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a b s t r a c t

We provide rigorous justification for the classical Wenzel equation for the roughness enhanced effective
contact angle. The minimization of the total surface energy is reformulated into a variational problem. As
the size of the roughness becomes small, we show convergence of the minimizer. The limiting minimizer
and effective contact angle are explicitly calculated to verify the Wenzel equation.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The study of wetting phenomenon on rough surfaces is of crit-
ical importance for many industrial applications and has attracted
much interest in physics and appliedmathematics communities in
the past decade. The primary parameter that characterizes wetting
is the static contact angle, which is defined as themeasurable angle
that a liquid makes with a solid. The contact angle of liquid with a
flat, homogeneous surface is given by Young’s equation

cos θ =
γSV − γSL

γ
, (1.1)

where γSV , γSL and γ are the surface tension of the solid–vapor in-
terface, the solid–liquid interface and the liquid–vapor interface
respectively. If the liquid wets the surface (referred to as wetting
liquid or hydrophilic surface), the value of the static contact an-
gle is 0 ≤ θ ≤ 90°, whereas if the liquid does not wet the surface
(referred to as nonwetting liquid or hydrophobic surface), the value
of the contact angle is 90° ≤ θ ≤ 180°. Surfaces with a contact an-
gle between 150° and 180° are called superhydrophobic.

For rough surfaces, such as the surfaceswith periodic structures
shown in Fig. 1, Wenzel [1] proposed an equation for the effective
contact angle θe in terms of static contact angle θs

cos θe = r cos θs
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when the liquid drop is everywhere in contact with the surface.
Here r is the roughness factor (ratio of the actual area to the
projected area of the surface). It is shown that r should be the local
roughness factor r around the contact line [2]. On the other hand,
if penetration does not occur and the drop remains balanced on
the surface projections with air beneath it, it is in the suspended or
Cassie–Baxter state with contact angle

cos θe = φ cos θs − (1 − φ),

with φ the solid fraction of the surface. For the smooth but chem-
ically heterogeneous surface, Cassie [3] derived the equation for
effective contact angle

cos θe = λ cos θs1 + (1 − λ) cos θs2

in terms of the static contact angles θs1, θs2 and area fractions λ and
1 − λ of the component surfaces.

There have been many works on the derivation and validity of
the Wenzel and Cassie equations [4–12]. Most of the derivations
of theWenzel and Cassie equations are based on the minimization
of the total surface energy. In [4], the effective total surface energy
is derived from a homogenization argument and bounds for the
effective angles can then be derived for various configurations.
In [2], the Wenzel and Cassie equations are derived from a phase
fieldmodel by first deriving an effective boundary condition on the
rough surfaces.

There are still many controversies on the two equations [5–9].
The complexity of the problem also comes from the contact angle
hysteresis (CAH). The effective contact angle of liquid drops on
rough or inhomogeneous surfaces could take a range of values,
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Fig. 1. Rough surfaces with periodic structures.

depending on the history of the liquid drop. It is believed that the
multiple effective contact angles are related to the localminimums
of the free energy of the system, which cannot be described by
the Wenzel and Cassie equations. Among those possible effective
angles, the largest one is called the advancing angle and the
smallest is called the receding angle, and the difference between
the advancing and receding angle is called contact angle hysteresis.
There have been intensive studies on CAH, see [13–16,11] among
others, although the theory on CAH is still very much incomplete.

In this paper, we consider the energy minimization problem in
a more specific setting so that the limiting minimizer and effective
contact angle can be explicitly calculated. We consider only the
Wenzel state, i.e., the liquid occupies the spaces between the
surface projections and is everywhere in contact with the surface.
We show that when the scale of the roughness approaches zero,
energy minimizers have a limit with an effective contact angle
modified by the roughness factor of the surface.

The paper is organized as follows. In Section 2, we consider a
simple case where the surface is rough in one direction and set up
the variational formulation for the energy minimization. We then
prove the convergence of the quasi-minimizers in Section 3. Finally
we show the results for rough surfaces with general periodic
structures in Section 5.

2. The surface energy and variational formulation

2.1. Surface energy

For a liquid (L)–vapor (V) two phase system in contact with the
solid (S) surface, the total interfacial energy can often bewritten as

σij|Γij|, here i, j = L,V, S

where σij is the surface tension between phase i and phase j and
|Γij| is the area of the surface Γij which is the interface between the
phase i and phase j regions. Consider, for example, two fluids filled
in a container occupying a region Ω .

Assume that the container is made of two different materials, a
and b, so ∂Ω is decomposed into two parts, Πa and Πb satisfying
∂Ω = Πa ∪ Πb, |Πa ∩ Πb| = 0. Denote by D ⊂ Ω the
region occupied by the first fluid and by Dc

:= Ω \ D̄ the region
Fig. 2. Region Ω .

occupied by the second fluid. Then the total interfacial energy can
be written as

σ12|Ω ∩ ∂D| + σ1a|Πa ∩ ∂D|

+ σ1b|Πb ∩ ∂D| + σ2a|Πa ∩ ∂Dc
| + σ2b|Πb ∩ ∂Dc

|.

Since |Πa ∩∂D|+ |Πa ∩∂Dc
| = |Πa| and |Πb ∩∂D|+ |Πb ∩∂Dc

| =

|Πb|, the energy can be expressed as

σ12|Ω ∩ ∂D| + (σ1a − σ2a)|Πa ∩ ∂D|

+ (σ1b − σ2b)|Πb ∩ ∂D| + C

where C = σ2a|Πa| + σ2b|Πb| is a constant.
Suppose the first fluid is a liquid and the second fluid is the air.

Then Γ := Ω ∩ ∂D is the air–liquid interface and σ := σ12 is
the air–liquid surface tension. Suppose the container is a solid box
with an open top (see Fig. 2). We can set Πa as the solid boundary
and Πb as the open top, regarded as made of air, so that we can
assume without loss of generality that Πb ∩ ∂D = ∅. We call
S := Πa ∩ ∂D = ∂Ω ∩ ∂D the wet part of solid boundary. Thus,
denoting σ1 = σ1a the liquid–solid surface tension and σ2 = σ2a
the air–solid surface tension, up to an additive constant, the total
interfacial energy can be written as

σ |Γ | + (σ1 − σ2)|S| where Γ = Ω ∩ ∂D, S = ∂Ω ∩ ∂D.

Assume further that |σ1 − σ2| < σ , so that there exists a unique
γ ∈ (0, π) such that

σ2 − σ1 = σ cos γ .

Then the energy can be expressed as

E[D] = σ(|Γ | − |S| cos γ ). (2.1)

Note that if γ ∈ (0, π/2), then increasing |S| decreases the energy.
In this case the solid boundary is called hydrophilic. Similarly,
if γ ∈ (π/2, π), then decreasing |S| decreases the energy, so
the boundary is called hydrophobic. The angle γ is called the
(solid–liquid) contact angle since one can formally derive that for
energy minimizers in certain setting, γ is the intersection angle of
the air–liquid interface Γ = Ω ∩ ∂Dwith the wet part of the solid
boundary S := ∂Ω ∩ ∂D.

Herewewould like to consider the effective contact angle in the
case when ∂Ω is very rough in a microscopic scale.

2.2. A variational formulation

We now set up a variational problem based on a magnification
of a local configuration near intersections of air–liquid–solid
phases. The microscopic structure of the rough boundary will be
taken with a simple form here. More complicated forms will be
considered in the subsequent sections.

We consider a liquid drop in the air with one side attached
to a solid surface. Pick an arbitrary point of liquid–solid–air
intersection. After magnification and rotation near this point we
pick a slab of the form Q̄ := [−1, 1] × R2. For simplicity, assume
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Fig. 3. The slab.

that the solid boundary in this slab has the form x = hε(y), where
ε is a small positive constant and hε is a smooth periodic function
normalized with its maximum being exactly zero:

hε(y) := εh


y
ε


, h(Y + 1) = h(Y ) ∀ Y ∈ R,

max
Y∈[0,1]

h(Y ) = 0.
(2.2)

As ε changes, the geometric shape of the roughness will be
maintained in each period. In general, hε may not be smooth (as
in Fig. 1), but we assume that it can be approximated by a smooth
function. We also assume that there is a function u such that the
air–liquid interface is the surface z = u(x, y), the fluid in the slab
is below the interface, and the air is above the interface (see Fig. 3).
Assume for simplicity that u is y-periodic with period Nε for some
positive integerN and also |u| < M . Thenwe need only to consider
the energy in the tube

[−1, 1] × [0,Nε] × [−M,M].

Scaling the air–liquid surface tension σ by 1/(Nε), the interfacial
energy of the air–fluid interface can be expressed as

1
Nε

 Nε

0

 1

hε(y)


1 + |∇u|2dxdy.

Scaling the surface tension σ2 − σ1 by cos γ /(Nε), the combined
air–solid and liquid–solid interfacial energies in this tube can be
combined as

−
cos γ

Nε

 Nε

0

 u(hε(y),y)

−M


1 + |h′

ε(y)|2dzdy + C

= −
cos γ

Nε

 Nε

0


1 + |∇hε(y)|2u(hε(y), y)dy + CM ,

where C and CM are constants. Note that the other surfaces: {y =

0}, {y = Nε}, and {x = 1}, {z = −M}, {z = M} do not contribute
interfacial energy that depends on the interface. Thus, the local
energy relevant to the air–liquid interface can be written as

Eε,N
[u] =

1
Nε

 Nε

0

 1

hε(y)


1 + |∇u(x, y)|2dxdy

−
cos γ

Nε

 Nε

0


1 + h′

ε(y)2 u(hε(y), y)dy. (2.3)

For simplicity, we assume that the intersection of the air–liquid
interface at {x = 1} is flat. By a vertical shifting, we can assume
without loss of generality that u(1, y) = 0. Hence, we consider the
energy Eε,N in the function space

Xε,N := {u ∈ W 1,1(Bε,N) | u(x, 0) = u(0,Nε), u(1, y) = 0} (2.4)

where

Bε,N := {(x, y) | 0 < y < Nε, hε(y) < x < 1}. (2.5)

Thus, a magnification of a stable configuration near the solid–
liquid–air intersection point can be regarded as minimizers of the
functional Eε,N in Xε,N . This is the main problem we study in the
paper,

min
u∈Xε,N

Eε,N
[u]. (2.6)

2.3. The contact angle

For u ∈ Xε,N , we extend u in the y-direction periodically with
periodNε, and denote byΓε the corresponding air–liquid interface
and by Sε the wet (solid–liquid) boundary:

Γε := {(x, y, u(x, y)) | y ∈ R, hε(y) 6 x 6 1},
Sε := {(x, y, z) | y ∈ R, x = hε(y), z 6 u(x, y)}.

Also we take the convention of the unit normal of Γε and Sε by

nSε :=
⟨−1, h′

ε(y), 0⟩
1 + h′

ε(y)2
, nΓε :=

⟨∇u, −1⟩
1 + |∇u|2

.

One can derive that when h ≡ 0, i.e., the solid surface is flat, the
minimizer is given by

u(x, y) = (1 − x) cot γ = (x − 1) tan


γ −

π

2


.

This implies that nΓε ·nSε = cos γ , so γ is intersection angle of the
air–liquid interface with the wet part of the solid boundary.

Suppose h is not a constant function and {uε
} is a family of

minimizers. Assume, for simplicity, that for some γ̂ ∈ (0, π),

lim
ε↘0

uε(x, y) = (1 − x) cot γ̂ = (x − 1) tan


γ̂ −

π

2


.

Since macroscopically the solid boundary x = hε(y) is viewed as
{x = 0} and the air–liquid interface z = uε(x, y) is observed
as z = (x − 1) tan(γ̂ − π/2), we observe macroscopically a
contact angle γ̂ . Then, the microscopically rough surface provides
a macroscopically contact angle equal to γ̂ .

2.4. The reduction to N = 1

Here we show that to study energy minimizers of Eε,N in Xε,N ,
it suffices to consider Eε,1 in Xε,1.

Theorem 1. The minimization problem of Eε,N in Xε,N is equivalent
to that of Eε,1 in Xε,1; more precisely, the following holds:

(1) For every u ∈ Xε,1, extend u in the y direction periodically with
period ε we have

Eε,N
[u] = Eε,1

[u].

(2) For every u ∈ Xε,N , there exists v ∈ Xε,1 such that

Eε,1
[v] 6 Eε,N

[u]

where equality holds if and only if u is a y-periodic extension of v
with period ε.
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(3) If v is a minimizer of Eε,1, then extend it periodically with period
ε, it is also a minimizer of Eε,N . Conversely, if u is a minimizer of
Eε,N , then u is periodic with period ε and u is also a minimizer of
Eε,1.

(4) For each positive integer N, Eε,N
[·] is strictly convex, so that there

exists at most one minimizer of Eε,N in Xε,N .

We remark that minimizers of Eε,N may only belong to a
function space of bounded variation (BV). Hence, to obtain the
more precise statement ‘‘minimizers of Eε,N and Eε,1 are identical’’
we have to modify the function space Xε,N . We are not going to get
into these technical details.

Proof. (1) The first assertion is obvious.
(2) To prove the second assertion, let u ∈ Xε,N be any function.

Define ui(x, y) = u(x, y + iε) and

v(x, y) =
1
N

N
i=1

ui(x, y)

=
1
N

N
i=1

u(x, y + iε) ∀ y ∈ [0, ε], x ∈ [hε(y), 1].

Since u(·, 0) = u(·,Nε), one can derive that v(·, 0) = v(·, ε) so
v ∈ Xε,1. In addition,

Eε,N
[u] =

1
N

N
i=1

Eε,1
[ui].

Hence, we have

Eε,N
[u] − Eε,1

[v]

=

 ε

0

 1

hε(y)


1
N

N
i=1


1 + |∇ui|

2 −


1 + |∇v|2


dxdy.

Denote f (t) =
√
1 + t2, ti = |∇ui|, t0 =

1
N

N
i=1 |∇ui|, and

t̂0 = |∇v| =
1
N |
N

i=1 ∇ui|. Then since f is convex,

1
N

N
i=1


1 + |∇ui|

2 =
1
N

N
i=1

f (ti)

>
1
N

N
i=1


f (t0) + f ′(t0)(ti − t0)


= f (t0) > Nf (t̂0) =


1 + |∇v|2

where the first equal sign holds iff t0 = t1 = · · · = tN and
the second equal sign holds iff t0 = t̂0. Hence, we can derive
from Eε,N

[u] > Eε,1
[v], where the equals sign holds if and only

if t0 = t1 = · · · = tN = t̂0, which implies that ui = v for every
i = 1, . . . ,N .

(3) The third assertion follows from the first and second
assertions.

(4) Since the function
√
1 + t2 is strictly convex, we see that

Eε,N is also strictly convex:

Eε,N
[su + (1 − s)v] < sEε,N

[u] + (1 − s)Eε,N [v]

∀ s ∈ (0, 1), u, v ∈ Xε,N , u ≠ v.

Since Xε,N is a vector space, we see there exists at most one mini-
mizer of Eε,N in Xε,N . This completes the proof. �
2.5. The PDE formulation

Suppose u and ζ are smooth functions in Xε,N . Then we can
calculate the first variation
δEε,N

[u]
δu

, ζ


:= lim

t→0

Eε,N
[u + tζ ] − Eε,N

[u]
t

=
1
Nε

 Nε

0

 1

hε(y)

∇u · ∇ζ
1 + |∇u|2

dxdy

−
cos γ

Nε

 Nε

0


1 + h′

ε(y)2 ζ (hε(y), y)dy

=
1
Nε

 Nε

0


1 + h′2


nSε · nΓε − cos γ


ζ


x=hε(y)

dy

−
1
Nε

 Nε

0

 1

hε(y)
ζ div


∇u

1 + |∇u|2


dxdy

+
1
Nε

 1

hε(0)


uy

1 + |∇u|2


y=Nε

−
uy

1 + |∇u|2


y=0


ζ (x, 0)dx.

Thus, if u ∈ Xε,N is a minimizer of Eε,N in Xε,N and is smooth,
then it is a solution of the following boundary value problem:

div


∇u

1 + |∇u|2


= 0 in Bε,N ,

u(·, 0) = u(·,Nε), on [hε(0), 1] × {0,Nε},
uy(·, 0) = uy(·,Nε) on [hε(0), 1] × {0,Nε},
u(1, ·) = 0 on {1} × (0,Nε),
nΓε · nSε = cos γ on {(hε(y), y) | y ∈ [0,Nε]}.

(2.7)

If u is a classical, i.e., u ∈ C2(Bε,N) ∩ C1(B̄ε,N), solution of (2.7),
then extend u to Bε,∞ by u(x, y + iNε) = u(x, y) for all natural
integer i, the second and third equation in (2.7) implies that u
satisfies the first equation in (2.7) in Bε,∞, so u is smooth in Bε,∞. In
addition, comparing u(·, ·)with u(·, ·+ε), by the strongmaximum
principle one derivesu(·, ·) = u(·, ·+ε). Hence,u is also the unique
classical solution of

div


∇u

1 + |∇u|2


= 0, u(·, ·) = u(·, · + ε)

in Bε,∞,

u(1, ·) = 0 on {1} × R, nΓε · nSε = cos γ
on {(x, hε(y)) | y ∈ R}.

(2.8)

Hence, we know the following:

(1) Γε is a minimal surface;
(2) Γε intersects Sε at an angle equal to γ ; i.e., nSε · nΓε = cos γ at

Sε ∩ Γε .

In general, (2.8) may not admit a solution since the associated
minimal surface may not be a z-graph.

3. The Wenzel effective contact angel

In this section we consider the asymptotic limit, as ε ↘ 0, of
the minimizers of the interfacial energy function

Eε
[u] = −

 ε

0

 1

hε(y)


1 + |∇u(x, y)|2dxdy

− cos γ−

 ε

0


1 + h′

ε(y)2 u (hε(y), y) dy (3.1)
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x

y

Fig. 4. The situation when the condition (3.2) is not satisfied.

where for any interval (a, b),

−

 b

a
:=

1
|b − a|

 b

a
.

Denoting by C0,1 the space of Lipschitz continuous functions, we
consider Eε in the space

Xε := {u ∈ C0,1(B̄ε) | u(·, 0) = u(·, ε)},
Bε := {(x, y) | y ∈ (0, ε), x ∈ (hε(y), 1)}.

Since minimizers of Eε are known as only functions of bounded
variation (BV), to avoid sophisticated theory of geometry measure,
we use quasi-minimizers; that is, those functions uε

∈ Xε that
satisfy Eε

[uε
] 6 ε + Cε , where Cε := infu∈Xε E[u]. We remark

that the regularity of the minimizers is an interesting question.
In particular, when ν is small, the minimizer might be a classic
solutions of (2.7). However, this is not the objective of the current
paper and will be studied separately.

Also we shall consider the minimization problem under the
following condition:

ν := | cos γ | max
Y∈[0,1]


1 + h′(Y )2 < 1. (3.2)

As explained in the next section, if this condition is not satisfied,
Eε might not have a lower bound. The meaning of the condition is
shown in Fig. 4. The contact angle γ should be bigger than θ (with
tan θ = h′(Y ) in Fig. 4) and be smaller than π − θ . Otherwise,
there might be air trapped below the interface and it will be in the
Cassie–Baxter state.

In the following, we will prove some key properties of the
energy functional Eε

[u], including the lower bound and the upper
bound of the energy infimum, the estimations of the liquid-
interface surface energy integral and the solid surface energy
integral, and some other related properties. Finally, we conclude
with our main result of this section.

3.1. Energy lower bound

Under (3.2), the boundary integral can be estimated bycos γ−

 ε

0


1 + h′

ε(y)2u(hε(y), y) dy


6 ν−

 ε

0
|u(hε(y), y)|dy = ν−

 ε

0

 1

hε(y)
ux(x, y) dx

 dy
where in the equation we have used the boundary condition
u(1, y) = 0. Thus, we have

Eε
[u] > (1 − ν)−

 ε

0

 1

hε(y)


1 + |∇u|2 dxdy ∀ u ∈ Xε. (3.3)
3.2. The reduced energy and upper bound of energy infimum

Ifu(x, y) = v(x) is a function of one variable,where v(x) = v(0)
for all x 6 0, we find that

Eε
[v] = E[v] − εh̄, h̄ :=

 1

0
h(Y )dY ,

v(x) := v(0) when x < 0
 (3.4)

where E is the reduced energy function defined by

E[v] :=

 1

0


1 + v2

x (x) dx − v(0) cos γ̂ ,

γ̂ := arccos

 1

0


1 + h′(Y )2dY cos γ


.

(3.5)

In view of condition (3.2), we see that γ̂ ∈ (0, π) is well-defined.
Associated with Xε , we consider E in the function space

X := {v ∈ C0,1([0, 1]) | v(1) = 0}.

The integral in the definition of E is the length of the curve
{(x, v(x)) | x ∈ [0, 1]}. For any function v ∈ X, setting k = v(0)
and ṽ(x) = k(1 − x), we have E[v] > E[ṽ] =

√
1 + k2 − k cos γ̂ ,

where the equals sign holds iff v = ṽ. The minimum of the last
quantity is attained at k = cot γ̂ . Hence,

min
v∈X

E[v] = E[v∗
] = sin γ̂ , v∗(x) = (1 − x) cot γ̂ .

Consequently, from (3.4),

inf
u∈Xε

Eε
[u] 6 min

v∈X
E[v] − εh̄ = sin γ̂ − εh̄. (3.6)

This gives the upper bound of the energy infimum.

3.3. The average function

For u ∈ Xε , we denote by ū its average over the y variable:

ū(x) = −

 ε

0
u(x, y)dy =

1
ε

 ε

0
u(x, y)dy, ∀ x ∈ [0, 1].

The average function plays an important role in the study of the
asymptotic limit of functional Eε

[u].
For every y ∈ [0, ε], we can estimate 1

0
|ū(x) − u(x, y)|dx 6

 1

0

− ε

0
(u(x, ŷ) − u(x, y))dŷ

 dx
6

 1

0
−

 ε

0

 ε

0
|uy(x, ỹ)|dỹdŷdx

=

 ε

0

 1

0
|uy(x, ỹ)|dxdỹ.

In view of (3.3), we derive that

max
y∈[0,ε]

∥ū(·) − u(·, y)∥L1([0,1]) 6

 ε

0

 1

0


1 + |∇u|2dxdy

6
Eε

[u]
1 − ν

ε. (3.7)
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3.4. The surface area integral

In this subsection, we will give an estimate of the liquid–vapor
interface area integral.

Since f (t) =
√
1 + t2 is a convex function, for each x ∈ [0, 1],

taking

t0 = −

 ε

0
|∇u(x, y)|dy >

− ε

0
ux(x, y)dy

 = |ūx(x)|,

we obtain for each x ∈ [0, 1],

−

 ε

0


1 + |∇u(x, y)|2dy = −

 ε

0
f (|∇u(x, y)|)dy

> −

 ε

0


f (t0) + f ′(t0)[|∇u(x, y)| − t0]


dy

= f (t0) >

1 + |ūx(x)|2.

Hence, as hε 6 0,

−

 ε

0

 1

hε(y)


1 + |∇u|2 dxdy >

 1

0
−

 ε

0


1 + |∇u|2 dydx

>

 1

0


1 + ūx(x)2 dx. (3.8)

3.5. Energy near left boundary

As a preparation for estimating the boundary integral, we
establish an estimate near the left end of the boundary (as shown
in (3.10)).

For this, let u ∈ Xε and δ ∈ (0, 1] and define

Tδu(x, y)

:=


0 when x ∈ [1 − δ, 1], y ∈ [0, ε],
u(x + δ, y) when x ∈ [hε(y), 1 − δ), y ∈ [0, ε]. (3.9)

Comparing the energy of u and Tδuwe find that

Eε
[u] − Eε

[Tδu]

= −

 ε

0

 hε(y)+δ

hε(y)


1 + |∇u|2dx −

 1

1−δ


1 + |∇Tδu|2dx


dy

− cos γ−

 ε

0


1 + h′

ε(y)2

u(hε(y), y) − u(hε(y) + δ, y)


dy

> −

 ε

0

 hε(y)+δ

hε(y)


1 + |∇u|2dxdy

− δ − ν

 ε

0

 hε(y)+δ

hε(y)
|ux(x, y)|dxdy

> (1 − ν)−

 ε

0

 hε(y)+δ

hε(y)


1 + |∇u|2dxdy − δ.

Using Eε
[Tδu] > Cε , we then derive the near-boundary estimate

−

 ε

0

 hε(y)+δ

hε(y)


1 + |∇u|2 dxdy

6
δ + Eε

[u] − Cε

1 − ν
∀ u ∈ Xε, δ ∈ [0, 1]. (3.10)
3.6. The boundary integral

We shall show that in the boundary integral, i.e. the first term
of Eε, u(hε(y), y) can be replace by the constant ū(0) without
any significant change to the corresponding energy (as shown in
(3.15)); here the same as before, ū(x) is the average of u(x, y) over
y ∈ [0, ε]. The following is our estimation.

Firstly, for every η ∈ (0, 1],ū(0) − −

 η

0
ū(x)dx

 =

− ε

0
−

 η

0


u(0, y) − u(x, y)


dxdy


6 −

 ε

0
−

 η

0

 η

0
|ux(x̂, y)|dx̂dxdy

= −

 ε

0

 η

0
|ux(x̂, y)|dx̂dy. (3.11)

Also, for every y ∈ [0, ε],− η

0
ū(x)dx − −

 η

0
u(x, y)dx


=

− η

0
−

 ε

0


u(x, ŷ) − u(x, y)


dŷdx


6 −

 η

0
−

 ε

0

 ε

0
|uy(x, ỹ)|dỹdŷdx

=

 ε

0
−

 η

0
|uy(x, ỹ)|dxdỹ.

This implies,

max
y∈[0,ε]

− η

0
ū(x)dx − −

 η

0
u(x, y)dx


6

 ε

0
−

 η

0
|uy(x, ỹ)|dxdỹ. (3.12)

Finally, we estimate

−

 ε

0

u(hε(y, y)) − −

 η

0
u(x, y)dx

 dy
= −

 ε

0

− η

0


u(hε(y), y) − u(x, y)


dx
 dy

6 −

 ε

0
−

 η

0

 η

hε(y)
|ux(x̃, y)|dx̃dxdy

= −

 ε

0

 η

hε(y)
|ux(x̃, y)|dx̃dy. (3.13)

Combining the above three estimates (3.11)–(3.13), we then
conclude that

−

 ε

0
|u(hε(y), y) − ū(0)| dy

6 −

 ε

0

u(hε(y), y) − −

 η

0
u(x, y)dx

 dy
+ −

 ε

0

− η

0
u(x, y)dx − −

 η

0
ū(x)dx

 dy
+

− η

0
ū(x)dx − ū(0)


6 −

 ε

0

 η

hε(y)
|ux(x̃, y)|dx̃dy +

 ε

0
−

 η

0
|uy(x, ỹ)|dxdỹ

+ −

 ε

0

 η

0
|ux(x̂, y)|dx̂dy

6 max


2,

ε

η


−

 ε

0

 η

hε(y)


1 + |∇u|2dx.
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Taking η = ε and δ = maxy∈[0,ε] |η − hε(y)| = ε[1 + ∥h∥∞] in
(3.10) we have η 6 δ + hε and

−

 ε

0
|uε(hε(y), y) − ū(0)|dy

6
2

1 − ν


[1 + ∥h∥∞] ε + Eε

[u] − Cε


. (3.14)

This then leads to the estimate on the boundary integral thatcos γ−

 ε

0


1 + h′

ε(y)2u(hε(y), y)dy − ū(0) cos γ̂


=

cos γ−

 ε

0


1 + h′

ε(y)2(u(hε(y), y) − ū(0))dy


6 ν−

 ε

0
|uε(hε(y), y) − ūε(0)|dy

6
2ν

1 − ν


[1 + ∥h∥∞] ε + Eε

[u] − Cε


. (3.15)

Combining this estimatewith the surface area integral estimate
(3.8), we then conclude that

E[ū] 6 Eε
[u] +

2ν
1 − ν


[1 + ∥h∥∞] ε + Eε

[u] − Cε


,

∀ u ∈ Xε. (3.16)

This characterizes the relation of the energy functional Eε
[u] and

the reduced energy E[ū] at the corresponding average function ū.

3.7. Main result

We can summarize our estimate in above subsections as
follows:

Theorem 2. Assume that (3.2) and (2.2) hold. Then the following
holds:

(1) Let X = {v ∈ C1([0, 1]) | v(0) = 0}, E[v] =
 1
0


1 + v2

x dx −

v(0) cos γ̂ with γ̂ ∈ (0, π). Then

min
v∈X

E[v] = E[v∗
] = sin γ̂ , v∗(x) = (1 − x) cot γ̂ .

(2) Let h̄ =
 1
0 H(Y )dY and choose a specific

γ̂ = arccos
 1

0


1 + h′(Y )2dY cos γ


.

Then we have

Cε := inf
u∈Xε

Eε
[u] 6 min

v∈X
E[v] − εh̄ = sin γ̂ − εh̄.

(3) Denote ∥h∥∞ = maxY∈[0,1]{|h(Y )|} and assume that 0 < ε <
ε0 := 1/∥h∥∞. If uε

∈ Xε is a quasi-minimizer of Eε in Xε in
the sense that Eε

[uε
] 6 ε + infu∈Xε Eε

[u], then the function of its
y-average ūε(·) := −

 ε

0 uε(·, y)dy satisfies

E[ūε
] 6 Eε

[uε
] +

2ν(2 + ∥h∥∞)

1 − ν
ε

6 min
v∈X

E[v] +
3ν(2 + ∥h∥∞)

1 − ν
ε.

(4) Let {uε
}0<ε<ε0 be a family of quasi-minimizers as above. Then

{ūε
}0<ε<ε0 is a minimizing family of E in X. Consequently,

lim
ε↘0

max
x∈[0,1]

|ūε(x) − v∗(x)| = 0,

lim
ε↘0

max
y∈[0,ε]

∥uε(·, y) − v∗
∥L1(0,1) = 0.
From assertion (2) we now have the Wenzel equation

cos γ̂ =

 1

0


1 + h′(Y )2dY cos γ = r cos γ ,

where γ̂ is the effective contact angle and r =
 1
0


1 + h′(Y )2dY

gives the surface roughness factor.

Proof. It remains to prove the consequence part of assertion (4).
Define kε = ūε(0) and vε(x) = kε(1−x). Then E[ūε

] > E[vε
] =

1 + k2ε − kε cos γ̂ , which, as a function of kε , attains its global
minimum sin γ̂ only at the unique value cot γ̂ . Hence, we derive
from limε↘0 E[ūε

] = sin γ̂ that limε→0 kε = cot γ̂ = v∗(0).
Next, let xε ∈ [0, 1] be a point at which |ūε(x) − v∗(x)| attains

its maximum. Then the integral
 1
0


1 + |ūε

x(x)|2dx is no smaller
than the sum of the lengths of two line segments from (0, ūε(0))
to (xε, ūε(xε)) and from (xε, ūε(xε)) to (1, 0). Comparing this sum
with the length of the line segment connecting (0, ūε(0)) and (1, 0)
we then derive from the triangular inequality that

lim
ε↘

max
x∈[0,1]

∥ūε(x) − v∗(x)∥ = lim
ε↘0

|ūε(xε) − v∗(xε)| = 0.

Finally from (3.7) we obtain the last assertion of the theorem. �

3.8. Necessity of condition (3.2)

Here we illustrate that condition (3.2) is necessary. For this, we
assume that γ ∈ (0, π/2). Consider a special case when

h(Y ) =


0 if δ 6 |Y | 6 1,
m(|Y | − δ) if |Y | 6 δ

where δ is a small number. We fixm > 0 such that
1 + m2 cos γ > 1.

Note that 1

0


1 + h′(Y )2dy = 1 + 2δ(


1 + m2 − 1) = 1 + O(δ).

It follows that when δ is positive and small,

β = arcsin


cos γ

 1

0


1 + h′(Y )2dy


=

π

2
− γ + O(δ).

Let K > 0 be a constant number and consider the test function

uK = min{Kx, 0}.

Then we find that

Eε
[uK ] = 1 +


1 + K 2 mδ2ε − K cos γ


1 + m2 mεδ2

= 1 + mεδ2K

√
1 + K 2

K
− cos γ


1 + m2


.

We find that

lim
K→∞

Eε
[uk]

K
= mεδ2


1 −


1 + m2 cos γ


< 0.

Hence,

inf
u∈Xε

Eε
[u] = −∞.

In physics, when condition (3.2) does not hold, air pockets may
form. The effective contact angle should be modified by the so-
called Cassie–Baxter equation. We will not discuss this situation
in this paper.
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4. Rough boundary with general periodic microscopic struc-
ture

In this section we consider the effective contact angle for a
rough boundary with general periodic microscopic structure. For
this we consider a liquid in the domain

Ωε =

(x, y, z) | z ∈ R, y ∈ R, hε(y, z) < x < 1


where hε(·, ·) is a smooth function that is periodic in both vari-
ables:

hε(y, z) = ε h


y
ε
,
z
ε


,

h(Y + 1, Z) = h(Y , Z) = h(Y , Z + L), max
[0,1]×[0,L]

h = 0,
(4.1)

where L is a fixed positive constant. We use notation

H = max
Y∈[0,1],Z∈[0,L]

|h(Y , Z)|,

A =

 1

0

 L

0


1 + |∇h(Y , Z)|2dZdY .

(4.2)

In the sequel, the set {(x, y, z) ∈ Ω̄ε | equations} is often simply
expressed as {equations}.

4.1. The energy

Assume that in Ωε the (air–liquid) interface is given by {z =

u(x, y)}, the liquid region is given by {z < u(x, y)} and the air
region is {z > u(x, y)}, where u is defined on [−εH, 1] × R and
is periodic in y with period ε. The interface in one period region
can be expressed as

Γu := {(x, y, u(x, y)) | (x, y) ∈ Bu},

Bu := {(x, y) | 0 < y < ε, hε(y, u(x, y)) < x < 1}.

Here Bu is the projection ofΓu on the x–y plane. Thus, the interfacial
energy of the interface is
1
ε
|Γu| =

1
ε


Bu


1 + |∇u(x, y)|2dxdy.

The solid boundary in one period is

S = {(hε(y, z), y, z) | 0 < y < ε, z ∈ R}.

The wet (part of the solid) boundary is

Su := {(hε(y, z), y, z) | (y, z) ∈ Πu},

Πu := {(y, z) | 0 < y < ε, z < u(hε(y, z), y)}.

Here Πu is the projection of Su on the y–z plane (see Fig. 5).
To obtain the bounded energy, we assume that ∥u∥L∞ < M for

someM > 0 and consider the configuration in the set {−M < z <
M}. Subtracting from the energy of solid boundary the constant
CM =

cos γ

ε
|S ∩ {−M < z < 0}|, the adjusted energy from the

solid boundary is

−
cos γ

ε
|Su ∩ {z > −M}| + CM

= −
cos γ

ε


|Su ∩ {z > 0}| − |(S \ Su) ∩ {z < 0}|


.

This is (the difference of) surface tension (of dry surface and wet
surface) times the signed area of the wet region that differs from
the reference region S ∪ {z < 0}. Hence, we consider the energy

Eε
[u] :=

1
ε


Bu


1 + |∇u|2dxdy

−
cos γ

ε


Π

+
u ∪Π

−
u ∪Π

0−
u

sgn(z)

1 + |∇hε|

2dydz (4.3)
Fig. 5. The slab.

where sgn(·) is the signature function: sgn(z) = 1 for z > 0 and
sgn(z) = −1 for z < 0, and

Π+

u := {(y, z) | 0 < y < ε, 0 6 z < u(hε(y, z), y)},

Π−

u := {(y, z) | 0 < y < ε, u(hε(y, z), y) < z < 0},

Π0−
u := {(y, z) | 0 < y < ε, u(hε(y, z), y) = z < 0}.

The energy is to be minimized in the space of Lipschitz contin-
uous (C0,1) functions: either

Xε =

u ∈ C0,1([−εH, 1] × [0, ε]) | u(·, 1) = 0,

u(0, ·) = u(·, ε)


(4.4)

or

Xε =

u ∈ C0,1([−εH, 1] × [0, ε]) | u(·, 1) = 0


. (4.5)

We will consider the following variational problem

inf
u∈Xε

Eε
[u]. (4.6)

Wewill mainly consider the asymptotic behavior of problemwhen
ε → 0.

4.2. Interface or wet boundary?

The surface {(hε(y, z), y, z) | (y, z) ∈ Π0−
u } is a subset of the

intersection of the solid boundary {x = hε(y, z)} and the surface
{z = u(x, y)}. This set can be regarded as a wet (solid) boundary,
dry boundary, and/or (air–fluid) interface. Let p be a Lebesgue point
of the intersection. Consider two situations:

(1) Suppose the interior normal of the solid boundaryΠ at ppoints
downwards. Then an infinitesimal lift-up of u near pmakes the
solid surface near p a well-defined wet boundary, whereas an
infinitesimal push-down of u makes the graph z = u near p a
well-defined interface.
If γ ∈ (0, π/2], then the infinitesimal lift-up of u gives energy
smaller than that of push-down, so this intersection near p can
be regarded as a wet boundary.
If γ ∈ (π/2, π), then neither the infinitesimal lift-up (adding
wet boundary but no interface) nor the infinitesimal push-
down (adding interface but no wet boundary) decreases the
energy, so there is no unique way to interpret this intersection
near p as a wet boundary and/or interface.

(2) Suppose the interior normal of Π points upwards. Then an
infinitesimal push-down of u makes the surface near p a
dry boundary, whereas an infinitesimal lift-up produces one
piece of wet boundary and another piece of interface with
infinitesimal distance between them. This provides a net
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increase in energy from treating it as a dry boundary since the
ratio of the energy densities of a wet boundary and interface is
cos γ . Thus the default is to treated the intersection near p as a
dry boundary.

Although there are the above complications, the total area of
surface in question is negligible as shown below:

Lemma 4.1. Let SΓu := {(x, y, z) | 0 < y < ε, x = hε(y, z), u =

u(x, y)} be the intersection of the solid boundary x = hε(y, z) with
the surface z = u(x, y). Then with A defined as in (4.2),

|SΓu| 6

 ε

0

 εL

0


1 + |∇εh(y, z)|2dzdy = Aε2.

Proof. Map every (x, y, z) ∈ SΓu to a point (x, y, z̃) ∈ Π , where
z̃ ∈ [0, Lε) and z − z̃ is an integer multiple of Lε. The map is
area preserving and one-to one since SΓu is a z-graph. Hence, the
total surface area of SΓu is no larger than the area of the surface
Π ∩ {0 6 z 6 Lε}. The assertion of the lemma thus follows. �

4.3. Lower bound of energy

The same as before, we assume that

ν := | cos γ | max
[0,1]×R


1 + |∇h|2 < 1. (4.7)

Lemma 4.2. Assume that (4.7) holds. Then for every u ∈ Xε defined
either by (4.4) or (4.5),

Eε
[u] >

1 − ν

ε


Bu


1 + |∇u|2dxdy − Aε.

Consequently, the infimum of the energy Eε in Xε is finite:

Cε := inf
u∈Xε

Eε
[u] > −∞.

Proof. Denote by P the projection on the y–z plane. Then

P(Γu) =


(y, z) | 0 < y < ε,

∃ x ∈ (hε(y, z), 1] s.t. z = u(x, y)

. (4.8)

It is a simple geometric fact that |P(Γu)| 6 |Γu|. Also, since
u(1, y) = 0, by continuity of u(·, y), we see that

Π+

u ∪ Π−

u ⊂ P(Γu), |Π+

u | + |Π−

u | 6 |P(Γu)| 6 |Γu|.

Hence, the energy resulting from the solid boundary can be
bounded by cos γ

ε


Π

+
u ∪Π

−
u ∪Π

0−
u

sgn(z)

1 + |∇hε|

2dydz


6
ν

ε


|Π+

u | + |Π−

u |


+

| cos γ |

ε
|SΓu| 6

ν

ε
|Γu| + Aε.

Thus,

Eε
[u] >

1
ε
|Γu| −


ν

ε
|Γu| + Aε



=
1 − ν

ε


Bu


1 + |∇u|2dxdy − Aε.

The assertion of the lemma thus follows. �
4.4. Near-boundary energy estimate

The same as before, for δ ∈ (0, 1), we consider the shift function
Tδu defined by

Tδu(x, y) =


0 if y ∈ [0, ε], x ∈ [1 − δ, 1],
u(x + δ, y) if y ∈ [0, ε], x ∈ [−εH, 1 − δ].

The surface ΓTδu ∩ {1 − δ 6 x 6 1} is [1 − δ, 1] × (0, ε) × {0}
of area εδ.

The graph ΓTδu ∩ {x < 1 − δ} is obtained by shifting the graph
Γu to the left by δ. It is identical to the restriction of Γu in the new
domain obtained by shifting the left boundary x = hε(y, z) of the
original domain Ωε to the right by δ. Hence,

|ΓTδu| = εδ + |Γu ∩ {hε(y, z) + δ < x < 1}|.

Consequently,

|ΓTδu| − |Γu| 6 εδ − |Γu ∩ {hε(y, z) < x 6 hε(y, z) + δ}|.

Next, we calculate the symmetric difference of Su and STδu. For
this, we find that

Πu \ ΠTδu = {(y, z) | 0 < y < ε, u(hε(y, z), y) > z
> u(hε(y, z) + δ, y)},

ΠTδu \ Πu = {(y, z) | 0 < y < ε, u(hε(y, z) + δ, y) > z
> u(hε(y, z), y)}.

In view of (4.8) and the definition of SΓu, we find that
Πu \ ΠTδu


ΠTδu \ Πu


⊂ P(SΓu)

×


P

Γu ∩ {x 6 hε(y, z) + δ}


,

where P is the projection onto y–z plane. Hence,

| cos γ |

ε


|Su \ STδu| + |STδu \ Su|


6

ν

ε
|Γu ∩ {x 6 hε(y, z) + δ}| + Aε.

Consequently,

Eε
[Tδu] − Eε

[u] 6
1
ε


|ΓTδu| − |Γu|


+

| cos γ |

ε


|Su \ STδu| + |STδu \ Su|


6 δ −

(1 − ν)

ε
|Γu ∩ {x 6 hε(y, z) + δ}| + Aε. (4.9)

Using Eε
[Tδu] > Cε := infv∈Xε Eε

[v], we then obtain the following:

Lemma 4.3. For every δ ∈ (0, 1],

|Γu ∩ {x 6 hε(y, z) + δ}| 6
Eε

[u] − Cε + δ + Aε

1 − ν
ε.

Consequently, if uε is a quasi-minimizer in the sense that Eε
[u] 6

Cε + ε, setting δ = ε + εH and assuming that ε < 1/(1 + H), we
obtain ε

0

 ε

0


1 + |∇u|2dxdy

6 |Γu ∩ {x < hε + δ}| 6 A1ε
2,

A1 :=
2 + H + A

1 − ν
.

(4.10)
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4.5. Small oscillation of quasi-minimizer

Assume that u is a quasi-minimizer. Then by (4.10) and the
mean value theorem there exists xε ∈ [0, ε] such that ε

0
|uy(xε, y)|dy = −

 ε

0
dx
 ε

0
|uy(x, y)|dy 6 A1 ε.

Define

mε = min
[0,ε]

u(xε, ·), Mε = max
[0,ε]

u(xε, ·).

Then we have

Mε − mε 6

 ε

0
|uy(xε, y)|dy 6 A1ε. (4.11)

4.6. The reduced energy

Let u be a quasi-minimizer. Define

ū(x) := −

 ε

0
u(x, y)dy ∀ x ∈ [0, 1], ū(x) = ū(0) ∀x < 0.

We want to compare the energy of u and ū.
First of all, there is the interface energy comparison

1
ε
|Γu ∩ {0 < x < 1}| = −

 ε

0

 1

0


1 + |∇u|2dxdy

>

 1

0


1 + ū2

x(x)dx. (4.12)

Next, we compare the boundary energy of u and ū. Note that

Sū = {(hε(y, z), y, z) | z < ū(0)} = S ∩ {z < ū(0)}.

Consequently,

Su \ Sū = {(hε(y, z), y, z) | 0 < y < ε,

ū(0) 6 z < u(hε(x, y), y)}

⊂


S ∩ {ū(0) 6 z 6 Mε}




{(hε(y, z), y, z) | 0 < y < ε,

Mε < z < u(hε(y, z), y)}.

Since max u(xε, ·) 6 Mε , if (y, z) satisfies Mε < z < u(hε

(y, z), y), then there exists x ∈ (hε(y, z), xε) such that z = u(x, y).
Hence, projecting onto the y–z plane we obtain

P(Su \ Sū) ⊂ (0, ε) × [ū(0),Mε]


P(Γu ∩ {x < xε}). (4.13)

Here [ū(0),Mε] is an empty set of ū(0) > Mε . Similarly, since
min u(xε, ·) = mε ,

P(Sū \ Su) = {(y, z) | 0 < y < ε,

ū(0) > z > u(hε(x, y), y)} ⊂ (0, ε)

× [mε, ū(0))


{(y, z) | 0 < y < ε,mε > z

> u(hε(y, z), y)} ⊂ (0, ε)

× [mε, ū(0))


P(SΓ 0)


P(Γu ∩ {x 6 xε}). (4.14)

Here [mε, ū(0)) is an empty set ifmε > ū(0). Hence,

P(Sū△Su) ⊂ (0, ε)

× [mε,Mε]


P(Γu ∩ {x 6 xε})


P(SΓ 0). (4.15)
Using further the assumption (4.7), Lemma 4.1, (4.10) and (4.11),
we have

| cos γ ||Su△Sū| =


P(Su△Sū)

| cos γ |


1 + |∇hε|

2dydz

6 ν|P(Su△Sū)| 6 νε|Mε − mε|

+ |Γu ∩ {x < xε}| + Aε2 6 3A1ε
2.

Combining with the equation (4.12), it then follows that

Eε
[ū] − Eε

[u] 6
1
ε
| cos γ ||Su△Sū| 6 3A1ε. (4.16)

Finally, using the periodicity of hε we find that
cos γ

ε


Π

+

ū ∪Π
−

ū ∪Π
−0
ū

sgn(z)

1 + |∇hε|

2dydz

=
cos γ

ε

 ε

0

 ū(0)

0


1 + |∇hε|

2dydz

= ε cos γ

 1

0

 ū(0)/ε

0


1 + |∇h(Y , Z)|2dZdY

=


ū(0)
L

+ θε


A cos γ ,

where θ ∈ (−1/2, 1/2]. Hence, we define the reduced energy
functional

E[v] =

 1

0


1 + v2

x (x)dx − v(0) cos γ̂ , (4.17)

where

γ̂ = arccos
A cos γ

L

= arccos
 1

0
−

 L

0


1 + |∇h(Y , Z)|2dZdY cos γ


. (4.18)

If u is a quasi-minimizer, we obtain from our previous derivation
that

E[ū] − Eε
[u] 6 4A1ε. (4.19)

4.7. Main result

Following the same argument as in the previous section we can
now conclude the following:

Theorem 3. Assume that (4.1) and (4.7) hold. Then the following
holds:
(1) The energy E defined in (4.17) admits a unique minimizer in

X = {v ∈ C1([0, 1]) | v(0) = 0}:

min
v∈X

E[v] = E[v∗
] = sin γ̂ , v∗(x) = (1 − x) cot γ̂ .

(2) The infimum of Eε inXε defined either by (4.4) or by (4.5) satisfies

Cε := inf
u∈Xε

Eε
[u] 6 min

v∈X
E[v] + Hε + Aε

= sin γ̂ + Hε + Aε.

Here H and A are constants given in (4.2).
(3) Denote A1 = (2 + H + A)/(1 − ν) and assume 0 < ε < ε0 :=

1/(1+H). If uε
∈ Xε is a quasi-minimizer of Eε inXε in the sense

that Eε
[uε

] 6 ε + Cε , then its y-average

ūε(·) := −

 ε

0
uε(·, y)dy

satisfies

E[ūε
] 6 Eε

[uε
] + 4A1ε 6 min

v∈X
E[v] + 5A1ε.
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(4) Let {uε
}0<ε<ε0 be a family of quasi-minimizer as above. Then

{ūε
}0<ε<ε0 is a minimizing family of E in X. Consequently,

lim
ε↘0

max
x∈[0,1]

|ūε(x) − v∗(x)| = 0,

lim
ε↘0

max
y∈[0,ε]

∥uε(·, y) − v∗
∥L1(0,1) = 0.

The contact angle γ̂ (defined in (4.18)) is the Wenzel effective contact
angle in the general case.

Remark 4.1. It is easy to generalize our results to the cases when
the (macroscopic) interface is not parallel to the direction of
the solid surface heterogeneity. For example, we consider the
heterogeneity is of laminate type, with the lamination in the
direction (0, 1, c) instead of the y direction. The rough surface
is given by x = εh( y+cz

ε
), such that h(·) is a periodic function

with period 1. It is easy to see that h(Y , Z) = h(Y + cZ) is
periodic in Y and periodic in Z with period 1 and 1

c respectively.
The function h satisfies the assumptions in Eq. (4.1). Therefore the
results in Theorem 3 are correct for the oblique laminate surface.
The conclusion is also true for more general cases.

5. Conclusion

We have provided a rigorious justification of the classical
Wenzel equation for the roughness enhanced effective contact
angle. By studying a variational problem based on surface energy,
we show convergence of the energy minimizer and a reduced
problem is then derived which provides the effective contact
angle. The procedure can be easily generalized to prove the Cassie
equation for chemically patterned surfaces.We remark that for real
surfaces, hε may be non-periodic or even random. We have not
considered such cases in this paper. But we note that our results
can be generalized to the case where hε is only locally periodic in
the fast variable Y [2]. We also note that the minimizers that give
rise to theWenzel effective contact angle are the globalminimizers
of the energy functional. For rough surfaces, there are also local
minimizers. When the scale of the roughness (ε) is not small, the
system may attain these local minimizers which give rise to stick-
slipmotion and contact angle hysteresis in themoving contact line
problem [17,18,16].
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