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Abstract: This paper aims to study the convergence of adaptive finite element method for
control constrained elliptic optimal control problems under L2-norm. We prove the contraction
property and quasi-optimal complexity for the L2-norm errors of both the control, the state and
adjoint state variables with L2-norm based AFEM, this is in contrast to and improve our previous
work [14] where convergence of AFEM based on energy norm had been studied and suboptimal
convergence for the control variable was obtained and observed numerically. For the discretization
we use variational discretization for the control and piecewise linear and continuous finite elements
for the state and adjoint state. Under mild assumptions on the initial mesh and the mesh refinement
algorithm to keep the adaptive meshes sufficiently mildly graded we prove the optimal convergence
of AFEM for the control problems, numerical results are provided to support our theoretical
findings.
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1. Introduction

Adaptive finite element method (AFEM for short), aiming to distribute more mesh nodes around
the area where singularity of the solution happens to save the computational cost, was firstly
proposed by Babuška and Rheinboldt ([1]) and becomes nowadays a popular approach in the
community of engineering and scientific computing. The success of AFEM lies in reliable and
efficient a posteriori error estimators derived for the underlying problems, which are used as error
indicators to detect the location of singularity. We refer to [35] for an overview on various types
of error estimators and the applications to different kind of problems.

AFEM was also successfully used for solving optimal control problems (OCPs) governed by
partial differential equations, starting from Liu, Yan [23] for residual type a posteriori error esti-
mates and Becker, Kapp, Rannacher [2] for dual-weighted goal-oriented adaptivity. We refer to
[15, 16, 21, 24, 25, 26, 27] for the extensions and applications in distributed and boundary control
problems, Stokes control problems, time-dependent control problems and so on. Recently, Kohls,
Rösch and Siebert derived in [19] an error equivalence property with respect to the L2-norm error
for the control and energy norm errors for the state and adjoint state, which helps to derive reliable
and efficient a posteriori error estimators for optimal control problems with either variational dis-
cretization or full control discretization. In [31] the authors considered a posteriori error estimates
for elliptic optimal control problems in L2-norm by extending the ideas of [19].

The adaptive finite element procedure for solving optimal control problems consists of the fol-
lowing loop

SOLVE→ ESTIMATE→ MARK→ REFINE.
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The SOLVE step outputs the finite element solutions of the optimal control problems by solving the
reduced optimization problems with appropriate optimization algorithms. The ESTIMATE step
is based on the a posteriori error estimators which should be reliable and may also be efficient,
while the step MARK selects the set of elements for refinement by some strategies, like MAX
strategy ([28]) or Dörfler’s marking strategy ([11]), based on the error indicators derived from the
contributions of the control, the state and adjoint state approximations. The step REFINE can be
done by using iterative or recursive bisection of elements with the minimal refinement condition
(see [33, 35]).

Although AFEM has been successfully applied for more than three decades, the convergence
analysis is rather recent which started with Dörfler [11] and was further studied in [4, 29, 30,
28, 5], and is still far from mature. Optimal complexity of AFEM, which measures the optimal
computational cost of AFEM, is another important issue in AFEM and was firstly addressed by
Binev et al. [4] and further studied by Stevenson ([33, 34]). In [5] the authors introduced the notion
of quasi error which consists of the sum of the energy error and the scaled estimator, and proved
the contraction of the errors and quasi-optimal cardinality of a practical adaptive algorithm which
avoids marking for oscillation ([11]) and circumvents the interior node property of mesh refinement
([29, 30]).

Compared with AFEM for boundary value problems, the convergence results of AFEM for
solving optimal control problems are scarce and far from satisfactory. Here we give some comments
on existing results. Gaevskaya et. al studied in [12] the convergence of AFEM for OCPs with full
control discretization. They used the piecewise constant approximation for the control variable and
proved an error reduction property for the optimal control, state, adjoint state and the associated
co-control variables, some additional requirements on the strict complementarity of the continuous
problem and the non-degeneracy property of the discrete control problem were imposed. Moreover,
the marking strategy was extended to include the discrete free boundary between the active and
inactive control sets. Becker and Mao ([3]) gave a convergence proof for the adaptive algorithm by
viewing the control problems as a nonlinear elliptic system of the state and adjoint variables, the
adaptive algorithm presented there involved the marking of data oscillation. In [20] the authors
proved the plain convergence of the adaptive algorithm, i.e., the sequence of adaptively generated
discrete solutions converged to the true solutions of optimal control problems, but no convergence
rate and optimality were derived. Recently, Gong and Yan ([13]) gave a rigorous convergence
proof for the adaptive finite element algorithm of elliptic optimal control problem in an optimal
control framework. The main idea is to show that the energy norm errors of the state and adjoint
state variables are equivalent to the boundary value approximations of the state and adjoint state
equations up to a higher order term, so that the standard convergence results of AFEM for elliptic
boundary value problems can be used. Later on, the ideas were used to prove the convergence of
an adaptive multilevel correction finite element method for elliptic optimal control problem. We
also mention that in [6] Chen and Leng proved the convergence and quasi-optimality of AFEM
for an elliptic control problem with integral type control constraint by using piecewise constant
control discretization.

We remark that all the results mentioned above are based on AFEM in energy norm error for
both boundary value problems and OCPs. Recall that in the a priori error estimates for optimal
control problems ([17]), one can obtain optimal convergence of the control variable by using only
optimal L2-norm error estimates for the state and the adjoint state variables. This strongly suggests
a posteriori error estimates and adaptive algorithm in L2-norm. In [14] the authors showed that
the convergence of AFEM based on energy norm was suboptimal for the control variable and the
numerical experiments confirmed this sub-optimality. This motivates the study in this paper on
convergence analysis of AFEM for optimal control problems in L2-norm.

Since the Galerkin approximation of second order elliptic equation is only the best approximation
in energy norm, it is not straightforward to prove the convergence of AFEM in L2-norm. There are
already some attempts to prove convergence of AFEM under weaker norms other than the global
energy norm. Morin et al. [32] obtained plain convergence of AFEM for controlling weak norms
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under quite general assumptions on the marking strategy and norm of interest. Demlow studied
in [8] the convergence of AFEM under local energy norm error. Demlow and Steveson proved in
[10] the contraction property and optimal convergence rate of AFEM for controlling L2-norm with
Dörfler’s marking strategy under appropriate mesh grading conditions. The results of [10] were
then used to prove the quasi-optimality of adaptive finite element methods for controlling local
energy errors in [9]. The convergence analysis of AFEM in L2-norm presented in [10] is based
on the equivalence between the weighted energy norm error and L2-norm error under additional
assumption on the mesh grading. One also need to impose H2-regularity for the underline elliptic
equation for the derivation of efficient and reliable a posteriori error estimates. In this paper we
follow the approach of [10] to prove the convergence of AFEM for OCPs. We show that the finite
element solutions of the optimal control problem are nearly best approximations to the continuous
ones from the finite element space in the L2-norm up to an oscillation term. Moreover, we show
the contraction property and quasi-optimal complexity for the L2-norm errors of both the control,
the state and adjoint state variables with L2-norm based AFEM, this improves the known result
of [13] for energy norm based AFEM.

The rest of the paper is organized as follows. In Section 2 we introduce the model elliptic
optimal control problem and its finite element approximation, we also derive efficient and reliable a
posteriori error estimates in L2-norm. The adaptive algorithm based on Dörfler’s marking strategy
is also presented. In Section 3 we give some connections between the weighted energy norm errors
and the L2-norm errors, which enable us to give a convergence analysis of the AFEM for optimal
control problems, the quasi-optimal cardinality is proved in Section 4. Numerical experiments are
carried out in Section 5 to validate our theoretical result.

Let Ω ⊂ Rd (d = 2, 3) be a bounded, convex polygonal or polyhedral domain. We denote by
Wm,q(Ω) the usual Sobolev space of order m > 0, 1 6 q < ∞ with norm ‖ · ‖m,q,Ω. For q = 2
we denote Wm,q(Ω) by Hm(Ω) and ‖ · ‖m,Ω = ‖ · ‖m,2,Ω, which is a Hilbert space. We denote

‖|v‖| :=
√

(∇v,∇v) and ‖|v‖|D := (
∫
D
|∇v|2dx)

1
2 for the global energy norm and local energy

semi-norm over Ω and D ⊂ Ω, respectively.
We denote C a generic positive constant which may stand for different values at its different

occurrences but does not depend on mesh size. We use the symbol A . B to denote A 6 CB for
some constant C that is independent of mesh size. If in addition B . A holds we use the symbol
A ' B.

2. Adaptive finite element method for the optimal control problem

In this section we consider the following elliptic optimal control problem:

min
u∈Uad

J(y, u) =
1

2
‖y − yd‖20,Ω +

α

2
‖u‖20,Ω(2.1)

subject to

(2.2)

{
−∆y = f + u in Ω,
y = 0 on ∂Ω,

where α > 0 is a fixed parameter, f is a given function, yd ∈ L2(Ω) is the desired state and Uad is
the admissible control set with bilateral control constraints:

Uad :=
{
u ∈ L2(Ω), a 6 u 6 b a.e. in Ω

}
,

where a, b ∈ R and a < b.
We introduce the affine linear control-to-state mapping S : L2(Ω) → H1

0 (Ω) such that for each
f + u ∈ L2(Ω) we associate the unique solution of problem (2.2) with y = S(f + u), i.e.,

(∇y,∇v) = (f + u, v) ∀v ∈ H1
0 (Ω).(2.3)

Since f is fixed, in the following we use y = Su instead of y = S(f+u) to emphasize the dependence

on u. Then we are led to a reduced optimization problem min
u∈Uad

Ĵ(u) := J(Su, u) involving only
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the control u. By standard arguments ([22]) we can prove that the above optimization problem
admits a unique solution. Moreover, we can derive the following first order optimality condition:

(αu+ p, v − u) > 0 ∀v ∈ Uad,(2.4)

where the adjoint state p ∈ H1
0 (Ω) satisfies

(2.5)

{
−∆p = y − yd in Ω,
p = 0 on ∂Ω.

It is clear that p = S∗(y − yd) where S∗ is the adjoint operator of S such that

(∇v,∇p) = (y − yd, v) ∀v ∈ H1
0 (Ω).(2.6)

Since the elliptic equation (2.2) is linear and self-adjoint we have that S = S∗. From (2.4) we
can derive the pointwise representation of the control u through the adjoint p: u = P[a,b](p) :=
max{a,min{b,− p

α}}.
Now we consider the finite element approximation of above optimal control problems. To begin

with, let T0 be a conforming and quasi-uniform partition of Ω̄ into disjoint d-simplices. Each
element in T0 is assumed to be shape regular in the usual sense (see [7]). We denote the set of all
conforming descendants T of T0 by T, which can be generated through uniform or local refinements
by newest vertex bisection algorithm. The simplices in any of those partitions are uniformly shape
regular depending only on the shape regularity parameters of T0 and the dimension d, we refer to
[10, Appendix A] for more details on how to generate such kind of partitions. For each T̃ , T ∈ T,

we write T ⊂ T̃ when T̃ is a refinement of T .
We denote hT = |T | 1d for each T ∈ T ∈ T with |T | the volume of T . Let NT and ET be

the sets of vertices and interior edges or faces of T . We also denote ωT or ω̃T the patches of
elements sharing a vertex or a facet with T . Since the Galerkin approximation is not the best
approximation in L2-norm, we need to impose some restrictions on the mesh for the convergence
analysis of AFEM in L2-norm . Following the ideas of [10] we define the continuous and piecewise
linear mesh function hT , such that for any z ∈ NT , hT is defined as the average of the hT ′ over
all T ′ ∈ T where z ∈ T ′. Then for some constants cT and CT there holds

cThT 6 hT |T 6 CThT , ∀T ∈ T , T ∈ T.(2.7)

In view of the uniform shape regularity of T there exists another constant ĈT such that

‖∇hT ‖0.∞,Ω 6 ĈT ∀T ∈ T.
Throughout the paper we assume that the partition T is sufficiently graded, i.e., for some suffi-
ciently small but fixed constant µ > 0, the mesh function hT satisfies

‖∇hT ‖0,∞,Ω 6 µ,(2.8)

and in addition, (2.7) holds for some constants cT and CT that are independent of µ. We refer
to Appendix A in [10] on how to generate a class of sufficiently mildly graded partitions T ∈ T
for given parameter µ such that the mesh function hT satisfies (2.7) and (2.8). Given a µ > 0 we
denote the class of such partitions by Tµ.

Associated with T ∈ T we define the continuous and piecewise linear finite element space
VT ⊂ H1

0 (Ω). Let ΠT : C(Ω̄)→ VT be the standard Lagrange interpolation operator. We define a
discrete control-to-state mapping as ST : L2(Ω)→ VT such that yT (u) = ST (f + u) and

(∇yT (u),∇vT ) = (f + u, vT ) ∀vT ∈ VT .(2.9)

Also we denote yT (u) = ST u for simplicity. Then we can formulate a reduced discrete optimiza-

tion problem min
uT ∈Uad

Ĵ(uT ) := J(ST uT , uT ) where we use the variational control discretization

proposed by Hinze ([17]). By standard arguments ([22]) we can also prove that the above discrete
optimization problem admits a unique solution. Moreover, we can derive the following discrete
first order optimality condition:

(αuT + pT , vT − uT ) > 0 ∀vT ∈ Uad,(2.10)
4



where the discrete adjoint state pT ∈ VT satisfies

(∇vT ,∇pT ) = (yT − yd, vT ) ∀vT ∈ VT(2.11)

with yT = ST uT . It is clear that pT = S∗T (yT − yd) where S∗T is the adjoint of ST . Similarly, we
have uT = P[a,b](pT ) = max{a,min{b,−pTα }}, which is not generally a finite element function.

Now we will give some notations for the following purpose. For each element T ∈ T we define
the local error indicators ηT ,y(uT , yT , T ) contributed to the state equation and ηT ,p(yT , pT , T )
contributed to the adjoint state equation by

η2
T ,y(uT , yT , T ) := h4

T ‖f + uT ‖20,T +
∑

E∈ET ,E⊂∂T

h3
E‖[∇yT ]E · nE‖20,E ,(2.12)

η2
T ,p(yT , pT , T ) := h4

T ‖yT − yd‖20,T +
∑

E∈ET ,E⊂∂T

h3
E‖[∇pT ]E · nE‖20,E ,(2.13)

where [∇yT ]E · nE denotes the jump of ∇yT across the common side E of elements T+ and T−,
nE denotes the outward normal oriented to T−. We also define the local error estimator for the
optimal control problem

η2
T (T ) := η2

T ,y(uT , yT , T ) + η2
T ,p(yT , pT , T ).(2.14)

Then on a subset ω ⊂ Ω, we define the error estimator ηT ,y(uT , yT , ω) by

η2
T ,y(uT , yT , ω) :=

∑
T∈T ,T⊂ω

η2
T ,y(uT , yT , T ).(2.15)

Thus, ηT ,y(uT , yT , T ) constitutes the error estimator for the state equation on Ω with respect
to the partition T . The similar definition applies to the error estimators ηT ,p(yT , pT , T ) for the
adjoint state equation and ηT (T ) for the optimal control problem.

For f ∈ L2(Ω) we also need to define the data oscillation as (see [29, 30])

osc(f, T ) := ‖h2
T (f − f̄T )‖0,T , osc(f, T ) :=

( ∑
T∈T

osc2(f, T )
) 1

2

,(2.16)

where f̄T denotes the L2-projection of f onto piecewise constant space on T . It is easy to see that

osc(f1 + f2, T ) 6 osc(f1, T ) + osc(f2, T ), ∀f1, f2 ∈ L2(Ω).(2.17)

To derive error estimates in L2-norm we need the following assumption:

Assumption 2.1. Assume that Ω is convex so that for each f + u ∈ L2(Ω) problem (2.2) admits
a unique solution y = Su ∈ H2(Ω) ∩H1

0 (Ω) and

‖y‖2,Ω 6 Creg‖f + u‖0,Ω.(2.18)

The assumption is also valid for the adjoint equation, i.e., for S∗.

With above preparations now we are in the position to derive a posteriori error estimates for
both the control, the state and adjoint state variables.

Theorem 2.2. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of optimal control problem
(2.1)-(2.2) and (uT , yT , pT ) ∈ Uad × VT × VT be the solution of the discrete problem (2.9)-(2.11).
Then we have the a posteriori upper bound

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω 6 C1ηT (T )(2.19)

and the global lower bound

ηT (T ) 6 C2(‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω + oscT ),(2.20)

where C1, C2 only depend on the shape regularity of T and the data oscillation oscT is defined as

osc2
T := osc2(f + uT , T ) + osc2(yT − yd, T ).
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Proof. Setting v = uT ∈ Uad in (2.4) and vT = u ∈ Uad in (2.10) and noticing that p = S∗(Su−yd),
pT = S∗T (ST uT − yd), we are then led to

(αu+ S∗(Su− yd), uT − u) > 0,(2.21)

(αuT + S∗T (ST uT − yd), u− uT ) > 0.(2.22)

Adding the above two inequalities, we conclude from (2.3) and (2.6) that

α‖u− uT ‖20,Ω 6 (S∗T (ST uT − yd)− S∗(Su− yd), u− uT )

= (S∗T (ST uT − yd)− S∗(ST uT − yd), u− uT ) + (S∗(ST uT − yd)− S∗(Su− yd), u− uT )

= (S∗T (ST uT − yd)− S∗(ST uT − yd), u− uT ) + (ST uT − Su, Su− SuT )

= (S∗T (ST uT − yd)− S∗(ST uT − yd), u− uT ) + (ST uT − Su, Su− ST uT )

+(ST uT − Su, ST uT − SuT ).(2.23)

It follows from Young’s inequality that

α‖u− uT ‖20,Ω + ‖y − yT ‖20,Ω
6 C‖SuT − ST uT ‖20,Ω + C‖S∗(ST uT − yd)− S∗T (ST uT − yd)‖20,Ω,(2.24)

where we used the fact that y = Su and yT = ST uT . Moreover, from (2.3), (2.6) and the triangle
inequality we have

‖p− pT ‖0,Ω 6 ‖p− S∗(ST uT − yd)‖0,Ω + ‖S∗(ST uT − yd)− pT ‖0,Ω
6 C‖Su− ST uT ‖0,Ω + ‖S∗(ST uT − yd)− pT ‖0,Ω
6 C‖u− uT ‖0,Ω + C‖SuT − ST uT ‖0,Ω + ‖S∗(ST uT − yd)− pT ‖0,Ω.

Combining the above estimates we are led to

α‖u− uT ‖20,Ω + ‖y − yT ‖20,Ω + ‖p− pT ‖20,Ω
6 C‖SuT − ST uT ‖20,Ω + C‖S∗(ST uT − yd)− S∗T (ST uT − yd)‖20,Ω.(2.25)

Note that ST uT and S∗T (ST uT − yd) are the standard finite element approximations of SuT and
S∗(ST uT − yd) in finite element space VT , respectively. Under Assumption 2.1 we can derive from
standard a posteriori error estimate for elliptic equation under L2-norm that (see [35] for more
details)

‖SuT − ST uT ‖0,Ω 6 CηT ,y(uT , yT , T ),(2.26)

‖S∗(ST uT − yd)− S∗T (ST uT − yd)‖0,Ω 6 CηT ,p(yT , pT , T ).(2.27)

Therefore, combining the above results we are able to derive the upper bound with the constant
C1 independent of the mesh size hT .

Now we prove the lower bound. Note that

‖SuT − ST uT ‖0,Ω 6 ‖SuT − Su‖0,Ω + ‖Su− ST uT ‖0,Ω
6 C‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω.(2.28)

Similarly, we can derive that

‖S∗(ST uT − yd)− S∗T (ST uT − yd)‖0,Ω
6 ‖S∗(ST uT − yd)− S∗(Su− yd)‖0,Ω + ‖S∗(Su− yd)− S∗T (ST uT − yd)‖0,Ω
6 C‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω.(2.29)

Moreover, from standard lower bound error estimate for elliptic equation (see [35] for more details)
we have the following global lower bound

ηT ,y(uT , yT , T ) 6 C(‖SuT − ST uT ‖0,Ω + osc(f + uT , T )),(2.30)

ηT ,p(yT , pT , T ) 6 C(‖S∗(ST uT − yd)− S∗T (ST uT − yd)‖0,Ω + osc(yT − yd, T )).(2.31)

Thus, we can conclude from the above estimates the lower bound with the constant C2 independent
of the mesh size hT . This completes the proof. �
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In the following we will present the adaptive algorithm for solving optimal control problems.
Note that there are two error estimators ηT ,y(uT , yT , T ) and ηT ,p(yT , pT , T ) contributed to the
state approximation and adjoint state approximation, respectively. We use the sum of the two
estimators as our indicators for the marking strategy. The marking algorithm based on Dörfler’s
strategy for optimal control problems can be described as follows

Algorithm 2.3. Dörfler’s marking strategy for OCPs

(1) Given a parameter 0 < θ < 1;
(2) Construct a minimal subset M⊂ T such that∑

T∈M
η2
T (T ) > θ2η2

T (T ).

(3) Mark all the elements in M.

In the following we will frequently use the abbreviations Vk for VTk , hk for hTk and vk for vTk ,
and the similar abbreviations for other variables and notations. Now we can present the adaptive
finite element algorithm for the optimal control problem as follows.

Algorithm 2.4. Adaptive finite element algorithm for OCPs:

(1) Given an initial mesh T0 with mesh size h0, construct the finite element space V0.
(2) Set k = 0 and solve the optimal control problem (2.9)-(2.11) to obtain (uk, yk, pk) ∈ Uad×

Vk × Vk.
(3) Compute the local error indicator ηk(T ).
(4) Construct Mk ⊂ Tk by the marking Algorithm 2.3.
(5) Refine Mk to get a new conforming mesh Tk+1 by procedure REFINE using bisection

algorithm.
(6) Construct the finite element space Vk+1 and solve the optimal control problem (2.9)-(2.11)

to obtain (uk+1, yk+1, pk+1) ∈ Uad × Vk+1 × Vk+1.
(7) Set k = k + 1 and go to Step (3).

In step (5) of Algorithm 2.4 we assume that each marked element inMk is bisected r > 1 times
to generate a new mesh Tk+1, and additional elements are refined in the process to ensure that Tk+1

is conforming. We remark that to ensure the mesh grading property (2.8) we have to additionally
refine elements other than that of Mk. Demlow and Stevenson [10] showed that this can be done
by inflating the number of simplices by not more than some fixed multiple which depends on the
mesh grading parameter µ and can be achieved by the standard newest vertex bisection algorithm
with necessary modifications, and the modification does not compromise the quasi-optimality of
the resulting algorithm, we refer to Appendix A in [10] for more details.

3. Convergence of AFEM for the optimal control problem in L2-norm

In this section we intend to prove the contraction property of the L2-norm errors of the control,
the state and adjoint state with L2-norm based AFEM. The proof relies on establishing certain
equivalence property between the L2-norm error and the weighted energy norm error for the state
and adjoint state, and uses the convergence result of AFEM under energy norm.

3.1. Connections between the weighted energy norm errors and L2-norm errors. In
this subsection we collect some results from [10] showing certain relationships between the energy
norm and L2-norm errors for the finite element approximations of elliptic equations, and their
generalizations to optimal control problems.

At first, we show that the L2-norm error of finite element approximation of elliptic equation can
be bounded by the weighted energy norm as long as the mesh grading is sufficiently mild.
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Lemma 3.1. ([10, Proposition 3]) For sufficiently small µ, let T ∈ Tµ. Under Assumption 2.1
we have that for any f, g ∈ L2(Ω),

‖Sf − ST f‖0,Ω . ‖|hT (Sf − ST f)‖|,(3.1)

‖S∗g − S∗T g‖0,Ω . ‖|hT (S∗g − S∗T g)‖|.(3.2)

With above result we can establish the connection between the L2-norm errors and weighted
energy norm errors for the solutions of optimal control problems.

Lemma 3.2. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of optimal control problem
(2.1)-(2.2) and (uT , yT , pT ) ∈ Uad × VT × VT be the solution of the discrete problem (2.9)-(2.11).
For sufficiently small µ, let T ∈ Tµ. Under Assumption 2.1 we have that

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω . ‖|hT (y − yT )‖|+ ‖|hT (p− pT )‖|(3.3)

provided that h0 � 1.

Proof. From the proof of Theorem 2.2 we can conclude that

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω
. ‖SuT − yT ‖0,Ω + ‖S∗(yT − yd)− pT ‖0,Ω.(3.4)

Recall that yT and pT are the standard finite element approximations of SuT and S∗(yT − yd) in
VT , respectively. Then it follows from Lemma 3.1 and the triangle inequality that

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω
. ‖|hT (SuT − yT )‖|+ ‖|hT (S∗(yT − yd)− pT )‖|
. ‖|hT (y − yT )‖|+ ‖|hT (p− pT )‖|

+‖|hT (y − SuT )‖|+ ‖|hT (p− S∗(yT − yd))‖|.(3.5)

After elementary calculation we have

‖|hT (y − SuT )‖|2 = (∇(hT (y − SuT )),∇(hT (y − SuT )))

= (∇(y − SuT ),∇(h2
T (y − SuT ))) + (∇hT (y − SuT ),∇hT (y − SuT ))

6 ‖hT ‖20,∞,Ω‖|y − SuT ‖|2 + ‖∇hT ‖20,∞,Ω‖y − SuT ‖20,Ω
+2‖hT ‖0,∞,Ω‖∇hT ‖0,∞,Ω‖|y − SuT ‖| · ‖y − SuT ‖0,Ω.(3.6)

Note that ‖hT ‖0,∞,Ω 6 h0 and ‖∇hT ‖0,∞,Ω 6 µ. This combining with the stability of elliptic
equation gives

‖|hT (y − SuT )‖| . (h0 + µ)‖u− uT ‖0,Ω.(3.7)

Similarly, we can prove that

‖|hT (p− S∗(yT − yd))‖| . (h0 + µ)‖y − yT ‖0,Ω
. (h0 + µ)(‖u− uT ‖0,Ω + ‖|hT (y − yT )‖|).(3.8)

Combining the above results we complete the proof if h0 � 1 and µ is sufficiently small. �

By using Proposition 4 in [10] and notice that ST uT and S∗T (ST uT −yd) are the standard finite
element approximations of SuT and S∗(ST uT −yd) in finite element space VT , we have the following
a posteriori upper bounds for ‖|hT (SuT −ST uT )‖| and ‖|hT (S∗(ST uT − yd)−S∗T (ST uT − yd))‖|.

Lemma 3.3. For any T ∈ T, under Assumption 2.1 we have that

‖|hT (SuT − ST uT )‖| . ηT ,y(uT , yT , T ),(3.9)

‖|hT (S∗(ST uT − yd)− S∗T (ST uT − yd))‖| . ηT ,p(yT , pT , T ).(3.10)

Now we can derive a posteriori error estimate for the optimal control problem under weighted
energy norm.
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Lemma 3.4. Let Assumption 2.1 be valid. For any T ∈ T, there exists a constant C3 independent
of the mesh size of T such that

‖|hT (y − yT )‖|2 + ‖|hT (p− pT )‖|2 6 C3η
2
T (T ).(3.11)

Proof. In view of Lemma 3.3 it suffices to estimate ‖|hT (y−SuT )‖| and ‖|hT (p−S∗(ST uT −yd))‖|.
We use the abbreviation eT = y − SuT and note that

‖|hT (y − SuT )‖|2 = (∇(hT eT ),∇(hT eT ))

= (∇hT eT ,∇hT eT ) + (hT∇eT , hT∇eT ) + 2(∇hT eT , hT∇eT )

6 ‖∇hT ‖20,∞,Ω‖eT ‖20,Ω + ‖hT ‖20,∞,Ω‖|eT ‖|2

+2‖∇hT ‖0,∞,Ω‖hT ‖0,∞,Ω‖eT ‖0,Ω‖|eT ‖|
. ‖u− uT ‖20,Ω,(3.12)

where we used the fact that ‖hT ‖0,∞,Ω . 1, ‖∇hT ‖0,∞,Ω . 1 and the stability result for elliptic
boundary value problem. Similarly, we can conclude from Lemmas 3.1 and 3.3 that

‖|hT (p− S∗(ST uT − yd))‖|2 . ‖y − yT ‖20,Ω
. ‖y − SuT ‖20,Ω + ‖|hT (SuT − ST uT )‖|2

. ‖u− uT ‖20,Ω + η2
T ,y(uT , yT , T ).(3.13)

Combining Theorem 2.2, (3.12), (3.13), Lemma 3.3 and the triangle inequality we finish the proof.
�

It follows from Theorem 2.2 and Lemma 3.4 that

‖|hT (y − yT )‖|2 + ‖|hT (p− pT )‖|2 . ‖u− uT ‖20,Ω + ‖y − yT ‖20,Ω + ‖p− pT ‖20,Ω + osc2
T .

The following stability results for the error estimators are direct consequences of [10, Lemma 1],
see also [5, Proposition 3.3].

Lemma 3.5. For any T ∈ T, let uT , ũT ∈ Uad, yT , ỹT , pT , p̃T ∈ VT . Under Assumption 2.1 we
have that

|ηT ,y(uT , yT , T )− ηT ,y(ũT , ỹT , T )| . ‖|hT (yT − ỹT )‖|ω̃T
+ h2

T ‖uT − ũT ‖0,T
+‖∇hT ‖0,∞,ω̃T

‖yT − ỹT ‖0,ω̃T
,(3.14)

|ηT ,p(yT , pT , T )− ηT ,p(ỹT , p̃T , T )| . ‖|hT (pT − p̃T )‖|ω̃T
+ h2

T ‖yT − ỹT ‖0,T
+‖∇hT ‖0,∞,ω̃T

‖pT − p̃T ‖0,ω̃T
.(3.15)

Proof. We only prove (3.14), the proof of (3.15) is very similar and we will omit it. Note that

ηT ,y(uT , yT , T ) 6 ηT ,y(ũT , ỹT , T ) + (h4
T ‖uT − ũT ‖20,T

+
∑

E∈ET ,E⊂∂T

h3
E‖[∇(yT − ỹT )]E · nE‖20,E)

1
2 .

We recall the trace inequality: for any T ∈ T and vT ∈ VT there holds

‖∇vT ‖0,∂T . h
− 1

2

T ‖∇vT ‖0,T + h
1
2

T ‖∇
2vT ‖0,T .

Noting that vT is linear polynomial on T , the second term in above inequality vanishes. Thus, for
the edge E = T ∩ T ′ we have

h
3
2

E‖[∇(yT − ỹT )]E · nE‖0,E 6 h
3
2

E(‖∇(yT − ỹT )T ‖0,E + ‖∇(yT − ỹT )T ′‖0,E)

. hT (‖∇(yT − ỹT )‖0,T + ‖∇(yT − ỹT )‖0,T ′)

. ‖|hT (yT − ỹT )‖|T∪T ′ + ‖∇hT (yT − ỹT )‖0,T∪T ′ ,(3.16)

where we used the property (2.7). Summing over the edges of T we complete the proof. �

Then we present the following localized upper bounds for the approximations of the optimal
control problems.
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Lemma 3.6. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of optimal control problem

(2.1)-(2.2). Given sufficiently small µ, let T ∈ Tµ and T ⊂ T̃ ∈ T, (uT , yT , pT ) ∈ Uad × VT × VT
and (uT̃ , yT̃ , pT̃ ) ∈ Uad × VT̃ × VT̃ be the solutions of the discrete problem (2.9)-(2.11) on T and

T̃ , respectively. Then there holds

‖uT − uT̃ ‖0,Ω + ‖yT − yT̃ ‖0,Ω + ‖pT − pT̃ ‖0,Ω 6 C4ηT (RT→T̃ ),(3.17)

where RT→T̃ is the subset of elements that are refined from T to T̃ and C4 is independent of the
mesh size.

Proof. Note that VT ⊂ VT̃ . From (2.10) we have

(αuT + S∗T (yT − yd), vT − uT ) > 0 ∀vT ∈ Uad,
(αuT̃ + S∗T̃ (yT̃ − yd), vT̃ − uT̃ ) > 0 ∀vT̃ ∈ Uad.

Setting vT = uT̃ and vT̃ = uT in above inequalities and adding them together, we conclude from
(2.9) and (2.11) that

α‖uT − uT̃ ‖
2
0,Ω 6 (S∗T (yT − yd)− S∗T̃ (yT̃ − yd), uT̃ − uT )

= (S∗T (yT − yd)− S∗T̃ (yT − yd), uT̃ − uT ) + (S∗T̃ (yT − yd)− S∗T̃ (yT̃ − yd), uT̃ − uT )

= (S∗T (yT − yd)− S∗T̃ (yT − yd), uT̃ − uT ) + (ST uT − ST̃ uT̃ , ST̃ uT̃ − ST̃ uT )

= (S∗T (yT − yd)− S∗T̃ (yT − yd), uT̃ − uT ) + (ST uT − ST̃ uT̃ , ST̃ uT̃ − ST uT )

+(ST uT − ST̃ uT̃ , ST uT − ST̃ uT ).(3.18)

It follows from Young’s inequality that

α‖uT − uT̃ ‖
2
0,Ω + ‖yT − yT̃ ‖

2
0,Ω

6 C‖ST̃ uT − ST uT ‖
2
0,Ω + C‖S∗T̃ (yT − yd)− S∗T (yT − yd)‖20,Ω,(3.19)

where we used the fact that yT̃ = ST̃ uT̃ and yT = ST uT . Moreover, from the triangle inequality,
the discrete stability of elliptic equation and (3.19) we infer that

‖pT − pT̃ ‖0,Ω 6 ‖S∗T̃ (yT − yd)− S∗T̃ (yT̃ − yd)‖0,Ω + ‖S∗T̃ (yT − yd)− S∗T (yT − yd)‖0,Ω
6 C‖yT − yT̃ ‖0,Ω + ‖S∗T̃ (yT − yd)− S∗T (yT − yd)‖0,Ω
6 C‖ST̃ uT − ST uT ‖0,Ω + C‖uT − uT̃ ‖0,Ω + C‖S∗T̃ (yT − yd)− S∗T (yT − yd)‖0,Ω
6 C‖ST̃ uT − ST uT ‖0,Ω + C‖S∗T̃ (yT − yd)− S∗T (yT − yd)‖0,Ω.(3.20)

Note that ST uT and ST̃ uT are the finite element approximations of SuT on VT and VT̃ associated

with partitions T and T̃ , respectively. Similarly, S∗T (yT − yd) and S∗T̃ (yT − yd) are the finite

element approximations of S∗(yT − yd) on VT and VT̃ . Then from Lemma 2 in [10] we conclude
that

‖ST uT − ST̃ uT ‖0,Ω 6 CηT ,y(uT , ST uT ,RT→T̃ ),(3.21)

‖S∗T (yT − yd)− S∗T̃ (yT − yd)‖0,Ω 6 CηT ,p(yT − yd, S∗T (yT − yd),RT→T̃ ).(3.22)

Combining (3.19), (3.20), (3.21) and (3.22) we finish the proof. �

The following lemma presents a quasi-orthogonality result for the solution of elliptic boundary
value problem.

Lemma 3.7. ([10, Lemma 3]) For any ε > 0, T ∈ T, ỹT , p̃T ∈ VT and f, g ∈ L2(Ω), it holds that

‖|hT (Sf − ST f)‖|2 + ‖|hT (ST f − ỹT )‖|2 − (1 + ε)‖|hT (Sf − ỹT )‖|2

6 ε−1‖∇hT ‖20,∞,Ω(‖Sf − ST f‖20,Ω + ‖Sf − ỹT ‖20,Ω),(3.23)

‖|hT (S∗g − S∗T g)‖|2 + ‖|hT (S∗T g − p̃T )‖|2 − (1 + ε)‖|hT (S∗g − p̃T )‖|2

6 ε−1‖∇hT ‖20,∞,Ω(‖S∗g − S∗T g‖20,Ω + ‖S∗g − p̃T ‖20,Ω).(3.24)

We also recall the following inequality which is opposed to Lemma 3.1.
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Lemma 3.8. ([10, Lemma 4]) For any T ∈ T and f, g ∈ L2(Ω) there holds

‖|hT (Sf − ỹT )‖| . ‖Sf − ỹT ‖0,Ω + osc(f, T ), ∀ỹT ∈ VT ,(3.25)

‖|hT (S∗g − p̃T )‖| . ‖S∗g − p̃T ‖0,Ω + osc(g, T ), ∀p̃T ∈ VT .(3.26)

As a final preliminary result we show that the L2 norm errors of the control, the state and
adjoint state can be bounded from above by the best approximations of the state and adjoint state
variables in finite element space VT measured in L2-norm, plus data oscillations, if T is sufficiently
mildly graded. We refer to [10, Corollary 1] for a similar result for elliptic boundary value problem
and [7] for the similar Céa’s lemma in energy norm.

Theorem 3.9. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of optimal control problem
(2.1)-(2.2) and (uT , yT , pT ) ∈ Uad × VT × VT be the solution of the discrete problem (2.9)-(2.11).
Then we have

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω
. inf

vT ∈VT
‖y − vT ‖0,Ω + osc(f + u, T ) + inf

wT ∈VT
‖p− wT ‖0,Ω + osc(y − yd, T ).(3.27)

Proof. From the standard error estimate for elliptic optimal control problem with variational con-
trol discretization (see [18, Sec. 3, Thm. 3.4]) we have

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω
. ‖y − ST u‖0,Ω + ‖p− S∗T (y − yd)‖0,Ω.

Recall that ‖∇hT ‖0,∞,Ω 6 µ. For any vT , wT ∈ VT , it follows from Lemmas 3.1, 3.7 and 3.8 that

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω
. ‖|hT (y − ST u)‖|+ ‖|hT (p− S∗T (y − yd))‖|
. ‖|hT (y − vT )‖|+ µ(‖y − ST u‖0,Ω + ‖y − vT ‖0,Ω)

+‖|hT (p− wT )‖|+ µ(‖p− S∗T (y − yd)‖0,Ω + ‖p− wT ‖0,Ω)

. (1 + µ)‖y − vT ‖0,Ω + osc(f + u, T ) + µ(‖y − yT ‖0,Ω + ‖yT − ST u‖0,Ω)

+(1 + µ)‖p− wT ‖0,Ω + osc(y − yd, T ) + µ(‖p− pT ‖0,Ω + ‖pT − S∗T (y − yd)‖0,Ω)

. (1 + µ)‖y − vT ‖0,Ω + osc(f + u, T ) + µ(‖y − yT ‖0,Ω + ‖u− uT ‖0,Ω)

+(1 + µ)‖p− wT ‖0,Ω + osc(y − yd, T ) + µ(‖p− pT ‖0,Ω + ‖y − yT ‖0,Ω),(3.28)

where we used the discrete stability of elliptic equation in the last estimate. By taking µ sufficiently
small and vT , wT arbitrary we complete the proof. �

Remark 3.10. Compared to Theorem 3.9 we have an alternative result: there exists a constant
C5 independent of the mesh size such that

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω + oscT

6 C5

(
inf

vT ∈VT
(‖y − vT ‖0,Ω + osc(vT − yd, T ))

+ inf
wT ∈VT

(‖p− wT ‖0,Ω + osc(f + P[a,b](wT ), T ))
)

(3.29)

provided that h0 � 1. In fact, we can conclude from the triangle inequality that

osc(f + u, T ) + osc(y − yd, T ) . osc(f + P[a,b](wT ), T ) + osc(vT − yd, T )

+h2
T ‖u− P[a,b](wT )‖0,Ω + h2

T ‖y − vT ‖0,Ω.

From the Lipschitz property of the projection operator P[a,b] we have

‖u− P[a,b](wT )‖0,Ω . ‖p− wT ‖0,Ω.
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Moreover,

osc(f + uT , T ) + osc(yT − yd, T ) . osc(f + P[a,b](wT ), T ) + osc(vT − yd, T )

+h2
T ‖uT − P[a,b](wT )‖0,Ω + h2

T ‖yT − vT ‖0,Ω
. osc(f + P[a,b](wT ), T ) + osc(vT − yd, T )

+h2
T (‖p− wT ‖0,Ω + ‖y − vT ‖0,Ω

+‖p− pT ‖0,Ω + ‖y − yT ‖0,Ω).

Combining the above results, the fact that hT 6 h0 and using (3.27) we can conclude (3.29)
provided that h0 � 1 and µ sufficiently small.

3.2. Convergence analysis of AFEM for OCPs in L2. In this subsection we will prove the
convergence of L2-norm based AFEM for solving optimal control problems. In the following we
assume that (u, y, p) ∈ Uad×H1

0 (Ω)×H1
0 (Ω) is the solution of optimal control problem (2.1)-(2.2)

and (uk, yk, pk) ∈ Uad × Vk × Vk is the solution of the discrete problem (2.9)-(2.11) generated by
the adaptive Algorithm 2.4.

At first we prove some quasi-orthogonality properties.

Lemma 3.11. For any ε > 0 there hold

‖|hk+1(y − yk+1)‖|2 + ‖|hk+1(yk+1 − yk)‖|2 − (1 + ε)‖|hk(y − yk)‖|2

. ε−1(µ2 + h2
0)(‖u− uk+1‖20,Ω + ‖y − yk+1‖20,Ω + ‖y − yk‖20,Ω),(3.30)

‖|hk+1(p− pk+1)‖|2 + ‖|hk+1(pk+1 − pk)‖|2 − (1 + ε)‖|hk(p− pk)‖|2

. ε−1(µ2 + h2
0)(‖y − yk+1‖20,Ω + ‖p− pk+1‖20,Ω + ‖p− pk‖20,Ω).(3.31)

Proof. At first we estimate (3.30). We use the abbreviations ek = y− yk and ẽk = yk+1− yk, then
we have

‖|hk+1ek+1‖|2 = ‖|hk+1ek‖|2 − ‖|hk+1ẽk‖|2 − 2(∇(hk+1ek+1),∇(hk+1ẽk)).(3.32)

An elementary calculation gives

|(∇(hk+1ek+1),∇(hk+1ẽk))| = |(∇ek+1,∇(h2
k+1ẽk)) + (|∇hk+1|2ek+1, ẽk)

−(ek∇hk+1,∇(hk+1ek+1)) + (ek+1∇hk+1,∇(hk+1ek))|
6 ‖ek∇hk+1‖0,Ω‖|hk+1ek+1‖|+ ‖ek+1∇hk+1‖0,Ω‖|hk+1ek‖|

+‖ek+1∇hk+1‖0,Ω‖ẽk∇hk+1‖0,Ω + |(∇ek+1,∇(h2
k+1ẽk))|.(3.33)

It remains to estimate |(∇ek+1,∇(h2
k+1ẽk))|. We divide the estimate into two steps. Firstly, from

the orthogonality property we have

|(∇(Suk+1 − yk+1),∇(h2
k+1ẽk))|

= |(∇(Suk+1 − yk+1),∇(h2
k+1ẽk −Πk+1(h2

k+1ẽk)))|

6
∑

T∈Tk+1

‖∇(Suk+1 − yk+1)‖0,T ‖∇(h2
k+1ẽk −Πk+1(h2

k+1ẽk)))‖0,T .(3.34)

For each T ∈ Tk+1 we know that hk+1|T and ẽk are linear. So |∇2h2
k+1| . |∇hk+1|2, ∇2hk+1 = 0

and ∇2ẽk = 0. By using the inverse inequality, the standard interpolation error estimate ([7]), the
fact that ‖∇hk+1‖0,∞,Ω . 1 and (2.7) we can derive

‖∇(h2
k+1ẽk −Πk+1(h2

k+1ẽk)))‖0,T
. hT ‖∇2(h2

k+1ẽk)‖0,T
. hT (‖∇h2

k+1∇ẽk)‖0,T + ‖∇2h2
k+1ẽk)‖0,T )

. hT ‖∇hk+1‖0,∞,T (‖hk+1‖0,∞,T ‖∇ẽk‖0,T + ‖∇hk+1‖0,∞,T ‖ẽk‖0,T )

. ‖∇hk+1‖0,∞,T ‖ẽk‖0,T (‖hk+1‖0,∞,T + hT ‖∇hk+1‖0,∞,T )

. ‖∇hk+1‖0,∞,T ‖hk+1‖0,∞,T ‖ẽk‖0,T .(3.35)
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From (3.34), (3.35) and the stability of elliptic equation we conclude that

|(∇(Suk+1 − yk+1),∇(h2
k+1ẽk))|

.
∑

T∈Tk+1

‖∇(Suk+1 − yk+1)‖0,T ‖∇hk+1‖0,∞,T ‖hk+1‖0,∞,T ‖ẽk‖0,T

. (‖hk+1∇ek+1‖0,Ω + ‖hk+1∇(y − Suk+1)‖0,Ω)‖∇hk+1‖0,∞,Ω‖ẽk‖0,Ω

. (‖|hk+1ek+1‖|+ ‖∇hk+1ek+1‖0,Ω + ‖hk+1‖0,∞,Ω‖u− uk+1‖0,Ω)‖∇hk+1‖0,∞,Ω‖ẽk‖0,Ω.(3.36)

Secondly, from (2.3) we deduce

|(∇(y − Suk+1),∇(h2
k+1ẽk))| = |(u− uk+1, h

2
k+1ẽk)|

6 ‖hk+1‖20,∞,Ω‖u− uk+1‖0,Ω‖ẽk‖0,Ω.(3.37)

Inserting the above estimates into (3.33) and using Young’s inequality we are led to

|(∇(hk+1ek+1),∇(hk+1ẽk))| 6 δ

2
(‖|hk+1ek+1‖|2 + ‖|hk+1ek‖|2) + ‖hk+1‖20,∞,Ω‖u− uk+1‖20,Ω

+C(1 +
1

δ
)(‖∇hk+1‖20,∞,Ω + ‖hk+1‖20,∞,Ω)(‖ek+1‖20,Ω + ‖ek‖20,Ω).(3.38)

Combining (3.32) and (3.38) yields

(1− δ)‖|hk+1ek+1‖|2 6 (1 + δ)‖|hk+1ek‖|2 − ‖|hk+1ẽk‖|2 + 2‖hk+1‖20,∞,Ω‖u− uk+1‖20,Ω

+2C(1 +
1

δ
)(‖∇hk+1‖20,∞,Ω + ‖hk+1‖20,∞,Ω)(‖ek+1‖20,Ω + ‖ek‖20,Ω).(3.39)

Dividing both sides by 1− δ and choosing 1+δ
1−δ as 1 + ε we arrive at

‖|hk+1ek+1‖|2 . (1 + ε)‖|hk+1ek‖|2 − ‖|hk+1ẽk‖|2 + ‖hk+1‖20,∞,Ω‖u− uk+1‖20,Ω
+ε−1(‖∇hk+1‖20,∞,Ω + ‖hk+1‖20,∞,Ω)(‖ek+1‖20,Ω + ‖ek‖20,Ω).(3.40)

Note that hk+1 6 hk and ‖∇hk+1‖0,∞,Ω 6 µ we have

‖|hk+1ek‖| 6 ‖hk+1∇ek‖0,Ω + ‖∇hk+1‖0,∞,Ω‖ek‖0,Ω
6 ‖hk∇ek‖0,Ω + µ‖ek‖0,Ω
6 ‖|hkek‖|+ 2µ‖ek‖0,Ω,(3.41)

so for any ε > 0 we have

‖|hk+1ek‖|2 6 (1 + ε)‖|hkek‖|2 + (1 +
1

ε
)4µ2‖ek‖20,Ω,(3.42)

substituting the above result into (3.40) and using ‖hk+1‖0,∞,Ω 6 h0 we complete the proof of
(3.30) with (1 + ε) replaced by (1 + ε)2 which are equivalent. The proof of (3.31) is very similar
and we omit it here. �

We also need the following estimator reduction property, the proof is very similar to [5, Corol-
lary].

Lemma 3.12. For any δ ∈ (0, 1] there hold

η2
k+1,y(uk+1, yk+1, Tk+1)− (1 + δ)

(
η2
k,y(uk, yk, Tk)− λη2

k,y(uk, yk,Mk)
)

6 δ−1
(
‖|hk+1(yk+1 − yk)‖|2 + µ2‖yk+1 − yk‖20,Ω + h4

0‖uk+1 − uk‖20,Ω
)
,(3.43)

η2
i+1,p(yk+1, pk+1, Tk+1)− (1 + δ)

(
η2
k,p(yk, pk, Tk)− λη2

k,p(yk, pk,Mk)
)

6 δ−1
(
‖|hk+1(pk+1 − pk)‖|2 + µ2‖pk+1 − pk‖20,Ω + h4

0‖yk+1 − yk‖20,Ω
)
,(3.44)

where λ = 1− 2−
3r
d and r is the number of bisections for marked elements in Mk during the local

mesh refinement.
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Proof. It follows from (3.14) and Young’s inequality that for any δ ∈ (0, 1] and T ∈ Tk+1 there
holds

η2
k+1,y(uk+1, yk+1, T )− (1 + δ)η2

k+1,y(uk, yk, T )

. δ−1
(
‖|hk+1(yk+1 − yk)‖|2ω̃T

+ ‖∇hk+1‖20,∞,ω̃T
‖yk+1 − yk‖20,ω̃T

+ h4
T ‖uk+1 − uk‖20,ω̃T

)
.

Summing over T ∈ Tk+1 and using the fact that the triangulation is shape regular, (2.8) and
hk+1 6 h0, we have

η2
k+1,y(uk+1, yk+1, Tk+1)− (1 + δ)η2

k+1,y(uk, yk, Tk+1)

. δ−1
(
‖|hk+1(yk+1 − yk)‖|2 + µ2‖yk+1 − yk‖20,Ω + h4

0‖uk+1 − uk‖20,Ω
)
.(3.45)

For T ′ ∈ Tk we define TT ′ = {T ∈ Tk+1 : T ⊂ T ′}. From the definition of bisection algorithm we
know that for a marked element T ′ ∈ Mk and T ∈ TT ′ there holds hT 6 2−

r
dhT ′ and [∇yk] = 0

across the edges of T which lie in the interior of T ′. Therefore,

η2
k+1,y(uk, yk, TT ′) 6 2−

3r
d η2

k,y(uk, yk, T
′).(3.46)

For T ′ ∈ Tk\Mk, we have the monotonicity property ηk+1,y(uk, yk, TT ′) 6 ηk,y(uk, yk, T
′) (see, for

instance, [5, Remark 2.1]). Summing over T ∈ Tk+1 we obtain

η2
k+1,y(uk, yk, Tk+1) 6 2−

3r
d η2

k,y(uk, yk,Mk) + η2
k,y(uk, yk, Tk\Mk)

= η2
k,y(uk, yk, Tk)− λη2

k,y(uk, yk,Mk).(3.47)

Combining (3.45) and (3.47) prove (3.43). Similarly, we can prove (3.44). �

Now we are in the position to prove the contraction property for the weighted energy norm
errors of the state and adjoint state.

Theorem 3.13. Let (u, y, p) ∈ Uad ×H1
0 (Ω) ×H1

0 (Ω) be the solution of optimal control problem
(2.1)-(2.2) and (uk, yk, pk) ∈ Uad × Vk × Vk be the solution of the discrete problem (2.9)-(2.11)
generated by the adaptive Algorithm 2.4. Then there exist constant γ > 0 and ν ∈ (0, 1) depending
on cT, CT, Creg, the shape regularity of T0, the parameter θ in Algorithm 2.3 and the number of
times r that each element in Tk is bisected, such that for sufficiently small µ it holds

‖|hk+1(y − yk+1)‖|2 + ‖|hk+1(p− pk+1)‖|2 + γη2
k+1(Tk+1)

6 ν2
(
‖|hk(y − yk)‖|2 + ‖|hk(p− pk)‖|2 + γη2

k(Tk)
)

(3.48)

provided that h0 � 1.

Proof. We use the abbreviations

E2
k := ‖|hk(y − yk)‖|2 + ‖|hk(p− pk)‖|2,

Ẽ2
k := ‖|hk+1(yk+1 − yk)‖|2 + ‖|hk+1(pk+1 − pk)‖|2.

From Lemma 3.4 we have

E2
k 6 C3η

2
k(Tk).(3.49)

We can conclude from Lemma 3.11 and Theorem 2.2 that

E2
k+1 6 (1 + ε)E2

k − Ẽ2
k + C6ε

−1(µ2 + h2
0)
(
η2
k(Tk) + η2

k+1(Tk+1)
)
.(3.50)
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Moreover, it follows from Lemma 3.12, the triangle inequality and Theorem 2.2 that

η2
k+1(Tk+1) 6 (1 + δ)(η2

k(Tk)− λη2
k(Mk)) + C7δ

−1
(
Ẽ2
k + (µ2 + h4

0)
(
η2
k(Tk) + η2

k+1(Tk+1)
))

6 (1 + δ)(1− λθ2)η2
k(Tk) + C7δ

−1
(
Ẽ2
k + (µ2 + h4

0)
(
η2
k(Tk) + η2

k+1(Tk+1)
))

6 (1 + δ)
(

(1− 1

2
λθ2)η2

k(Tk)− 1

2C3
λθ2E2

k

)
+C7δ

−1
(
Ẽ2
k + (µ2 + h4

0)
(
η2
k(Tk) + η2

k+1(Tk+1)
))
,(3.51)

where we used Dörfler’s marking strategy in Algorithm 2.3 in the second inequality and (3.49) in
the third inequality.

Multiplying (3.51) with γ̃ = δC−1
7 and adding the result to (3.50) gives

E2
k+1 + γ̃η2

k+1(Tk+1) 6 (1 + δ)(1− 1

2
λθ2)γ̃η2

k(Tk) +
(

(1 + ε)− (1 + δ)
γ̃

2C3
λθ2
)
E2
k

+(µ2 + h2
0)(1 + C6ε

−1)
(
η2
k(Tk) + η2

k+1(Tk+1)
)
.(3.52)

Fixing a sufficiently small δ and a sufficiently small ε such that

ν̃2 := max
{

(1 + δ)(1− 1

2
λθ2), (1 + ε)− (1 + δ)

γ̃

2C3
λθ2
}
< 1,(3.53)

we conclude from (3.52) that

E2
k+1 +

(
γ̃ − (µ2 + h2

0)(1 + C6ε
−1)
)
η2
k+1(Tk+1)

6 ν̃2E2
k +

(
ν̃2γ̃ + (µ2 + h2

0)(1 + C6ε
−1)
)
η2
k(Tk).(3.54)

Choosing µ sufficiently small and h0 � 1 such that

0 <
ν̃2γ̃ + (µ2 + h2

0)(1 + C6ε
−1)

γ̃ − (µ2 + h2
0)(1 + C6ε−1)

6
1 + ν̃2

2
:= ν2.(3.55)

By choosing γ := γ̃ − (µ2 + h2
0)(1 + C6ε

−1) we obtain

E2
k+1 + γη2

k+1(Tk+1) 6 ν̃2E2
k + γ

ν̃2γ̃ + (µ2 + h2
0)(1 + C6ε

−1)

γ̃ − (µ2 + h2
0)(1 + C6ε−1)

η2
k(Tk)

6 ν̃2E2
k + γν2η2

k(Tk)

6 ν2
( 2ν̃2

1 + ν̃2
E2
k + γη2

k(Tk)
)

6 ν2
(
E2
k + γη2

k(Tk)
)

(3.56)

in view of (3.53). This completes the proof. �

We finally show that the L2-norm errors for both the control, the state and adjoint state converge
to zero with linear rate.

Theorem 3.14. Let (u, y, p) ∈ Uad ×H1
0 (Ω) ×H1

0 (Ω) be the solution of optimal control problem
(2.1)-(2.2) and (uk, yk, pk) ∈ Uad × Vk × Vk be the solution of the discrete problem (2.9)-(2.11)
generated by the adaptive Algorithm 2.4. Let the assumptions in Theorem 3.13 be fulfilled, it holds
that for k > l

‖u− uk+1‖0,Ω + ‖y − yk+1‖0,Ω + ‖p− pk+1‖0,Ω + osck+1

. νk−l
(
‖u− ul‖0,Ω + ‖y − yl‖0,Ω + ‖p− pl‖0,Ω + oscl

)
(3.57)

provided that h0 � 1.
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Proof. From the dominance of the indicator over oscillation (see [5, Remark 2.1]) we have

osck+1(f + uk+1, Tk+1) 6 ηk+1,y(uk+1, yk+1, Tk+1),

osck+1(yk+1 − yd, Tk+1) 6 ηk+1,p(yk+1, pk+1, Tk+1),

which in turn implies

osc2
k+1 6 η

2
k+1(Tk+1),(3.58)

this together with Lemma 3.2 yields

(‖u− uk+1‖0,Ω + ‖y − yk+1‖0,Ω + ‖p− pk+1‖0,Ω + osck+1)2

. ‖|hk+1(y − yk+1)‖|2 + ‖|hk+1(p− pk+1)‖|2 + γη2
k+1(Tk+1).(3.59)

On the other hand, it follows from Lemma 3.4 and Theorem 2.2 that

‖|hk+1(y − yk+1)‖|2 + ‖|hk+1(p− pk+1)‖|2 + γη2
k+1(Tk+1)

. η2
k+1(Tk+1)

. (‖u− uk+1‖0,Ω + ‖y − yk+1‖0,Ω + ‖p− pk+1‖0,Ω + osck+1)2.(3.60)

Combining (3.59) and (3.60) we arrive at

(‖u− uk+1‖0,Ω + ‖y − yk+1‖0,Ω + ‖p− pk+1‖0,Ω + osck+1)2

' ‖|hk+1(y − yk+1)‖|2 + ‖|hk+1(p− pk+1)‖|2 + γη2
k+1(Tk+1),(3.61)

this together with Theorem 3.13 completes the proof. �

4. Complexity of AFEM for the optimal control problem under L2-norm

In this section we prove the quasi-optimal complexity of L2-norm based AFEM for solving
optimal control problems. To begin with, we follow the idea of [10] (see [5, 33] for the defini-
tions of approximation classes with respect to the energy norm based AFEM) to introduce the
approximation class As for s > 0:

As =
{

(y, p) ∈ H1
0 (Ω)×H1

0 (Ω) : −∆y,−∆p ∈ L2(Ω), |(y, p)|As <∞
}
,

where

|(y, p)|As := sup
ε>0

ε inf
T ∈T: inf

vT ∈VT
(‖y−vT ‖0,Ω+osc(vT −yd,T ))

+ inf
wT ∈VT

(‖p−wT ‖0,Ω+osc(f+P[a,b](wT ),T ))6ε

(
#T −#T0

)s
.

In our case of Ω being convex and VT being linear, (H2(Ω) ∩H1
0 (Ω))2 ⊂ As with s = 1 if d = 2

and s = 2
3 if d = 3. However, the class As is much larger than (H2(Ω)∩H1

0 (Ω))2 which makes the

L2-norm based AFEM attractive, since the rate s is already realized with uniform refinements if
y, p ∈ H2(Ω) ∩H1

0 (Ω). We refer to [10, Sec. 7] for more details.
To prove the optimality of AFEM we shall give the complexity of refinement, we refer to [5,

Lemma 2.3] and [34] for related results. The following lemma shows that the difference between
the cardinalities of the output and initial partitions can be bounded from above by some multiple
of the total number of marked elements.

Lemma 4.1. [10, Theorem 4] Let K be the total number of calls of bisection algorithm in [10, P.
210], so that K is no larger than the sum of the cardinalities of all sets of marked simplicies. Then
for the output partition T , it holds that #T −#T0 . K.

To bound the number of marked elements in Dörfler’s marking we give the following lemma.

Lemma 4.2. Let θ < 1
C2(1+C4) . Let µ be sufficiently small such that Lemma 4.1 is valid. If

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω + oscT

6 (1− θC2(1 + C4))(‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck)(4.1)
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holds for Tk ∈ Tµ and Tk ⊂ T ∈ T, then we have

ηk(RTk→T ) > θηk(Tk).(4.2)

Proof. From the triangle inequality we have

‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω 6 ‖uT − uk‖0,Ω + ‖yT − yk‖0,Ω + ‖pT − pk‖0,Ω
+‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω,

osck 6 osck(RTk→T ) + oscT .

It follows from Theorem 2.2, Lemma 4.1 and the assumption of the lemma that

θ(C4 + 1)ηk(Tk) 6 θC2(1 + C4)(‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck)

6 ‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck

−‖u− uT ‖0,Ω − ‖y − yT ‖0,Ω − ‖p− pT ‖0,Ω − oscT

6 ‖uT − uk‖0,Ω + ‖yT − yk‖0,Ω + ‖pT − pk‖0,Ω + osck(RTk→T )

6 (1 + C4)ηk(RTk→T ),

this completes the proof. �

Lemma 4.3. For any s > 0, let (y, p) ∈ As. Assume that µ is sufficiently small such that Theorem
3.9 is valid. Then under the assumptions of Lemma 4.2, the number of marked elements Mk ⊂ Tk
defined in Algorithm 2.3 satisfies

#Mk . |(y, p)|
1
s

As(‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck)−
1
s .(4.3)

Proof. Let

ε =
1− θC2(1 + C4)

C5
(‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck),(4.4)

where C5 is defined in Remark 3.10. Let T ′ ∈ T and yT ′ , pT ′ ∈ VT ′ such that

‖y − yT ′‖0,Ω + osc(yT ′ − yd, T ′) + ‖p− pT ′‖0,Ω + osc(f + P[a,b](pT ′), T ′) 6 ε.(4.5)

We can conclude from the definition of As that

#T ′ −#T0 . |(y, p)|
1
s

Asε
− 1

s .(4.6)

It can be shown from Appendix A in [10] that T ′ can be refined to a partition T ′′ ∈ Tµ with
#T ′′ −#T0 . #T ′ −#T0 depending on µ. Let T := T ′′ ⊕Tk be the smallest common refinement
of T ′′ and Tk in Tµ, there holds #T − #Tk 6 #T ′′ − #T0 (see [33]). In view of VT ′ ⊂ VT , the
monotonicity of data oscillation ([5, Remark 2.1]) and Remark 3.10 we have

‖u− uT ‖0,Ω + ‖y − yT ‖0,Ω + ‖p− pT ‖0,Ω + oscT

6 C5

(
inf

vT ′∈VT ′
(‖y − vT ′‖0,Ω + osc(vT ′ − yd, T ′))

+ inf
wT ′∈VT ′

(‖p− wT ′‖0,Ω + osc(f + P[a,b](wT ′), T ′)
)

6 (1− θC2(1 + C4))(‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck),(4.7)

so we can conclude from Lemma 4.2 that ηk(RTk→T ) > θηk(Tk). Note that Algorithm 2.3 selects
a minimal set Mk of Tk with ηk(Mk) > θηk(Tk). Thus,

#Mk 6 #RTk→T 6 #T −#Tk 6 #T ′′ −#T0 . #T ′ −#T0.(4.8)

Now (4.3) follows from (4.6). �

Now we are in the position to present our final result on the quasi-optimality of AFEM for
solving optimal control problems.
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Theorem 4.4. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of optimal control problem
(2.1)-(2.2) and (un, yn, pn) ∈ Uad × Vn × Vn be the solution of the discrete problem (2.9)-(2.11)
generated by the adaptive Algorithm 2.4. For some s > 0, let (y, p) ∈ As. Under the assumptions
of Lemma 4.2 there holds that

‖u− un‖0,Ω + ‖y − yn‖0,Ω + ‖p− pn‖0,Ω + oscn . |(y, p)|As(#Tn −#T0)−s(4.9)

provided h0 � 1.

Proof. It follows from Lemmas 4.1 and 4.3 that

#Tn −#T0 .
n−1∑
k=0

#Mk

. |(y, p)|
1
s

As

n−1∑
k=0

(‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck)−
1
s .(4.10)

Due to Theorem 3.13 we obtain form 0 6 k < n that

‖u− un‖0,Ω + ‖y − yn‖0,Ω + ‖p− pn‖0,Ω + oscn

. νn−k
(
‖u− uk‖0,Ω + ‖y − yk‖0,Ω + ‖p− pk‖0,Ω + osck

)
.

Thus,

#Tn −#T0 . |(y, p)|
1
s

As(‖u− un‖0,Ω + ‖y − yn‖0,Ω + ‖p− pn‖0,Ω + oscn)−
1
s

n−1∑
k=0

ν
n−k

s

. |(y, p)|
1
s

As(‖u− un‖0,Ω + ‖y − yn‖0,Ω + ‖p− pn‖0,Ω + oscn)−
1
s ,(4.11)

where the last inequality holds due to ν < 1. This completes the proof of the theorem. �

5. Numerical experiments

In this section we carry out some numerical tests in two dimensions to support our theoretical
results obtained in this paper. As indicated in [10], the additional refinement of elements to ensure
the mesh grading property (2.8) seems to be not necessary in practical computations to deliver
optimal convergence of L2-norm based AFEM. So in current paper we use the practical bisection
algorithm without additional refinement, similar phenomenon can be observed for the optimal
convergence.

Example 5.1. We consider an example defined on Ω = (0, 1)2. We set α = 0.1 and choose the
exact solutions as

y = arctan(−50x1 + 100x2 − 25),

p = 16x1(1− x1)x2(1− x2)(1 + arctan(200(
1

16
− (x1 − 0.5)2 − (x2 − 0.5)2))),

u = max{−5,min{−1,− p
α
}},

the corresponding f and yd can be obtained after simple calculation. Note that we impose inho-
mogeneous Dirichlet boundary condition for the state y and our theoretical analysis applies to this
case after some simple adaptations .

In Figure 1 we plot the profiles of the state and adjoint state variables on adaptively refined
mesh with θ = 0.3 and 20 adaptive loops. Although the solutions are smooth, larger gradients can
be observed in certain areas so the adaptive finite element method may deliver much smaller errors
compared to the uniform refinement. In Figure 2 and 3 we show the adaptive meshes after 15,
20 and 25 adaptive loops with Dörfler’s marking parameter θ = 0.3. We can see that the meshes
concentrate on the areas where the solutions have larger gradients. Moreover, in Figure 3 we plot
the active sets of both the continuous control, the discrete controls by using variational control
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discretization and piecewise linear and continuous finite element approximations. We can observe
that the active set of variational discretized control is more close to the continuous one compared
with full control discretization, this shows the superiority of variational control discretization.
In Figure 4 we give the comparisons of convergence history of the L2-norm errors of the optimal
control, the state and adjoint state and the error estimators on uniformly refined meshes (θ=1) and
adaptively refined meshes with θ = 0.3 and θ = 0.4, respectively. Although optimal convergence of
second order in L2-norm can be observed for both the uniform refinement and adaptive refinement,
we have smaller errors for adaptive algorithm which shows the power of AFEM for problems even
with H2-regularity.
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Figure 1. The profiles of the numerical state (left) and adjoint state (right) on
adaptively refined mesh with θ = 0.3 and 20 adaptive loops for Example 5.1
generated by Algorithm 2.4.
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Figure 2. The adaptive meshes after 15 steps (left) and 25 steps for Example
5.1 generated by Algorithm 2.4 with θ = 0.3.
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Figure 3. The adaptive meshes after 20 steps (left) and zoom in near the left
below corner for Example 5.1 generated by Algorithm 2.4 with θ = 0.3. The red
line depicts the boarder of the active set of the continuous solution, the blue line
depicts the boarder of the active set when using variational discretization, and the
green line depicts the boarder of the active set obtained by using piecewise linear,
continuous controls.
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Figure 4. The comparisons of convergence history of the optimal control, state
and adjoint state and the error estimators on uniformly refined meshes (θ=1) and
adaptively refined meshes with θ = 0.3 (left) and θ = 0.4 (right), respecvitely, for
Example 5.1 generated by Algorithm 2.4.

Example 5.2. In the second example we consider an optimal control problem without explicit
solutions. We set Ω = (0, 1)2, α = 10−2, a = 10 and b = 15. We choose the singular f and desired
state yd as

f =
√

(x1 − 1)2 + (x2 − 1)2
−1.5

, yd =
√
x2

1 + x2
2

−1.9

.
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Note that f and yd are not in L2(Ω) as we assumed in the paper, the theory we derived above
does not apply in this case. However, since the singularity is only located in two points, only some
simple modifications need be made in the computations. We intend to use this example to explain
that even in convex domain the solution of elliptic equation may have singularity caused by singular
data so the adaptive FEM may also find applications.

In Figure 5 we plot the profiles of the state and adjoint state variables on adaptively refined
mesh with θ = 0.3 and 20 adaptive loops. Since f and yd have singularities near the points (0, 0)
and (1, 1), respectively, we can observe the corresponding singularities for the state and adjoint
state. In Figure 6 and 7 we show the adaptive meshes after 15, 20 and 25 adaptive loops with
Dörfler’s marking parameter θ = 0.3. We can see that the meshes concentrate on the points (0, 0)
and (1, 1) where the singularities of the solutions are located. Moreover, in Figure 7 we plot the
active sets of the discrete controls by using variational control discretization and piecewise linear
and continuous finite element approximations. We can observe that the active set of variational
discretized control crosses the elements and can give better results, as indicated in Example 5.1.
Since we do not have explicit solutions, in Figure 8 we only show the comparisons of convergence
history of the error estimators on uniformly refined meshes (θ=1) and adaptively refined meshes
with θ = 0.3 and θ = 0.4, respectively. We can observe the optimal second order convergence
for the reduction of the error estimators for the adaptive refinement which reflects the optimal
convergence of the L2-norm of the control, the state and adjoint state because the a posteriori
error estimate is reliable and efficient. Note that only reduced orders are observed for the uniform
refinement, which is due to the singularity of the solutions caused by singular data.

1
0.8

0.6
0.4

0.2
00

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
0.8

0.6
0.4

0.2
00

0.2

0.4

0.6

0.8

-0.25

-0.2

-0.15

-0.1

-0.05

0

1

Figure 5. The profiles of the numerical state (left) and adjoint state (right) on
adaptively refined mesh with θ = 0.3 and 20 adaptive loops for Example 5.2
generated by Algorithm 2.4.
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Figure 6. The adaptive meshes after 15 steps (left) and 25 steps for Example
5.2 generated by Algorithm 2.4 with θ = 0.3.
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