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This paper is concerned with the numerical computation of cavitation in nonlinear elas-

ticity. The Crouzeix-Raviart nonconforming finite element method is shown to prevent
the degeneration of the mesh provoked by the conventional finite element approximation

of this problem. Upon the addition of a suitable stabilizing term to the elastic energy, the

method is used to solve cavitation problems in both radially symmetric and non-radially
symmetric settings. While the radially symmetric examples serve to illustrate the ef-

ficiency of the method, and for validation purposes, the experiments with non-centred

and multiple cavities (carried out for the first time) yield novel observations of situations
potentially leading to void coalescence.
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1. Introduction

Motivated by the study of the internal rupture of rubber cylinders of Gent and
Lindley,13 a number of researchers in nonlinear elasticity have considered the prob-
lem of modelling the formation and rapid expansion of voids in solids subjected to
tension, phenomenon referred to in the literature as cavitation. In the mathematical
theory that has developed, hole-creating deformations are obtained as singular min-
imizers of the stored energy of the material, whenever sufficiently large tensile loads
are applied to the body (see, e.g., the seminal work by Ball,4 the review paper by
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Horgan and Polignone,20 or the more recent works by Müller and Spector,28 Sivalo-
ganathan and Spector,36 Conti and De Lellis,10 and Henao and Mora-Corral16,17,18).

Many difficulties arise in the numerical computation of cavitation, espe-
cially because the corresponding minimization problems exhibit the Lavrentiev
phenomenon,22 making the traditional finite element methods unable to detect the
singular minimizers of the stored energy. Although several methods have been pro-
posed to overcome the Lavrentiev phenomenon,2,6,21,23,32 they have not been used
for the simulation of cavitation (except for the radially symmetric case, see Ref. 21).
This is due not only to the nonconvexity and high nonlinearity of the energy func-
tional, but also to the large deformations involved (near the cavity surfaces) and
the presence of point singularities.

In order to overcome the mentioned numerical difficulties, we do not consider
the full minimization problem, in which all forms of cavitation are allowed to com-
pete in the minimization of the energy, but the simpler situation of the model of
Sivaloganathan and Spector (see Ref. 36, 37, 38, 40, 41, among others), where a
bound is imposed on the number of cavities, and the possible locations of the singu-
larities in the reference configuration are prescribed. By the approximation result
of Sivaloganathan, Spector and Tilakraj39 (see also Ref. 15), we obtain the singular
minimizers for this problem, in the limit as ε→ 0, by minimizing the elastic energy,
in a class of regular deformations, on a domain with holes of radius ε centred at the
prescribed cavity points.

For the case of a single cavity at the centre of a ball, Negrón-Marrero and
Betancourt29 were able to carry out computations for the model described above,
allowing for non-radially symmetric deformations, by using a spectral-collocation
method. For more complex cavitation configurations, however, the efficiency of the
traditional numerical methods is affected by the inability to accurately resolve the
singularities of the deformation, and by the propensity of these methods to induce
the degeneration of the mesh. The purpose of this paper is to show that the singular
minimizers arising in the cavitation models can be numerically obtained by using
instead the Crouzeix-Raviart nonconforming finite element method,11 as previously
suggested by Ball7 (for further computations of cavitation in domains with multi-
ple holes, based on a quadratic iso-parametric finite element method, see also the
recently completed works by Lian and Li24,25).

The structure of this paper is as follows. In Section 2, we briefly introduce the
original and regularized energy models. In Section 3, we discuss the finite element
approximation of the regularized model. Both the mesh degeneracy of the conform-
ing finite element method, and the lack of this degeneracy in the nonconforming
method, are carefully analyzed by means of a scaling argument. Following this
analysis, we show that the nonconforming method is prone to its own numerical in-
stability, but that this can be controlled by adding a suitable stabilizing term to the
elastic energy. In Section 4, we introduce the corresponding numerical algorithm for
the stabilized problem, where minimizers are sought by means of a suitably chosen
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gradient flow. In Section 5, we present some radially-symmetric numerical experi-
ments, in order to illustrate the efficiency and the correctness of our method, and
present some new observations of cavitation obtained, for the first time, in off-centre
configurations and in domains containing multiple cavities.

2. The Energy Model for Cavitation in Nonlinear Elasticity

2.1. General notation

We suppose that a nonlinearly elastic body occupies the domain Ω ⊂ Rn, n = 2, 3,
in its reference configuration. Deformations of the body are represented by maps
u : Ω 7→ Rn, where u(x) denotes, for each x ∈ Ω, the position of x in the deformed
configuration. The map u is assumed to be weakly differentiable, and its gradient
is denoted by ∇u(x).

Vector-valued and matrix-valued quantities are written in boldface. The identity
matrix is denoted by 1. Given a square matrix F ∈ Rn×n, its transpose is denoted
by FT , and its determinant by det F. The cofactor matrix of F, denoted cof F, is the
matrix satisfying FT cof F = (det F)1. The dot product of two vectors a,b ∈ Rn is
denoted by a · b, and the same notation is used for the inner product of matrices.

2.2. The model without pre-existing microcavities

The elastic stored energy of the body is given by

I(u) =
∫

Ω

W (∇u)dx, (2.1)

where W is the energy density function. Model examples include the compressible
neo-Hookean materials, given by

W (F) =
µ

2
(|F|2 − 2 ln det F− 3) (2.2)

(µ > 0 being the shear modulus), or energy densities of the form

W (F) =
µ

p
|F|p + f(det F), (2.3)

where p > 1 and f : (0,+∞) → R is a suitable convex function. The role of f ,
in general, is to prevent the compression of a subpart of the body to zero volume,
or to penalize deviations from incompressibility. For this type of energy densities,
certain conditions are required for cavitation to take place4,28. We suppose that
n− 1 < p < n, and that

lim
s→0+

f(s) = lim
s→+∞

f(s)
s

= +∞. (2.4)

In order to guarantee the existence of minimizers of the energy, deformations are
assumed to belong to the Sobolev space (W 1,p(Ω))n, and to satisfy certain invert-
ibility conditions, such as condition (INV) by Müller and Spector,28 or condition
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(INV′) in Ref. 15. For simplicity, we do not give the details of these conditions, but
refer to the cited articles.

In this paper we consider the model of Sivaloganathan and Spector,36 where cav-
itation is allowed only at a finite number M ∈ N of prescribed locations x1, . . . ,xM .
This is achieved by imposing that

Det∇u = (det∇u)Ln +
M∑
i=1

αiδxi , (2.5)

where Ln is the n-dimensional Lebesgue measure, δxi is the Dirac measure sup-
ported on xi, and the αi ≥ 0 are the volumes of the cavities. Here Det∇u denotes
the distributional determinant of u (see Ref. 3, 27), which is defined as

Det∇u(φ) := − 1
n

∫
Ω

u · (cof∇u)∇φdx, φ ∈ C∞0 (Ω). (2.6)

Upon specifying appropriate boundary conditions, such as u = g on ∂Ω for
suitable g : ∂Ω→ Rn, the model can be formulated as

min
u∈V

I(u), (2.7)

where

V = {u ∈ (W 1,p(Ω))n|det∇u > 0,u satisfies (INV),u|∂Ω = g,

Det∇u = (det∇u)Ln +
M∑
i=1

αiδxi}. (2.8)

2.3. The energy model with pre-existing microcavities

The minimization problem (2.7) exhibits the Lavrientiev phenomenon, whereby

min
u∈V ∩(W 1,∞)n

I(u) > min
u∈V

I(u),

despite the fact that V ∩(W 1,∞)n is dense in V . Because of this, the traditional finite
element method fails to give the minimizers and the minimum value of the energy for
this problem. In order to overcome this difficulty, we consider the regularized model
of Sivaloganathan, Spector and Tilakraj,39 where small holes of radius ε centred at
the cavity points are removed from the domain. Letting Ωε := Ω\

∑M
i=1B(xi, ε),

this can be written as

min
u∈Vε

Iε(u), (2.9)

where Iε and Vε are given by

Iε(u) =
∫

Ωε

W (∇u)dx, (2.10)

Vε = {u ∈ (W 1,p(Ωε))n|det∇u > 0,u satisfies (INV),u|∂Ω = g,

Det∇u = (det∇u)Ln}. (2.11)
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As shown in Ref. 39 and Ref. 15, the problem (2.9) converges to (2.7) in the sense
of Γ-convergence.

3. Finite Element Approximations of the Relaxed Problem

The purpose of this section is to describe some obstacles encountered in a pre-
liminary attempt to carry out computations for (2.9) using the conforming finite
element method, and to explain how they were overcome by following instead the
Crouzeix-Raviart11 nonconforming approach.

3.1. The finite element methods

Let T εh be the triangulation of Ωε. We suppose that all the triangles satisfy the
maximum angle principle1. We can approximate Ωε with a polygonal domain, since
this introduces only a higher order error. We suppose, thus, that Ωε is a polygonal
domain such that Ωε = ∪K∈T εhK. Define the linear conforming finite element space
V ch

V ch =
{
v : v|K ∈ (P 1(K))n,det∇v|K > 0,∀K ∈ T εh ,

v ∈ (C(Ωε))n,v(ai) = g(ai),∀ai ∈ ∂Ω} , (3.1)

and the Crouzeix-Raviart nonconforming finite element space

V nch =
{
v : v|K ∈ (P 1(K))n,det∇v|K > 0,∀K ∈ T εh ,

v is continuous on M,v(aij) = g(aij),∀aij ∈M∩ ∂Ω} , (3.2)

where M denotes the set of mid-points of the edges in T εh .
The conforming and nonconforming finite element approximations of (2.9) are

defined, respectively, as

min
uh∈V ch

Iεh(uh), (3.3)

and

min
uh∈V nch

Iεh(uh). (3.4)

Here Iεh(uh) is the discrete energy functional

Iεh(uh) =
∑
K∈T εh

|K| W (∇uh|K). (3.5)

3.2. Mesh degeneracy of the conforming finite element method

By means of a scaling argument, we show how the efficiency of the conforming
method is affected by its propensity to make the discrete energy unbounded, and
to result in a certain form of mesh degeneracy. For simplicity, consider a domain
with a single cavity at the center, Ωε = Ω \ B(0, ε), and a triangulation T εh of the
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domain, where the inner boundary is approximated by N line segments. For r > 0
and i ∈ N, denote the point with polar coordinates (r, πiN ) by Ar,i. We assume that
∂B(0, ε) is approximated by the segments Aε,i−2Aε,i, i = 2, 4, . . . , 2N . Furthermore,
suppose that the first layer next to the cavity surface is composed of the following
two sets of triangles (see Fig. 1):

• those with vertices at Aε,i−1, Aε+δ,i and Aε,i+1, for i = 1, 3, . . . , 2N − 1;
and

• those with vertices at Aε+δ,i−1, Aε,i and Aε+δ,i+1, for i = 2, 4, . . . , 2N .

In both cases, the triangles are denoted Ki, i = 1, 2, . . . , 2N ; the height of the
triangles is proportional to the parameter δ > 0.

Fig. 1. Vertices Ar,i in a triangulation of a domain with microcavities.

When using the conforming element method, great care is needed in choosing
N sufficiently large so that the polygon formed by the nodes on the cavity surface
accurately resolves the curvature of that surface not only in the reference, but also
in the deformed configuration. As schematically described in Fig. 2 and Fig. 3, some
of the elements in the first layer may reverse their orientation during the expansion
of a microcavity. Fig. 2 shows the polygon Aε,0Aε,2 · · ·Aε,2N , the circle ∂B(0, ε+δ),
and the base of an element Ki, with i even. The figure in the middle corresponds
to a uniform dilation, while the figure on the right shows a further compression
in the radial direction. Fig. 3 represents the same situation, but focuses on the
elements themselves. The reason for this degeneracy is that the distance from a
curved surface to the mid-point of a line segment with its ends on the same surface
will be considerably large compared to the height of the deformed elements (unless
the distance between the two end-points is small enough). The remedy is to use
very fine meshes, which affects the efficiency of the method. In the calculations
that follow, we study the P 1-interpolation of a radially symmetric incompressible
deformation, and conclude that δ and N−1 should both go to zero, when ε→ 0, at
least as εp−1.

Fig. 2. Orientation reversal of elements under the conforming approximation.

Fig. 3. Initial and final state of elements at the cavity surface, corresponding to Fig. 2.

Let u : Ωε → R2 be a radially symmetric and incompressible deformation open-
ing a cavity of radius c > 0. Writing u(x) = u(|x|) x

|x| , where u is of class C1, the
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incompressibility condition reads u′(s)u(s) = s. Thus,

u(x) =
√
|x|2 + c2

x
|x|
. (3.6)

Suppose now that u is approximated by its interpolation in V ch , given by

uh|K =
3∑
i=1

u(ai,K)φi,K , ∀K ∈ T εh ,

where ai,K , i = 1, 2, 3, are coordinates of the nodes of K, and the functions φi,K ∈
P 1, which are such that φi,K(aj,K) = δij , are the order-one finite element base
functions on the triangle K.

Assume the stored-energy function W is of the form (2.3). By considering the
elements in the first layer, we observe that

Iεh(uh) ≥
N∑
l=1

|K2l−1|W (∇uh|K2l−1) ≥ µ

p

N∑
l=1

|K2l−1|
∣∣(∇uh|K2l−1)

∣∣p

≥ µ

p

N∑
l=1

|K2l−1|
∣∣∣∇uh

a2l − a2l−2

|a2l − a2l−2|

∣∣∣p =
µ

p

N∑
l=1

|K2l−1|
∣∣∣uh(a2l)− uh(a2l−2)

|a2l − a2l−2|

∣∣∣p.
Here ai denotes the position vector of Aε,i, for i = 0, 2, . . . , 2N . A straightforward
computation shows that

|K2l−1| = ε sin
π

N
(δ + 2ε sin2 π

2N
), l = 1, 2, . . . , N ;∣∣∣uh(a2l)− uh(a2l−2)

|a2l − a2l−2|

∣∣∣ =
u(ε)
ε
≥ c

ε
, l = 1, 2, . . . , N.

For N ≥ 2 we have that sin π
N ≥

π
2N , hence Iεh(uh) ≥ πµ

2p c
pδε1−p. We conclude that,

in order for the energy in the first layer to remain bounded, the choice of δ as a
function of ε must be such that δ = O(εp−1).

Consider now the potential degeneration of the elements on the cavity surface.
The image of Ki, i = 2, 4, . . . , 2N , under the deformation uh, is the triangle with
vertices at

(u(ε+ δ), (i− 1) πN ), (u(ε), i πN ), and (u(ε+ δ), (i+ 1) πN ).

Although u(ε+ δ) > u(ε), it is possible for the deformed triangle uh(Ki) to become
increasingly flat, or even to reverse its orientation (as in Fig. 3), if N(ε) 6→ ∞.
Indeed, suppose N2 < 2c2/δ(2ε+ δ), then

δ(2ε+ δ)
2c

<
π2

8
N−2

√
(ε+ δ)2 + c2

⇒
√

(ε+ δ)2 + c2 −
√
ε2 + c2 < 2

√
(ε+ δ)2 + c2 sin2 π

2N

⇒ u(ε+ δ) cos
π

N
< u(ε).
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Hence N must be larger than
√

2c/
√
δ(2ε+ δ). Since δ = O(εp−1) and p < 2, we

obtain N−1 = O(εp−1). Hence the conforming method requires the mesh to become
extremely fine, both in terms of the height of the triangles and of the number of
elements at the cavity surface.

3.3. Scaling analysis for the Crouzeix-Raviart finite element

method

Denote by u the radial incompressible deformation (3.6), and let ũh be its interpo-
lation in the nonconforming finite element space V nch . If, given an element K ∈ T εh ,
we call pi,K , i = 1, 2, 3 the mid-points of its sides, and if we denote the order-
one nonconforming finite element base functions on K by ϕi,K , i = 1, 2, 3 (so that
ϕi,K(pj,K) = δij), then ũh is given by

ũh|K =
3∑
i=1

u(pi,K)ϕi,K ∀K ∈ T εh . (3.7)

Suppose that the triangulation in the layer next to the cavity surface is as in the
previous subsection. Denote the mid-points of the sides of the elements K1, . . . ,K2N

by p1, . . . ,p4N+1, with p1 = p4N+1, as depicted in Fig. 4. More precisely, if we let

r0 =

√(
ε

2
cos

π

N
+
ε+ δ

2

)2

+
( ε

2
sin

π

N

)2

, θ0 = arctan
ε sin π

N

ε cos π
N + δ + ε

,

(3.8)
then the mid-points p2i−1, p2i, p2i+1 of the sides of Ki have polar coordinates

(r0,
iπ
N − θ0), (ε cos π

N ,
iπ
N ), (r0,

iπ
N + θ0) i = 1, 3, . . . , 2N − 1,

(r0,
(i−1)π
N + θ0), ((ε+ δ) cos π

N ,
iπ
N ), (r0,

(i+1)π
N − θ0) i = 2, 4, . . . , 2N.

Fig. 4. Mid-points of the edges in a triangulation of a domain with microcavities.

The main reasons for the choice of the nonconforming method are that the
triangles Ki do not degenerate or reverse their orientation under ũh, and that the
energy of ũh remains close to that of u (as opposed to the energy of uh), even if N
and δ are kept fixed as ε→ 0. Regarding the mesh degeneracy, the most important
feature of the method is that by imposing continuity only at the mid-points, and
not on the edges in their entirety, it gives each element on the cavity surface the
liberty to retain its true orientation, the one dictated by the expansion of the cavity
and by the minimization problem. This, which is illustrated in Fig. 5 and Fig. 6a,

aThe elements in Fig. 6 ressemble lines in the deformed configuration due to the radial compression
(of the order of 10−2). It is observed numerically that the discrete solution is orientation preserving
(the determinant is approximately 1.466 in all of the elements, see Section 3.5). Also, we note that

the angle made by the base of each element with respect to the curved cavity surface in the
deformed configuration is close to the angle made in the reference configuration.
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contrasts with the situation in the conforming method, where the orientation of
the triangles Ki, with i odd, was forced upon those with i evenb. Regarding the
contribution to the energy of the elements next to the cavity, the main virtue of
the method is that the tangential stretch, which constitutes the largest component
of the deformation gradient, is given by the stretch of the segment joining the mid-
points of the elements. Because of this, it is always of order c/(ε + δ

2 ), where c is
the cavity radius, and so remains bounded as ε → 0, even for constant δ and N .
These assertions will be justified and clarified in the subsequent analysis.

Fig. 5. Effect of the conforming and nonconforming finite element methods on the orientation of
elements on the cavity surface.

Fig. 6. Elements in the computations of Section 5, initial and final states (ε = 0.01, δ ≈ 0.025,

N = 15, λ = 1.8).

In order to analize the asymptotic behaviour of the relevant quantities for small
values of ε, and since N and δ will be treated as constants, it is important to precise
in what sense certain terms (such as δ4 or δ2N−2) can be considered of higher
order, or comparatively smaller, with respect to the main terms in the asymptotic
expansions. Before proceeding further, therefore, we specify that expressions of the
form

f(ε, δ,N) = g(ε, δ,N) +O(h(ε, δ,N))

(such as u(r0) = c + 1
2c (ε + δ/2)2 + O

(
(ε + δ)4

)
, or r0 = ε + δ/2 + O

(
εN−2

)
) will

be given the following meaning: for some δ0 > 0 and N0 ∈ N there exists, for every
δ < δ0 and every N > N0, constants ε0(δ,N) > 0 and C = C(δ0, N0) > 0 such that

ε < ε0(δ,N) ⇒ |f(ε, δ,N)− g(ε, δ,N)| < Ch(ε, δ,N).

We study first the behaviour of ∇ũ(N)
h |Ki for i even. Writting

e1 := (cos
iπ

N
, sin

iπ

N
), e2 := (− sin

iπ

N
, cos

iπ

N
), p̃ =

p2i−1 + p2i+1

2
(3.9)

we have that

(∇ũh|Ki)e1 =
u(p2i)− u(p̃)
|p2i − p̃|

=
u
(
(ε+ δ) cos π

N

)
− u(r0) cos( πN − θ0)

(ε+ δ) cos π
N − r0 cos( πN − θ0)

e1 (3.10)

(∇ũh|Ki)e2 =
u(p2i+1)− u(p2i−1)
|p2i+1 − p2i+1|

=
2u(r0) sin( πN − θ0)

2r0 sin( πN − θ0)
e2 =

u(r0)
r0

e2 . (3.11)

bIn the sense that the direction, in the deformed configuration, of the segments Aε+δ,i−1Aε,i and
Aε+δ,i+1Aε,i, for i even, is determined by the image of uh(Ki−1) and uh(Ki+1).
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Let ai,ai−1 denote the position vectors of Aε,i, Aε+δ,i−1, respectively. From (3.8)
we deduce that

r0 cos θ0 = (ε+ δ/2)− ε sin2 π

2N
, sin θ0 = ε sin

π

N
/2r0, (3.12)

(ε+ δ)/2 < r0 = |ai + ai−1|/2 < (|ai|+ |ai−1|)/2 = ε+ δ/2. (3.13)

Using that sin π
2N < π

2N we obtain

r0 = r0 cos θ0 + 2r0 sin2 θ0

2
= (ε+ δ/2) +O(εN−2). (3.14)

This, combined with |
√

1 + t− (1 + t/2− t2/8)| < |t3/2|, for t ∈ (−1,∞), and with
|t− sin t| < |t3/6|, for all t ∈ R, yields

π

N
− θ0 =

π

N

(
1 +O

(
ε/(ε+ δ)

))
,

1
r0

= 2δ−1(1 +O
(
εδ−1

)
) (3.15)

u(r0) = c+
1
2c

(ε+ δ/2)2 − 1
8c3

(ε+ δ/2)4 +O((ε+ δ)6). (3.16)

From (3.15), (3.16), and (3.11) we find

u(r0)
r0

= 2cδ−1(1 +
1

8c2
δ2 +O(δ4)). (3.17)

Using once again the estimate for
√

1 + t, we have that

(ε+ δ) cos
π

N
= (ε+ δ)(1− 2 sin2 π

2N
) = (ε+ δ)(1 +O(N−2)), (3.18)

u
(
(ε+ δ) cos

π

N

)
= c+

1
2c
δ2 − 1

8c3
δ4 +O(δ6) +O(δ2N−2). (3.19)

As a consequence of (3.15), we have that cos( πN − θ0) = 1 +O(N−2). Hence

u(r0) cos(
π

N
− θ0) = c

(
1 +

1
8c2

δ2 − 1
128c4

δ4 +O(δ6) +O(N−2)
)
. (3.20)

In order to find (∇ũh|Ki)e1 it only remains to compute r0 cos( πN − θ0), which, by
virtue of (3.14), is given by

r0 cos(
π

N
− θ0) = (ε+ δ/2)(1 +O(N−2)). (3.21)

Combining (3.10), (3.19), (3.20), (3.18), and (3.21) we arrive at∣∣∣(∇ũh|Ki)e1

∣∣∣ = c−1δ
(3

4
− 15

64c2
δ2 +O(δ4) +O(δ−2N−2)

)
. (3.22)

For the case of Ki with i odd, defining e1 and e2 as in (3.9) we have

(∇ũh|Ki)e1 =
u(r0) cos θ0 − u(ε cos π

N )
r0 cos θ0 − ε cos π

N

e1, (∇ũh|Ki)e2 =
u(r0)
r0

e2.
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Proceeding as before, we obtain cos θ0 = 1 +O
(
ε2N−2/(ε+ δ)2

)
,

u(r0) cos θ0 − u(ε cos
π

N
) =

δ2

4c

(
1− δ2

32c2
+O(δ4)

)
1

r0 cos θ0 − ε cos π
N

= 2δ−1
(
1 +O

(
εN−2δ−1

))
(∇ũh|Ki)e1 =

δ

4c

(
1− 1

16c2
δ2 +O(δ4)

)
(3.23)

In both cases (see (3.22), (3.23)), (∇ũh|Ki)e1 = O(δ). From (3.14) and (3.16)
we obtain

u(r0)
r0

=
2c

2ε+ δ

(
1 +O

(
(ε+ δ)2

))
.

Hence, for i = 1, 2, . . . , 2N ,

|∇ũh|Ki |
p =

∣∣∣∣u(r0)
r0

∣∣∣∣p
(

1 +
∣∣∣∣ (∇ũh|Ki)e1

u(r0)/r0

∣∣∣∣2
)p/2

=
∣∣∣∣ 2c
2ε+ δ

∣∣∣∣p (1 +O
(
(ε+ δ)2

)) (
1 +O

(
δ2(ε+ δ)

))
= 2pcp(2ε+ δ)−p

(
1 +O

(
(ε+ δ)2

))
. (3.24)

This estimate allows us to compare

E1 =
∫
ε<|x|<ε+δ

|∇u|pdx = π

∫ (ε+δ)2

ε2

(
2 +

c4

t(t+ c2)

) p
2

dt

against

E1h =
2N∑
i=1

|Ki| |∇ũh|Ki |
p = N |K1| |∇ũh|K1 |

p +N |K2| |∇ũh|K2 |
p
.

Using that
(

2 +
c4

t(t+ c2)

) p
2

= cpt−
p
2 +O(t1−

p
2 ), we obtain

E1 =
2πcp

2− p
(ε+ δ)2−p

(
1−

(
ε/(ε+ δ)

)2−p +O
(
δ(ε+ δ)

))
.

As for E1h, notice that

|K1| = εδ
π

N
(1 +O(N−2)), |K2| = δ(ε+ δ)

π

N
(1 +O(N−2)),

hence

E1h = 2pπcpδ(2ε+ δ)1−p(1 +O(N−2) +O((ε+ δ)2)
)
.

We conclude that E1 and E1h are of the same order of magnitude (namely, of order
δ2−p), in contrast to the situation in the conforming method, where E1h → ∞ as
ε→ 0.
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3.4. Instability of the nonconforming finite element method

Some care is needed when using the Crouzeix-Raviart method, due to its propensity
to obtain pathological solutions to the equilibrium equations as the one depicted in
Fig. 7. In this figure the elements near ∂Ω stretch in one direction (because of the
boundary condition), but compress in the other (so as to preserve the volume of the
elements), creating discontinuities throughout the mesh in its entiretyc. These solu-
tions are obtained because of the flexibility of the method, where the elements can
choose their own orientation independently of the orientation of their neighbouring
elements. As explained in the previous subsections, such behaviour is desirable on
the cavity surface, but it is inadmissible in the interior and on the outer boundary.

(a)
Ref-

er-

ence
con-

figua-
tion

(b)
De-

formed

con-
fig-

u-

ra-
tion

Fig. 7. Instability of the Crouzeix-Raviart finite element method; ε = 0.01, stored-energy function

Eq. (5.1).

Similar instabilities have been observed for problems in linear elasticity and in
fluid dynamics (see, e.g., Ref. 12 and Ref. 9), and are related to the lack of a discrete
Korn’s inequality in the nonconforming setting. For these problems the Crouzeix-
Raviart method is stabilized by penalizing the jump of the discrete function on
the sides of all inner elements. However, numerical experiments reveal this to be
insufficient in the cavitation problem. Fig. 8 shows a numerical solution to (3.4)
using the L2 penalty term

C

h

∑
E∈E

∫
E

|[uh]|2ds, (3.25)

where C is a constant, h and E are the size parameter and the set of sides of the
triangulation, and [ · ] denotes the jump of a given quantity across the correspond-
ing side. Even though the solution is correct near the boundary, the pathological
behaviour persists in the interior of the body. This can only be solved by increasing
the value of C considerably as the mesh becomes finer.

cThe instability continues to be observed even for very fine meshes.
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Fig. 8. Instability of the Crouzeix-Raviart method using the L2 penalty term (3.25); ε = 0.01,

stored-energy function (5.1).

For the nonlinear problem under consideration, we stabilize the Crouzeix-
Raviart approximation by adding

C

h

∑
E∈E

∫
E

|[∇uh · s]|2ds (3.26)

to the discrete energy, penalizing the orientation mismatch between neighbouring
elements across the sides. Here C, h, E , and [ · ] are as in (3.25)d, and s denotes one
of the two unit vectors in the direction of E (its orientation being suitably specified).
With this penalty term the behaviour in Fig. 7 and Fig. 8 becomes expensive because
[∇uh · s] remains essentially of the same magnitude, independently of the smallness
of the elements. Indeed, |[∇uh · s]| depends only on the difference in direction, in
the deformed configuration, between corresponding sides of adjacent elements (in
contrast, e.g., to |[uh]|, which is proportional to the length of the edges). The price
to pay is thus of the order of h−1

∑
E∈E `(E) ∼ h−1nEh ∼ h−2, where we have

denoted by `(E) the length of E and by nE the total number of elements.
In our numerical experiments, the penalty term is observed to provide the stabil-

ity necessary for the method to find the true solutions of the minimization problem,
rather than the unexpected local minimizers described previously. Nevertheless, the
analysis of the penalization scheme remains an important open problem, both for
discontinuous Galerkin methods and for nonconforming finite element methods. In
the case of cavitation, we may argue that |[∇uh ·s]| is of the order of δ−1 sin π

N near
the cavity surface, and, hence, that the penalty term for the true solution to the
problem (using nonconforming elements) is of the order of

h−1(δ−1N−1)2N(δ +N−1) =
N−1

hδ
(1 + h

N−1

hδ
)

(the last two factors on the left-hand side corresponding to the number of elements
in the first layer, and to their perimeters, respectively). This suggests that the price
to pay, in the actual solution, for the orientation mismatch of the elements on the
cavity surface (depicted in Fig. 5 and discussed in Section 3.3) is sufficiently small,
at least if N−1 � hδ. Numerically, we observe that the penalty term is indeed small,
even in situations where the condition on N , h, and δ is not satisfied, such as the
one in Fig. 6 in which δ ≈ 0.025 and N = 15.

dThe actual values of C and h in our computations being 0.05 and n
−1/2
E , respectively, where nE

denotes the total number of elements.
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3.5. Jacobian determinant at the cavity surface

From the work of Ball5 (see also Sect. 2.4 in Ref. 8, Thm. 5.1 in Ref. 36), it follows
that minimizers of (2.10) satisfy the Eulerian form of the equilibrium equations:∫

Ω

[
∇W

(
∇u(x)

)
∇u(x)T

]
· ∇ϕ

(
u(x)

)
dx = 0,

for all ϕ ∈ C1(Rn,Rn) such that ϕ and ∇ϕ are uniformly bounded and satisfy
ϕ ◦u|∂Ω = 0 in the sense of traces. If u is sufficiently regular in Ωε, so that u(Ωε) is
open and the cavities have sufficiently regular boundaries, the equilibrum equations
imply that T(y)ν(y) = 0 at every y on the surface of any of the cavities, where T
stands for the Cauchy-stress tensor

T(y) = ∇W (∇u(x))∇u(x)T (det∇u(x))−1, y = u(x),

and ν(y) represents the unit normal to the cavity. Taking the dot product with ν,
and applying this condition to the energy function (2.3), we obtain

f ′(det∇u(x)) = −µ|∇u(x)|p−2

∣∣∣∣ ∇u(x)T

det∇u(x)
ν(u(x))

∣∣∣∣2 det∇u(x),

x ∈ ∂Bε(xi), i = 1, . . . ,M . From the convexity of f and the fact that f(s) is
increasing for large values of s, it follows that det∇u ≤ s∗ at the cavity sur-
face, where s∗ denotes the minimizer of f . Note that ∇uT

det∇u = cof∇u−1, and that
|(cof∇u−1(y))ν(y)| gives the infinitesimal change in area, due to u−1, at the cavity
surface. If the expansion of the cavities is uniform, in the sense that |(cof∇u−1)ν|
is approximately constant on the boundary of the cavity, we obtain that

|f ′(det∇u)| ≤ C
(c
ε

)p−2−2(n−1)

,

where c denotes the radius of the cavity. From this we observe that det∇u converges
to s∗, as ε→ 0, at every point on the cavity surface.e

Fig. 9. Jacobian determinant of the numerical solution using the Crouzeix-Raviart finite element

method.

The previous is a formal calculation, but numerically it is indeed observed that
det∇u ≈ s∗ on the cavity surface. For the energy function (5.2), where f(s) =
1
2 (s−1)2 +s−1, the numerical solution uh is such that det∇uh|Ki is close to 1.4656
(the minimizer of f) for every i = 1, . . . , 2N (see Fig. 9). This contrasts with the
interpolation ũh of the radial incompressible solution (studied in Section 3.3), where

det∇ũh|Ki =
3
2
− 9

32c2
δ2 +O(δ4) +O(δ−2N−2), i = 2, 4, . . . , 2N,

det∇ũh|Ki =
1
2

+
1

32c2
δ2 +O(δ4), i = 1, 3, . . . , 2N − 1

eThe argument is based on Sect. 7.5 in Ref. 4; see also Eq. 33 in Ref. 30.
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(the expansions are obtained by multiplying (3.22) and (3.17), considering that
{e1, e2} is an orthonormal basis). The reason for this discrepancy is that the nu-
merical solution will adjust itself, abandonning the pointwise convergence to the
interpolation ũh at the nodes close to the cavity surface, in order to favour the
convergence of the Jacobian determinants. Given the structure of the energy func-
tion, and its direct dependence on the determinant, the convergence of this quantity
becomes much more relevant for the minimization of the energy.

The validity of the scaling analysis of the previous subsections is not affected
by the above discrepancy between uh and ũh, since the slight difference between
uh(pi) and ũh(pi), for i = 1, . . . , 4N , does not have a great effect on the estimates
for the tangential derivatives, which are the most relevant for the study of the
contributions to the energy. What is important (as mentioned after Eq. (3.8)), is
that the tangential stretch u(r0)/r0 is computed at the midpoints of the elements,
hence it is of order 2cδ−1 (c being the cavity radius), and not cε−1. This makes the
method efficient in that it does not require excessively fine meshes.

Since det∇uh is close to 1.4656 in the elements close to the cavity (as proved
numerically), these elements do not become flat or reverse their orientation as under
the conforming method. The flexibility expected of the nonconforming method for
the orientation of the elements close to the surface (illustrated in Fig. 5), is also
corroborated numerically.

We end by noting that the average determinant in the inner layer, ( 3
2 + 1

2 )/2,
coincides with the determinant of the radial incompressible deformation. Both the
oscillating behaviour of det∇ũh|Ki and the before-mentioned agreement should be
taken into account in a rigorous proof of convergence of the nonconforming method
for the problem of cavitation, and potentially for other nonconvex variational prob-
lems with singular minimizers.

4. The Numerical Method and Gradient Flows

4.1. The gradient flow equations

We look for minimizers of (2.9) by solving its corresponding H1
0 gradient flow

−∆ut(x, t) = div(∇W (∇u(x, t))), x ∈ Ωε, t > 0,

u(x, t) = g(x), x ∈ ∂Ω, t > 0,

(∇ut +∇W (∇u))ν(x) = 0, x ∈ ∂Bε(xi), i = 1, . . . ,M, t > 0,

(4.1)
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(ν(x) being the unit normal to ∂Bε(xi)) in its weak form given by∫
Ωε

∇ut · ∇v = −
∫

Ωε

(µ|∇u|p−2∇u + f ′(det∇u)cof∇u) · ∇vdx, ∀v ∈ V0 , (4.2)

with V0 := {v ∈ (W 1,p(Ωε))n|v = 0 on ∂Ω}. Eq. (4.1) gives a steepest descent
iteration for minimizing the stored energy functional, as seen from

dI(u)
dt

=
∫

Ωε

(µ|∇u|p−2∇u + f ′(det∇u)cof∇u) · ∇utdx

= −
∫

Ωε

∇ut · ∇utdx ≤ 0, (4.3)

and is known to provide a faster and more stable numerical scheme than, for exam-
ple, the L2 gradient flow

ut = div(µ|∇u|p−2∇u + f ′(det∇u)cof∇u) (4.4)

(see, e.g., Ch. 2 and Sect. 11.6 in Ref. 31). In their computations of cavitation,
Negrón-Marrero and Betancourt29 have used a Richardson extrapolation technique,
based on the equation

utt + ηut = div(µ|∇u|p−2∇u + f ′(det∇u)cof∇u), η � 1, (4.5)

for which the Courant-Friedrichs-Lewy condition (see, e.g., Ref. 26) is not as re-
stringent as for (4.4). Denoting the time step by δt and the mesh size by h, the
CFL condition for (4.5) and for (4.4) reads δt = O(h) and δt = O(h2), respectively.
Due to the presence of the Laplacian operator in front of ut, in the case of (4.1) the
condition becomes δt = O(1). This has motivated the choice of our method, whose
efficiency is comprobated in the numerical experiments.

4.2. The discretization and the numerical algorithm

To discretize the above equations, we introduce the finite element space

V nch,0 =
{
v : v|K ∈ (P 1(K))n, v is continuous on M,

v(aij) = 0 ∀aij ∈M∩ ∂Ω} . (4.6)

We discretize (4.2) in space using the nonconforming finite element method. Taking
into account the stabilization term (3.26), we obtain the semi-discrete equation∑
K∈T

∫
K

∇duh
dt
· ∇vh = −

∑
K∈T

∫
K

(µ|∇uh|p−2∇uh + f ′(det∇uh)cof∇uh) · ∇vhdx

−C
h

∑
E∈E

∫
E

[∇uh · s][∇vh · s]ds, ∀vh ∈ V nch,0. (4.7)

Let now 0 = t0 < t1 < t2 < . . . < tN = T <∞, and replace the time derivative
at each tn by the forward difference

duh
dt
|t=tn ≈

un+1
h − unh
tn+1 − tn

.
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For n = 0, 1, · · · we obtain∑
K∈T

∫
K

∇
un+1
h − unh
tn+1 − tn

· ∇vh

= −
∑
K∈T

∫
K

(µ|∇unh|p−2∇unh + f ′(det∇unh)cof∇unh) · ∇vhdx

− C

h

∑
E∈E

∫
E

[∇unh · s][∇vnh · s]ds, ∀vh ∈ V nch,0. (4.8)

In the computations, we set wh = un+1
h −unh
tn+1−tn and solve∑

K∈T

∫
K

∇wh · ∇vh

= −
∑
K∈T

∫
K

(µ|∇unh|p−2∇unh + f ′(det∇unh)cof∇unh) · ∇vhdx

− C

h

∑
E∈E

∫
E

[∇unh · s][∇vnh · s]ds, ∀vh ∈ V nch,0. (4.9)

at each time step. Then we compute un+1
h = unh+(tn+1− tn)wh to find the solution

of the next step.
Denoting the set of nodes of the triangulation by N , define the norm ‖wh‖ by

‖wh‖2 :=
∑

a∈N |wh(a)|2. The numerical algorithm used in our computations is
then as follows:

• Step 1. Specify a triangulation T εh , the initial values u0
h, a constant TOL >

0, and set n = 0;
• Step 2. Solve Eq. (4.9) to obtain wh;
• Step 3. Compute un+1

h = unh + (tn+1 − tn)wh and let n = n+ 1;
• Step 4. If ‖wh‖ < TOL, stop; otherwise, go to Step 2.f

In Step 3, we choose the time step size δt = tn+1− tn adaptively in the following
manner. For each n, we compute un+1

h using the same value of δt as in the last
step. We accept un+1

h if Ih(un+1
h ) < Ih(unh) and det∇un+1

h |K > 0 in each element.
Otherwise, we decrease the time step by a pre-defined factor α ∈ (0, 1), i.e. we
set δt = αδt. This process is done iteratively until un+1

h is accepted. Based in
numerical experiments, we work with α = 0.1 and t1 − t0 = 0.02. In most time
steps, no reductions of the form δt = αδt are necessary. To avoid the time step
becoming smaller and smaller, we reset δt = δt/α every certain number M of steps.
In our computations, we set M = 100. With this choice of parameters, the program
runs fast in the beginning and finds the minimizers, up to a certain error, after a
few thousands of steps.

fA better stop criteria would be ‖wh‖ < TOL‖uh‖, as suggested by the anonymous referee.



December 29, 2010 21:34 WSPC/INSTRUCTION FILE cav-m3as

18 X. Xu and D. Henao

5. Numerical Experiments and Results

In our experiments we consider a two-dimensional body, occupying the unit disc in
the plane as its reference configuration, with stored-energy function

W (F) = 2|F| 32 /3 + (detF− 1)2/2 + (detF)−1, (5.1)

(it corresponds to f(s) = (s− 1)2/2 + 1/s, p = 3
2 and µ = 1 in (2.3)). We consider

radial displacement boundary conditions of the form u(x) = λx for |x| = 1, with
λ varying from 1.1 to 2.5. The initial radius ε of the microcavity was given various
values from 0.005 to 0.05. The initial deformation specified was u(x)|t=0 = λx.

The above choice of domain geometry and of boundary conditions was made for
simplicity and for comparison with previous results. Our method can be applied
also to more general geometries and boundary conditions.

5.1. Validation and efficiency of the algorithm

In this subsection we consider the simple example of a body with a single cavity,
located at the centre.

Fig. 10 shows the initial and deformed configurations when ε = 0.01 and λ = 1.8.
The original cavity has increased about 100 times its size, which corresponds clearly
to a cavitation singularity. Various initial conditions were considered, including
some that are not radially symmetric, as those in Ref. 29 (e.g. R0(r) = λr, Θ0(θ) =
θ + 4r(1 − r), where (R0,Θ0) and (r, θ) denote the polar coordinates of u0 and x,
respectively). The computations using these different initial conditions produced
always almost the same deformed configuration. These results support the long-
standing conjecture that for this choice of domain and boundary conditions the
minimizer is radially symmetric (see Ref. 40, 41).

Fig. 11 shows the diminishment of the discrete energy Iεh and of the residual
‖wh‖ with respect to the artificial time t. We observe that the energy decreases
very fast and almost attains the minimal energy at t = 7 (the minimal time step
observed in this experiment is 0.002). The residual ‖wh‖ decreases exponentially.

Fig. 10. Reference and deformed configurations for ε = 0.01, λ = 1.8.

Fig. 11. The discrete energy Iεh and ‖wh‖ with respect to the artificial time t.

.

In order to validate and to study the efficiency of our numerical method, we com-
pare our solutions to the two-dimensional minimization problem against the mini-
mizers of the elastic energy among radially symmetric deformations. Even though
the latter are not known explicitly (in the case of compressible elasticity, when
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W (F ) is given by (2.3)), they can be computed numerically with very high preci-
sion, making the validation possible. Indeed, by writing u(x) = u(r)x

r , with r = |x|,
the original problem (2.9) reduces to

min
u∈W 1,p(ε,1);u(1)=λ

2π
∫ 1

ε

Φ(r, u, u′)rdr, (5.2)

where Φ(r, u, u′) = µ
p

(
(u′)2 +

(
u
r

)2) p2 + f(uu
′

r ), which can be computed using very
fine meshes (cf. Ref. 21). Denoting its numerical solution by ũh(r), we can define
the numerical error for the original problem as

err =
∥∥uh − ũh(r)

x
r

∥∥
0,Ωε

,

that is, the L2 distance between uh and ũh(r)x
r .

Fig. 12 shows, for various ε, the convergence behavior of the computational error
with respect to the number Ns of degrees of freedom, which represents the number
of sides in the triangulation. For the comparison, we set λ = 1.8 (value at some
distance of the critical displacement for cavitation, as observed in our computations)
and considered the three different cases ε = 0.02, 0.01, 0.005. For each case, solutions
were computed using various triangulations, with respective values of Ns given by
190, 740, 2920, 11600. For the meshes with the same Ns and different ε, the two mesh
parameters N and δ, defined in Sections 3.2 and Section 3.3, remained invariant.
Fig. 12 suggests two conclusions. First, the convergence order of the computational
error is N−1

s for all cases. Second, the convergence behavior for the nonconforming
finite element method is not noticeably affected by changes in ε, confirming our
analysis of Section 3.3.

Fig. 12. Error vs. degrees of freedom under various ε (λ = 1.8).

5.2. Concordance with previous analyses and experiments

In this subsection we present our results on the dependence of the cavity radius
in the deformed configuration with respect to the displacement parameter λ. We
show, in particular, the existence of a limiting profile for this relation as ε→ 0, as
well as the existence of a critical displacement for cavitation, in agreement with the
analyses of Ball,4 Sivaloganathan,35 Horgan and Abeyaratne19 and the experimental
and theoretical study of Gent and Lindley13.

Fig. 13 shows the relation between λ and the cavity radius, for the problem
considered in the previous subsection (that of a ball with an ε microcavity at the
origin, subjected to a radial stretch λ at the outer surface), for different values of
ε. The cavity radius changes dramatically for values of λ between 1.4 and 1.5. This
corresponds to the critical load for the opening of a cavity in the limit as ε→ 0. For
further results on the computation of the critical displacement and the generation
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of the approximate bifurcation diagram, we refer to the novel numerical method of
Negrón-Marrero and Sivaloganathan30.

Fig. 13. Cavity radius vs. displacement λ at the boundary, for different values of ε.

Fig. 14 shows the tangential strain in the body for different values of λ. It verifies
that in order to reduce the global energy, a minimizer will experience an enormous
tangential strain. As discussed in Section 3.5, even though the tangential strain is
large in the inner cavity, as ε→ 0 the Jacobian determinants remain bounded and
converge to the minimizer of f .

Fig. 14. Tangential strain vs. radius r under increasing λ.

Finally, an experiment of loading and subsequent unloading of the elastic body
with a cavity at the centre was conducted in order to determine if hysteresis cycles
were present. As Fig. 15 shows, no hysteresis was observed. This is relevant for a
better understanding of the energy landscape associated to cavitation.

Fig. 15.

5.3. New observations

Using the numerical method presented in this paper, we were able to compute for
the first time minimizers of the energy in a domain containing an off-centre cavity,
as well as in a domain containing multiple cavities. Some of the computational
results are presented in this subsection.

For the case of a domain with an off-centre cavity, Fig. 16 shows the deformed
body for various choices of the location of the cavity in the reference configuration.
We observe that the shape of the cavity is not greatly affected by changes in the lo-
cation of the precursor microcavity. However, the size of the cavity becomes smaller
as its initial location is displaced farther off the centre. The computed total energies
for the different cases are 14.8495,15.1178,15.7653 and 16.0921. In particular, the
energy becomes slightly larger as the cavity moves farther from the centre. This
suggests that the optimal position for a single hole is at the origin (confirming the
analysis of Ref. 37).

Fig. 16. Deformed configurations for various choices of the cavity position a, with λ = 2 and

ε = 0.01.

We finally computed some examples with two precursor microcavities. The de-
formed configurations are shown in Fig. 17, Fig. 18 and Fig. 19. The results show
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that when cavitation is energy favourable the body can be led to an unsustainable
state of tension at the ligament between adjacent microcavities, which provides the
body with a clear motivation to undergo fracture that is absent in the undeformed
state. In turn, this shows that the models for cavitation in nonlinear elasticity may
prove relevant for a better understanding of the mechanism of ductile fracture in
metals by void coalescence (see, e.g., Petrinic et al.34, Goods and Brown14).
Fig. 17. Initial and deformed configurations with two pre-existing cavities at (0,0) and at (0.3,0).

Fig. 18. Initial and deformed configurations with two pre-existing cavities at (0,0) and at (0.5,0).

Fig. 19. Initial and deformed configurations with two pre-existing cavities at (0.5,0) and at (-0.5,0).
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