ξφ̃0 + F ′′(φ̃0)φ̃1. (3.13)

We might also have the next order expansion for µ̃1 that

∂ξξµ̃1 = 0.

By the first equation of (3.12), we have

µ̃−1 = c0ξ + c1. (3.14)

Using the matching condition for limξ→±∞ µ̃−1 = µ±−1 and the boundedness of µ±−1,
we obtain c0 = 0 and

µ±−1 = c1, on Γ0. (3.15)

That means µ±−1 is continuous across Γ0. Similarly, by the first equation of (3.13) and

the matching condition of µ̃0, we know µ̃0 is independent of ξ and µ±0 is continuous
across Γ0. In addition, by the matching condition that

lim
ξ→±∞

∂ξµ̃0 = lim
d(x)→±0

n · ∇xµ−1(x). (3.16)

We have n · ∇µ−1 = 0 on Γ0. Combining with (3.3) that ∆µ±−1 = 0, we thus have

µ±−1 are both constant functions such that

µ±−1 = c1, in Ω±.

This implies that µ−1 is constant in the whole domain Ω. Similar arguments lead to
the fact that µ0 is a constant in Ω.

Noticing that µ±−1 = (φ±0 )3 − φ±0 and the boundary condition (3.6)-(3.7) on Γ3

and Γ4, we have

µ±−1 = c1 = 0, in Ω±, (3.17)

and

φ±0 (x) = ±1, x ∈ Ω±(t). (3.18)

By the formula for µ̃−1 in (3.12), we have

−∂ξξφ̃0 + F ′(φ̃0) = 0. (3.19)
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Using the matching condition for φ̃0 that limξ→±∞ φ̃0 = φ±0 = ±1, we know that the

above equation has a unique solution φ̃0 = Φ(ξ) := tanh( ξ√
2
). Here we use the fact

that F ′(φ̃0) = φ̃3
0 − φ̃0.

By the formula for µ̃0 and the fact that µ̃0 = µ0 is a constant, we have

µ0 = −∂ξξφ̃1 + κ∂ξφ̃0 + F ′′(φ̃0)φ̃1 (3.20)

Multiply ∂ξφ̃0 to the above equation, notice also that φ̃0 satisfies (3.19), we obtain

2µ0 = κ

∫ +∞

−∞
(∂ξφ̃0)2dξ = κσ (3.21)

with σ =
∫ +∞
−∞ (∂ξφ̃0)2dξ = 2

√
2

3 . This implies that κ is a constant(since µ0 is con-
stant). In other words, the interface Γ0 has constant curvature at any time. We
would like to remark that the leading order equation (3.21) is different from that of
the standard Cahn-Hilliard equation[15, 5]. This is because we choose a time scaling
which leads to a very fast evolution of the Cahn-Hilliard equation to its equilibrium
state. In this time scale, we only observe the evolution of an interface with constant
curvature. We will use this fact to do asymptotic analysis near the contact point in
the following subsection.

3.2. Asymptotic analysis near the contact point. From the analysis above,
we see that the curvature of Γ0 is a constant changing with time. By symmetry of
the channel with respect to the central line y = 0, we can assume that the limiting
interface Γ0 is a circle centered at (a(t), 0) with radius R(t)(as shown in Figure 2.1):

Γ0(t) := {(a(t), 0) +R(t)(cosϑ, sinϑ); |ϑ| ≤ β(t)}. (3.22)

Suppose the zero level set of φε is given by

Γε(t) := {(a(t), 0) +Rε(ϑ, t)(cosϑ, sinϑ); |ϑ| ≤ βε(t)}. (3.23)

We can assume the expansion

Rε(ϑ, t) = R(t) + εR1(ϑ, t) + ε2R2(ϑ, t) + · · · . (3.24)

Near the contact point on Γ1, we consider the stretched variables

ξ =
R(t)− r

ε
, η =

dΓ(x)

ε
, (3.25)

with x = (x, y) and r =
√

(x− a(t))2 + y2. Here dΓ is the signed distance function to
the upper boundary Γ1 of Ωε, and dΓ(x, y) < 0 for y < h(x, t). In addition, we have
ϑ = arctan y

x−a(t) .

Denote φ(x, t) = φ̂(ξ, η, t) and let nΓ be the outer normal of Γ1 and nϑ be the
normal of Γ0 pointing into Ω+. It is easy to see that

nΓ = ∇dΓ and nϑ = −(cosϑ, sinϑ)T . (3.26)

By these notations, we easily have

∇φ = ε−1∂ηφ̂nΓ + ε−1∂ξφ̂nϑ, (3.27)

∆φ = ε−2∂ηηφ̂+ 2ε−2nΓ · nϑ∂ηξφ̂+ ε−2∂ξξφ̂, (3.28)

φt = ε−1(Ṙ+ ȧ cosϑ)∂ξφ̂+ ∂tφ̂. (3.29)
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Here Ṙ = dR(t)
dt and ȧ is similarly defined. Assume φ̂ has the following expansion,

φ̂ = φ̂0(ξ, η, t) + εφ̂1(ξ, η, t) + · · · . (3.30)

Substitute the expansion to the equation (2.2) and the boundary condition (2.3). The
leading order of the expansion gives{

φ̂0
ηη + 2nΓ · nϑφ̂ηξ + φ̂0

ξξ − F ′(φ̂0) = 0, when η > 0

(Ṙ+ ȧ cosβ + uw,ττ · nβ + αnΓ · nβ)φ̂0
ξ = −α(φ̂0

η + γ′(xct, t, φ̂
0)), when η = 0.

(3.31)
Here xct is the x-coordinate of the contact point. We also have the matching condition
that

lim
η→+∞

φ̂0(ξ, η, t) = φ̃0(ξ, t). (3.32)

It is easy to see that φ̂0(ξ, η, t) = Φ(ξ) is the solution of the first equation. Notice
that

γ′(φ̂0) =
3σ

4
((φ̂0)2 − 1) cos θY = − cos θY ∂ξΦ = − cos θY φ̂

0
ξ . (3.33)

Here θY represents θY (xct + Ut). The second equation of (3.31) gives

Ṙ+ ȧ cosβ = −α(nΓ · nβ − cos(θY ))− uw,ττ · nβ . (3.34)

The equation gives a relation of R(t), a(t) and β(t). We specify some notations in
the above equation: τ = 1√

1+(∂xh)2
(1, ∂xh)T and nΓ = 1√

1+(∂xh)2
(−∂xh, 1)T . Using

the notation of the dynamic contact angle θd which satisfies cos θd = nΓ · nβ and
θd ∈ (0, π), the equation could be simplified as

Ṙ+ ȧ cosβ = α(cos(θY )− cos θd) + uw,τ sin θd. (3.35)

4. Dynamics of the contact angle. By the above analysis, the leading order
of the Cahn-Hilliard equation gives a circular interface which satisfies the condition
(3.35) at the contact point. In the following, we will use the property to derive a
dynamics for the apparent contact angle and the contact point. The apparent contact
angle is the angle between the interface and the homogenized solid boundary as shown
in Figure 2.1.

We first notice that the Cahn-Hilliard equation satisfies the following mass con-
servation property

d

dt

∫
Ω

φdx = 0. (4.1)

This can be obtained by integration of the first equation of (2.2) and use the homo-
geneous Neumann boundary condition of µ. The leading order of the equation (4.1)
leads to

d

dt

∫
Ω

φ0dx = 0, or equivalently (|Ω+| − |Ω−|) = const. (4.2)

Noticing that |Ω+|+ |Ω−| = |Ω| = const, we have the volume of both Ω+ and Ω− are
preserving. Denote A as the volume of Ω+. It is easy to compute that

A = R2(β − sinβ cosβ) + 2

∫ xct

0

h(x, t)dx (4.3)
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where xct is the x-coordinate of the contact point. We also have the following geo-
metric relation

R sinβ = h(xct, t), xct = a+R(t) cosβ. (4.4)

We will use the equations (3.35), (4.3) and (4.4) to derive an ordinary differential
equation for β and xct.

By the equation (4.3), using dA
dt = 0, we have

RṘ(β − sinβ cosβ) +R2 sin2 ββ̇ + h(xct, t)ẋct +

∫ xct

0

∂th(x, t)dx = 0. (4.5)

The time derivative of the equation (4.4) gives

Ṙ sinβ + (R cosβ)β̇ = ∂xh(xct, t)ẋct + ∂th(xct, t) (4.6)

ȧ+ Ṙ cosβ − (R sinβ)β̇ = ẋct. (4.7)

Multiply (4.6) by sinβ and (4.7) by cos θ and add them together, then we obtain

Ṙ+ ȧ cosβ = ẋct[cosβ + ∂xh(xct, t) sinβ] + ∂th(xct, t) sinβ. (4.8)

Substituting (4.8) into (3.35) and simple computations lead to

ẋct =
α(cos θY (xct + Ut)− cos θd) + uw,τ sin θd − ∂th(xct, t) sinβ

cosβ + ∂xh(xct, t) sinβ
. (4.9)

This is an ordinary differential equation of the contact point xct, which depends on
the unknown β. In the following, we will derive the equation of β. Using the first
equation of (4.4), the equation (4.5) is reduced to

Ṙh(xct, t)
β − sinβ cosβ

sinβ
+ h2(xct, t)β̇ + h(xct, t)ẋct +

∫ xct

0

∂th(x, t)dx = 0. (4.10)

Combing with the equation (4.6) and using the first equation of of (4.4), we can
eliminate Ṙ and obtain by direct calculations that

β̇ = −g(β)
[ sin2β + (β − sinβ cosβ)∂xh(xct, t)

h(xct, t)
ẋct

+
(β − sinβ cosβ)∂th(xct, t)

h(xct, t)
+

sin2β

h2(xct, t)

∫ xct

0

∂th(x, t)dx
]
, (4.11)

where g(β) = sin β
sin β−β cos β . The equations (4.9) and (4.11) compose a complete system

to describe the dynamics of the contact point and β, noticing the following formula
on dynamic contact angle

cos θd = nΓ · nβ =
∂xh(xct, t) cosβ − sinβ√

1 + (∂xh(xct, t))2
,

sin θd = −τ · nβ =
∂xh(xct, t) sinβ + cosβ√

1 + (∂xh(xct, t))2
.

Assume the parameter δ is small in the formula of h(x, t), the rough boundary
y = h(x, t) approximates to an effective flat boundary y = h0. Then the apparent
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Fig. 5.1. The channel with smooth oscillating boundaries.

contact angle will be θa = β + π
2 (see Figure 2.1). Then the equations (4.9) and

(4.11) could be reduced to a system on θa and xct. Using the formula for uw,τ , direct
calculations give

ẋct = α(cos θY (xct+Ut)−cos θd)
sin θa−H′

ct cos θa
−
[

1
1+(H′

ct)
2 − H′

ct cos θa
sin θa−H′

ct cos θa

]
U

θ̇a = − g̃(θa)
hct

[(
f̃(θa) + cos2 θa

)
ẋct +

(
f̃(θa) + cos2 θa

hct

∫ xct
0

H ′(x+Ut
δ )dx

)
U
]
.

(4.12)
where we use the notations

H ′ct = H ′(
xct + Ut

δ
), hct = h0 + δH(

xct + Ut

δ
),

g̃(θa) =
cos θa

cos θa + (θa − π
2 ) sin θa

, f̃(θa) = (θa −
π

2
+ sin θa cos θa)H ′(

xct + Ut

δ
).

Notice that when the boundary is flat so that h = h0, the above equation is
reduced to {

ẋct = α(cos θY (xct+Ut)−cos θd)
sin θa

− U
θ̇a = − cos3 θa

cos θa+(θa−π2 ) sin θa
ẋct
h0
.

If we denote x̂ct = xct + Ut, the actual contact point on the boundary, the equation
is reduced to {

˙̂xct = α(cos θY (x̂ct)−cos θa)
sin θa

,

θ̇a = − cos3 θa
cos θa+(θa−π2 ) sin θa

˙̂xct+U
h0

.

This is the same as the equation derived in [25].

5. Numerical examples. In this section, we will give some numerical examples
to show that the ODE system (4.12) could be used to understand the interesting
contact angle hysteresis phenomena.

Example 1. In the first example, we consider a smoothly oscillating boundary as
shown in Figure 5.1. The boundary is given by h(x, t) = h0 + δH((x + Ut)/δ), we
set h0 = 0.8, H = sin x

4 and U = ±0.01. We did experiments for several choice of
δ. We choose θY = π

3 . We solve the ODE system (4.12) numerically. Some typical
numerical results are given in Figure 5.2.

In every subplot, we draw two curves on the trajectories of the solution of the
ODE system in phase plane. Here we show the apparent contact angle with respect to
the actual position x̂ct of the contact point on the rough boundary. The lower curve
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Fig. 5.2. The apparent contact angle θa and the x-coordinate of the contact point x̂ct in a
channel with different oscillating rough boundary.

corresponds to a negative velocity U and the upper one corresponds to a positive U .
When U < 0, the boundary moves to the right and we observe a receding contact angle.
Similarly, when U > 0, we observe an advancing contact angle. For the case that
δ = 0.04, the period of the oscillation of the boundary is relatively large. We could see
that the two trajectories overlap and the intervals of the advancing angle and receding
angle are almost the same. One can hardly observe the contact angle hysteresis. On
the other hand, when δ becomes smaller, which means that the boundary is more
oscillating, the contact angle hysteresis becomes more obvious. When δ = 0.005, we
can see that the maximal advancing angle is about 74o and minimal receding contact
angle is about 46o. By the modified Wenel’s equation [27], the maximal/minimal
apparent contact angle of a liquid(in equilibrium) on an oscillating boundary is equal
to θY ± θg, with θg being the largest angle of inclination of the boundary. In this
example, the largest slope of the rough boundary is 1/4 and so that θg = arctan(1/4) ≈
14.04o. This means that with small velocity U = 0.01, the advancing angle and the
receding angle approaches respectively to the maximal and receding apparent contact
angles in equilibrium.

Example 2. In the second example, We consider a tube with nonsmooth oscillating
rough boundaries. For simplicity, we choose a serrated shape of the boundary as shown
Figure 5.3. We could define h(x, t) = h0 +δH((x+Ut)/δ) with H(x) being a periodic
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Fig. 5.3. The channel with serrated boundaries.

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
70

75

80

85

90

95

100

105

110

x̂ ct

θ
a
(d

e
g
re

e
)

 

 

Receding

Advancing

(a) δ = 0.04

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
70

75

80

85

90

95

100

105

110

θ
a
(d

e
g
re

e
)

 

 

x̂ ct

Receding

Advancing

(b) δ = 0.008

Fig. 5.4. Contact angle hysteresis on a rough boundary with a serrated shape.

function with period 2:

H(x) =

{
kx 0 < x < 1,
−kx 1 < x < 2.

Here we let k = tan(π/12). We choose the static Young’s angle to be θY = π/2
and U = ±0.01. Notice that the function h(x, t) is not differentiable at some points.
But we still can solve the ODE system (4.12) numerically by setting H ′(x) to be its
left or right limit of H ′ at these points. The numerical results are similar to that in
the previous example. We show only a few results in Figure 5.4 for the choices that
δ = 0.04 and δ = 0.008. We could see the obvious contact angle hysteresis phenomena.
When δ = 0.04, we could see clear stick-slip behaviour from the trajectories. At
some points, the contact points is pinned while the contact angle changes. The slip
occurs with dramatic changes of both the contact position and the contact angle.
Furthermore, numerical results indicate that the stick-slip behaviour occurs only on
the discontinuous points of the boundary. For example, the contact point on the lower
boundary is pinned only at highest vertexes of the surface and slips at lowest points.
From the case δ = 0.008, we could see the advancing angle is about 7π/12 = 105o

and the receding angle 5π/12 = 75o, which could be described again by the modified
Wenzel’s equation, noticing that θY = π/2 and θg = π/12 in this case.

Example 3. In the third example, we consider the effect of the velocity. Suppose
the rough boundary are similar to that in Example 1. Here, we choose δ = 0.002 and
θY = 2π/3. We solve the problem (4.12) with different velocity U . The numerical
results are shown in Figure 5.5. We could see that with increasing velocity, the
advancing angle becomes larger and the receding angle becomes smaller. The changes
of the contact angle are almost symmetric although the decreasing of the contact
angle seems slightly faster.
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Fig. 5.5. Velocity dependence of the contact angle hysteresis in Example 3(with relatively small
velocity).

Example 4. In the last example, we consider the velocity dependence of the
contact angle hysteresis on a chemically patterned surface. In this calculation, we
consider a flat boundary h = 0.5 and assume θY (x) is a periodic function with period
0.2. In each period, θY (x) is equal to 3π/4 in a half of the period and 9π/10 in the
other half. We consider several choices of the velocity. The velocity are relatively
larger than that in previous cases. The numerical results are shown the left subfigure
of Figure 5.6. In this case, we could see the asymmetry of the velocity dependence
of the contact angles, which means that the change of the advancing and receding
contact angles are different with increasing velocity. This phenomena occurs since
the velocity is relatively large and the asymmetry choice of the Young’s angles. If
the Young’s angles of the chemically patterned surface are symmetric with respect to
π
2 , the velocity dependence of the advancing and receding angles is also symmetric.
In addition, if the velocity is small, the asymmetry of the velocity dependence is not
obvious, as in the previous example.

Interestingly, the similar asymmetry of the velocity dependence of the contact
angle hysteresis has been observed in experiments, see the right subfigure in [12]. We
could see that the numerical results looks similar to that in physical experiments.
This indicates that the ODE system captures some essential feature of contact angle
hysteresis. However, we would like to remark that the numerical results do not match
the experiments quantitatively. There are many reasons for that. One obvious one is
that the geometric setups are not the same. In our case, we simply consider a channel
with rough boundary. In the physical experiments, they considered a fibre pulling out
and pushing into a liquid bath.

6. Conclusions. We study the dynamic contact angle hysteresis by using a
phase-field equation with a relaxed boundary condition on rough surfaces. By asymp-
totic analysis, we derive a nonlinear ordinary differential system for the apparent
contact angle and the contact point. The system can be used to understand some
typical phenomena for CAH, including the asymmetry of the dependence of the ad-
vancing and receding contact angles on the velocity, which is observed in experiments
recently. Some observations are obtained from our numerical examples. First, the
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(a) Numerical results (b) Experimental results([12])

Fig. 5.6. Non-symmetric of velocity dependence of contact angle hysteresis in Example 4(with
relatively large velocity).

advancing and receding contact angles can be characterised by the modified Wenzel
or Cassie equations[27] when the velocity of the two-phase interface is small, as in
quasi-static wetting problem. Secondly, the asymmetry of the velocity dependence of
the CAH is induced by the asymmetry of the chemical or geometric properties of the
solid surface. It is obvious for only relatively large velocities.

We remark that we do not consider the fluid effects in our study. The dissipation
in the fluid might be important to quantify the contact angle hysteresis especially when
the fluid velocity is large. Although numerical simulations are possible as in[24, 20],
theoretical analysis for that problem will be much more difficult. A recent developed
strategy by using the Onsager principle as an approximation tool might be useful for
the analysis[28, 9]. This will be left for future study.
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