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Abstract

The sharp-interface limits of a phase-field with a generalized Navier slip boundary
condition for moving contact line problem are studied by asymptotic analysis and nu-
merical simulations. The effects of the mobility number as well as a phenomenological
relaxation parameter in the boundary condition are considered. In asymptotic analysis,
we focus on the case that the mobility number is the same order of the Cahn num-
ber and derive the sharp-interface limits for several setups of the boundary relaxation
parameter. It is shown that the sharp interface limit of the phase field model is the stan-
dard two-phase incompressible Navier-Stokes equations coupled with several different
slip boundary conditions. Numerical results are consistent with the analysis results and
also illustrate the different convergence rates of the sharp-interface limits for different
scalings of the two parameters.

1 Introduction

Moving contact lines are common in nature and our daily life, e.g. the motion of rain
drops on window glass, coffee rings left by evaporation of coffee drops, wetting on lotus
leaves, etc. The moving contact line problem also has many applications in some industrial
processes, like painting, coating and oil recovery, etc. Therefore, the problem has been
studied extensively. More details and references can be found in recent review papers by
[1, 2, 3, 4].

Moving contact line is a challenging problem in fluid dynamics. The standard two-
phase Navier-Stokes equations with a no-slip boundary condition will lead to a non-physical
non-integrable stress [5, 6]. This is the so-called contact line paradox. There are many
efforts to solve this paradox. A natural way is to relax the no-slip boundary condition.
Instead, one could use the Navier slip boundary condition [5, 7, 8, 9, 10, 11]. In some
application, an effective slip condition can be induced by numerical methods [12, 13]. The
other approaches to cure the paradox include: to assume a precursor thin film and a disjoint
pressure [14, 15, 16]; to derive a new thermodynamics for surfaces [17]; to treat the moving
contact line as a thermally activated process [2, 18, 19], to use a diffuse interface model for
moving contact lines [20, 21, 22, 23, 24], etc.
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The diffuse interface approach for moving contact lines has become popular recent
years [25, 26, 27, 28, 29, 30, 31, 32, 33]. In this approach, the interface is a thin diffuse
layer between fluids represented by a phase field function. Intermolecular diffusion, caused
by the non-equilibrium of the chemical potential, occurs in the thin layer. The chemical
diffusion can cause the motion of the contact line, even without using a slip boundary
condition on the solid boundary [22, 34, 35, 36, 37]. On the other hand, it is possible to
combine the diffuse interface model with some slip boundary condition. [23] proposed a
phase-field model with a generalized Navier slip boundary condition (GNBC). The model
takes account of the effect of the uncompensated Young stress, which is important to un-
derstand the difference of the dynamic contact angle and the Young’s angle in molecular
scale [23, 11]. Theoretically, the model can be derived from the Onsager variational prin-
ciple [26]. Numerical simulations using this model fit remarkably well with the molecular
dynamics simulations [23] and physical experiments [38]. The model has also been used
in problems with chemically patterned boundaries [39], dynamic wetting problems [28, 40],
etc. Several numerical methods for the model have been developed [41, 42, 43, 32, 44].

Phase field models are convenient for numerical calculations [45, 46, 31]. One does not
need to track the interface explicitly as in using a sharp interface model. The phase-field
function(usually described by a Cahn-Hilliard [47] equation or an Allen-Cahn equation [48])
can capture the interface implicitly and automatically. This makes computations and anal-
ysis for the phase field model much easier than other approaches. However, there are also
some restrictions to use a diffuse interface model in real simulations. A key issue is that
the thickness of the diffuse interface can not be chosen as small as the physical size [49],
due to the restriction of the computational resources. One often choose a much larger
(than physical values) interface thickness parameter(or a dimensionless Cahn number) in
simulations. Only when phase field model approximates a sharp-interface limit correctly,
the numerical simulations by this model with relatively large Cahn number can be trustful
and compared with experiments quantitatively. Therefore, it is very important to study the
sharp-interface limit of a phase field model [50, 51].

The sharp-interface limits of diffuse interface models for two-phase flow without moving
contact lines has been studied a lot, both theoretically and numerically [52, 53, 49, 54, 55,
56]. In comparison, there are much less studies for the sharp-interface limit of the phase
field models for moving contact lines [57, 58]. One important progress is made by [57]. They
studied the sharp interface limit of a phase field model with a no-slip boundary condition
and found a surprising result that only when the mobility parameter(denote as Ld) is of
order O(1), the phase field model has a sharp-interface limit as the Cahn number(denote
as ε) goes to zero. Notice that the usual choice of the mobility parameter is of order O(εβ),
1 ≤ β ≤ 3 for problems without moving contact lines [55]. For the phase field model with
the generalized Navier slip boundary condition, the only study for its sharp interface limit is
done by [59]. They also assumed the mobility parameter is of order O(1). Their asymptotic
analysis shows that the sharp-interface limit of the model is a Hele-Shaw flow coupled with
a standard Navier-slip boundary condition. So far, it is not clear what is the sharp-interface
limit of a phase field model for moving contact line problem under the standard choice for
the mobility parameter(say Ld = O(ε)). This is the motivation of our study.

We study the sharp-interface limit of the phase field model with the GNBC by asymp-
totic analysis and numerical simulations. In asymptotic analysis, we assume that the mo-
bility number Ld is of order O(ε) and consider several typical scalings of phenomenological
boundary relaxation parameter Vs in the GNBC model. We show that the sharp-interface
limit is a standard two-phase Navier-Stokes equations coupled with different slip bound-

2



ary conditions for different choice of Vs. When Vs = O(εβ) with β = 0,−1, we obtain a
sharp-interface version of the GNBC. In the case Vs = O(1), the velocity of the contact
line is equal to the fluid velocity, while in the case Vs = O(ε−1), the velocity of the contact
line is different from the fluid velocity due to the contribution of the chemical diffusion on
the boundary. When Vs = O(ε−2), we obtain the standard Navier slip boundary condition
together with the condition that the dynamic contact angle is equal to the static contact
angle. Numerical experiments for a Couette flow show the different sharp-interface limits
for the various choice of Ld and Vs. Furthermore, numerical results also reveal the different
convergence rates for different choices of the two parameters. For very large relaxation
parameter Vs = O(ε−3), the numerical results are very similar to the results by [57].

The structure of the paper is as follows. In Section 2, we introduce the phase field model
with the GNBC and its non-dimensionalization. In Section 3, the sharp-interface limits of
the phase field model with the GNBC are obtained for various choice of Vs by asymptotic
analysis. In Section 4, we show the numerical experiments for a Couette flow by a recent
developed second order scheme. Finally, some conclusion remarks are given in Section 5.

2 The phase field model with generalized Navier slip bound-
ary condition

A Cahn-Hilliard-Navier-Stokes (CHNS) system with the generalized Navier boundary con-
dition (GNBC) is proposed by [23] to describe a two-phase flow with moving contact lines.
The CHNS system reads,{ ∂φ

∂t + v · ∇φ = M∆µ, µ = −K∆φ− r(φ− φ3),
ρ[∂v∂t + (v · ∇)v] = F−∇p+ η∆v + µ∇φ, ∇ · v = 0.

(1)

The first equation is the Cahn-Hilliard equation. Here φ is the phase field function, and
µ is the chemical potential. The thickness of the diffuse interface is ξ =

√
K/r and the

fluid-fluid interface tension is given by γ = 2
√

2rξ/3. M is a phenomenological mobility
coefficient. The second equation in (1) is the incompressible Navier-Stokes equation for two-
phase flow. Here µ∇φ describes the capillary force exerted to the fluids by the interface.
For simplicity, we assume that the two fluids have equal density ρ and viscosity η.

The generalized Navier boundary condition on the solid boundary is:

β(vτ − vw) = −η∂nvτ + L(φ)∂τφ, vn = 0. (2)

L(φ) = K∂nφ+
∂γwf (φ)
∂φ , γwf (φ) = −γ

4
cos θs(3φ− φ3). (3)

Here vn and vτ are respectively the normal fluid velocity and the tangential fluid velocity
on the solid boundary. vw is the velocity of the boundary itself, we assume the wall only
moves in a tangential direction. β is a slip coefficient and the slip length is given as
ls = η/β.γwf (φ) is the solid-fluid interfacial energy density (up to a constant) and θs is
the static contact angle. L(φ)∂τφ represents the uncompensated Young stress.

In addition, the boundary conditions for the phase field φ and the chemical potential µ
are given by

∂φ
∂t + vτ∂τφ = −ΓL(φ),
∂nµ = 0,

(4)

with Γ being a positive phenomenological parameter.
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Figure 1: A liquid drop on a planar solid surface ΓS with a contact line L.

To study the behavior of the CHNS system with the GNBC condition, it is useful to
nondimensionalize the system. Suppose the typical length scale in the two-phase flow system
is given by l and the characteristic velocity is v∗. We then scale the velocity by v∗, the
length by l, the time by l/v∗, body force(density) F by ηv∗/l2 and the pressure by ηv∗/l.
With six dimensionless parameters,

Ld = 3Mγ

2
√
2v∗l2

(the mobility number), Re =
ρv∗l

η
(the Reynold number),

B = 3γ

2
√
2ηv∗

(inverse of the Capillary number), Vs =
3γΓl

2
√

2v∗
(a relaxation parameter),

ls = ls
l (the dimensionless slip length), ε =

ξ

l
(the Cahn number),

we have the following dimensionless Cahn-Hilliard-Navier-Stokes system
∂φ
∂t + v · ∇φ = Ld∆µ, µ = −ε∆φ− φ/ε+ φ3/ε,

Re

[
∂v
∂t + (v · ∇)v

]
= F−∇p+ ∆v + Bµ∇φ,

∇ · v = 0,

(5)

with the boundary conditions
∂φ
∂t + vτ∂τφ = −VsL(φ),
ls
−1(vτ − vw) = −∂nvτ + BL(φ)∂τφ,
∂nµ = 0, vn = 0,

(6)

where L(φ) = ε∂nφ+
∂γwf (φ)
∂φ and γwf (φ) = −

√
2
6 cos θs(3φ−φ3) being the wall-fluid interface

energy density function. We now clarify some notations in the boundary condition. Suppose
the unit outward normal vector on the solid boundary is given by nS (see Figure 1). Then,
we have vn = v · nS , vτ = v − vnnS , ∂n = nS · ∇ and ∂τ = ∇− nS(nS · ∇).

3 The asymptotic analysis

We do asymptotic analysis for the Cahn-Hilliard-Navier-Stokes system (5)-(6). Here we
assume the mobility number satisfies Ld = O(ε).We show that such a choice of mobility will
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also lead to the standard two-phase Navier-Stokes equation inside the domain. Furthermore,
this assumption also makes it possible to derive proper boundary conditions for the sharp-
interface limit of the diffuse-interface model. We show that different setups of the relaxation
parameter Vs = O(εβ), β = 0,−1,−2 will lead to different boundary conditions.

To make the presentation in this section clear, we use φε, vε and pε instead of φ, v and p
in the system (5)-(6), to show explicitly that these functions depend on ε. We suppose that
the system is located in a domain Ω with solid boundary ΓS⊆∂Ω (as shown in Figure 1).
Suppose that the two-phase interface is given by the zero level-set of the phase field function
φε

Γ := {x ∈ Ω | φε(x) = 0}. (7)

We denote by Ω− = {x ∈ Ω |φε < 0} the domain occupied by fluid 1 and Ω+ = {x ∈
Ω |φε > 0} the domain occupied by fluid 2.

3.1 The bulk equations

We first do asymptotic analysis for the Cahn-Hilliard-Navier-Stokes system far from the
boundary. The analysis is the same as that for two-phase flow without contact lines. We
will state the key steps of the analysis and illustrate the main results. In the next subsection,
the bulk analysis here will be combined with the analysis near the boundary to derive the
sharp-interface limits of the GNBC.

Let Ld = εld. Consider the CHNS system far from the boundary of Ω. We first do outer
expansions far from the interface Γ, then we consider inner expansions near Γ. Combining
them together, we will obtain the sharp-interface limit of the CHNS system in Ω.

Outer expansions. Far from the two-phase interface Γ, we use the following ansatz,

v±ε = v±0 + εv±1 + ε2v±2 + · · · ,
φ±ε = φ±0 + εφ±1 + ε2φ±2 + · · · ,
p±ε = p±0 + εp±1 + ε2p±2 + · · · .

(8)

Here f± denotes the restriction of a function f in Ω+ and Ω− respectively. For µε, we easily
have

µ±ε = ε−1µ±0 + µ±1 + εµ±2 + · · · ,

where
µ±0 = −φ±0 + (φ±0 )3. (9)

We substitute the above expansions to the CHNS system (5). The leading order of the
first equation of (5) gives

∂φ±0
∂t

+ v0 · ∇φ±0 = ld∆µ
±
0 . (10)

The leading order of the second equation of (5) gives,

µ±0 ∇φ
±
0 = 0. (11)

More precisely, we have

(−φ±0 + (φ±0 )3)∇φ±0 = ∇(
(1− (φ±0 )2)2

4
) = 0.

This implies that
φ±0 = c± in Ω±, (12)
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where c± are two constants such that c+ > 0 and c− < 0. For the third equation of (5), in
the leading order, we have

∇ · v±0 = 0. (13)

By direct calculations, we also have the next order of the second equation of (5) as

Re

[∂v±0
∂t

+ (v±0 · ∇)v±0

]
= F−∇p±0 + ∆v±0 + µ±0 ∇φ

±
1 . (14)

Here we have used the fact that φ±0 are constants in Ω±.
Inner expansions. The outer expansion in Ω+ and Ω− are connected by the transition

layer near the interface Γ. We will consider the so-called inner expansions near Γ. Let d(x, t)
be signed distance to Γ, which is well-defined near the interface. Then the unit normal of
the interface pointing to Ω+ is given by n = ∇d. We introduce a new rescaled variable

ξ =
d(x)

ε
.

For any function f(x) (e.g. f = vε, pε, φε), we can rewrite it as

f(x) = f̃(x, ξ) (15)

Then we have
∇f = ∇f̃ + ε−1∂ξ f̃n,

∆f = ∆f̃ + ε−1∂ξ f̃κ+ 2ε−1(n · ∇)∂ξ f̃ + ε−2∂ξξ f̃ ,

∂tf = ∂tf̃ + ε−1∂ξ f̃∂tdε.

(16)

Here we use the fact that ∇ · n = κ, the mean curvature of the interface. κ(x) for x ∈ Γ(t)
is positive(or negative) if the domain Ω− is convex(or concave) near x.

In the inner region, we assume that

ṽε = ṽ0 + εṽ1 + ε2ṽ2 + · · · ,
φ̃ε = φ̃0 + εφ̃1 + ε2φ̃2 + · · · ,
p̃ε = p̃0 + εp̃1 + ε2p̃2 + · · · .

(17)

A direct expansion for the chemical potential µ̃ε gives

µ̃ε = ε−1µ̃0 + µ̃1 + εµ̃2 + · · · ,

with

µ̃0 = −∂ξξφ̃0 − φ̃0 + φ̃30, (18)

µ̃1 = −∂ξξφ̃1 − ∂ξφ̃0κ+ 2(n · ∇)∂ξφ̃0 − φ̃1 + 3φ̃20φ̃1. (19)

We substitute the above expansions into the system (5). Using the fact that Ld = εld,
in the leading order, we have 

∂ξξµ̃0 = 0,

∂ξξṽ0 + Bµ̃0∂ξφ̃0n = 0,
n · ∂ξṽ0 = 0.

(20)
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The next order is
∂td∂ξφ̃0 + ṽ0 · n∂ξφ̃0 = ld(∂ξξµ̃1 + κ∂ξµ̃0 + 2(n · ∇)∂ξµ̃0),

ṽ0 · n∂ξṽ0 = −∂ξp̃0n + ∂ξξṽ1 + ∂ξṽ0κ+ 2(n · ∇)∂ξṽ0 + B(µ̃1∂ξφ̃0n + µ̃0∂ξφ̃1n + µ̃0∇φ̃0),
n · ∂ξṽ1 +∇ · ṽ0 = 0.

(21)
Matching conditions. We need the following matching conditions for inner and outer

expansions.

lim
ξ→±∞

f̃i(x, ξ) = f±i (x), (22)

lim
ξ→±∞

(∇xf̃i(x, ξ) + ∂ξ f̃i+1(x, ξ)n) = ∇f±i (x). (23)

In the following, we will derive the sharp-interface limit of the CHNS system (5) by
the above inner and outer expansions. From the first equation of (20), we know that µ̃0
is a linear function of ξ, which can be written as µ̃0(ξ) = c1ξ + c0, where c0 and c1 are
independent of ξ. Since limξ→±∞ µ̃0 = µ± is bounded, we have c1 = 0. Therefore

µ̃0 = c0. (24)

Then the second equation of (20) is reduced to

∂ξξṽ0 + Bc0∂ξφ̃0n = 0.

We integrate the equation with respect to ξ in (−∞,∞) and obtain

∂ξṽ0|∞−∞ + Bc0φ̃0|∞−∞n = 0.

The inner product of the equation with n gives

n · ∂ξṽ0|∞−∞ + Bc0φ̃0|∞−∞ = 0.

By the third equation of (20), we obtain that

c0φ̃0|∞−∞ = 0.

By the matching condition, we have

c0(φ
+
0 − φ

−
0 ) = 0.

Notice that c+ = φ+0 > 0 > φ−0 = c−, we immediately have c0 = 0, or equivalently

µ̃0 = 0. (25)

By the equation (18), we have

−∂ξξφ̃0 − φ̃0 + φ̃30 = 0. (26)

The solvability condition for this equation [60] leads to

lim
ξ→±∞

φ̃0 = ±1. (27)

and the solution of (26) is
φ̃0 = tanh(ξ/

√
2). (28)
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This is the profile of the φ̃0 in the diffuse-interface layer. By the matching condition
limξ→±∞ φ̃0 = φ±0 and (12), we have

φ±0 (x) = c± = ±1, in Ω±. (29)

This will lead to µ±0 = 0. Therefore the equation (14) is reduced to

Re

(∂v±0
∂t

+ (v±0 · ∇)v±0

)
= F−∇p±0 + ∆v±0 . (30)

Together with (13), this is the standard incompressible Navier-Stokes equation in Ω±.
We then derive the jump conditions on the interface Γ. Noticing (25), the second

equation of (20) is reduced to
∂ξξṽ0 = 0.

By similar argument as for µ̃0 in (24), we know that ṽ0 is independent of ξ, or

ṽ0(x, ξ) = ṽ0(x). (31)

By the matching condition for ṽ0, we obtain

[v0] = 0, (32)

where [f ] = f+− f− denotes the jump of a function f across the interface Γ. The equation
(32) implies that the velocity is continuous across Γ.

Similarly, the first equation of (21) is reduced to

∂td∂ξφ̃0 + ṽ0 · n∂ξφ̃0 = ld∂ξξµ̃1.

Integrate the equation in (−∞,∞) and use the matching condition for φ̃0 and µ̃1, then we
obtain

∂td+ ṽ0 · n = 0.

This implies that the normal velocity of the interface Γ is

Vn = v0 · n. (33)

We then show the jump condition for the viscous stress. Noticing (25) and (31), the
second equation of (21) can be reduced to

−∂ξp̃0n + ∂ξξṽ1 + Bµ1∂ξφ̃0n = 0. (34)

By the equation (19), we have∫ ∞
−∞

µ̃1∂ξφ̃0dξ = −
∫ ∞
−∞

(∂ξφ̃0)
2dξκ+

∫ ∞
−∞

(−∂ξξφ̃1 − φ̃1 + 3φ̃20φ̃1)∂ξφ̃0dξ. (35)

Integration by part for the second term in the right hand side of the equation leads to∫ ∞
−∞

(−∂ξξφ̃1 − φ̃1 + 3φ̃20φ̃1)∂ξφ̃0dξ =

∫ ∞
−∞

(∂ξξφ̃0 + φ̃0 − φ̃30)∂ξφ̃1dξ = 0.

Here we use the equation (26). Then (35) is reduced to∫ ∞
−∞

µ̃1∂ξφ̃0dξ = −σκ,
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with σ =
∫∞
−∞(∂ξφ̃0)

2dξ =
∫∞
−∞(∂ξ tanh(ξ/

√
2))2dξ = 2

√
2/3. Then we integrate the equa-

tion (34) on ξ in (−∞,∞), and notice the matching condition

lim
ξ→±∞

p̃ = p±, lim
ξ→±∞

∂ξṽ1 = n · ∇v±0 .

We are led to
[−p0n + (n · ∇)v0] = Bσκn.

This is the jump condition for pressure and stress [55].
Combining the above analysis, in the leading order, we obtain the standard Navier-

Stokes equation for two-phase immiscible flow
Re

(
∂v±

0
∂t + (v±0 · ∇)v±0

)
= F−∇p±0 + ∆v±0 in Ω±,

∇ · v±0 = 0, in Ω±,[
v0

]
= 0, on Γ,[

− p0n + (n · ∇)v0

]
= Bσκn, on Γ,

Vn = v0 · n, on Γ.

(36)

3.2 The boundary conditions

We now consider the sharp-interface limit of the boundary condition (6). We consider three
different choices for the relaxation parameter Vs = O(εβ), β = 0,−1,−2. We show that
they correspond to different boundary conditions in the sharp-interface limit.

Case I. Vs = O(1). We first assume that Vs is a constant independent of the Cahn
number ε.

Outer expansion. Far from the moving contact line, we can use the same outer ex-
pansions as in the bulk. By applying the expansions (8) to (6) and considering the leading
order terms, we easily have the Navier slip boundary condition

ls
−1(v0,τ − vw) = −∂nv0,τ v0 · nS = 0, on Γ±S . (37)

Here v0,τ = v0− (v0 ·nS)nS is the tangential velocity, and Γ±S = ΓS ∩ ∂Ω± is the boundary
of Ω± on the solid surface ΓS . For the chemical potential µ, we have

∂nµ
±
0 = 0. (38)

Notice that µ±0 = 0 and φ±0 = ±1 in Ω±, we easily obtain

φ±0 = ±1, µ±0 = 0, on Γ±S .

Inner expansion. We consider the boundary condition near the contact line. Here
we denote the out normal of the solid surface ΓS by nS , the normal of the contact line in
tangential surface of ΓS by m (as shown in Fig. 1). Since the functions at the contact line
need to be matched to the outer expansions on Γ±S and also to the expansions inside the
domain Ω, it is convenient to introduce a different inner expansion near the contact line
L := {x ∈ ΓS |φε = 0} as follows. Near the contact line, we introduce two fast changing
parameters,

% =
(x− x0) ·m

ε
, ζ =

(x− x0) · nS

ε
,

with x0 ∈ L. For any function f(x), near x0, it can be written as a function in (x, ρ, ζ) as

f(x) = f̂(x, %, ζ). (39)
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The derivative of f is then rewritten as

∇f = ∇f̂ + ε−1nS∂ζ f̂ + ε−1m∂%f̂ ,

∆f = ∆f̂ + ε−1(∇ · nS∂ζ f̂ +∇ ·m∂%f̂ + 2∂nζ f̂ + 2∂m%f̂) + ε−2(∂ζζ f̂ + ∂%%f̂),

and the boundary derivative of f is given by

∂nf = ∂nf̂ + ε−1∂ζ f̂ , ∂τf = ∂τ f̂ + ε−1∂%f̂m.

We also have
∂tf = ∂tf̂ − ε−1∂%f̂∂tx0 ·m.

Similarly as before, we assume that

v̂ε = v̂0 + εv̂1 + ε2v̂2 + · · · ,
φ̂ε = φ̂0 + εφ̂1 + ε2φ̂2 + · · · .

Direct computations give
µ̂ε = ε−1µ̂0 + µ̂1 + · · · ,

with µ̂0 = −(∂ζζ + ∂%%)φ̂0 − φ̂0 + φ̂30, and

L̂ = L̂0 + εL̂1 + · · · ,

with L̂0 = ∂ζ φ̂0 +
∂γwf

∂φ (φ̂0).
Substitute the expansions into the CHNS system (5) and the boundary condition (6).

In the leading order we have the following equation
(∂ζζ + ∂%%)µ̂0 = 0,

Bµ̂0(∂ζ φ̂0nS + ∂%φ̂0m) + (∂ζζ + ∂%%)v̂0 = 0,
nS · ∂ζ v̂0 + m · ∂%v̂0 = 0,

(40)

and the boundary condition on ΓS :
−∂tx0 ·m + v̂0,τ ·m = 0,

εls
−1(v̂0,τ − vw) + ε∂nv̂0,τ + ∂ζ v̂0,τ = BL̂0∂%φ̂0,

∂ζ µ̂0 = 0, v̂0 · nS = 0.

(41)

Here in the second equation of (41), we keep the terms εls
−1(v̂0,τ − vw) + ε∂nv̂0,τ , since the

slip velocity in the vicinity of the moving contact line might be large compared with the
out region [26].

Matching condition. We have the matching condition

lim
ζ→+∞

f̂ = lim
x→x0

f̃(x, ξ),

lim
%→±∞

f̂ = lim
x→x0

f±(x).

In the following, we will use these equations to derive the condition for moving contact
lines. By the matching relation for µ,

lim
ζ→+∞

µ̂0 = µ̃0 = 0, lim
%→±∞

µ̂0 = µ± = 0.
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The first equation of (40) implies that

µ̂0 = 0. (42)

This means
−(∂ζζ + ∂%%)φ̂0 − φ̂0 + φ̂30 = 0. (43)

We also have the matching condition for φ̂0,

lim
ζ→+∞

φ̂0 = φ̃0(ξ), lim
%→±∞

φ̂0 = φ±0 = ±1.

By (26), it is easy to see that
φ̂0(ζ, %) = φ̃0(ξ)

satisfies the equation (43) and the matching condition if the relation

ζ = ξ/ cos θd, % = ξ/ sin θd

holds. Here θd is the dynamic contact angle which is equal to the angle between n and m
(see Figure 1). This leads to the following relation

∂%f̂ = ∂ξ f̃ sin θd, ∂ζ f̂ = ∂ξ f̃ cos θd. (44)

In addition, (42) and the second equation of (41) implies that

(∂ζζ + ∂%%)v̂0 = 0.

We also have the matching condition limζ→+∞ v̂0 = limx→x0 ṽ0 = v0(x0) and the boundary
condition v̂0 · nS = 0. It is easy to see that

v̂0 = v0(x0),

with
v0(x0) · nS = 0

is a solution of the above equation, i.e. v̂0 is independent of ζ and %.
Using the above relations, we will derive the condition of moving contact line. The first

equation of (41) implies that
∂tx0 ·m = vτ (x0) ·m, (45)

since v̂τ = v̂0 − (v̂0 · nS)nS = vτ . This implies that the normal velocity of the moving
contact line in tangential surface is equal to the fluid velocity in this direction. The second
equation (41) can be reduced to

εls
−1(v̂0,τ − vw) + ε∂nv̂0,τ = BL̂0∂%φ̂0.

Integrate this equation with respect to % and we get∫ +∞

−∞
εls
−1(v̂0,τ − vw) + ε∂nv̂0,τd% =

∫ +∞

−∞
B(∂ζ φ̂0 +

∂γwf
∂φ

(φ̂0))∂%φ̂0d%. (46)

The left hand side term is∫ +∞

−∞
(εls
−1(v̂0,τ − vw) + ε∂nv̂0,τ )d% =

∫
interface

(ls
−1(v̂0,τ − vw) + ∂nv̂0,τ )dm. (47)

11



The right hand side term is∫ +∞

−∞
B(∂ζ φ̂0 +

∂γwf
∂φ

(φ̂0))∂%φ̂0d% =

∫ +∞

−∞
B(∂ξφ̂0 cos θd +

∂γwf
∂φ

(φ̂0))∂ξφ̂0dξ

= Bσ cos θd + B(γwf (1)− γwf (−1))

= Bσ(cos θd − cos θs). (48)

Here we used the Young equation σ cos θs = γwf (1)−γwf (−1) and (44). Then the equation
(46) is reduced to∫

interface
(ls
−1(v0,τ − vw) + ∂nSv0,τ )dm = Bσ(cos θd − cos θs).

This implies that

ls
−1(v0,τ − vw) + ∂nSv0,τ = Bσ(cos θd − cos θs)δCL. (49)

Combine the above analysis, in the leading order, we have the boundary condition
v0 · nS = 0,
VCL = v0,τ ·m,
ls
−1(v0,τ − vw) + ∂nv0,τ = Bσ(cos θd − cos θs)δCL.

(50)

This is the sharp-interface version of the generalized Navier slip boundary conditions, which
has been used by [61, 62, 63].

Case II. Vs = O(ε−1). In this case, we assume a larger relaxation number Vs = ε−1α.
The boundary condition (6) will be reduced to

∂φ
∂t + vτ∂τφ = −ε−1αL(φ),
ls
−1(vτ − vw) = −∂nvτ + BL(φ)∂τφ,
∇µ · nS = 0, v · nS = 0.

(51)

We repeat the analysis in Case I to this boundary condition. The only difference is
the first equation of (51). Using the same inner expansions, the leading order of the first
equation of (51) is give by

−∂%φ̂0(∂tx0 ·m− v̂0,τ ·m) = αL̂0. (52)

We multiply ∂%φ̂0 to both sides of the equation, and integrate the results in (−∞,∞).
Direct calculations give

−(∂tx0 ·m− v0,τ ·m) sin θd = α(cos θd − cos θs).

This implies

VCL − v0,τ ·m = − α

sin θd
(cos θd − cos θs). (53)

Therefore, the boundary condition in this case is given by{
ls
−1(v0,τ − vw) + ∂nv0,τ = Bσ(cos θd − cos θs)δCL, v0 · n = 0,
VCL = v0,τ ·m− α

sin θd
(cos θd − cos θs).

(54)

Here the velocity of the contact line is different from the fluid velocity due to some extra
chemical diffusion on the contact line [22, 36].
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Case III. Vs = O(ε−2). In this case, we assume Vs = ε−2α. The boundary condition (6)
will be reduced to 

∂φ
∂t + vτ∂τφ = −ε−2αL(φ),
ls
−1(vτ − vw) = −∂nvτ + BL(φ)∂τφ,
∇µ · nS = 0, v · nS = 0.

(55)

Once again, the only difference is the first equation of (55). For inner expansions, the
leading order of the first equation of (51) is give by

αL̂0(φ̂0) = 0. (56)

This leads to
cos θd = cos θs. (57)

The equation implies that the dynamic contact angle is equal to the (static) Young’s angle.
Thus, the boundary condition in this case is reduced to{

ls
−1(v0,τ − vw) + ∂nSv0,τ = 0, v0 · n = 0,
θd = θs.

(58)

The boundary condition is used by [12, 10]. We see that this condition is correct only for
very large wall relaxation case.

3.3 Summary of the analysis results

We summarize the main results in this section. When the mobility parameter Ld is of
order O(ε), the sharp-interface limit of the CHNS system (5) is the standard two-phase
flow equation 

Re

(
∂v
∂t + (v · ∇)v

)
= F−∇p+ ∆v in Ω±,

∇ · v = 0, in Ω±,[
v
]

= 0, on Γ,[
− p0n + (n · ∇)v0

]
= Bσκn, on Γ,

Vn = v · n, on Γ.

(59)

where Vn is the normal velocity of the interface of the two-phase flow.
The different choices of the parameter Vs lead to different sharp interface limits for the

GNBC:
Case I. When Vs = O(1), the sharp-interface limit of the boundary condition is{

ls
−1(vτ − vw) + ∂nvτ = σ(cos θd − cos θs)δCL, v · nS = 0,
VCL = vτ ·m.

(60)

The first equation of (60) is the sharp-interface version of the generalized Navier slip bound-
ary condition. It can be understood in the following way [23]:

ls
−1(vτ − vw) = −∂nvτ −

1

η
σY ,

where σY is the unbalanced Young stress, satisfying

−1

η

∫
interface

σY = σ(cos θd − cos θs). (61)
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As shown in the MD simulations by [23], the unbalance Young force might leads to near
complete slipness of the fluid in the vicinity of the contact line.

The second equation of (60) implies that the velocity of the contact line is equal to the
fluid velocity.

Case II. When Vs = O(ε−1), the sharp interface limit of the GNBC is{
ls
−1(vτ − vw) + ∂nvτ = σ(cos θd − cos θs)δCL, v · n = 0,
VCL = vτ ·m− α

sin θd
(cos θd − cos θs),

(62)

where α = εVs is a constant. The first equation in (62) is the same as the previous case. The
second equation in (62) implies that the motion of the contact line is not only determined
by the fluid velocity, but also by the chemical diffusion on the boundary.

From the second equation of (62), when θd does not change much from θs, we have

cos θd − cos θs ≈ −(sin θd)(θd − θs) + h.o.t

Then the second equation implies that VCL = vτ ·m + α(θd − θs). This implies that VCL ∝
(θd − θs), which is similar to the boundary condition derived by [11].

Case III. When Vs = O(ε−2), the sharp interface limit of the boundary condition is{
ls
−1(vτ − vw) + ∂nvτ = 0, v · n = 0,
θd = θs.

(63)

The boundary condition is different from the previous two cases. Here the standard Navier
slip boundary condition is used on the solid boundary and the dynamic contact angle is
equal to the Young’s angle. This boundary condition has been used by [10].

From the above analysis, we have shown the sharp interface limits (in leading order) for
the CHNS equation with the GNBC. For different choices of the relaxation parameter, we
obtain some different boundary conditions for moving contact lines. In applications, one
could choose the parameter according to ones’ own purpose. We would like to remark that
we did not consider the effects of different scalings of slip length ls with respect to ε, and
the analysis does not show the convergence rate of the sharp-interface limits, which might
be important in real applications. In next section, we will do numerical simulations for
the various choices of the mobility parameter and the relaxation parameter to verify the
analytical results and investigate the convergence rates in these cases.

4 Numerical experiments

We consider a two-dimensional Couette flow in a rectangular domain Ω = [0, Lx] × [−1, 1]
with Lx = 6. The plates on the top and bottom boundaries move in opposite directions
with velocity vw = (±1, 0). We initiate the phase field as

φ(x, y, t = 0) = tanh
( 1√

2ε

(
0.25Lx − |x− 0.5Lx|

))
. (64)

We set initial velocity v0 = (y, 0) for the Couette flow. ε is gradually reduced to check the
convergence of the solution with respect to ε. The values of Re,B, ls are fixed as

Re = 0.0001, B = 50, ls = 0.01. (65)
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We numerically verify the convergence behavier of the diffuse interface model (5)-(6) for
different scalings of Ld,Vs with respect to ε, using a second order scheme recently proposed
by [64]. For clarity, we also list the algorithm in the appendix.

Fig. 2 shows the snapshots of the two-phase interface at T = 0.2 in the simulation results
of Couette flow using different mobility parameter Ld and relaxation parameter Vs. In these
experiments, we set θs = 90◦.

The left column of Fig. 2 show the results for Ld = O(1) and Vs = O(εβ), with β =
0,−1,−2,−3, respectively. It is known that for this case, the Navier-Stokes-Cahn-Hilliard
system converges to coupled Navier-Stokes and Hele-Shaw equations [59]. We could also see
that the dynamic contact angle approaches to the Young’s angle with increasing relaxation
parameter Vs. In the largest relaxation parameter Vs = O(ε−3) case, the dynamic contact
angle is almost equal to the Young’s angle. We observe that this case exhibits the best
convergence rate to a sharp-interface limit. The results are consistent with the numerical
observations by [57]. In their experiments, the boundary condition L(φ) = 0 is used, which
corresponds to a infinite large parameter Vs. They found that the sharp interface limit is
obtained only when the mobility parameter is of order O(1).

The middle column of Fig. 2 show the results for Ld = O(ε) and Vs = O(εβ), with
β = 0,−1,−2,−3, respectively. For different choice of Vs, the sharp-interface limits of the
diffuse interface model are slightly different. With increasing relaxation parameter Vs (or
decreasing β), the dynamic contact angle will approach to the stationary contact angle
θs = 90◦. From Fig. 2 (h) and (k), we could see that the dynamic contact angle is almost
90◦ for small ε. These results are consistent with the asymptotic analysis in the previous
section. More interestingly, the different choices of Vs might also affect the convergence
rates. In seems that the convergence rate to the sharp-interface limit for Vs = O(ε−1) is
slightly better than other cases. For the case Vs = O(ε−3), the convergence rate seems
very slow. This indicates the phase-field model might not convergence for infinite large
relaxation parameter when Ld = O(ε), as shown by [57].

The right column of Fig. 2 show the results for Ld = O(ε2) and Vs = O(εβ), with
β = 0,−1,−2,−3, respectively. In this case, the Navier-Stokes-Cahn-Hilliard system still
converges to that standard incompressible two-phase Navier-Stokes equations. [55] consid-
ered the case without moving contact lines, found that Ld = O(ε2) give the best convergence
rate. Here we show some numerical results for moving contact line problems. In this case,
the choice of Vs = O(ε−1) seems correspond to slightly faster convergence rate than other
choices. This is similar to the Ld = O(ε) case.

On the other hand, we observe that when the boundary relaxation Vs = O(εβ) with
β ≥ −1 (the first and second row of Fig. 2), the boundary diffusion can be considered
as small, then the scaling Ld = O(ε2) gives the best convergence rate. This is similar to
the results of phase-field model without contact lines obtained by [55], where they give an
elaborate analysis. On the other hand, when Vs = O(εβ) with β ≤ −2 (the third and
fourth row of Fig. 2), the boundary diffusion is relatively large, then L(d) = O(1) gives best
convergence rate. This is consistent to the finding by [57]. The observation is helpful in the
real applications using the GNBC model.

We also did experiments for the case when θs = 60◦. The numerical results are similar
to the case when θs = 90◦. In Fig. 3 we present only a few snapshots of MCLs at T = 0.2
for the case when θs = 60◦. Here we focus on the differences between the choices Ld = O(ε)
and Ld = O(1). We show three cases Vs = O(1), O(ε−1) and O(ε−2). From the figure, we
could see that the convergence rate for Ld = O(ε) is slightly better than Ld = O(1) when
Vs = O(1) and Vs = O(ε−1).
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Figure 2: Numerical results at T = 0.2 with different Ld and Vs values, θs = 90◦. Since the
contact lines are symmetric with respect to point (1.5, 0), we only plot the bottom parts to
show the convergence.
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Figure 3: Numerical results at T = 0.2 with different Ld and Vs values, θs = 60◦.

5 Conclusion

We studied the convergence behavior with respect to the Cahn number ε of a phase field
moving contact line model incorporating dynamic contact line condition in different situa-
tions, using asymptotic analysis and numerical simulations. In particular, we considered the
situations of ε-dependent mobility Ld and boundary relaxation Vs. This extends the study
by [57] and [59]. [57] showed that Ld = O(1) is the only proper choice for the sharp-interface
limit of a diffuse interface model with no slip boundary condition. [59] deduced that the
sharp-interface limit of the phase-field model with the GNBC for the case Ld = O(1) obeys
a Hele-Shaw flow.

We did asymptotic analysis for the phase-field model with the GNBC for the case
Ld = O(ε). We show that the sharp-interface limit is the incompressible two-phase Navier-
Stokes equations with standard jump condition for velocity and stress on the interfaces. We
also show that the different choices of the scaling of Vs correspond to different boundary
conditions in the sharp-interface limit.

Our numerical results show that when the boundary relaxation Vs = O(εβ) with β ≥ −1,
the boundary diffusion can be considered as small, the scaling Ld = O(εα), α = 0, 1, 2 all
give convergence, but α = 2 gives the best convergence rate. This is consistent to the
results of phase-field model without contact lines obtained by [55]. On the other hand,
when Vs = O(εβ) with β ≤ −2, L(d) = O(εα), α = 0, 1 will give better convergence rate,
while α = 2 also exhibits convergence. The case α = 0 give best convergence rate for Vs
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very large is consistent to the finding by [57]. The larger convergence region of α is due
to the fact that the generalized Navier slip boundary condition and the dynamic contact
line condition are incorporated in the phase field MCL model we used. Our analysis and
numerical studies will be helpful in the real applications using the GNBC model.

Appendix: The numerical scheme

The CHNS system (5)-(6) are solved using a second-order accurate and energy stable time
marching scheme basing on invariant energy quadratization skill developed by [64]. For
clarity, we list the details of the scheme below. Let δt > 0 be the time step-size and
set tn = nδt. For any function S(x, t), let Sn denotes the numerical approximation to
S(·, t)|t=tn , and Sn+1

? := 2Sn − Sn−1. We introduce U0 = (φ0)2 − 1, W 0 =
√
γ̂wf (φ0),

where

γ̂wf (φ) =

{ √
2
3 −

√
2
6 cos θs(3φ− φ3), if |φ| ≤ 1,√

2
3 −

√
2
3 cos θs, otherwise.

(66)

Assuming that (φ,v, p, U,W )n−1 and (φ,v, p, U,W )n are already known, we compute
φn+1,vn+1, pn+1, Un+1,Wn+1 in two steps:

Step 1: We update φn+1, ṽn+1, Un+1,Wn+1 as follows,

3φn+1 − 4φn + φn−1

2δt
+∇ · (ṽn+1φn+1

? ) = Ld∆µn+1, (67)

µn+1 = −ε∆φn+1 +
1

ε
φn+1
? Un+1, (68)

3Un+1 − 4Un + Un−1 = 2φn+1
? (3φn+1 − 4φn + φn−1), (69)

Re
[3ṽn+1−4vn+vn−1

2δt
+B(vn+1

? , ṽn+1)
]
−∆ṽn+1+∇pn+ Bφn+1

? ∇µn+1 = Fn+1,(70)

with the boundary conditions

ṽn+1 · n = 0, (71)

∂nṽ
n+1
τ = −ls−1(ṽn+1 − vw)− 1

Vs
φ̇n+1∇τφn+1

? , (72)

∂nµ
n+1 = 0, (73)

ε∂nφ
n+1 = − 1

Vs
φ̇n+1 − Z(φn+1

? )Wn+1, (74)

3Wn+1 − 4Wn +Wn−1 =
1

2
Z(φn+1

? )(3φn+1 − 4φn + φn−1), (75)

where

B(u,v) = (u · ∇)v + 1
2(∇ · u)v, (76)

φ̇n+1 = 3φn+1−4φn+φn−1

2δt + ṽn+1
τ · ∇τφn+1

? , (77)

Z(φ) = γ̂′wf (φ)/
√
γ̂wf (φ). (78)

Step 2: We update vn+1 and pn+1 as follows,

3Re

2δt

(
vn+1 − ṽn+1

)
+∇(pn+1 − pn) = 0, (79)

∇ · vn+1 = 0, (80)
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with the boundary condition

vn+1 · n = 0 on Γ. (81)

The above scheme are further discretized in space using an efficient Fourier-Legendre spec-
tral method, see [32] and [65] for more details about the spatial discretization and solution
procedure. The scheme (67)-(81) can be proved to be unconditional energy stable [64]. But
to get accurate numerical results, we have to take time step-size small enough. In all the
simulations in this paper we use δt = 0.0001 and the first order scheme proposed by [32] is
used to generate the numerical solution at t = δt to start up the second order scheme.
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