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Abstract: In this paper we propose an adaptive multilevel correction scheme to solve
optimal control problems discretized with finite element method. Different from the clas-
sical adaptive finite element method (AFEM for short) applied to optimal control which
requires the solution of the optimization problem on new finite element space after each
mesh refinement, with our approach we only need to solve two linear boundary value prob-
lems on current refined mesh and an optimization problem on a very low dimensional space.
The linear boundary value problems can be solved with well-established multigrid method
designed for elliptic equation and the optimization problems are of small scale correspond-
ing to the space built with the coarsest space plus two enriched bases. Our approach can
achieve the similar accuracy with standard AFEM but greatly reduces the computational
cost. Numerical experiments demonstrate the efficiency of our proposed algorithm.
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1. Introduction

As a typical application of PDE-constrained optimization, optimal control problem (OCP
for short) plays an increasingly important role in modern scientific community. Contributed
to the pioneer work of Lions (see [22]), optimal controls of PDE system became a hot
research topic in the decades and had positive impacts on the development of some related
fields like optimization and numerical analysis. A lot of achievements have been made in
these directions.

Due to the PDE constraints of optimal control problems, discretization methods for PDE
are indispensable to solve this kind of problems together with the optimization algorithm.
For the optimization algorithms to solve PDE-constrained optimization in both finite dimen-
sional space and Banach space we refer to [14] and [16] for more details. As a mainstream
discretization method in the community of numerical analysis, finite element method be-
came very popular in the numerical solutions of optimal control problems. A priori and a
posteriori error estimates for the finite element approximations to different kind of optimal
control problems are summarized in [16] and [26], respectively.

Adaptive finite element method, aiming at generating a sequence of optimal triangu-
lations by refining those elements where the errors are relatively large as the local error
estimators indicate, is very efficient to reduce the computational cost while achieving sat-
isfactory accuracy. Adaptive finite element method was firstly proposed in [2] by Babuška
and Rheinboldt and by now became a well-developed algorithm for which the convergence
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and optimal computational complexity have been well established, see [6], [9], [27] and so on.
For the derivation of reliable and efficient a posteriori error estimators of different kind we
refer to [28]. The application of adaptive finite element method to optimal control problems
was contributed to Liu, Yan ([23]) and Becker and coauthors ([3]). Since then, a lot of works
can be found in, e.g., [13], [17], [19], [24] and the references therein. For the convergence
analysis of AFEM for optimal control problems we mention the works [10] and [12] which
treated the full control discretization case and the variational control discretization case,
respectively.

Although the adaptive finite element method has promising accuracy applied to optimal
control problems, one has to solve an optimization problem after each mesh refinement,
which may be very costly when the number of Dofs is large. In this paper, we propose an
adaptive multilevel correction method to solve optimal control problems with finite element
method. Different from the classical approach which solves the optimization problem on
the new finite element space after each mesh refinement, with our approach we only need
to solve two linear boundary value problems (BVPs for short) on the refined mesh and an
optimization problem on the coarsest mesh from which we start the adaptive algorithm
enriched with two bases corresponding to the solutions of two linear BVPs. The linear
boundary value problems can be solved efficiently with well-established multigrid method
designed for elliptic equation and the optimization problems are of small scale corresponding
to the coarsest finite element space plus two bases, this greatly reduces the computational
cost but achieves the similar accuracy with the standard AFEM for optimal control problems,
which is proved in this paper.

The adaptive multilevel correction method proposed in this paper is a combination of the
multilevel correction scheme for optimal controls of elliptic equation proposed in [11] and
the adaptive FEM, which originated from the multilevel correction method proposed in [20],
[21], [30] and [31] for eigenvalue problems. For the related two-grid method and adaptive
correction method for elliptic equation we refer to [32] and [33]. Here we should also com-
ment on the existing multigrid methods for solving PDE-constrained optimization problems.
Roughly speaking, there are three kind of multigrid methods for PDE-constrained optimiza-
tion: the direct (so-called one-shot) multigrid method where the optimization problem is
implemented within the hierarchy of grid levels, the use of multigrid schemes as inner solvers
within an outer optimization loop and the MG/OPT algorithm where the multigrid method
defines the outer solver ([18]), for an overview we refer the readers to [5]. We remark that
the approach proposed in this paper is totally different from the above mentioned multigrid
methods to solve the OCP. Our method solves the OCP from coarsest mesh to finest mesh
while other methods solve the OCP from finest mesh to coarsest mesh.

The success of our proposed adaptive multilevel correction method for solving OCPs lies
in the fact that the solutions of two linear BVPs on current refined mesh with sources
from solutions on previous mesh give better approximations of the state and adjoint state
(compare step (6) in Algorithm 3.1) measured in L2-norm, due to the Aubin-Nitsche tech-
nique. Then the necessary information from the finer mesh is contained in the solutions
of two BVPs and the multilevel correction algorithm can preserve the same accuracy with
the direct method asymptotically, by solving an optimization problem on the coarsest space
enriched with two bases, we refer to [11] for a priori error analysis. The ideas were previously
used for two-grid method ([32]) and applied later on to nonlinear problems and eigenvalue
problems. The recent advance by Xie et al. ([21, 30]) makes it possible to generalize the
two-grid method to multilevel version by introducing the coarsest space.

The structure of this paper is as follows: In section 2 we present the optimal control
problem as well as its finite element approximation. In section 3 we formulate our adaptive
multilevel correction method to solve the OCP, a posteriori error estimates are also derived
for this kind of adaptive method. Convergence results of the algorithm are presented in
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Section 4. Section 5 is devoted to some numerical experiments to illustrate the efficiency of
our proposed algorithm.

Let Ω ⊂ Rd, d = 2, 3 be a bounded polygonal or polyhedral domain. Let ‖ · ‖m,s,Ω and
‖ · ‖m,Ω be the usual norms of the Sobolev spaces Wm,s(Ω) and Hm(Ω) respectively. Let
| · |m,s,Ω and | · |m,Ω be the usual seminorms of the above-mentioned two spaces respectively.

2. Finite element method for optimal control problem

In this section we will introduce the general formulation of linear-quadratic optimal con-
trol problems governed by elliptic equations. The theoretical aspects including the existence
and uniqueness of solution and the first order optimality conditions will be presented. More-
over, we will introduce a finite element approximation to the control problems.

Consider the following controlled equation:

(2.1)

{
Ly = u in Ω,
y = 0 on ∂Ω,

where L is a linear second order elliptic operator of the following type

Ly := −
d∑

i,j=1

∂

∂xj
(aij

∂y

∂xi
) + cy.

Here aij ∈ W 1,∞(Ω) (i, j = 1, · · · , d) is symmetric, positive definite and 0 6 c < ∞. Thus,
L is self-adjoint and we denote the adjoint operator L∗ = L. We denote A = (aij)d×d and
A∗ its adjoint. We use the standard notations

a(y, v) :=

∫
Ω

(

d∑
i,j=1

aij
∂y

∂xi

∂v

∂xj
+ cyv)dx, ∀y, v ∈ H1

0 (Ω),

(y, v) :=

∫
Ω

yvdx, ∀y, v ∈ L2(Ω).

Note that the bilinear form a(·, ·) induces a norm which is denoted by ‖v‖a,Ω :=
√
a(v, v).

The linear-quadratic optimal control problem considered in this paper reads:

(2.2) min
u∈Uad

J(y, u) =
1

2
‖y − yd‖20,Ω +

α

2
‖u‖20,Ω subject to (2.1).

The set of admissible control is of bilateral type:

(2.3) Uad :=
{
u ∈ L2(Ω) : a 6 u(x) 6 b a.e. in Ω

}
with a < b two constants.

Since the above optimization problem is linear and strictly convex, there exists a unique
solution u ∈ Uad by standard arguments (see [22, Chap.2, Thm.1.2]). Moreover, by in-
troducing the adjoint state p, the optimal solution can be characterized by the following
necessary and sufficient (first order) optimality condition

(2.4)

 a(y, v) = (u, v), ∀v ∈ H1
0 (Ω),

a(w, p) = (y − yd, w), ∀w ∈ H1
0 (Ω),

(αu+ p, v − u) > 0, ∀v ∈ Uad.

Hereafter, we call u, y and p the optimal control, state and adjoint state, respectively.
With the set of admissible control (2.3) we can get the pointwise representation of the

optimal control u through the adjoint state p

u = PUad

{
− 1

α
p
}
,(2.5)

where PUad
is the orthogonal projection operator onto Uad.
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Let Th be a regular triangulation of Ω such that Ω̄ = ∪τ∈Th τ̄ . Throughout the paper we
denote Eh the set of interior faces (edges or sides) of Th. On Th we construct the piecewise
linear and continuous finite element space Vh such that Vh ⊂ C(Ω̄) ∩H1

0 (Ω).
In this paper, we use piecewise linear finite element to approximate the state y, and

variational discretization for the optimal control u (see [15]). Then we can define the finite
element approximation to the optimal control problem (2.2) as follows:

min
u∈Uad

Jh(yh(u), u) =
1

2
‖yh(u)− yd‖20,Ω +

α

2
‖u‖20,Ω(2.6)

subject to

yh(u) ∈ Vh : a(yh(u), vh) = (u, vh), ∀vh ∈ Vh.(2.7)

Similar to the infinite dimensional problem (2.2), the above discretized optimization problem
also admits a unique solution uh ∈ Uad. Moreover, the discretized first order necessary and
sufficient optimality condition can be stated as follows:

(2.8)

 a(yh, vh) = (uh, vh), ∀vh ∈ Vh,
a(wh, ph) = (yh − yd, wh), ∀wh ∈ Vh,
(αuh + ph, vh − uh) > 0, ∀vh ∈ Uad,

where ph ∈ Vh is the discrete adjoint state. Similar to the continuous case we have

uh = PUad

{
− 1

α
ph
}
.(2.9)

We denote S : L2(Ω) → H1
0 (Ω) the control-to-state mapping with S∗ its adjoint. Then

we can write y = Su and p = S∗(y − yd). For the discretized state equation we also define
Sh : L2(Ω)→ Vh as the discrete solution operator such that yh = Shuh and S∗h the associated
discrete adjoint solution operator for the adjoint state equation with ph = S∗h(yh − yd).

For the following purpose, we firstly introduce some notations. For each element T ∈ Th,
we define the local error indicators ηy,h(uh, yh, T ) and ηp,h(yh, ph, T ) by

η2
y,h(uh, yh, T ) := h2

T ‖uh − Lyh‖20,T +
∑

E∈Eh,E⊂∂T

hE‖[A∇yh] · nE‖20,E ,(2.10)

η2
p,h(yh, ph, T ) := h2

T ‖yh − yd − L∗ph‖20,T +
∑

E∈Eh,E⊂∂T

hE‖[A∗∇ph] · nE‖20,E ,(2.11)

where [A∇yh] ·nE denotes the jump of A∇yh across the common side E of elements T+ and
T−, nE denotes the outward normal oriented to T−. Then on a subset ω ⊂ Ω, we define
the error estimators ηy,h(uh, yh, ω) and ηp,h(yh, ph, ω) by

ηy,h(uh, yh, ω) :=
( ∑
T∈Th,T⊂ω

η2
y,h(uh, yh, T )

) 1
2

,(2.12)

ηp,h(yh, ph, ω) :=
( ∑
T∈Th,T⊂ω

η2
p,h(yh, ph, T )

) 1
2

.(2.13)

Thus, ηy,h(uh, yh,Ω) and ηp,h(yh, ph,Ω) constitute the error estimators for the state equation
and the adjoint state equation on Ω with respect to Th.

With the above defined error estimators we have the following properties whose proof can
be found in [6, 31].

Lemma 2.1. For the error indicator ηv,h(g, vh, ω) with g = uh, v = y or g = yh, v = p there
hold

ηv,h(g, vh + wh, ω) 6 ηv,h(g, vh, ω) + ηv,h(g, wh, ω) ∀vh, wh ∈ Vh,(2.14)

ηv,h(g, vh,Ω) 6 CR‖vh‖a,Ω ∀vh ∈ Vh.(2.15)
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Now standard a posterior error estimates for elliptic equation give the following upper
bounds (see, e.g., [28]) which show the reliability of the error estimators.

Lemma 2.2. Let S and Sh be the continuous and discrete solution operators defined above.
Then the following a posteriori error estimates hold

‖Suh − Shuh‖2a,Ω 6 C̃1η
2
y,h(uh, Shuh,Ω),(2.16)

‖S∗(yh − yd)− S∗h(yh − yd)‖2a,Ω 6 C̃1η
2
p,h(yh, S

∗
h(yh − yd),Ω).(2.17)

For f ∈ L2(Ω) we define the data oscillation (see [27]) by

osc(f, Th) :=
( ∑
T∈Th

osc2(f, T )
) 1

2

, osc2(f, T ) := ‖hT (f − fT )‖20,T ,(2.18)

where fT denotes the average of f on element T . Then we can also derive the following
global a posteriori error lower bounds, i.e., the global efficiency of the error estimators.

Lemma 2.3. Let S and Sh be the continuous and discrete solution operators defined above.
Then the following a posteriori error lower bounds hold

C̃2η
2
y,h(uh, Shuh,Ω) 6 ‖Suh − Shuh‖2a,Ω + C̃3osc2(uh − LShuh, Th),(2.19)

C̃2η
2
p,h(yh, S

∗
h(yh − yd),Ω) 6 ‖S∗(yh − yd)− S∗h(yh − yd)‖2a,Ω

+C̃3osc2(yh − yd − L∗S∗h(yh − yd), Th).(2.20)

3. Adaptive multilevel correction method for optimal control problems

The adaptive finite element procedure consists of the following loops

SOLVE→ ESTIMATE→ MARK→ REFINE.

The ESTIMATE step is based on the a posteriori error indicators which will be derived in
the following, while the step REFINE can be done by using iterative or recursive bisection
of elements with the minimal refinement condition. In this section, we propose a type of
adaptive multilevel correction method for the optimal control problem (2.6)-(2.7) which
corresponds to the SOLVE step of the adaptive procedure. In the loop of adaptive finite
element method, solving the optimization problem on the refined mesh after each REFINE
module is transformed to the solutions of two linear boundary value problems on current
mesh and the solution of one optimization problem on the coarsest finite element space. The
algorithm is described as follows:

Algorithm 3.1. An adaptive multilevel correction method for optimal control problem:

(1) Given a coarse mesh Th0
with mesh size h0 and construct the finite element space

Vh0
.

(2) Refine the mesh Th0 to obtain an initial mesh Th1 by regular refinement and construct
the finite element space Vh1 . Set k = 1 and solve the following optimal control
problem

min
uh1
∈Uad, yh1

∈Vh1

J(yh1 , uh1) =
1

2
‖yh1 − yd‖20,Ω +

α

2
‖uh1‖20,Ω

subject to

a(yh1
, vh1

) = (uh1
, vh1

), ∀vh1
∈ Vh1

.

(3) Compute the local error indicators ηhk
((uhk

, yhk
, phk

), T ).

(4) Construct T̃hk
⊂ Thk

by the marking algorithm.

(5) Refine T̃hk
to get a new conforming mesh Thk+1

.
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(6) Solve two BVPs on Thk+1
for the discrete solutions y∗hk+1

∈ Vhk+1
such that

a(y∗hk+1
, vhk+1

) = (uhk
, vhk+1

), ∀vhk+1
∈ Vhk+1

and p∗hk+1
∈ Vhk+1

such that

a(vhk+1
, p∗hk+1

) = (yhk
− yd, vhk+1

), ∀vhk+1
∈ Vhk+1

.

(7) Construct a new finite element space Vh0,hk+1
:= Vh0 + span{y∗hk+1

} + span{p∗hk+1
}

and solve the following optimal control problem:

min
uhk+1

∈Uad, yhk+1
∈Vh0,hk+1

J(yhk+1
, uhk+1

) = 1
2‖yhk+1

− yd‖20,Ω + α
2 ‖uhk+1

‖20,Ω

subject to

a(yhk+1
, vh0,hk+1

) = (uhk+1
, vh0,hk+1

), ∀vh0,hk+1
∈ Vh0,hk+1

.

(8) Set k = k + 1 and go to Step (3).

Remark 3.2. A number of remarks are in order. Firstly, step (6) in Algorithm 3.1 can
be viewed as one gradient step with initial guess from previous iteration. The solutions
of two BVPs on current refined mesh give better approximations of the state and adjoint
state variables, which contain necessary information of the finer mesh so that the multilevel
correction algorithm can preserve the same accuracy with the direct optimization method
asymptotically, we refer to [11] for a priori error analysis. Secondly, the stiffness and mass
matrices of the state equation in step (7) of Algorithm 3.1 are still sparse except for the last
two rows and columns. Since the matrix is of small size, it can be solved efficiently with
even direct method. Thirdly, in our numerical experiments we use projected gradient method
([15]) to solve the resulting optimization problem in step (7). The incorporation of semi-
smooth Newton method ([14]) introduces difficulty because the definition of active sets should
be posed on fine mesh which may be costly. Lastly, it seems from the proof of Theorem 3.3
in [11] that the coarset mesh should be appropriately chosen according to the regularization
parameter α. That is to say, if α is small the coarsest mesh size should be chosen also small
to guarantee the convergence of the algorithm.

Remark 3.3. In this remark we intend to explain the computational complexity of Algorithm
3.1. There are several places where the evaluation of integral on fine mesh should be done,
for example, when evaluating the right hand side of the state equation contributed from the
control. Therefore, the total computational complexity can not really reduced to the scale of
the coarsest grid Th0

. The savings of computational time come from the solving of the state
and adjoint state equations during each optimization step, as the dimension of the governing
state equation is greatly reduced.

Now we are in a position to derive a posteriori error estimator for the optimal control
problems solved by adaptive Algorithm 3.1. To begin with, we define the following quantity

γ(h) = sup
f∈L2(Ω),‖f‖0,Ω=1

inf
vh∈Vh

‖L−1f − vh‖a,Ω.

Note that γ(h)→ 0 as h→ 0.
At first, we establish some relationships between the boundary value approximations and

the optimal control approximations. In the following of this paper, we set H = hk and
h = hk+1. Let VH̃ := Vh0,hk

and Vh̃ := Vh0,hk+1
be the enriched finite element spaces defined

in the step (7) of Algorithm 3.1. We also denote SH̃ : L2(Ω) → VH̃ the solution operator

of the state equation with S∗
H̃

its adjoint. Let yh = Suh and ph = S∗(yh − yd), then it is

clear that yh and ph are the standard finite element approximations of yh and ph in Vh̃, i.e.,
yh = Sh̃uh and ph = S∗

h̃
(yh − yd).
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Theorem 3.4. Let h,H ∈ (0, h0] and (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of
problem (2.2) and (uh, yh, ph) ∈ Uad×Vh×Vh be the solution sequence produced by Algorithm
3.1. Then the following properties hold

‖y − yh‖a,Ω = ‖yh − Shuh‖a,Ω +O(γ(h0))(‖y − yH‖a,Ω + ‖p− pH‖a,Ω
+‖y − yh‖a,Ω + ‖p− ph‖a,Ω),(3.1)

‖p− ph‖a,Ω = ‖ph − S∗h(yh − yd)‖a,Ω +O(γ(h0))(‖y − yH‖a,Ω + ‖p− pH‖a,Ω
+‖y − yh‖a,Ω + ‖p− ph‖a,Ω)(3.2)

provided h0 � 1.

Proof. Note that we have the splitting:

y − yh = y − yh + yh − Shuh + Shuh − ShuH + ShuH − yh,
p− ph = p− ph + ph − S∗h(yh − yd) + S∗h(yh − yd)− S∗h(yH − yd) + S∗h(yH − yd)− ph.

From the stability of elliptic equation we can derive

‖y − yh‖a,Ω 6 C‖u− uh‖0,Ω.(3.3)

Similarly, we have

‖p− ph‖a,Ω 6 C‖y − yh‖0,Ω.

In the following we estimate ‖y − yh‖0,Ω. Let ψ ∈ H1
0 (Ω) be the solution of the following

auxiliary problem

(3.4)

{
L∗ψ = y − yh in Ω,
ψ = 0 on ∂Ω.

Let ψh̃ ∈ Vh̃ be the finite element approximation of ψ. Then we can conclude from the
standard Aubin-Nitsche technique that

‖y − yh‖20,Ω = a(y − yh, ψ)

= a(y − yh, ψ − ψh̃) + a(y − yh, ψh̃)

= a(y − yh, ψ − ψh̃) + (u− uh, ψh̃ − ψ) + (u− uh, ψ)

6 C̃
(
γ(h0)‖y − yh‖a,Ω + ‖u− uh‖0,Ω

)
‖y − yh‖0,Ω,

which in turn implies

‖y − yh‖0,Ω 6 C̃γ(h0)‖y − yh‖a,Ω + C‖u− uh‖0,Ω.

Therefore, we can obtain

‖p− ph‖a,Ω 6 C̃γ(h0)‖y − yh‖a,Ω + C‖u− uh‖0,Ω.(3.5)

From the discrete stability of finite element solutions we have

‖Shuh − ShuH‖a,Ω 6 C‖u− uh‖0,Ω + C‖u− uH‖0,Ω.(3.6)

Similarly, we have

‖S∗h(yh − yd)− S∗h(yH − yd)‖a,Ω 6 C‖y − yh‖0,Ω + C‖y − yH‖0,Ω
6 C̃γ(h0)(‖y − yH‖a,Ω + ‖y − yh‖a,Ω) + C(‖u− uH‖0,Ω + ‖u− uh‖0,Ω).(3.7)

Note that ShuH = y∗h and S∗h(yH − yd) = p∗h, thus there hold ShuH − yh ∈ Vh̃ and S∗h(yH −
yd)− ph ∈ Vh̃. It follows from Vh̃ ⊂ Vh that

a(ShuH − yh, ShuH − yh) = (uH − uh, ShuH − yh),

which yields

‖ShuH − yh‖a,Ω 6 C‖u− uH‖0,Ω + C‖u− uh‖0,Ω.(3.8)
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Similarly, we can prove

‖S∗h(yH − yd)− ph‖a,Ω 6 C̃γ(h0)(‖y − yH‖a,Ω + ‖y − yh‖a,Ω)

+C(‖u− uH‖0,Ω + ‖u− uh‖0,Ω).(3.9)

Now it remains to estimate ‖u − uH‖0,Ω and ‖u − uh‖0,Ω. Note that the first order
optimality condition of the control problem in step (7) of Algorithm 3.1 is the same as (2.8)
except Vh being replaced by Vh̃. Setting v = uh in the third equation of (2.4) and vh = u in
the third equation of (2.8) we are led to

(αu+ p, uh − u) > 0, (αuh + ph, u− uh) > 0.

Adding the above two inequalities together and noticing that ph = S∗
h̃
(Sh̃uh−yd), we obtain

α‖u− uh‖20,Ω 6 (ph − p, u− uh)

= (ph − S∗h̃(Sh̃u− yd), u− uh) + (S∗
h̃
(Sh̃u− yd)− p, u− uh)

= (Sh̃uh − Sh̃u, Sh̃(u− uh)) + (S∗
h̃
(Sh̃u− yd)− p, u− uh)

6 (S∗
h̃
(Sh̃u− yd)− p, u− uh).

Note that p = S∗(Su− yd), it follows from the ε-Young inequality that

α‖u− uh‖20,Ω 6 C‖S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd)‖20,Ω.(3.10)

To estimate the above term we use again the Aubin-Nitsche technique. Let φ ∈ H1
0 (Ω) be

the solution of equation (2.1) with right hand side S∗
h̃
(Sh̃u− yd)−S∗(Su− yd) and φh̃ ∈ Vh̃

its finite element approximation. Then we have

‖S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd)‖20,Ω = a(S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd), φ)

= a(S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd), φ− φh̃) + a(S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd), φh̃)

= a(S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd), φ− φh̃) + (Sh̃u− Su, φh̃).

Note that Vh0 ⊂ Vh̃, it follows from the standard finite element error estimate that

a(S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd), φ− φh̃)

6 C̃γ(h0)‖S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd)‖0,Ω‖S∗h̃(Sh̃u− yd)− S
∗(Su− yd)‖a,Ω(3.11)

and

(Sh̃u− Su, φh̃) = (Sh̃u− Su, φh̃ − φ) + (Sh̃u− Su, φ)

6 C̃γ(h0)‖Sh̃u− Su‖a,Ω‖S
∗
h̃
(Sh̃u− yd)− S

∗(Su− yd)‖0,Ω.(3.12)

Combining the above estimates we are led to

‖S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd)‖0,Ω
6 C̃γ(h0)(‖S∗

h̃
(Sh̃u− yd)− S

∗(Su− yd)‖a,Ω + ‖Sh̃u− Su‖a,Ω).(3.13)

It follows from (3.10) and (3.13) that

‖u− uh‖0,Ω . γ(h0)(‖S∗
h̃
(Sh̃u− yd)− S

∗(Su− yd)‖a,Ω + ‖Sh̃u− Su‖a,Ω)

. γ(h0)(‖ph − p‖a,Ω + ‖S∗
h̃
(Sh̃u− yd)− S

∗
h̃
(Sh̃uh − yd)‖a,Ω + ‖Sh̃u− Su‖a,Ω)

. γ(h0)(‖ph − p‖a,Ω + ‖Sh̃u− Sh̃uh‖a,Ω + ‖Sh̃u− Su‖a,Ω)

. γ(h0)(‖ph − p‖a,Ω + ‖Sh̃uh − Su‖a,Ω + ‖Sh̃u− Sh̃uh‖a,Ω)

. γ(h0)(‖ph − p‖a,Ω + ‖yh − y‖a,Ω + ‖u− uh‖0,Ω).(3.14)

If h0 � 1 then γ(h0)� 1 for all h ∈ (0, h0), and we arrive at

‖u− uh‖0,Ω . γ(h0)(‖ph − p‖a,Ω + ‖yh − y‖a,Ω).(3.15)

Similarly, we can prove that

‖u− uH‖0,Ω . γ(h0)(‖p− pH‖a,Ω + ‖y − yH‖a,Ω).(3.16)
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Inserting the above estimates into (3.3) and (3.5)-(3.9) we can conclude from the splitting
of y − yh and p− ph the desired results (3.1)-(3.2). This completes the proof. �

To derive a posteriori error estimates for the optimal control problem solved by Algorithm
3.1 we define the norm

‖(y, p)‖2a = a(y, y) + a(p, p).

For ease of exposition we also define the following quantities:

η2
h((uh, yh, ph), T ) = η2

y,h(uh, yh, T ) + η2
p,h(yh, ph, T ),

osc2((uh, yh, ph), T ) = osc2(uh − Lyh, T ) + osc2(yh − yd − L∗ph, T ),

and the straightforward modifications for η2
h((uh, yh, ph),Ω) and osc2((uh, yh, ph), Th).

Now we state the following a posteriori error estimates for the finite element approxima-
tion of the optimal control problem solved by the adaptive Algorithm 3.1.

Theorem 3.5. Let h ∈ (0, h0] and (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of
problem (2.2) and (uh, yh, ph) ∈ Uad × Vh̃ × Vh̃ be the sequence produced by Algorithm 3.1.
Then the following a posteriori error estimates hold

‖(y − yh, p− ph)‖2a 6 C1η
2
h((uh, yh, ph),Ω) +O(γ2(h0))‖(y − yH , p− pH)‖2a(3.17)

provided h0 � 1. Moreover, there holds the global lower bound

C2η
2
h((uh, yh, ph),Ω) 6 ‖(y − yh, p− ph)‖2a + C3osc2((uh, yh, ph), Th)

+O(γ2(h0))‖(y − yH , p− pH)‖2a.(3.18)

Proof. From Lemmas 2.1 and 2.2, (3.6), (3.8), (3.15) and (3.16) we have

‖yh − Shuh‖2a,Ω 6 C̃1η
2
y,h(uh, Shuh,Ω)

6 2C̃1η
2
y,h(uh, yh,Ω) + 2C̃1η

2
y,h(uh, Shuh − yh,Ω)

6 2C̃1η
2
y,h(uh, yh,Ω) + 2C̃1C

2
R‖Shuh − yh‖2a,Ω

6 2C̃1η
2
y,h(uh, yh,Ω) + 2C̃1C

2
R(‖Shuh − ShuH‖2a,Ω + ‖ShuH − yh‖2a,Ω)

6 2C̃1η
2
y,h(uh, yh,Ω) + 2C̃2C̃1C

2
Rγ

2(h0)(‖y − yH‖2a,Ω + ‖y − yh‖2a,Ω
+‖p− pH‖2a,Ω + ‖p− ph‖2a,Ω).(3.19)

Similarly, we can derive from (3.7), (3.9), (3.15) and (3.16) that

‖ph − S∗h(yh − yd)‖2a,Ω 6 C̃1η
2
p,h(yh, S

∗
h(yh − yd),Ω)

6 2C̃1η
2
p,h(yh, ph,Ω) + 2C̃1η

2
y,h(yh, S

∗
h(yh − yd)− ph,Ω)

6 2C̃1η
2
p,h(yh, ph,Ω) + 2C̃1C

2
R‖S∗h(yh − yd)− ph‖2a,Ω

6 2C̃1η
2
p,h(yh, ph,Ω) + 2C̃1C

2
R(‖S∗h(yh − yd)− S∗h(yH − yd)‖2a,Ω

+‖S∗h(yH − yd)− ph‖2a,Ω)

6 2C̃1η
2
p,h(yh, ph,Ω) + 2C̃2C̃1C

2
Rγ

2(h0)(‖y − yH‖2a,Ω + ‖y − yh‖2a,Ω
+‖p− pH‖2a,Ω + ‖p− ph‖2a,Ω).(3.20)

Combing the above estimates and Theorem 3.4 yields (3.17) with

C1 =
4C̃1

1− 4C̃2γ2(h0)(1 + 2C̃1C2
R)
.(3.21)

Lemma 2.2 in [12] says that there exists a constant C∗ depending on A, the mesh regularity
constant and coefficient c such that

osc(Lv, Th) 6 C∗‖v‖a,Ω, osc(L∗v, Th) 6 C∗‖v‖a,Ω ∀v ∈ Vh.(3.22)
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This together with Lemma 2.3, Theorem 3.4, (3.6), (3.8), (3.15) and (3.16) implies that

C̃2η
2
y,h(uh, yh,Ω)− 4C̃3osc2(uh − Lyh, Th)

6 2C̃2η
2
y,h(uh, Shuh,Ω)− 2C̃3osc2(uh − LShuh, Th)

+4(C2
∗ + C2

R)(C̃2 + C̃3)‖Shuh − yh‖2a,Ω
6 2‖yh − Shuh‖2a,Ω + 4(C2

∗ + C2
R)(C̃2 + C̃3)‖Shuh − yh‖2a,Ω

6 4‖y − yh‖2a,Ω + 4C̃2γ2(h0)(1 + (C2
∗ + C2

R)(C̃2 + C̃3))(‖y − yH‖2a,Ω + ‖p− pH‖2a,Ω
+‖y − yh‖2a,Ω + ‖p− ph‖2a,Ω).(3.23)

We can also derive that

C̃2η
2
p,h(yh, ph,Ω)− 4C̃3osc2(yh − yd − L∗ph, Th)

6 2C̃2η
2
p,h(yh, S

∗
h(yh − yd),Ω)− 2C̃3osc2(yh − yd − L∗S∗h(yh − yd), Th)

+4(C2
∗ + C2

R)(C̃2 + C̃3)‖S∗h(yh − yd)− ph‖2a,Ω
6 2‖ph − S∗h(yh − yd)‖2a,Ω + 4(C2

∗ + C2
R)(C̃2 + C̃3)‖S∗h(yh − yd)− ph‖2a,Ω

6 4‖p− ph‖2a,Ω + 4C̃2γ2(h0)(1 + (C2
∗ + C2

R)(C̃2 + C̃3))(‖y − yH‖2a,Ω + ‖p− pH‖2a,Ω
+‖y − yh‖2a,Ω + ‖p− ph‖2a,Ω).(3.24)

Combing the above estimates yields (3.18) with

C2 =
C̃2

4 + 4C̃2γ2(h0)(1 + (C2
∗ + C2

R)(C̃2 + C̃3))
,

C3 =
4C̃3

4 + 4C̃2γ2(h0)(1 + (C2
∗ + C2

R)(C̃2 + C̃3))
.

�

There are several alternatives for MARK procedure like Max strategy or Dörfler’s strategy
([9]) while we adopt the later one. Note that there are two error indicators ηy,h(uh, yh, T )
and ηp,h(yh, ph, T ) contributed to the state approximation and adjoint state approxima-
tion, respectively. We combine the two estimators as the error indicator of optimal control
problems. The marking algorithm is described as follows

Algorithm 3.6. Dörfler’s marking strategy for OCPs

(1) Given the parameter 0 < θ < 1;

(2) Construct a minimal subset T̃h ⊂ Th such that∑
T∈T̃h

η2
h((uh, yh, ph), T ) > θη2

h((uh, yh, ph),Ω).

(3) Mark all the elements in T̃h.

4. Convergence of adaptive multilevel correction method for optimal
control problems

In this section we intend to prove the convergence of the adaptive multilevel correction
Algorithm 3.1. For the proof we follow the idea of [12] and use some results of [6, 7, 8].
Following Theorem 3.4, we will firstly establish certain relationships between the two level
approximations, which will be used in our convergence analysis.

Theorem 4.1. Let h,H ∈ (0, h0] and (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of
problem (2.2). Assume that (uh, yh, ph) ∈ Uad×Vh̃×Vh̃ and (uH , yH , pH) ∈ Uad×VH̃ ×VH̃
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are produced by Algorithm 3.1, respectively. Define yH := SuH and pH := S∗(yH − yd).
Then the following properties hold

‖y − yh‖a,Ω = ‖yH − ShuH‖a,Ω +O(γ(h0))
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)
,(4.1)

‖p− ph‖a,Ω = ‖pH − S∗h(yH − yd)‖a,Ω +O(γ(h0))
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)
,(4.2)

osc(uh − Lyh, Th) = osc(uH − LShuH , Th) +O(γ(h0))
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

+‖y − yH‖a,Ω + ‖p− pH‖a,Ω
)
,(4.3)

osc(yh − yd − L∗ph, Th) = osc(yH − yd − L∗S∗h(yH − yd), Th) +O(γ(h0))
(
‖y − yh‖a,Ω

+‖p− ph‖a,Ω + ‖y − yH‖a,Ω + ‖p− pH‖a,Ω
)

(4.4)

and

ηy,h(uh, yh,Ω) = ηy,h(uH , ShuH ,Ω) +O(γ(h0))
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)
,(4.5)

ηp,h(yh, ph,Ω) = ηp,h(yH , S
∗
h(yH − yd),Ω) +O(γ(h0))

(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)

(4.6)

provided h0 � 1.

Proof. The proof is quite similar to the proof of Theorem 4.1 in [12] and Theorem 3.4, we
omit it here. �

Now we are ready to prove the error reduction for the sum of the energy errors and the
scaled error estimators of the state y and the adjoint state p plus some additional terms,
between two consecutive adaptive loops.

Theorem 4.2. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of problem (2.2) and
(uhk

, yhk
, phk

) ∈ Uad× Vh0,hk
× Vh0,hk

be a sequence of solutions produced by Algorithm 3.1.
Then there exist constants γ, β0 > 0 and β ∈ (0, 1) depending only on the shape regularity
of meshes and the parameter θ used by Algorithm 3.6, such that for any two consecutive
iterates k and k + 1, we have

‖(y − yhk+1
, p− phk+1

)‖2a + γη2
hk+1

((uhk+1
, yhk+1

, phk+1
),Ω)

6 β2
(
‖(y − yhk

, p− phk
)‖2a + γη2

hk
((uhk

, yhk
, phk

),Ω)
)

+β2
0γ

2(h0)‖(y − yhk−1
, p− phk−1

)‖, for k > 2(4.7)

and

‖(y − yh2
, p− ph2

)‖2a + γη2
h2

((uh2
, yh2

, ph2
),Ω)

6 β2
(
‖(y − yh1

, p− ph1
)‖2a + γη2

h1
((uh1

, yh1
, ph1

),Ω)
)

(4.8)

provided h0 � 1.

Proof. At first we prove the case k > 2. For convenience, we use (uh, yh, ph), (uH , yH , pH)
and (uH−1 , yH−1 , pH−1) to denote (uhk+1

, yhk+1
, phk+1

), (uhk
, yhk

, phk
) and (uhk−1

, yhk−1
, phk−1

),
respectively. So it suffices to prove that

‖(y − yh, p− ph)‖2a + γη2
h((uh, yh, ph),Ω)

6 β2
(
‖(y − yH , p− pH)‖2a + γη2

H((uH , yH , pH),Ω)
)

+β2
0γ

2(h0)‖(y − yH−1 , p− pH−1)‖(4.9)

holds for γ, β0 > 0 and β ∈ (0, 1).
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Recall that yH := SuH , pH := S∗(yH−yd) and ShuH , S∗h(yH−yd) are their finite element
approximations in Vh. So we conclude from Theorem 2.6 in [12] that there exist constants

γ̃ and β̃ ∈ (0, 1) satisfying (see also [7, Theorem 2.4])

‖(yH − ShuH , pH − S∗h(yH − yd))‖2a + γ̃
(
η2
y,h(uH , ShuH ,Ω)

+η2
p,h(yH , S

∗
h(yH − yd),Ω)

)
6 β̃2

(
‖(yH − SHuH , pH − S∗H(yH − yd))‖2a

+γ̃
(
η2
y,H(uH , SHuH ,Ω) + η2

p,H(yH , S
∗
H(yH − yd),Ω)

))
.(4.10)

We note that the above result is the standard error reduction property of AFEM for elliptic
boundary value problems consisting of the state and adjoint state equations.

It follows from (4.1)-(4.2) and (4.5)-(4.6) that there exists a constant C̃4 > 0 such that

‖(y − yh, p− ph)‖2a + γ̃η2
h((uh, yh, ph),Ω)

6 (1 + δ1)‖(yH − ShuH , pH − S∗h(yH − yd))‖2a
+(1 + δ1)γ̃

(
η2
y,h(uH , ShuH ,Ω) + η2

p,h(yH , S
∗
h(yH − yd),Ω)

)
+C̃4(1 + δ−1

1 )γ2(h0)
(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
+C̃4(1 + δ−1

1 )γ2(h0)γ̃
(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
,

where the δ1-Young inequality is used and δ1 ∈ (0, 1) satisfies

(1 + δ1)β̃2 < 1.(4.11)

Thus, there exists a positive constant C̃5 depending on C̃4 and γ̃ such that

‖(y − yh, p− ph)‖2a + γ̃η2
h((uh, yh, ph),Ω)

6 (1 + δ1)
(
‖(yH − ShuH , pH − S∗h(yH − yd))‖2a

+γ̃
(
η2
y,h(uH , ShuH ,Ω) + η2

p,h(yH , S
∗
h(yH − yd),Ω)

))
+C̃5δ

−1
1 γ2(h0)

(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
.(4.12)

We combine the estimates (4.10) and (4.12) to derive

‖(y − yh, p− ph)‖2a + γ̃η2
h((uh, yh, ph),Ω)

6 (1 + δ1)β̃2
(
‖(yH − SHuH , pH − S∗H(yH − yd))‖2a

+γ̃
(
η2
y,H(uH , SHuH ,Ω) + η2

p,H(yH , S
∗
H(yH − yd),Ω)

))
+C̃5δ

−1
1 γ2(h0)

(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
.(4.13)

Similar to the proof of (3.6)-(3.9) and (3.15) we can derive that

‖SHuH − yH‖2a,Ω + ‖S∗H(yH − yd)− pH‖2a,Ω
6 ‖SHuH − SHuH−1‖2a,Ω + ‖SHuH−1 − yH‖2a,Ω

+‖S∗H(yH − yd)− S∗H(yH−1
− yd)‖2a,Ω + ‖S∗H(yH−1

− yd)− pH‖2a,Ω
6 C̃γ2(h0)(‖y − yH‖2a,Ω + ‖y − yH−1

‖2a,Ω + ‖p− pH‖2a,Ω + ‖p− pH−1
‖2a,Ω).

Using Theorem 3.4 and Lemma 2.1 we arrive at

‖(yH − SHuH , pH − S∗H(yH − yd))‖2a
+γ̃
(
η2
y,H(uH , SHuH ,Ω) + η2

p,H(yH , S
∗
H(yH − yd),Ω)

)
6 (1 + δ2)‖(y − yH , p− pH)‖2a + (1 + δ2)γ̃

(
η2
y,H(uH , yH ,Ω) + η2

p,H(yH , pH ,Ω)
)
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+(1 + δ−1
2 )C2

Rγ̃(‖SHuH − yH‖2a,Ω + ‖S∗H(yH − yd)− pH‖2a,Ω)

+C̃6(1 + δ−1
2 )γ2(h0)

(
‖(y − yH , p− pH)‖2a + ‖(y − yH−1 , p− pH−1)‖2a

)
6 (1 + δ2)‖(y − yH , p− pH)‖2a + (1 + δ2)γ̃η2

H((uH , yH , pH),Ω)

+C̃6(1 + δ−1
2 )γ2(h0)

(
‖(y − yH , p− pH)‖2a + ‖(y − yH−1

, p− pH−1
)‖2a
)

+C̃C2
R(1 + δ−1

2 )γ2(h0)γ̃
(
‖(y − yH , p− pH)‖2a + ‖(y − yH−1

, p− pH−1
)‖2a
)
,

where the δ2-Young inequality is used with δ2 ∈ (0, 1) satisfying

(1 + δ1)(1 + δ2 + C̃7δ
−1
2 γ2(h0))β̃2 < 1.(4.14)

Then we have

‖(yH − SHuH , pH − S∗H(yH − yd))‖2a
+γ̃
(
η2
y,H(uH , SHuH ,Ω) + η2

p,H(yH , S
∗
H(yH − yd),Ω)

)
6 (1 + δ2)

(
‖(y − yH , p− pH)‖2a + γ̃η2

H((uH , yH , pH),Ω)
)

+C̃7δ
−1
2 γ2(h0)

(
‖(y − yH , p− pH)‖2a + ‖(y − yH−1 , p− pH−1)‖2a

)
,(4.15)

where C̃7 depends on C̃6, C̃, CR and γ̃. It follows from (4.13) and (4.15) that

‖(y − yh, p− ph)‖2a + γ̃η2
h((uh, yh, ph),Ω)

6 (1 + δ1)β̃2
(

(1 + δ2)
(
‖(y − yH , p− pH)‖2a + γ̃η2

H((uH , yH , pH),Ω)
)

+C̃7δ
−1
2 γ2(h0)

(
‖(y − yH , p− pH)‖2a + ‖(y − yH−1

, p− pH−1
)‖2a
))

+C̃5δ
−1
1 γ2(h0)

(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
,

and thus

(1− C̃5δ
−1
1 γ2(h0))‖(y − yh, p− ph)‖2a + γ̃η2

h((uh, yh, ph),Ω)

6
(
(1 + δ1)(1 + δ2 + C̃7δ

−1
2 γ2(h0))β̃2 + C̃5δ

−1
1 γ2(h0)

)
‖(y − yH , p− pH)‖2a

+(1 + δ1)(1 + δ2)γ̃β̃2η2
H((uH , yH , pH),Ω)

+(1 + δ1)β̃2C̃7δ
−1
2 γ2(h0)‖(y − yH−1 , p− pH−1)‖2a.(4.16)

This gives

‖(y − yh, p− ph)‖2a +
γ̃

1− C̃5δ
−1
1 γ2(h0)

η2
h((uh, yh, ph),Ω)

6
(1 + δ1)(1 + δ2 + C̃7δ

−1
2 γ2(h0))β̃2 + C̃5δ

−1
1 γ2(h0)

1− C̃5δ
−1
1 γ2(h0)

‖(y − yH , p− pH)‖2a

+
(1 + δ1)(1 + δ2)γ̃β̃2

1− C̃5δ
−1
1 γ2(h0)

η2
H((uH , yH , pH),Ω)

+
(1 + δ1)β̃2C̃7δ

−1
2 γ2(h0)

1− C̃5δ
−1
1 γ2(h0)

‖(y − yH−1 , p− pH−1)‖2a.(4.17)

Since γ(h0)� 1 provided that h0 � 1, we can define the constant β as

β :=
( (1 + δ1)(1 + δ2 + C̃7δ

−1
2 γ2(h0))β̃2 + C̃5δ

−1
1 γ2(h0)

1− C̃5δ
−1
1 γ2(h0)

) 1
2

,(4.18)

which satisfies β ∈ (0, 1) if h0 � 1. Then

‖(y − yh, p− ph)‖2a +
γ̃

1− C̃5δ
−1
1 γ2(h0)

η2
h((uh, yh, ph),Ω) 6 β2

(
‖(y − yH , p− pH)‖2a

13



+
(1 + δ1)(1 + δ2)γ̃β̃2

(1 + δ1)(1 + δ2 + C̃7δ
−1
2 γ2(h0))β̃2 + C̃5δ

−1
1 γ2(h0)

η2
H((uH , yH , pH),Ω)

)
+

(1 + δ1)β̃2C̃7δ
−1
2 γ2(h0)

1− C̃5δ
−1
1 γ2(h0)

‖(y − yH−1
, p− pH−1

)‖2a.(4.19)

Now we choose

γ :=
γ̃

1− C̃5δ
−1
1 γ2(h0)

,(4.20)

it is obvious that

(1 + δ1)(1 + δ2)γ̃β̃2

(1 + δ1)(1 + δ2 + C̃7δ
−1
2 γ2(h0))β̃2 + C̃5δ

−1
1 γ2(h0)

< γ.

We set

β0 =
( (1 + δ1)β̃2C̃7δ

−1
2

1− C̃5δ
−1
1 γ2(h0)

) 1
2

,(4.21)

this completes the proof of (4.9). The proof of (4.8) is very similar and we omit it here. �

Now we are ready to give the final convergence result.

Theorem 4.3. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of problem (2.2) and
(uhk

, yhk
, phk

) ∈ Uad× Vh0,hk
× Vh0,hk

be a sequence of solutions produced by Algorithm 3.1.
Then there exist constants % > 0 and β̄ ∈ (0, 1) depending only on the shape regularity of
meshes, β and the parameter θ used by Algorithm 3.6, such that for any two consecutive
iterates k and k + 1, we have

E2
hk+1

+ %2γ2(h0)E2
hk
6 β̄2(E2

hk
+ %2γ2(h0)E2

hk−1
), for k > 2,(4.22)

E2
h2
6 β̄2E2

h1
(4.23)

provided that h0 � 1, where E2
hk

= ‖(y − yhk
, p − phk

)‖2a + γη2
hk

((uhk
, yhk

, phk
),Ω). Then

the adaptive Algorithm 3.1 converges with a linear rate β̄, i.e., the k-th iteration solution
(uhk

, yhk
, phk

) of Algorithm 3.1 has the following property:

E2
hk

+ %2γ2(h0)E2
hk−1

6 C0β̄
2(k−1),(4.24)

where C0 = ‖(y − yh1
, p− ph1

)‖2a + γη2
h1

((uh1
, yh1

, ph1
),Ω) and k > 2.

Proof. From Theorem 4.2 we have

E2
hk+1

6 β2E2
hk

+ β2
0γ

2(h0)‖(y − yhk−1
, p− phk−1

)‖2a, for k > 2,(4.25)

E2
h2
6 β2E2

h1
.(4.26)

Let β̄ and % satisfy the following properties

β̄2 − %2γ2(h0) = β2,

β̄2%2 = β2
0 .

It is clear that the solutions can be written as

β̄2 =
β2 +

√
β4 + 4β2

0γ
2(h0)

2
, %2 =

2β2
0

β2 +
√
β4 + 4β2

0γ
2(h0)

.

Note that β < 1, if h0 � 1 we can conclude that β̄ < 1. Thus, (4.22) and (4.23) are the
direct consequences of (4.25)-(4.26) with the chosen % and β̄. The proof of (4.24) is obvious
by simple calculation. �
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We also would like to analyze the complexity of Algorithm 3.1. Similar to [6] and [8], for
our purpose to analyze the complexity of AFEM for optimal control problems we need to
introduce a function approximation class as follows

Asγ :=
{

(y, p, yd) ∈ H1
0 (Ω)×H1

0 (Ω)× L2(Ω) : |(y, p, yd)|s,γ < +∞
}
,

where γ > 0 is some constant and

|(y, p, yd)|s,γ = sup
ε>0

ε inf
T ⊂Th1

: inf(‖(y−yT ,p−pT )‖2a+(γ+1)osc2((uT ,yT ,pT ),T ))1/26ε
(#T −#Th1)s.

Here T ⊂ Th1 means T is a refinement of Th1 , yT and pT are elements of the finite element
space corresponding to the partition T . It is seen from the definition that Asγ = As1 for
all γ > 0, thus we use As throughout the paper with corresponding norm | · |s. So As
is the class of functions that can be approximated with a given tolerance ε by continuous
piecewise linear polynomial functions over a partition T with number of degrees of freedom

#T −#Th1
. ε−1/s|v|1/ss .

To begin with, we assume the initial mesh size h0 is small enough such that

γ(h0)‖(y − yhk−1
, p− phk−1

)‖2a 6 ‖(y − yhk
, p− phk

)‖2a.(4.27)

With the above assumption we can conclude from Theorem 4.2 that

‖(y − yhk+1
, p− phk+1

)‖2a + γη2
hk+1

((uhk+1
, yhk+1

, phk+1
),Ω)

6 δ2
(
‖(y − yhk

, p− phk
)‖2a + γη2

hk
((uhk

, yhk
, phk

),Ω)
)

with δ2 = β2 + β2
0γ(h0) when h0 is small enough. We note that the above error reduction

property of Algorithm 3.1 is the same as Theorem 4.2 in [12] for standard AFEM. By using
the similar technique we can prove that Algorithm 3.1 possesses optimal complexity for the
state and adjoint state approximations. The details can be found in [12].

Theorem 4.4. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of problem (2.2) and
(uhn

, yhn
, phn

) ∈ Uad × Vhn
× Vhn

be a sequence of solutions of problem (2.6)-(2.7) corre-
sponding to a sequence of finite element spaces Vhn with partitions Thn produced by Algorithm
3.1. Then the n-th iterate solution (yhn , phn) of Algorithm 3.1 satisfies the optimal bound

‖(y − yhn , p− phn)‖2a + γosc2((uhn , yhn , phn), Thn) . (#Thn −#Th1)−2s,(4.28)

where the hidden constant depends on the exact solution (u, y, p) and θ, C1, C2, C3 and γ.

Remark 4.5. In Theorems 4.3 and 4.4 we have proved the convergence and quasi-optimality
of the adaptive algorithm for the state and adjoint state approximations. We note that
Theorem 4.3 also implies the convergence of ‖u − uhk

‖0,Ω in view of the estimate (3.15),
namely, for the k-th iterate solution uhk

(k > 2) of Algorithm 3.1 there holds

‖u− uhk
‖20,Ω . C0β̄

2(k−1).(4.29)

Moreover, the control variable can also be included into the complexity analysis of AFEM
for optimal control problems to obtain

‖u− uhk
‖20,Ω . (#Thk

−#Th1
)−2s.(4.30)

However, as pointed out in [12], the above results are sub-optimal for the optimal control,
which can also be observed from the numerical results in Section 5. To prove the optimality of
AFEM for control variable it seems that we need to work with AFEM based on L2-norm error
estimators, this becomes more clear if compared with the optimal a priori error estimates,
see, e.g., [15].
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5. Numerical Examples

In the final section we carry out some numerical experiments to demonstrate the efficiency
of our proposed adaptive multilevel correction algorithm and to validate our theoretical
results.

Example 5.1. We consider an example defined on the L-shaped domain Ω = (−1, 1)2\([0, 1]×
(−1, 0]). We set L = −∆ with homogeneous Dirichlet boundary condition. We take the exact
solutions as

y(r, ϑ) = (r2 cos2(ϑ)− 1)(r2 sin2(ϑ)− 1)rλ sin(λϑ),

p(r, ϑ) = α(r2 cos2(ϑ)− 1)(r2 sin2(ϑ)− 1)rλ sin(λϑ),

u(r, ϑ) = PUad
(− p
α

)

with λ = 2
3 , where (r, ϑ) denotes the polar coordinate. We set α = 0.1, a = −0.3 and b = 0.5.

We assume the additional right hand side f for the state equation.

We refer to [1] for a similar example, here the modifications are made to preserve ho-
mogeneous Dirichlet boundary conditions on the L-shaped domain. For our computations
we set the tolerance of the stopping rule of projected gradient method as 1.0e− 8. We use

PUad
(−

p∗hk+1

α ) as the initial guess for the solution of the optimization problem in step (7) of
Algorithm 3.1 while p∗hk+1

is the solution of the BVP in step (6). We note that only three

iterations are needed for the solutions of the coarse optimization problem.
We give the numerical results for the optimal control approximation by Algorithm 3.1

with parameter θ = 0.2 and θ = 0.4, respectively. We note that the adaptive algorithm with
smaller θ yields more optimal mesh distribution while increases the adaptive loops. In Figure
1 we plot the profiles of the numerically computed optimal state and control with θ = 0.2,
while the profile of the adjoint state is similar to the state with a scaling parameter α. We
present in Figure 2 the meshes by Algorithm 3.1 after 10 and 15 adaptive iterations with
θ = 0.2. We can see that there are more grid points around the reentrant corner where the
singularities located. In Figure 3 we also illustrate the active sets of the continuous solution,
the discrete solutions with variational control discretization and piecewise linear control
discretization. In this example only the lower bound u > −0.3 is active. Figure 3 clearly
shows that the active set crosses element edges and is not restricted to finite element edges
by our variational discretization for control u, and is much closer to that of the continuous
solution compared with full control discretization.

To illustrate the advantage of finite element approximations on adaptive mesh over uni-
form mesh for solving optimal control problems, we show in the left plot of Figure 4 the
error history of the optimal control, state and adjoint state with uniform refinement. We
can only observe the reduced orders of convergence which are less than one for the energy
norms of the state and adjoint state, and less than two for the L2-norm of the control. In the
right plot of Figure 4 we present the convergence behaviours of the optimal control, state
and adjoint state, as well as the error estimators ηy,h(yh,Ω) and ηp,y(ph,Ω) for the state and
adjoint state equations with adaptive refinement. In Figure 5 we present the convergence
of the error ‖(y− yh, p− ph)‖a and error indicator ηh((yh, ph),Ω) with θ = 0.2 and θ = 0.4,
respectively. It is shown from Figure 5 that the error ‖(y − yh, p − ph)‖a is proportional
to the a posteriori error estimators, which implies the efficiency of the a posteriori error
estimators given in Section 3. Moreover, we can also observe that the convergence order of
error ‖(y − yh, p− ph)‖a is approximately parallel to the line with slope −1/2 which is the
optimal convergence rate we can expect by using linear finite elements, this coincides with
our theory in Section 4. For the error ‖u− uh‖0,Ω we can observe the reduction with slope
−1, which is better than the results presented in Remark 4.5, and strongly suggests that
the convergence rate for the optimal control is not optimal.
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Figure 1. The profiles of the discretized optimal state yh (left) and optimal
control uh (right) for Example 5.1 on adaptively refined mesh.

Figure 2. The meshes after 10 (left) and 15 (right) adaptive iterations for
Example 5.1 generated by Algorithm 3.1 with θ = 0.2.
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