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We study the macroscopic behavior of two phase flow in porous media from a phase filed model.
A dissipation law is first derived from the phase field model by homogenization. For simple channel
geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the
two phase flow can be explicitly obtained from the model which then gives the force-velocity relation.
It is shown that for the homogeneous channel surface, Dacry’s law is still valid with an significantly
modified permeability including the contribution from the contact line slip. For the chemically
patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is
related to a depinning force for the patterned surface. Our result offers a theoretical understanding
on the prior observation of non-Darcy behavior for the multi-phase flow in either simulations or
experiments.

I. INTRODUCTION

The study of porous media flow is of critical impor-
tance in many applications such as petroleum industry,
soil sciences, fuel cells, painting filtration, etc. One-phase
flow in porous media is well understood so far. Darcy law,
first derived through experiments in the 19th century[1],
represents a linear relationship between the filtration ve-
locity v and the pressure gradient: v = −K∇p. The
Darcy law can also be rigorously derived from Navier-
Stokes equations by homogenization techniques [2–4] or
the volume averaging method[5–7]. Nonlinear corrections
to the Darcy law have been studied under various situa-
tions (see [8, 9] and reference therein).

The modeling of two phase flows in porous media has
been mostly based on empirical approaches[10], with as-
sumed analogy with single phase flow. In particular, with
vi being the superficial or seepage velocity vector of phase
i relative to the fixed pores, the two-phase form of the
Darcy law is taken to be

vi = −kri
ηi
K(∇pi − ρig),

∂si
∂t

+∇ · (sivi) = 0, (1)

where kri represents the relative permeability of phase i,
i = 1, 2, and p1 − p2 = pc defines the capillary pressure.
Both kri and pc are assumed to be dependent only on the
saturations si(s1 + s2 = 1), and the explicit functional
relationships are assumed to be known from experiments.

Although the above model has been widely used in
petroleum engineering, soil science, as well as many other
fields, it has long been argued that the model might be
invalid either by theory, experiments, or both. Short-
comings of the model include: no account of interfacial
force being taken in the momentum equation; and quasi-
static capillary pressure curves were used for highly dy-
namic flow process. Due to the complexity of two-phase
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flow in porous media, most of studies concern mainly
the pure imbibition or pure drainage process, where a
macroscopic fluid interface moving across porous media
flow (see for example [11]). There are also many exper-
imental or numerical studies on porous media flow for
a pore-network model. Among them, Avraam et al. did
extensive experiments to show how the (conventional and
generalized) relatively permeabilities depend on various
regimes of flow mechanics, the capillary number, the flow
ratio and the viscosity ratio, etc[12–14]. Recently, Tal-
lakstad at el. carried out some interesting experiments
on steady two-phase flow in a representative porous me-
dia volume, where two phases are mixed together and
both drainage and imbibition interplays[15, 16]. They
report some highly nontrivial behavior of the pressure
jump with respect to capillary number.

In this paper, we study the macroscopic behavior of
two-phase immiscible flow in the porous media, using a
phase field model with generalized Navier boundary con-
dition developed in [17, 18]. Using homogenization tech-
nique, we first derive a generalized macroscopic dissipa-
tion law, R(x) = −∇P (x) ·U(x), that is valid for multi-
phase flows in porous media. We then use the dissipation
law to study the effect of contact lines and roughness of
pore surfaces on the macroscopic behavior of the two-
phase flow by considering some simple pore geometries.
For two phase Poiseuille flow in a homogeneous channel,
our calculations show that the Darcy’s law still holds with
the permeability significantly reduced due to the dissipa-
tion associated with the contact line slip. The analysis is
consistent with the Tallakstad experiments [15, 16]. We
then consider the case in which the channel surface is
chemically patterned. It is shown that the total dissipa-
tion displays the scaling behavior R = FU ∝ F0U +λU2

which includes a non-Darcy term F0U that arises from
the surface inhomogeneities. This non-Darcy term gives
the force-velocity relation U ∝ (F − F0) for the chemi-
cally patterned surfaces.

We would like to remark that the simple pore geometry
assumption ignores the interaction of different layers and
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high dimensional effect. However, our analysis provides
some new theoretical understanding of the Darcy’s and
Non-Darcy’s behaviour in two-phase flow in porous media
induced by the extra dissipations near moving contact
lines. The dependence of the permeability and the de-
pinning force on the behavior of the moving contact lines
is quantitatively shown. We expect the force-dissipation
relation and the analysis in this paper will be helpful in
further studies in general porous media geometry.

The structure of the paper is as follows. In Sec-
tion II, we carry out homogenization analysis for a non-
dimensionalized two-phase flow model in porous media.
A macroscopic dissipation relation is derived. In Section
III, we analyse in detail the case when the pore is a chan-
nel. Some general discussions are provided to show the
difference of our results with standard Leverett models.
The generalization to higher dimensional case is briefly
discussed. In Section IV, numerical experiments are il-
lustrated and verify the analysis in the previous section.
Finally, we give a few conclusion remarks in Section V.

II. MACROSCOPIC DISSIPATION FOR THE
TWO-PHASE FLOW IN POROUS MEDIA

In [17], the Cahn-Hilliard-Navier-Stokes(C-H-N-S)
equations with the generalized Navier boundary condi-
tion (GNBC) are proposed to described the behavior of
the moving contact line:

∂φ
∂t + v · ∇φ = M∆µ,
ρ[∂v∂t + (v · ∇)v] = F−∇p+ η∆v + µ∇φ,
∇ · v = 0.

(2)

The first equation is the Cahn-Hilliard equation consid-
ering the convection of the fluid. φ is the general phase
field function. µ = −K∆φ − r(φ − φ3) is the chemical

potential with the interface thickness ξ =
√
K/r and the

fluid-fluid interface tension γ = 2
√

2rξ/3. M is a phe-
nomenological mobility coefficient.

The second equation is the Navier-Stokes equation
with additional term µ∇φ, the capillary force exerted
to the fluid by the interface. For simplicity, we assume
that the two fluids have the equal constant density ρ and
viscosity η.

The boundary conditions for the phase field φ, the nor-
mal velocity and the chemical potential are given by

∂φ
∂t + vτ∂τφ = −ΓL(φ),
vn = 0, ∂nµ = 0,

(3)

with Γ being a positive phenomenological parameter. vn
and vτ are normal and tangential velocity, respectively.
The Generalized Navier boundary condition is proposed
to describe the moving contact lines:

βvτ = −η∂nvτ + L(φ)∂τφ, (4)

Here β is a slip coefficient and the slip length is given

as l̃s = η/β. L(φ) = K∂nφ +
∂γwf (φ)
∂φ , where γwf (φ) =

−γ4 cos θs(3φ−φ3) is the solid-fluid interface energy den-
sity (up to a constant) and θs is the static contact angle.
L(φ)∂τφ represents the uncompensated Young stress.

A. Non-dimensionalization
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FIG. 1. Examples of cell structures in periodic porous media.

We consider two-phase flow in a porous media. Denote
ε = l/L, the ratio between the pore length scale l and the
macroscopic scale L. We then scale the velocity by the
characteristic velocity v∗, the length by L, the time by
L/v∗, body force(density) F by ηv∗/l2 and the pressure
by Lηv∗/l2. With five dimensionless parameters,

Ld=
3Mγ

2
√

2v∗l2
,Re =

ρv∗l

η
,B =

3γ

2
√

2ηv∗
,

Vs=
3γΓl

2
√

2v∗
, ls =

l̃s
l
, δ =

ξ

l
, (5)

we have the following dimensionless Cahn-Hilliard-
Navier-Stokes equations

∂φ
∂t + v · ∇φ = ε2Ld∆µ,

εRe

[
∂v
∂t + (v · ∇)v

]
= F−∇p+ ε2∆v + ε2Bµ∇φ,

∇ · v = 0,

(6)

where the chemical potential µ = −εδ∆φ − φ/(εδ) +
φ3/(εδ). The boundary conditions are ε[∂φ∂t + vτ∂τφ] = −VsL(φ),

ls
−1vτ = −ε∂nvτ + εBL(φ)∂τφ,
∇µ · n = 0, v · n = 0,

(7)

where L(φ) = εδ∇φ · n +
∂γwf (φ)
∂φ and γwf (φ) =

−
√
2
6 cos θs(3φ−φ3) being the wall-fluid interface energy

density function. n is the unit out normal on the bound-
ary.

B. Homogenization results

We now derive the macroscopic behavior of the two
phase flow in porous media by the homogenization proce-
dures. Let Ω ⊂ R2 be a bounded domain which contains
the porous media under consideration. For simplicity,
we assume the porous media comprise a periodic array
of small cells with size ε� 1. Denote the unit cell as Y,
which can be decomposed into two domains B and G(as
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shown in Fig. 1). Consider the porous domain defined
by the fluid part Ωε = Ω ∩ ε(∪z∈A(z + B)). Here A is
an infinite lattice in R2 such that ∪z∈A(z+Y) = R2 and
(z1 + Y) ∩ (z2 + Y) = ∅, for any z1, z2 ∈ A.

We assume that the unknown velocity, pressure and
phase field function have the following expansion,

v(x) = v0(x,y) + εv1(x,y) + ε2v2(x,y) + · · · ,
p(x) = p0(x,y) + εp1(x,y) + ε2p2(x,y) + · · · ,
φ(x) = φ0(x,y) + εφ1(x,y) + ε2φ2(x,y) + · · · ,

where y = x
ε . Assume vi, pi and φi to be all periodic in

y.
It is easy to see that the differential operators

∇ = ∇x+ε−1∇y, ∆ = ∆x+2ε−1(∇x ·∇y)+ε−2∆y,

where ∇x = (∂x1
, ∂x2

)T and ∇y = (∂y1 , ∂y2)T , and ∆y =
∂y1y1 +∂y2y2 . Straightforward calculations show that the
chemical potential µ can also be expanded as

µ(x) = ε−1µ0(x,y) + µ1(x,y) +O(ε),

with

µ0 = −δ∆yφ0 − φ0/δ + φ30/δ,

µ1 = −δ(2∇x · ∇yφ0 + ∆yφ1)− φ1(1− 3φ20)/δ.

Similarly, we have

L(φ) = L0(φ0) +O(ε),

with L0(φ0) = δ∇yφ0 · n +
∂γwf (φ0)

∂φ . In addition, we

introduce the fast time variable s = t
ε and assume all

quantities f in the system to depend on s, i.e. f = φi,vi
and is periodic in s with period T . From the definition,
we have ∂f

∂t = 1
ε
∂f
∂s .

Substitute the expansions into above equations (6)-
(7)(see details in Appendix A.1). The leading order term
of the second equation of (6) gives

∇yp0 = 0, (8)

This implies that p0 depends only on the slow parameter
x and can therefore be taken to be the macroscopic pres-
sure. To the leading order, the velocity, phase function
and the chemical potential satisfy the following equations
in the representative cell Y near x,


Re[

∂v0

∂s + (v0 · ∇y)v0] = F−∇xp0 −∇yp1 + ∆yv0

+Bµ0∇yφ0, in B
∇y · v0 = 0, in B
∂φ0

∂s + v0 · ∇yφ0 = Ld∆yµ0, in B
y→ v0, p1, φ0, periodic boundary condition on ∂Y∩∂B.

(9)
with the boundary conditions on ∂G ∩ ∂B,

∂φ0

∂s + v0,τ∇yφ0 · τ = −VsL0(φ0),
l−1s v0,τ = −(∇yv0,τ · n) + B L0(φ0)∇yφ0 · τ,
∇yµ0 · n = 0, v0 · n = 0,

(10)

with L0(φ0) = δ∇yφ0 ·n+
∂γwf (φ0)

∂φ , and µ0 = −δ∆yφ0−
φ0/δ + φ30/δ.

We define P (x) = p0(x) as the macroscopic pressure.
Notice that since v0 is periodic in time s with period T ,
the macroscopic velocity can be defined as

U(x) =
1

T |B|

∫ T

0

∫
B
v0dyds

with |B| being the volume of B. In the case of one phase,
low Reynolds number flow, the macroscopic velocity can
be solved from a simplified equation similar to the first
equation in (9), in terms of the pressure gradient. The
usual one phase Darcy law then follows, where the per-
meability is expressed in terms of the solution of a cell
problem. However, such derivation does not work for the
two phase system (9). We show, however, that a dissipa-
tion law is still valid.

C. Dissipation function and the Darcy law

We multiply v0 to the first equation of (9) and inte-
grate in B. Direct computations give (see Appendix A.2)(

F−∇P (x)
)
·U(x) = R(x), (11)

where

R(x) =
1

T |B|
[ ∫ T

0

∫
B
|∇v0|2dyds+

∫ T

0

∫
∂G

v20,τ
ls

dσyds

+
B

Vs

∫ T

0

∫
∂G
φ̇0

2
dσyds+ BLd

∫ T

0

∫
B
|∇µ0|2dyds

]
.

(12)

is the averaged dissipation rate over a cell [18].
The macroscopic behavior is characterized by Eq. (11).

If we know how the averaged dissipation rate depends on
U, then an explicit relation between the force F−∇P and
U may be obtained. In particular, if R scales quadrati-
cally with U(which is the case for the single phase flow),
then the Darcy law is recovered.

In the following, we consider only the simplest chan-
nel geometry in pore scale. It is shown that the Darcy
law form still holds for smooth wall surfaces (with a per-
meability changed significantly by the effect of moving
contact lines), but deviation from the Darcy law occurs
when the surfaces are inhomogeneous. In the latter case
the dissipation function has precisely the form as given
by R = FU ∝ F0U + λU2.

III. TWO-PHASE CHANNEL FLOW

We consider a channel of length Lx and height h, i.e.
B = {(y1, y2) ∈ (0, Lx) × (0, h)} and denote the upper
and lower boundary of the channel ∂G = {y2 = 0, h; 0 <
y1 < Lx}(see Fig. 2). The two phase flow in the channel
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FIG. 2. Two phase flow in a channel with homogeneous upper
and lower boundaries.

is modeled by the C-H-N-S equations (9) with boundary
conditions (10). For simplicity, we use p, φ, v, µ, F, L
and t instead of p1, φ0, v0, µ0, F − ∇xp0, L0 and s,
respectively. The equations are reduced to

Re[
∂v
∂t + (v · ∇)v] = F−∇p+ ∆v + Bµ∇φ,

∇ · v = 0,
∂φ
∂t + v · ∇φ = Ld∆µ,
y→ v, p, φ, periodic boundary condition, on{y1 = 0, Lx}

(13)
with the boundary conditions on {y2 = 0, h},

∂φ
∂t + vτ∇φ · τ = −VsL(φ),
l−1s vτ = −(∇vτ · n) + B L(φ)∇φ · τ,
∇µ · n = 0, v · n = 0,

(14)

with µ = −δ∆φ−φ/δ+φ3/δ and L(φ) = δ∇φ·n+
∂γwf (φ)
∂φ .

All the differential operators in the equations are now
with respect to y. We assume the external force F to
be a constant vector (with respect to y) along the y1
direction.

A. Homogeneous surfaces: Darcy law in the
presence of the contact line

We now assume that the solid surface ∂G is chemically
homogeneous. That is, θs is a constant along the bound-
ary. With the constant external force F = (F1, 0) in the
y1 direction, we can assume that the system (13) and
(14) admits a traveling wave solution of the form

v(y, t) = v(y −Ut),

p(y, t) = p(y −Ut),

φ(y, t) = φ(y −Ut),

with a constant velocity U = (U, 0). The system (6) and
(7) are reduced to{

Re

[(
(v −U) · ∇

)
v
]

= F−∇p+ ∆v + Bµ∇φ, y ∈ B;

(v −U) · ∇φ = Ld∆µ, y ∈ B;
(15)

and

(vτ − U)∂τφ = −VsL(φ) y ∈ ∂G. (16)

We multiply U to the first equation of (15) and in-
tegrate in B. We have, by direct computations(see Ap-
pendix A.3),

F |B| =
∫
∂G
l−1s vτdσy. (17)

This implies that the external body force is balanced by
boundary frictions.

The profile of the slip velocity near the moving con-
tact lines on the solid boundary has been studied pre-
viously [19–21]. The velocity profile is found to have a
universal behavior, see more discussion in Appendix B.,

i.e., vτ
U ≈ g

(d(y,yi)
ls

)
, where d(y,yi) is the distance from

i−th contact point yi, g(ξ) is a universal function with
a power-law slip region extending from a critical place
about rc away from the contact line. In [19], it is found
that g(ξ) = 1/(1 + ξ/a), with a ≈ 2.14. The outer cutoff
for the partial-slip region R is determined by the height
h of the channel. Beyond the partial slip region, the
slip velocity has a value given by vs = 6lsU/(h + 6ls)
which can be derived from the Stokes equation for the
single phase Poiseuille flow with Navier slip boundary
condition. For each contact point yi, it is shown that∫
∂G∩{y:d(y,yi)<R} l

−1
s vτdσy ≈ AU , with some constant A

independent of U . The value of A depends on the size
of power-law area. Thus, if we suppose that there are n
contact points on each side of ∂G, then∫

∂G
l−1s vτdσy ≈

(
2nA +

12(Lx − 2nR)

h+ 6ls

)
U (18)

where 2n is the number of contact points in the pore.
It follows from (17) and (18) that

U =
h(h+ 6ls)

12 + 2n(Ah+ 6lsA− 12R)/Lx
F. (19)

and the permeability is given by:

k =
h(h+ 6ls)

12 + 2n(A− 12R
h+6ls

)h+6ls
Lx

. (20)

Notice that for the one phase flow, i.e. n = 0, we recover
the usual permeability expression for the slip bound-
ary condition that k0 = h(h+ 6ls)/12. In the presence
of a contact line, however, the results in [19, 21] show
that R is linearly proportional to h and A behaves as
log(R/ls). Therefore the expression 2n(A − 12R/(h +
6ls))(h+6ls)/Lx (in the denominator of (19)), which rep-
resents the contribution from the partial slip dissipation
near the contact line and which scales as h/Lx log(h/ls)
for h/ls large, can significantly reduce the effective per-
meability. This is verified by our numerical experiments
given in Table I.

From (20), the inverse of the permeability scales like

k−1 ≈ k−10 (1 + b · n) (21)

where k0 is the standard permeability for one-phase
porous media flow, n is the total number of contact points
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FIG. 3. Two phase flow in a channel with chemically pat-
terned upper and lower boundaries(color online).

in a representative volume and b ∝ log(h/ls)h/Lx, de-
pending on both the geometry size and the slip-length of
the two-phase flows.

B. Inhomogeneous surfaces: Non-Darcy behavior

We now consider two phase flow in a chemically pat-
terned channel with the top and bottom surfaces pat-
terned periodically (with small period, see Fig. 2) by two
different materials with equal length but different con-
tact angles θa and θb. Without the loss of generality,
we assume θa > θb. We also assume that the motion
of the two-phase flow is periodic in time with period
T and denote the time averaged horizontal velocity as

U = 1
T |B|

∫ T
0

∫
B v1dydt. It is reasonable to assume that

1
T |B|

∫ T
0

∫
B v2dydt = 0 in the channel. Multiply the first

equation of (9) by U = (U, 0) and integrate in both space
and time, we obtain

F ·U|B| = Re

∫
B
∂tv ·U + (v · ∇)v ·Udy

−
∫
B

(−∇p+ ∆v + Bµ∇φ) ·Udy. (22)

By careful computations(see in Appendix A.3), the equa-
tion is reduced to

FULxhT = U

∫ T

0

∫
∂G
l−1s vτdσydt

−4
√

2

3
BU

∫ T

0

∫
∂G

cos θs(y1)
∂(3φ− φ3)/4

∂y1
dy1dt. (23)

For the first term on the right-hand side of (23), similar
calculations as in homogeneous boundary case gives∫ T

0

∫
∂G
l−1s vτdσydt ≈

(
2nA+

12(Lx − 2nR)

h+ 6ls

)
UT. (24)

Unlike in the homogeneous surface case, the last term
in the right-hand side of (23) no longer vanishes for the
inhomogeneous surface, which is the origin of the non-
Darcy effect. Assume the solution is symmetric along

the channel height, we then have∫ T

0

∫
∂G

cos θs(y1)
∂(3φ− φ3)/4

∂y1
dy1dt

=2

∫ T

0

∫ Lx

0

cos θs(y1)
∂(3φ− φ3)/4

∂y1
dy1dt. (25)

We estimate the above integral in the sharp-interface
limit of the phase field function. When the interface
thickness δ goes to zero, the phase field function φ con-
verges to a step function switching values between 1 and
−1. Due to the periodicity in y1, the interfaces appear in
pairs with one increasing from −1 to 1, which we define
as “receding” interface, followed by one decreasing from
1 to −1, which we define as the “advancing” interface.
The “advancing” and “receding” are with reference to the
phase value φ = 1(see Fig. 2). Thus in the sharp-interface

limit we have ∂(3φ−φ3)/4
∂y1

≈∑n
i=1(δyr,i(t)−δya,i(t)), where

δyr,i(t) and δya,i(t) are Dirac functions, yr,i(t) and ya,i(t)
are the y1 coordinates of the i-th receding and i-th ad-
vancing contact points on ∂G at time t, respectively. Due
to periodicity of the system, there are the same number
of advancing points and receding points the number is

n. Therefore we have
∫ T
0

∫
∂G cos θs(y1)∂(3φ−φ

3)/4
∂y1

dy1dt ≈∑n
i=1

∫ T
0

(
cos θs(yr,i(t)) − cos θs(ya,i(t))

)
dt.The equation

can also be derived by asymptotic inner expansions near
the moving contact points[22]. Due to stick-slip ef-
fect of the contact point, we have θs(yr,i(t)) ≈ θb and
θs(ya,i(t)) ≈ θa in most of time([22–24]). This leads to

4
√

2

3
BU

∫ T

0

∫
∂G

cos θs(y1)
∂(3φ− φ3)/4

∂y1
dy1dt ≈ 4

√
2

3
nλBUT.

(26)

Here λ = cos θb − cos θa depends only on the wetting
properties(Young’s angles) of pore cell.

Equations (23)- (24) and (26) can be combined to yield

FU = U2/k + F0U, (27)

or equivalently a force-velocity relation

U = k(F − F0). (28)

where the permeability k is the same as that for
the homogeneous surfaces given in (20) and F0 =
4
√
2

3 nλB/(hLx) is an extra de-pinning force due to the in-
terface tension and chemically roughness of the surface.
λ = (cos θb − cos θa) is the wetting hysteresis property
of the two-phase flow on the chemically patterned pore
surface, and B is a dimensionless parameter of the two-
phase flow(inverse of the capillary number). Therefore,
the de-pinning force depends on the wetting and geomet-
ric properties of the pore surface as well as the capillary
property of the two-phase flow. It is easy to see that the
de-pinning force disappears if the solid surface is homo-
geneous so that there is no contact angle hysteresis i.e.
θa = θb. In this case, the formula (28) is reduced to (19).
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C. General Discussions

We note that the relation (19) and (28) cannot be
derived from the standard Leverett model (1) for two-
phase porous media flow on the channel cases. For chan-
nel cases with periodic conditions(with homogeneous or
chemically patterned), the saturation si do not change.
Then the relative permeability kri and capillary pressure
pc in Leverett model will be constants. If we suppose
ηi = 1 and ignore the gravity, then (1) is reduced to

vi = −krik0∇pi, i = 1, 2.

Notice that ∇p1 = ∇(p2 +pc) = ∇p2 and is equal to ∇p.
Thus the total velocity(or mixture velocity as we study
here)

v = v1 + v2 = −(kr1 + kr2)k0∇p. (29)

It is easy to see that the equation (29) derived from
standard Leverett model is similar to our equation (19)
for homogeneous surface case. However, there are differ-
ences for the formula of permeability. In (29) the relative
permeability kri depend only on the saturations. In our
formula k−1 = k−10 (1+b ·n), which depends explicitly on
the number of the moving contact points, instead of the
saturations.

For the chemically patterned surface, the extra de-
pinning force is missing in (29). We note that the de-
pinning force F0 has different meaning with the capillary
pressure pc = 2γκ = 4γ cos θe/h. The capillary pres-
sure is the pressure between two fluid phases and always
exists whenever θe 6= π

2 . The de-pinning force exists
only when the solid surface is inhomogeneous and there
is contact angle hysteresis. Physically, the de-pinning
force is related to the extra dissipation generated by
stick-slip behaviour when the solid surface is chemically
patterned[23, 25].

Our analysis in this paper is only for the channel pores,
which corresponding to parallel layer flows in two dimen-
sions. The generalization of present approach to other
pore geometry and three dimensions is highly nontrivial.
However, the energy-dissipation relation (11) obtained
from our analysis might have some hint for further stud-
ies. From (27), we have the conclusion that the dissipa-
tion

R = F0U + k−1U2. (30)

where the first term is the dissipation by the de-pinning
force of contact lines due to the inhomogeneous of the
solid surface, and the second term is the viscous dissipa-
tion, which includes also a contribution from the contact
line slip. We expect that in some general cases, e.g. in
a representing volume where two-phase flows mixed up,
the dissipation has a similar form to (30) where F0 and k
might be vectors and tensors depending on the effective
length of the contact lines which may also depend on the
moving direction. In our understandings, it should be

the projection of the moving contact lines on transverse
direction of flows. In this case, similar relation as (19)
and (28) should still hold. Similar to (21), the Darcy’s
relation (19) becomes

∇p ∝ k−1U ∝ k−10 (1 + b · n)U, (31)

with b depends only on the pore geometry and properties
of two-phase flow, and n is the effective length of contact
lines in three dimension.

The above scaling behavior (31) is consistent with the
experimental results in Tallakstad at el.[15, 16]. They
observed the linear growth of the pressure jump with
respect to time for a fixed velocity U (or capillary number

Ca = µwa
2vw

γκ0
∝ U) as the front moves in the box. This

means the inverse of the permeability increases linearly.
This is consistent with (31). As the front moves to the
right, the total area of interfaces and the total length n of
the contact line increases. Furthermore, they found that
the pressure jump ∆p ∝

√
U(or equivalently

√
Ca) in the

steady states. This clearly implies that k−1 ∝ U−1/2(or
k ∝ √Ca as stated in[15]) This highly nontrivial behavior
could be interpreted that the total length of contact lines

n = Nl∗x ∝ C−1/2a , where N is the number of nonwetting
pores and l∗x being the characteristic length of the pore
in the transverse direction of the flows. The scaling is
true from the statistic data on total number of N and the
pore size l∗x in that paper. We note that the experimental
results have been explained in a different way in [15].

Finally, we would say that there is still a long way to
give a complete model for two-phase flow in porous me-
dia. In our analysis, we assume the two-phase flow is
mixed in a representing volume and the velocity is small.
The analysis will be different if there are macroscopic
interfaces. For example, for pure imbibition or pure
drainage process, the two-phase fluid is well-separated
and the capillary pressure will play an important role.
Nevertheless, we think that the analysis for channel flow
including moving contact lines might be useful in a pore-
network model, which is a good start to understand more
general porous media flows.

IV. NUMERICAL VERIFICATIONS

In this section, we carry out some numerical experi-
ments. We solve the problem (13-14) by a finite difference
scheme developed in [17, 26]. In our numerical experi-
ments, we set Lx = 100, h = 40 and δ = 1. The physical
parameters are chosen as Re = 0.03, B = 12, Ld = 5,
Vs = 5 [17]. We set the initial velocity as v(y, 0) = 0,
p(y, 0) = 0 and the initial phase function as

φ(y, 0) =

{
tanh((0.3Lx − y1)/

√
2) if y1 ≤ 0.5Lx;

than((y1 − 0.7Lx)/
√

2) otherwise.

The periodic boundary condition are used at the left and
right boundaries. In our experiments, we use uniform
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meshes with space stepsizes h1 = 100/256 on y1 direction
and h2 = 40/64 in y2 direction. Time step is choose
properly as dt = 0.035 min(h1, h2)2/(4Ld).

A. The chemically homogeneous surface

We consider the chemically homogeneous channel
boundary with a static Young’s angle θs = 90◦. We
carry out numerical experiments for interface motion un-
der constant force F = (F, 0). Different values of

F = −0.03,−0.02,−0.01,−0.005,−0.0025,−0.00125

and different slip length ls = 3.2, 1.6, 0.8, 0.4 are used.
Figure 4 shows a typical horizontal velocity contour

and the slip velocity profile when slip length ls = 0.4 and
the force F = 0.01. It is clearly seen that the slip region
near the contact line will contribute significantly to the
integral in the right hand side of (17). Figure 5 shows the
averaged horizontal velocity U as a function of time. It is
easy to see that the horizontal velocity becomes constant
after some time. The averaged vertical velocity is always
zero and is not shown here. This implies that the flow
tends to a traveling wave.
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FIG. 4. A typical velocity contour(left) and slip velocity pro-
file(right).(color online)
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FIG. 5. Spacial Average velocity vs. time(ls = 0.4, F =
−0.01).

The force-velocity relation U = kF is clearly verified
in Figure 6. The estimated permeability k in each case is
shown in the first row of Table I. In the second row, we
show the permeability for one-phase channel computed
by k0 = h(h + 6ls)/12. It is easy to see that the per-
meability for the two-phase flow is significantly reduced
comparing to that of one-phase flow in agreement with
our analysis.
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FIG. 6. Darcy’s relation for two-phase channel flow with ho-
mogeneous boundary

TABLE I. Permeability:two-phase flow v.s. one phase flow

ls = 1.6 ls = 1.2 ls = 0.8 ls = 0.4
k 122.10 113.01 103.54 93.57
k0 165.33 157.33 149.33 141.33

B. The chemically patterned surface

We also carry out numerical experiments for chemically
patterned channel boundary. We assume that the top
and bottom boundaries have the same periodic pattern
as shown in Figure 3 with the static Young’s angles θs
and π − θs, respectively. We consider two cases for θ =
80o and θ = 60o. Similar to the homogeneous case, we
simulate interface motion under different external force.
In these computations, we set ls = 0.4.

Figure 7 shows some typical horizontal velocity con-
tour and the slip velocity profile when θs = 80o and the
force F = 0.01. The large slip behavior near the contact
line is clearly shown again. Figure 8 shows the advancing
contact angle and receding contact angle as a function of
time. It is clearly seen that the advancing contact angle
is oscillating around 180o − θs = 100o, and the receding
angle is changing around θs = 80o. Figure 9 shows the
space averaged horizontal velocity Ũ(t) =

∫
B v1dy1dy2 as

function of time. It is easy to see that Ũ(t) becomes peri-
odic in time. The averaged vertical velocity is always zero
(not shown here). This implies that the flow becomes
periodic in time. In Figure 10, we show the relation
between the values of the averaged velocity U(averaged
in both space and time) and the values of the external
force F for two different contact angles. The Non-Darcy
behavior (28) is clearly shown. In this experiment, when
F is too small, the numerical errors will affect the nu-
merical results and makes values slightly deviate from
the theoretical predictions.
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FIG. 7. Some typical velocity contours and slip velocity
profile(θs = 80o, F = −0.01).(color online)
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FIG. 8. Advancing contact angle and receding contact
angle(θs = 80o, F = −0.01).
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FIG. 9. Spacial average velocity vs. time(θs = 80o, F =
−0.01).

V. CONCLUSION REMARKS

In conclusion, channel flows constitute probably the
most elementary component of any considerations about
porous media flows. Hence the permeability dependence
on moving contact lines and the non-Darcy behavior in-
duced by chemical or geometric roughness should per-
sist in the general problem of multiphase permeability of
porous media. In particular, our result offers a quanti-
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0
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1

1.5
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−
U
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θs = 60o

FIG. 10. Force-velocity relation for two-phase channel flow
with periodic patterned boundary

tatively understanding of the prior observation of non-
Darcy behavior in either simulations or experiments [23–
25, 27, 28] that involved contact line motion. Here the ex-
tra force F0 can be especially important at low flow rates,
representing the dissipation caused by the contact lines
when each crosses from one region of the contact angle to
another. Such considerations have been missing in pre-
vious considerations of multiphase permeability, and its
inclusion may enhance the realism of the modeling effort.
Finally, the generalization of the analysis in this paper
to other pore geometry and three-dimensional models is
highly non-trivial. We expect that the energy dissipa-
tion relation and the analysis for channel flows might be
helpful in simple pore network model.
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Appendix A: Calculations

1. The expansions

Substitute the expansions in Section II.B into the equa-
tions (6)-(7), we have



1
ε
∂
∂s (φ0 + εφ1 + · · · )

+(v0 + εv1 + · · · ) · (∇x + ε−1∇y)(φ0 + εφ1 + · · · )
= ε2Ld(∆x + 2ε−1(∇x · ∇y) + ε−2∆y)(ε−1µ0 + µ1 + · · · ),
εRe

[
1
ε
∂v
∂s + (v0 + εv1 + . . . )(∇x + 1

ε∇y)(v0 + εv1 + · · · )
]

= F− (∇x + ε−1∇y)(p0 + εp1 + · · · )
+ε2(∆x + 2ε−1(∇x · ∇y) + ε−2∆y)(v0 + εv1 + · · · )
+ε2B(ε−1µ0 + µ1 + · · · )(∇x + ε−1∇y)(φ0 + εφ1 + · · · ),
(∇x + ε−1∇y) · (v0 + εv1 + · · · ) = 0,

(A1)

with boundary conditions

ε[ 1ε
∂
∂s (φ0 + εφ1 + · · · )

+(v0,τ + εv1,τ + · · · )(∇x + ε−1∇y)(φ0 + εφ1 + · · · ) · τ ]
= −Vs(L0(φ0) +O(ε)),
ls
−1(v0,τ + εv1,τ + · · · )

= −ε(∇x + ε−1∇y)(v0,τ + εv1,τ + · · · ) · n
+εB(L0(φ0) +O(ε))(∇x + ε−1∇y)(φ0 + εφ1 + · · · ) · τ,

(∇x + ε−1∇y)(ε−1µ0 + µ1 + · · · ) · n = 0,
(v0 + εv1 + · · · ) · n = 0,

(A2)
The leading orders of the the equation will gives (8)-(10).

2. Derivation of the Dissipation function

We now multiply v0 to the first equation of (9) and
integrate in B. This leads to∫
B
Re[

∂v0

∂s
· v0 + (v0 · ∇y)v0 · v0]dy = (F−∇P (x)) ·

∫
B
v0dy

+

∫
B

[−∇yp1 · v0 + ∆yv0 · v0 + Bµ0∇yφ0 · v0]dy

(A3)

We have denoted ∇P (x) = ∇xp0(x). The first term on
the left hand side is given by

Re

∫
B

∂v0

∂s
· v0dy =

Re

2

∂

∂s

∫
B
|v0|2dy (A4)

The second term on the left hand side of (A3) is calcu-
lated as

Re

∫
B

(v0 · ∇y)v0 · v0dy =
Re

2

∫
B

(v0 · ∇y)|v0|2dy

=
Re

2

∫
∂B

(v0 · n)|v0|2dσy −
Re

2

∫
∂B

(∇y · v0)|v0|2dy = 0.

(A5)

Here dσyis the line integral variable along the boundary
of ∂G. In the derivation, we use the divergence free con-
dition of v0, the zero normal velocity boundary condition
on ∂G and the periodic boundary condition of v0 on ∂Y.
Similarly, the second term on the right hand side of (A3)
is given by

−
∫
B
∇yp1·v0dy = −

∫
∂B
p1v0·ndσy+

∫
B
p1∇y·v0dy = 0.

(A6)
The third term on the right hand side of (A3) is given by∫
B

∆yv0 · v0dy =

∫
∂B

(n · ∇y)v0 · v0dσy −
∫
B
|∇yv0|2dy

=

∫
∂G

(∇yv0,τ · n)v0,τdσy −
∫
B
|∇yv0|2dy

= −l−1s
∫
∂G
v20,τdσy + B

∫
∂G
L0(φ0)∇yφ0 · τv0,τdσy

−
∫
B
|∇yv0|2dy. (A7)
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Here we use the slip boundary conditions in (10) in ad-
dition to other boundary conditions of v0. The second
term in (A7) could be further computed as

B

∫
∂G
L0(φ0)∇yφ0 · τv0,τdσy = B

∫
∂G
L0(φ0)(φ̇0 −

∂φ0
∂s

)dσy

= − B

Vs

∫
∂G
φ̇20dσy − B

∫
∂G
L0(φ0)

∂φ0
∂s

dσy (A8)

The last term in the right hand side of (A3) is calculated
as

∫
B
Bµ0∇yφ0 · v0dy =

∫
B
Bµ0(Ld∆yµ0 −

∂φ0
∂s

)dy

= BLd

∫
∂B
µ0∇yµ0 · ndσy − BLd

∫
∂B
|∇µ0|2dy

− B

∫
B
µ0
∂φ0
∂s

dy

= −BLd
∫
∂B
|∇µ0|2dy − B

∫
B
µ0
∂φ0
∂s

dy (A9)

Finally, direct computations gives

−B
∫
∂G
L0(φ0)

∂φ0
∂s

dσy = −Bδ
∫
∂G
∇yφ0 · n

∂φ0
∂s

dσy

− B
∂

∂s

∫
∂G
γwf (φ0)dσy; (A10)

−B
∫
B
µ0
∂φ0
∂s

dy = Bδ

∫
∂G
∇yφ0 · n

∂φ0
∂s

dσy

− Bδ

2

∂

∂s

∫
B
|∇yφ0|2dy − B

δ

∂

∂s

∫
B

(1− φ20)2

4
dy

(A11)

Combine all the terms, we have

(F−∇P (x)) ·
∫
B
v0dy

=

∫
B
|∇v0|2dy +

∫
∂G

v20,τ
ls

dσy +
B

Vs

∫
∂G
φ̇0

2
dσy

+ BLd

∫
B
|∇µ0|dy +

∂

∂s

[
Re

∫
B

|v0|2
2

dy

+ B

∫
∂G
γwf (φ0)dσy + B

∫
B

(δ
2
|∇φ0|2 +

1

δ
f(φ0)

)
dy
]
.

(A12)

with f(φ) = (1− φ2)2/4. We then integrate the above
equation in fast time s in (0,T), and notice the assump-
tion of time periodicity, we have (11).

3. Computations in homogeneous channel

We multiply U to the first equation of (15) and inte-
grate in B. We have

F ·U|B| =Re

∫
B

(
(v −U) · ∇

)
v ·Udy

−
∫
B

(−∇p+ ∆v + Bµ∇φ) ·Udy (A13)

The first term on the right hand side becomes

Re

∫
B

(
(v −U) · ∇

)
v ·Udy = ReU

∫
B

(v −U) · ∇v1dy

=− ReU

∫
B
v1∇ · vdy + ReU

∫
∂G

(v −U) · nv1dσy

+ ReU
(∫
{y1=Lx}

(v1 − U)v1dy2 −
∫
{y1=0}

(v1 − U)v1dy2

)
=0. (A14)

Here we have used the periodic condition of v at y1 =
0, Lx in addition to the boundary condition of v on ∂G as
well as the divergence-free property of v in B. Integration
by part again, the second term of the right hand side of
(A13) reads∫

B
∇p ·Udy =

∫
∂G
pU · ndσy +

∫
{y1=Lx}

pUdy2

−
∫
{y1=0}

pUdy2 = 0. (A15)

This is simply from the periodic boundary condition of
p at y1 = 0, Lx. The third term of the right hand side of
(A13) gives

−
∫
B

∆v ·Udy = −
∫
∂G

∂v

∂n
·Udsy −

∫
{y1=Lx}

∂v

∂n
·Udy2

−
∫
{y1=0}

∂v

∂n
·Udy2

= −U
∫
∂G

∂vτ
∂n

dσy = U

∫
∂G

vτ
ls

dσy − BU

∫
∂G
L(φ)

∂φ

∂τ
dσy

= U

∫
∂G

vτ
ls

dσy − δBU
∫
∂G

∂φ

∂n

∂φ

∂τ
dσy

−
√

2BU cos θs
6

∫
∂G

∂(3φ− φ3)

∂y1
dy1

= U

∫
∂G

vτ
ls

dσy − δBU
∫
∂G

∂φ

∂n

∂φ

∂τ
dσy. (A16)

Here in the second equation, we use the periodic condi-
tion of v on y1 = 0, Lx. In the third equation, we have
used the generalized Navier condition on ∂G, and in the
fourth equation we have used the fact that θs is a con-
stant on the homogeneous surface and φ is periodic. The
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last term in equation (A13) can be calculated as

− B

∫
B
µ∇φ ·Udy = −BU

∫
B

(−δ∆φ− φ− φ3
δ

)
∂φ

∂y1
dy

= δBU

∫
∂G

∂φ

∂n

∂φ

∂y1
dσy

− BU

δ

∫
B
δ2∇φ · ∇∂y1φ+ (φ− φ3)∂y1φdy

= δBU

∫
∂G

∂φ

∂n

∂φ

∂τ
dσy

− BU

δ

∫
B
δ2∂y1 |∇φ|2 + ∂y1

(1− φ2)2

4
dy

= δBU

∫
∂G

∂φ

∂n

∂φ

∂τ
dσy (A17)

Combining equations (A13)-(A17), we have

F ·U|B| = U

∫
∂G
l−1s vτdσy. (A18)

This further leads to (17).

4. Computations in chemically pattern channel

We first estimate each term on the right hand side
of (22). The computations are similar to that in the
previous subsection. Direct computations give that

Re

∫
B

(∂tv ·U + (v · ∇)v ·U)dy

= ReU

∫
B
∂tv1dy = ReU∂t

∫
B
v1dy. (A19)

For the second term, we have∫
B
∇p ·Udy = 0. (A20)

For the third term, we have

−
∫
B

∆v ·Udy = −U
∫
∂G

∂vτ
∂n

dσy

= U

∫
∂G
l−1s vτdσy − δBU

∫
∂G

∂φ

∂n

∂φ

∂τ
dσy

−
√

2

6
BU

∫
∂G

cos θs(y1)
∂(3φ− φ3)

∂y1
dy1. (A21)

The last term in (22) yields

−B
∫
B
µ∇φ ·Udy = δBU

∫
∂G

∂φ

∂n

∂φ

∂τ
dσy (A22)

Combining equations (A19)-(A22), we have

F ·U|B| =ReU∂t

∫
B
v1dy + U

∫
∂G
l−1s vτdσy

−
√

2

6
BU

∫
∂G

cos θs(y1)
∂(3φ− φ3)

∂y1
dy1.

(A23)

Integrating the above equation in time over one period,
the left-hand side gives∫ T

0

F ·U|B|dt = FU |B|T = FULxhT. (A24)

The first term on the right-hand side of the equation
(A23) gives

ReU

∫ T

0

(
∂t

∫
B
v1dy

)
dt = 0. (A25)

because of the time-periodicity of the velocity. This leads
to (23).

Appendix B: Slip profile near the moving contact
line

Far from the moving contact line, it is well known that
the slip velocity of fluid is relatively small so that a no-slip
boundary condition is a good approximation in general.
In the vicinity of the moving contact line, near complete-
slip has been observed by MD simulations for immiscible
flows(see [19] and references therein). The slip profile is
studied in the paper[19] by MD simulations and by con-
tinuum simulations based on the phase field model (6)
with GNBC boundary conditions. It is found that there
is a partial slip region spreading from the complete slip
region to the nearly no-slip region. In the partial slip
region, the ratio of the slip velocity and the macroscopic
velocity, vslip/U , has a universal profile which decays in
a power law of 1/x (see Fig. 11) where x is the distance
from the MCL. The outer cutoff for the partial-slip re-
gion, denoted by R, is determined by the overall size of
the system (the channel height h in our case). The partial
slip region has a significant contribution to total dissipa-
tions. It is also shown that the universal slip velocity
vslip can be approximated by,

vslip
U

=
1

1 + x/(als)
, (B1)

where a = 2.14 is obtained by a data fitting approach
to the MD experiments results. Based on this, in the
integral of the right-hand side of (17), the slip region
will contribute a constant:

A = 2l−1s

∫ R

0

vslip
U

dx = 2×2.14ln(1+R/(2.14ls)), (B2)

which could be very large. For example, if ls = 1nm
and R = 1µm, then A ≈ 36.2. This might change the
permeability significantly, especially when Lx/h is not
too big.

Hocking gave an asymptotic analysis to the moving
contact line problem [20] assuming the Navier slip bound-
ary condition near MCL, in which the partial-slip profile
with a power law 1/x is also obtained. The author con-
sidered two-phase fluids on a moving solid surface as in
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FIG. 11. Scaled slip velocity vs scaled distance from
MCL:the log-log sclaling and the original profile(small
subfigure)[19].(color online)

Fig. 12. The solid surface has a constant velocity U and
the contact line does not move with the boundary. Away
from the interface, the system is assumed to be described
by Stokes equation with the Navier slip boundary condi-
tion. This can also be derived from the sharp interface
limit of system (13) and (14) [29]. The inner region is
considered by setting ρ = ln(x/ls). With the help of
stream functions, the author derived the following for-
mula for tangential stess for the two fluids (that is (2.7)
in [20]),

τ1 = η1Ux
−1k1(ρ), τ2 = η2Ux

−1k2(ρ), (B3)

where η1 and η2 are viscositis for the two fluids, k1 and
k2 are two functions determined by two coupled integral
equations(see (2.19) in [20] for the formula). k1 and k2
satisfy the following boundary conditions,

ki(ρ) ∼ eρ as ρ→ −∞, i = 1, 2,

ki(ρ)→ k̂i as ρ→ +∞, i = 1, 2,

where k̂i are given constants determined by the contact
angles and the viscosity ratio. In addition, when the slip
region R is large, the friction force due to the moving
contact line is approxmated by ( (2.28) in [20])

fi(R) =

∫ R

0

τidx = ηiU(k̂i ln(R/ls) + hi + o(1)). (B4)

Here hi are two values depends on contact angles, viscos-
ity, etc. Some specific values can be found in Table 1 in
[20].

Noticing the Navier slip boundary condition
l−1s vi,slip = τi, we derive from (B3) that

vi,slip
U

=
ls
x
ηiki

(
ln
x

ls

)
, i = 1, 2. (B5)

This implies the slip velocity has a profile given by func-
tion ki. The integral equations for ki are solved nu-
merically in [21] for a liquid-gas system and the Fig. 13

U

fluid 2

fluid 1

θ = α
1

θ = α
2

θ = 0

FIG. 12. Two phase fluid with a moving contact line.

FIG. 13. Scaled slip velocity vs scaled distance from MCL
given by asymptotics[21].(color online)

displays the scaled slip velocity and the scaled distance
x/ls in the inner region of MCL for liquid phase and
for different contact angles. The power-law behavior of
vslip/U ∝ ls/x is clearly shown. From (B4), we can com-
pute the parameter A as

A =
1

U

(∫ R

0

l−1s v1,slipdx+

∫ R

0

l−1s v2,slipdx

)

=
1

U

(∫ R

0

τ1dx+

∫ R

0

τ2dx

)
=
∑
i=1,2

η(k̂i ln(R/ls) + hi + o(1)). (B6)

When R is relative large compared to ls, A can be signif-
icant large, just as shown in [19].


