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Abstract: In this paper we consider the convergence analysis of adaptive finite element
method for elliptic optimal control problems with pointwise control constraints. We use varia-
tional discretization concept to discretize the control variable and piecewise linear and continu-
ous finite elements to approximate the state variable. Based on the well-established convergence
theory of AFEM for elliptic boundary value problems, we rigorously prove the convergence and
quasi-optimality of AFEM for optimal control problems with respect to the state and adjoint
state variables, by using the so-called perturbation argument. Numerical experiments confirm our
theoretical analysis.
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1. Introduction

Adaptive finite element method (AFEM for short), contributed to the pioneer work of Babuška
and Rheinboldt ([2]), becomes nowadays a popular approach in the community of engineering
and scientific computing. It aims at distributing more mesh nodes around the area where the
singularities happen to save the computational cost. Various types of reliable and efficient a
posteriori error estimators, which are used to detect the location of singularity and essential for
the success of AFEM, have been developed in the last decades for different kind of problems, we
refer to [36] for an overview.

Although AFEM has been successfully applied for more than three decades, the convergence
analysis is rather recent which started with Dörfler [13] and was further studied in [6, 32, 33, 31, 7].
Besides convergence, optimality is another important issue in AFEM which was firstly addressed
by Binev et al. [6] and further studied by Stevenson ([34, 35]). The so-called Dörfler’s marking
proposed in [13] and quasi-error introduced in [7] consisting of the sum of the energy error and the
scaled estimator are crucial to prove the contraction of the errors and quasi-optimal cardinality of
the standard AFEM which avoids marking for oscillation ([13]) and circumvents the interior node
property of mesh refinement ([32, 33]).

AFEM also finds successful application in optimal control problems governed by partial differ-
ential equations, starting from Liu, Yan [26] and Becker, Kapp, Rannacher [3]. In [3] the authors
proposed a dual-weighted goal-oriented adaptivity for optimal control problems while in [26] resid-
ual type a posteriori error estimates were derived. We refer to [17, 18, 24, 27, 28, 29, 30] for more
details of recent advance. Recently, Kohls, Rösch and Siebert derived in [22] an error equivalence
property which enables one to derive reliable and efficient a posteriori error estimators for optimal
control problems with either variational discretization or full control discretization.

There also exist some attempts to prove the convergence of AFEM for optimal control problems.
In [14] the authors considered the piecewise constant approximation of the control variable and gave
an error reduction property for the quadruplet (u, y, p, σ), where u, y, p denote the optimal control,
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state, and adjoint state variables and σ the associated co-control variable. However, additional
requirements on the strict complementarity of the continuous problem and non-degeneracy property
of the discrete control problem are assumed and the marking strategy is extended to include the
discrete free boundary between the active and inactive control sets. In [4] the authors viewed
the control problems as a nonlinear elliptic system of the state and adjoint variables and gave a
convergence proof for the adaptive algorithm involving the marking of data oscillation. In [23] the
authors proved that the sequence of adaptively generated discrete solutions converged to the true
solutions for optimal control problems, but obtained only the plain convergence of the adaptive
algorithm without convergence rate and optimality. In this paper we intend to give a rigorous
convergence proof for the adaptive finite element algorithm of elliptic optimal control problem in
an optimal control framework. Compared to [4], the AFEM adopted in current paper uses Dörfler’s
marking ([13]) and is a standard algorithm in that it employs only the error indicators and does
not use the oscillation indicators. Moreover, for the convergence analysis of AFEM we use the
standard convergence results of AFEM for elliptic boundary value problems so that the proof is
more clear and rigorous.

Inspired by the work [11] of Dai, Xu and Zhou where the convergence and optimality of AFEM
for elliptic eigenvalue problem are proved by exploiting a certain relationship between the finite
element eigenvalue approximation and the associated finite element boundary value approximation,
in this paper we will provide a rigorous convergence analysis of the adaptive finite element algorithm
for optimal control problems governed by a linear elliptic equation. Under mild assumptions on the
initial mesh from which the adaptive algorithm starts, we show that the energy norm errors of the
state and adjoint state variables are equivalent to the boundary value approximations of the state
and adjoint state equations up to a higher order term. Then based on the well-known convergence
result of AFEM for elliptic boundary value problems, we are able to prove the convergence of
AFEM for the optimal control problems (OCPs for short). To be more specific, the AFEM for
OCPs is a contraction for the sum of the energy errors and the scaled error estimators of the state
y and the adjoint state p, between two consecutive adaptive loops. We also show that the AFEM
yields a decay rate of the energy errors of the state y and the adjoint state p plus oscillations of
the state and adjoint state equations in terms of the number of degrees of freedom. This result is
an improvement over the plain convergence result presented in [23].

We remark that we study the AFEM for OCPs under energy norm errors for the state and
adjoint state. Compared to a priori error estimates for optimal control problems ([20]), it seems
to be more suitable to work with L2-norm errors for the control, the state and the adjoint state,
including a posteriori error estimates and the convergence analysis. However, the motivation to
study AFEM in energy norm in this paper is two folds. Firstly, up to now almost all AFEMs
with guaranteed convergence are based on energy norm error, the only contribution of convergent
AFEM under L2-norm to our knowledge is [12] by Demlow and Stevenson, where the convergence
result of AFEM under energy norm is used to prove the convergence of AFEM with L2 norm
by establishing certain equivalence property between the L2-norm error and the weighted energy
norm error. Secondly, to work with L2-norm we have to assume H2-regularity for the solution of
elliptic equation, this excludes the most interesting case where the domain may be non-convex or
the coefficient of the elliptic operator may be discontinuous. However, if we have H2-regularity
for the solution of elliptic equation we can already achieve optimal a priori error estimates for the
optimal control problems and AFEM is thus not attractive.

The rest of the paper is organised as follows. In Section 2 we recall some well-known results
on the convergence analysis of AFEM for elliptic boundary values problems. In Section 3 we
introduce the finite element approximation of the optimal control problems and derive a posteriori
error estimates. We also present Dörfler’s marking strategy and the adaptive algorithm for the
optimal control problems. In Section 4 we give a rigorous convergence analysis of the AFEM
for optimal control problems and the quasi-optimal cardinality is proved in Section 5. Numerical
experiments are carried out in Section 6 to validate our theoretical result. Finally, we give a
conclusion in Section 7 and outlook the possible extensions and future work.
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Let Ω ⊂ Rd (d = 2, 3) be a bounded polygonal or polyhedral domain which is not necessarily
convex. We denote by Wm,q(Ω) the usual Sobolev space of order m > 0, 1 6 q < ∞ with norm
‖ ·‖m,q,Ω and seminorm | · |m,q,Ω. For q = 2 we denote Wm,q(Ω) by Hm(Ω) and ‖ ·‖m,Ω = ‖ ·‖m,2,Ω,
which is a Hilbert space. Note that H0(Ω) = L2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}. We
denote C a generic positive constant which may stand for different values at its different occurrences
but does not depend on mesh size. We use the symbol A . B to denote A 6 CB for some constant
C that is independent of mesh size.

2. Preliminaries

In this section, we recall some well-known results on the adaptive finite element approximation
to a linear elliptic boundary value problem, which are then used for the convergence analysis of
AFEM for optimal control problems. Some of the results are collected from [7] and [11], see also
[16].

Consider the following second order elliptic equation

(2.1)

{
Ly = f in Ω,
y = 0 on ∂Ω,

where f ∈ L2(Ω) and L is a linear second order elliptic operator of the following form:

Ly := −
d∑

i,j=1

∂

∂xj
(aij

∂y

∂xi
) + a0y.

We denote L∗ the adjoint operator of L

L∗y := −
d∑

i,j=1

∂

∂xj
(aji

∂y

∂xi
) + a0y.

Here 0 6 a0 <∞, aij ∈W 1,∞(Ω) (i, j = 1, · · · , d) and (aij)d×d is symmetric and positive definite.
We denote A = (aij)d×d and A∗ its adjoint. Let

a(y, v) =

∫
Ω

( d∑
i,j=1

aij
∂y

∂xi

∂v

∂xj
+ a0yv

)
dx, ∀y, v ∈ H1

0 (Ω).

It is clear that a(·, ·) is a bounded bilinear form over H1
0 (Ω) and defines a norm ‖ · ‖a,Ω =

√
a(·, ·)

which is equivalent to ‖ · ‖1,Ω.
The standard weak form of (2.1) reads as follows: Find y ∈ H1

0 (Ω) such that

a(y, v) = (f, v) ∀v ∈ H1
0 (Ω).(2.2)

For each f ∈ H−1(Ω) the above problem admits a unique solution by the well-known Lax-Milgram
theorem. Since the elliptic equation (2.2) is linear with respect to the right-hand side f , we can
define a linear and bounded solution operator S : L2(Ω)→ H1

0 (Ω) such that y = Sf .
Let Th be a regular triangulation of Ω such that Ω̄ = ∪T∈Th T̄ . We assume that Th is shape

regular in the sense that: There exists a constant γ∗ > 0 such that hT
ρT
6 γ∗ for all T ∈ Th, where

hT denotes the diameter of T and ρT is the diameter of the biggest ball contained in T . We set
h = maxT∈Th hT . In this paper, we use Eh to denote the set of interior faces (edges or sides) of Th
and #Th to denote the number of elements of Th.

On Th we construct a family of nested finite element spaces Vh consisting of piecewise linear and
continuous polynomials such that Vh ⊂ C(Ω̄)∩H1

0 (Ω). We define the standard Galerkin projection
operator Rh : H1

0 (Ω)→ Vh by ([9])

a(y −Rhy, vh) = 0 ∀vh ∈ Vh,(2.3)

which satisfies the following stability result

‖Rhy‖a,Ω . ‖y‖a,Ω ∀y ∈ H1
0 (Ω).(2.4)
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A standard finite element approximation to (2.2) can then be formulated as: Find yh ∈ Vh such
that

a(yh, vh) = (f, vh) ∀vh ∈ Vh.(2.5)

Similarly, we can define a discrete solution operator Sh : L2(Ω) → Vh such that yh = Shf . Thus,
we have yh = Rhy = RhSf .

For the following purpose, we follow the idea of [11] to introduce the quantity κ(h) as follows

κ(h) = sup
f∈L2(Ω),‖f‖0,Ω=1

inf
vh∈Vh

‖Sf − vh‖a,Ω.(2.6)

We note that the quantity κ(h) is determined by the regularity of Sf which is further induced by
properties of the domain Ω. Indeed, if the boundary of Ω is smooth, like C1, the additional regularity
Sf ∈ H2(Ω) holds and thus κ(h) = O(h). This is still true for polygonal or polyhedral boundaries if
the domain is convex. The regularity is reduced, however, in the vicinity of non-convex portions of
polygonal or polyhedral boundaries. Grisvard proved in [15] the precise regularity results (Theorem
2.4.3 for the two-dimensional case and Corollary 2.6.7 for the three-dimensional case): There exists

an ε ∈ (0, 1
2 ], which depends on the shape of the domain, such that Sf ∈ H

3
2 +ε(Ω) for each

f ∈ L2(Ω). Obviously, κ(h)� 1 for h ∈ (0, h0) if h0 � 1.
The following results are standard and can be found in, e.g., [9, 11]

Proposition 2.1. For each f ∈ L2(Ω), there hold

‖Sf − Shf‖a,Ω . κ(h)‖f‖0,Ω(2.7)

and

‖Sf − Shf‖0,Ω . κ(h)‖Sf − Shf‖a,Ω.(2.8)

Now we are in the position to review the residual type a posteriori error estimator for the finite
element approximation of an elliptic boundary value problem. We define the element residual
r̃T (yh) and the jump residual j̃E(yh) by

r̃T (yh) : = f − Lyh = f +∇ · (A∇yh)− a0yh in T ∈ Th,(2.9)

j̃E(yh) : = [A∇yh]E · nE on E ∈ Eh,(2.10)

where [A∇yh]E ·nE denotes the jump of A∇yh across the common side E of elements T+ and T−,
nE denotes the outward normal oriented to T−. For each element T ∈ Th, we define the local error
indicator η̃h(yh, T ) by

η̃h(yh, T ) :=
(
h2
T ‖r̃T (yh)‖20,T +

∑
E∈Eh,E⊂∂T

hE‖j̃E(yh)‖20,E
) 1

2

.(2.11)

Then on a subset ω ⊂ Ω, we define the error estimator η̃h(yh, ω) by

η̃h(yh, ω) :=
( ∑
T∈Th,T⊂ω

η̃2
h(yh, T )

) 1
2

.(2.12)

Thus, η̃h(yh,Ω) constitutes the error estimator on Ω with respect to Th.
For f ∈ L2(Ω) we also need to define the data oscillation as (see [32, 33])

osc(f, T ) := ‖hT (f − f̄T )‖0,T , osc(f, Th) :=
( ∑
T∈Th

osc2(f, T )
) 1

2

,(2.13)

where f̄T denotes the L2-projection of f onto piecewise constant space on T . It is easy to see that

osc(f1 + f2, Th) 6 osc(f1, Th) + osc(f2, Th), ∀f1, f2 ∈ L2(Ω).(2.14)

For the above defined data oscillation we have the following lemma whose proof can be found in
[11, Lemma 2.4].
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Lemma 2.2. There exists a constant C∗ which depends on A, the mesh regularity constant γ∗ and
the coefficient c, such that

osc(Lv, Th) 6 C∗‖v‖a,Ω, osc(L∗v, Th) 6 C∗‖v‖a,Ω ∀v ∈ Vh.(2.15)

Now we can formulate the following global upper and lower bounds for the a posteriori error
estimators of elliptic boundary value problems (see, e.g., [13, 36]):

‖y − yh‖2a,Ω 6 C̃1η̃
2
h(yh,Ω),(2.16)

C̃2η̃
2
h(yh,Ω) 6 ‖y − yh‖2a,Ω + C̃3osc2(f − Lyh, Th).(2.17)

For our following purpose we also need to study the adjoint equation of the elliptic boundary
value problem (2.1). For each g ∈ L2(Ω), let p ∈ H1

0 (Ω) be the solution of the following adjoint
equation

a(v, p) = (g, v) ∀v ∈ H1
0 (Ω)(2.18)

with its finite element approximation

a(vh, ph) = (g, vh) ∀vh ∈ Vh.(2.19)

We can also give the a posteriori global upper and lower error bounds:

‖p− ph‖2a,Ω 6 C̃1η̃
2
h(ph,Ω),(2.20)

C̃2η̃
2
h(ph,Ω) 6 ‖p− ph‖2a,Ω + C̃3osc2(g − L∗ph, Th).(2.21)

To analyze the adaptive finite element approximation for the optimal control problem, we in-
troduce the AFEM for a system of two source problems associated with the state and adjoint state
equations, which is some trivial extension for the existing results of the adaptive finite element
approximation of the scalar problem (see [7]). Specifically, we introduce the adaptive finite element
algorithm to solve a system of elliptic boundary value problems (2.2) and (2.18) based on the error
estimators η̃2

h(yh,Ω) + η̃2
h(ph,Ω).

The adaptive finite element procedure consists of the following loop

SOLVE→ ESTIMATE→ MARK→ REFINE.

The ESTIMATE step is based on the a posteriori error estimators derived above, while the step
REFINE can be done by using iterative or recursive bisection of elements with the minimal refine-
ment condition (see [34, 36]). Due to [7], the procedure REFINE here is not required to satisfy
the interior node property of [32].

There are different kinds of adaptive algorithms which differ from the marking strategies (see
[31, 32, 33]). Here we apply Dörfler’s marking strategy introduced in [13], which marks only the

error estimator η̃2
h(yh,Ω) + η̃2

h(ph,Ω) to obtain the set of marked elements T̃h ⊂ Th and avoids the
marking for oscillation (compare Algorithm 3.7). Then the adaptive algorithm for solving elliptic
boundary value problems is also standard, see e.g. [7, Section 2.7], except that we solve instead a
system of elliptic boundary value problems (2.2) and (2.18) (compare Algorithm 3.8).

We denote T the class of all conforming refinements by bisection of Th0
(see [7] for more details).

Given a fixed number b > 1, for any Thk ∈ T and Mhk ⊂ Thk of marked elements,

Thk+1
= REFINE(Thk ,Mhk)

outputs a conforming triangulation Thk+1
∈ T, where at least all elements of Mhk are bisected

b times. We define RThk→Thk+1
= Thk\(Thk ∩ Thk+1

) as set of refined elements, which satisfies

Mhk ⊂ RThk→Thk+1
.

Then we can formulate the following standard result on the complexity of the refinement, see
[7, Lemma 2.3] and [35] for more details.

Lemma 2.3. Assume that Th0
verifies condition (b) of Section 4 in [35]. Let Thk (k > 0) be a

sequence of conforming and nested triangulations of Ω generated by REFINE starting from the
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initial mesh Th0 . Assume that Thk+1
is generated from Thk by Thk+1

= REFINE(Thk ,Mhk) with a

subset Mhk ⊂ Thk . Then there exists a constant Ĉ0 depending on Th0 and b such that

#Thk+1
−#Th0

6 Ĉ0

k∑
i=0

#Mhi ∀k > 1.(2.22)

We define

‖(y, p)‖2a = a(y, y) + a(p, p).

The convergence of adaptive algorithm based on Dörfler’s marking strategy is proven in [7] and the
techniques are then used extensively for the convergence analysis of AFEM for a different kind of
boundary value problems. The following Theorem 2.4, Lemma 2.5 and Lemma 2.6 are extensions
of corresponding results for the single elliptic equation in [7] by some primary operations. We
remark that in [10] the authors used a similar idea to prove the convergence of adaptive finite
element computations for multiple eigenvalues.

Theorem 2.4. Let (yhk , phk) ∈ Vhk × Vhk be a sequence of finite element solutions of problems
(2.2) and (2.18) based on the adaptively refined mesh Thk produced by AFEM. Then there exist

constants γ̃ > 0 and β̃ ∈ (0, 1), depending only on the shape regularity of meshes, the data and the
parameters used in Dörfler’s marking algorithm, such that for any two consecutive iterates k and
k + 1 we have

‖(y − yhk+1
, p− phk+1

)‖2a + γ̃
(
η̃2
hk+1

(yhk+1
,Ω) + η̃2

hk+1
(phk+1

,Ω)
)

6 β̃2
(
‖(y − yhk , p− phk)‖2a + γ̃

(
η̃2
hk

(yhk ,Ω) + η̃2
hk

(phk ,Ω)
))
.(2.23)

Here

γ̃ :=
1

(1 + δ−1)C2
∗

(2.24)

with some constant δ ∈ (0, 1).

To prove the optimal complexity of the adaptive algorithm we need further results. The following
lemma presents a localized upper bound estimate for the distance between two nested solutions of
the elliptic boundary value problems (2.2) and (2.18) (see [7, Lemma 3.6] and [11, Lemma 6.2]).

Lemma 2.5. Let (yhk , phk) ∈ Vhk×Vhk and (yhk+1
, phk+1

) ∈ Vhk+1
×Vhk+1

be the discrete solutions
of problems (2.2) and (2.18) over a mesh Thk and its refinement Thk+1

with marked elementMhk ⊂
Thk . Let RThk→Thk+1

be the set of refined elements. Then the following localised upper bound is

valid

‖(yhk − yhk+1
, phk − phk+1

)‖2a 6 C̃1

∑
T∈RThk→Thk+1

(
η̃2
hk

(yhk , T ) + η̃2
hk

(phk , T )
)
.(2.25)

Consequently, we can show the optimality of Dörfler’s marking strategy in the following lemma
(see [7, Lemma 5.9] and [11, Proposition 6.3] for the proof).

Lemma 2.6. Let (yhk , phk) ∈ Vhk×Vhk and (yhk+1
, phk+1

) ∈ Vhk+1
×Vhk+1

be the discrete solutions
of problems (2.2) and (2.18) over a mesh Thk and its refinement Thk+1

with marked elementMhk ⊂
Thk . Suppose that they satisfy the energy decrease property

‖(y − yhk+1
, p− phk+1

)‖2a + γ̃0

(
osc2(f − Lyhk+1

, Thk+1
) + osc2(g − L∗phk+1

, Thk+1
)
)

6 β̃2
0

(
‖(y − yhk , p− phk)‖2a + γ̃0

(
osc2(f − Lyhk , Thk) + osc2(g − L∗phk , Thk)

))
(2.26)

with γ̃0 > 0 a constant and β̃2
0 ∈ (0, 1

2 ). Then the set RThk→Thk+1
of marked elements satisfies the

Dörfler property∑
T∈RThk→Thk+1

(
η̃2
hk

(yhk , T ) + η̃2
hk

(phk , T )
)
> θ̃

∑
T∈Thk

(
η̃2
hk

(yhk , T ) + η̃2
hk

(phk , T )
)

(2.27)
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with θ̃ =
C̃2(1−2β̃2

0)

C̃0(C̃1+(1+2C2
∗C̃1)γ̃0)

, where C̃0 = max(1, C̃3

γ̃0
).

3. Adaptive finite element method for the optimal control problem

In this section we consider the following elliptic optimal control problem:

min
u∈Uad

J(y, u) =
1

2
‖y − yd‖20,Ω +

α

2
‖u‖20,Ω(3.1)

subject to

(3.2)

{
Ly = u in Ω,
y = 0 on ∂Ω,

where α > 0 is a fixed parameter, yd ∈ L2(Ω) is the desired state and Uad is the admissible control
set with bilateral control constraints:

Uad :=
{
u ∈ L2(Ω), a 6 u 6 b a.e. in Ω

}
,

where a, b ∈ R and a < b.

Remark 3.1. We remark that all the theories presented below can be generalized to the case that
the control acts on a subdomain ω ⊂ Ω. In this case the control operator B : L2(ω)→ L2(Ω) is an
extension by zero operator and the governing equation reads Ly = Bu.

With the solution operator S of the elliptic equation (3.2) introduced in the last section, we can
formulate the reduced optimization problem

min
u∈Uad

Ĵ(u) := J(Su, u) =
1

2
‖Su− yd‖20,Ω +

α

2
‖u‖20,Ω.(3.3)

Since the above optimization problem is linear and strictly convex, there exists a unique solution
u ∈ Uad by standard arguments (see [25]). Moreover, the first order necessary and sufficient
optimality condition can be stated as follows:

(3.4) Ĵ ′(u)(v − u) = (αu+ S∗(Su− yd), v − u) > 0, ∀v ∈ Uad,

where S∗ is the adjoint of S ([21]). Introducing the adjoint state p := S∗(Su − yd) ∈ H1
0 (Ω), we

are led to the following optimality system:

(3.5)

 a(y, v) = (u, v), ∀v ∈ H1
0 (Ω),

a(w, p) = (y − yd, w), ∀w ∈ H1
0 (Ω),

(αu+ p, v − u) > 0, ∀v ∈ Uad.

Hereafter, we call u, y and p the optimal control, state and adjoint state, respectively. From the
last inequality of (3.5) we have the pointwise representation of u (see [25]):

u = P[a,b]

{
− 1

α
p
}
,(3.6)

where P[a,b] is the orthogonal projection operator from L2(Ω) to Uad.
Next, let us consider the finite element approximation of (3.1)-(3.2). In this paper, we use

the piecewise linear finite elements to approximate the state y, and variational discretization for
the optimal control u (see [20]). Based on the finite element space Vh, we can define the finite
dimensional approximation to the optimal control problem (3.1)-(3.2) as follows: Find (uh, yh) ∈
Uad × Vh such that

min
uh∈Uad

Jh(yh, uh) =
1

2
‖yh − yd‖20,Ω +

α

2
‖uh‖20,Ω(3.7)

subject to

a(yh, vh) = (uh, vh), ∀vh ∈ Vh.(3.8)
7



Similar to the continuous case we have yh = Shuh. With this notation we can formulate a reduced
discrete optimization problem

min
uh∈Uad

Ĵh(uh) := Jh(Shuh, uh) =
1

2
‖Shuh − yd‖20,Ω +

α

2
‖uh‖20,Ω.(3.9)

We note that the above optimization problem can be solved by the projected gradient method or
the semi-smooth Newton method, see [19], [21] and [30] for more details.

Similar to the continuous problem (3.1)-(3.2), the above discretized optimization problem also
admits a unique solution uh ∈ Uad. Moreover, the first order necessary and sufficient optimality
condition can be stated as follows:

Ĵ ′h(uh)(vh − uh) = (αuh + S∗h(Shuh − yd), vh − uh) > 0, ∀vh ∈ Uad,(3.10)

where S∗h is the adjoint of Sh. Introducing the adjoint state ph := S∗h(Shuh − yd) ∈ Vh, the
discretized first order necessary and sufficient optimality condition is equivalent to:

(3.11)

 a(yh, vh) = (uh, vh), ∀vh ∈ Vh,
a(wh, ph) = (yh − yd, wh), ∀wh ∈ Vh,
(αuh + ph, vh − uh) > 0, ∀vh ∈ Uad.

Hereafter, we call uh, yh and ph the discrete optimal control, state and adjoint state, respectively.
Similar to the continuous case (3.6) we have

uh = P[a,b]

{
− 1

α
ph

}
.(3.12)

It should be noticed that uh is not generally a finite element function in Vh.
For convenience we define yh := Suh and ph := S∗(Shuh− yd). It is obvious that yh and ph are

the standard Galerkin projections of yh and ph, i.e., yh = Rhyh and ph = Rhph. The following
equivalence property is established in [22].

Theorem 3.2. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) and (uh, yh, ph) ∈ Uad × Vh × Vh be the
solutions of problems (3.1)-(3.2) and (3.7)-(3.8), respectively. Then the following an equivalence
property holds:

‖u− uh‖0,Ω + ‖y − yh‖a,Ω + ‖p− ph‖a,Ω ≈ ‖yh − yh‖a,Ω + ‖ph − ph‖a,Ω.(3.13)

Proof. For completeness we include a brief proof. Setting v = uh in (3.4) and vh = u in (3.10) we
are led to

(αu+ S∗(Su− yd), uh − u) > 0,(3.14)

(αuh + S∗h(Shuh − yd), u− uh) > 0.(3.15)

Adding the above two inequalities, we conclude from (3.5) that

α‖u− uh‖20,Ω 6 (S∗h(Shuh − yd)− S∗(Su− yd), u− uh)

= (S∗h(Shuh − yd)− S∗(Shuh − yd), u− uh) + (S∗(Shuh − yd)− S∗(Su− yd), u− uh)

= (S∗h(Shuh − yd)− S∗(Shuh − yd), u− uh) + (Shuh − Su, Su− Suh)

= (S∗h(Shuh − yd)− S∗(Shuh − yd), u− uh) + (Shuh − Su, Su− Shuh)

+(Shuh − Su, Shuh − Suh).(3.16)

It follows from Young’s inequality that

α‖u− uh‖20,Ω 6 C‖Suh − Shuh‖2a,Ω + C‖S∗(Shuh − yd)− S∗h(Shuh − yd)‖2a,Ω.(3.17)

Moreover, from (3.5) we have

‖y − yh‖a,Ω 6 ‖y − Suh‖a,Ω + ‖Suh − yh‖a,Ω
6 C‖u− uh‖0,Ω + ‖Suh − yh‖a,Ω
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and

‖p− ph‖a,Ω 6 ‖p− S∗(Shuh − yd)‖a,Ω + ‖S∗(Shuh − yd)− ph‖a,Ω
6 C‖Su− Shuh‖0,Ω + ‖S∗(Shuh − yd)− ph‖a,Ω
6 C‖u− uh‖0,Ω + ‖S∗(Shuh − yd)− ph‖a,Ω + C‖Suh − yh‖a,Ω.

Combining the above estimates we prove the upper bound.
Now we prove the lower bound. Note that

‖Suh − Shuh‖a,Ω 6 ‖Suh − Su‖a,Ω + ‖Su− Shuh‖a,Ω
6 C‖u− uh‖0,Ω + ‖y − yh‖a,Ω.(3.18)

Similarly, we can derive that

‖S∗(Shuh − yd)− S∗h(Shuh − yd)‖a,Ω
6 ‖S∗(Shuh − yd)− S∗(Su− yd)‖a,Ω + ‖S∗(Su− yd)− S∗h(Shuh − yd)‖a,Ω
6 C‖Shuh − Su‖0,Ω + ‖p− ph‖a,Ω
= C‖y − yh‖a,Ω + ‖p− ph‖a,Ω.(3.19)

Thus, we can conclude from the above estimates the lower bound. This completes the proof. �

Next, we will prove a compact equivalence property which shows the certain relationship between
the finite element optimal control approximation and the associated finite element boundary value
approximation.

Theorem 3.3. Let h ∈ (0, h0), (u, y, p) ∈ Uad×H1
0 (Ω)×H1

0 (Ω) and (uh, yh, ph) ∈ Uad×Vh×Vh be
the solutions of problems (3.1)-(3.2) and (3.7)-(3.8), respectively. Then the following equivalence
properties hold

‖y − yh‖a,Ω = ‖yh − yh‖a,Ω +O(κ(h))
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

)
,(3.20)

‖p− ph‖a,Ω = ‖ph − ph‖a,Ω +O(κ(h))
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

)
(3.21)

provided h0 � 1.

Proof. It is obvious that

y − yh = yh − yh + y − yh, p− ph = ph − ph + p− ph.(3.22)

Moreover, it follows from the stability results of the elliptic equation that

‖y − yh‖a,Ω 6 C‖u− uh‖0,Ω, ‖p− ph‖a,Ω 6 C‖y − yh‖0,Ω.(3.23)

In the following we estimate ‖y− yh‖0,Ω. Let ψ ∈ H1
0 (Ω) be the solution of the following auxiliary

problem

(3.24)

{
L∗ψ = y − yh in Ω,
ψ = 0 on ∂Ω.

Let ψh ∈ Vh be the finite element approximation of ψ. In the following proof we use the duality
argument (see, e.g., [9]). Multiplying by y − yh on both sides of (3.24) and integration by parts,
we can conclude from (2.7) that

‖y − yh‖20,Ω = a(y − yh, ψ)

= a(y − yh, ψ − ψh) + a(y − yh, ψh)

= a(y − yh, ψ − ψh) + (u− uh, ψh − ψ) + (u− uh, ψ)

6 Cκ(h)‖y − yh‖a,Ω‖y − yh‖0,Ω + C(1 + κ(h))‖u− uh‖0,Ω‖y − yh‖0,Ω
6 C

(
κ(h)‖y − yh‖a,Ω + ‖u− uh‖0,Ω

)
‖y − yh‖0,Ω,
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where κ(h) is defined in (2.6). This in turn implies

‖y − yh‖0,Ω 6 Cκ(h)‖y − yh‖a,Ω + C‖u− uh‖0,Ω.(3.25)

Considering (3.23) we have

‖p− ph‖a,Ω 6 Cκ(h)‖y − yh‖a,Ω + C‖u− uh‖0,Ω.(3.26)

It remains to estimate ‖u − uh‖0,Ω. Note that it follows from (3.14), (3.15) and the definition of
S∗h that

α‖u− uh‖20,Ω 6 (S∗h(Shuh − yd)− S∗(Su− yd), u− uh)

= (S∗h(Shuh − yd)− S∗h(Shu− yd), u− uh)

+(S∗h(Shu− yd)− S∗(Su− yd), u− uh)

= (Sh(uh − u), Sh(u− uh)) + (S∗h(Shu− yd)− S∗(Su− yd), u− uh)

6 (S∗h(Shu− yd)− S∗(Su− yd), u− uh),

which yields

‖u− uh‖0,Ω 6 C‖S∗h(Shu− yd)− S∗(Su− yd)‖0,Ω.(3.27)

Let φ ∈ H1
0 (Ω) be the solution of the following auxiliary problem

(3.28)

{
Lφ = S∗h(Shu− yd)− S∗(Su− yd) in Ω,
φ = 0 on ∂Ω.

Now we use the duality argument again. It follows from the continuous and discrete adjoint state
equations that

‖S∗h(Shu− yd)− S∗(Su− yd)‖20,Ω = a(φ, S∗h(Shu− yd)− S∗(Su− yd))
= a(φ− φh, S∗h(Shu− yd)− S∗(Su− yd)) + a(φh, S

∗
h(Shu− yd)− S∗(Su− yd))

= a(φ− φh, S∗h(Shu− yd)− S∗(Su− yd)) + (φh, Shu− Su)

= a(φ− φh, S∗h(Shu− yd)− S∗(Su− yd)) + (φh − φ, Shu− Su) + (φ, Shu− Su),(3.29)

where φh ∈ Vh is the finite element approximation of φ. We can conclude from (2.7)-(2.8) that

a(φ− φh, S∗h(Shu− yd)− S∗(Su− yd))
6 Cκ(h)‖S∗h(Shu− yd)− S∗(Su− yd)‖0,Ω‖S∗h(Shu− yd)− S∗(Su− yd)‖a,Ω(3.30)

and

(φh − φ, Shu− Su) 6 Cκ2(h)‖S∗h(Shu− yd)− S∗(Su− yd)‖0,Ω‖Shu− Su‖a,Ω,(3.31)

(φ, Shu− Su) 6 Cκ(h)‖S∗h(Shu− yd)− S∗(Su− yd)‖0,Ω‖Shu− Su‖a,Ω.(3.32)

Using the fact that κ2(h) < κ(h)� 1 when h0 � 1, we are able to derive that

‖S∗h(Shu− yd)− S∗(Su− yd)‖0,Ω
6 Cκ(h)(‖S∗h(Shu− yd)− S∗(Su− yd)‖a,Ω + ‖Shu− Su‖a,Ω),(3.33)

Combining (3.27) and (3.33) we are led to

‖u− uh‖0,Ω . κ(h)(‖S∗h(Shu− yd)− S∗(Su− yd)‖a,Ω + ‖Shu− Su‖a,Ω)

. κ(h)(‖ph − p‖a,Ω + ‖S∗h(Shu− yd)− S∗h(Shuh − yd)‖a,Ω + ‖Shu− Su‖a,Ω)

. κ(h)(‖ph − p‖a,Ω + ‖Shu− Shuh‖a,Ω + ‖Shu− Su‖a,Ω)

. κ(h)(‖ph − p‖a,Ω + ‖Shuh − Su‖a,Ω + ‖Shu− Shuh‖a,Ω)

. κ(h)(‖ph − p‖a,Ω + ‖yh − y‖a,Ω + ‖u− uh‖0,Ω).(3.34)

If h0 � 1 then κ(h)� 1 for all h ∈ (0, h0), and we arrive at

‖u− uh‖0,Ω . κ(h)(‖ph − p‖a,Ω + ‖yh − y‖a,Ω).(3.35)

Inserting the above estimate into (3.23) and (3.26), we can conclude from (3.22) the desired results
(3.20)-(3.21). This completes the proof. �
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Now we are in the position to consider the adaptive finite element method for the optimal control
problem (3.1)-(3.2). At first we will derive a posteriori error estimates for above optimal control
problems. To begin with, we firstly introduce some notations. Similar to the definitions (2.9) and
(2.10) we define the element residuals ry,T (yh), rp,T (ph) and the jump residuals jy,E(yh), jp,E(ph)
by

ry,T (yh) : = uh − Lyh = uh +∇ · (A∇yh)− a0yh in T ∈ Th,(3.36)

rp,T (ph) : = yh − yd − L∗ph = yh − yd +∇ · (A∗∇ph)− a0ph in T ∈ Th,(3.37)

jy,E(yh) : = [A∇yh]E · nE on E ∈ Eh,(3.38)

jp,E(ph) : = [A∗∇ph]E · nE on E ∈ Eh.(3.39)

For each element T ∈ Th, we define the local error indicators ηy,h(yh, T ) and ηp,h(ph, T ) by

ηy,h(yh, T ) :=
(
h2
T ‖ry,T (yh)‖20,T +

∑
E∈Eh,E⊂∂T

hE‖jy,E(yh)‖20,E
) 1

2

,(3.40)

ηp,h(ph, T ) :=
(
h2
T ‖rp,T (ph)‖20,T +

∑
E∈Eh,E⊂∂T

hE‖jp,E(ph)‖20,E
) 1

2

.(3.41)

Then on a subset ω ⊂ Ω, we define the error estimators ηy,h(yh, ω) and ηp,h(ph, ω) by

ηy,h(yh, ω) :=
( ∑
T∈Th,T⊂ω

η2
y,h(yh, T )

) 1
2

,(3.42)

ηp,h(ph, ω) :=
( ∑
T∈Th,T⊂ω

η2
p,h(ph, T )

) 1
2

.(3.43)

Thus, ηy,h(yh,Ω) and ηp,h(ph,Ω) constitute the error estimators for the state equation and the
adjoint state equation on Ω with respect to Th.

Note that Shuh and S∗h(Shuh−yd) are the standard Galerkin projections of Suh and S∗(Shuh−
yd), respectively. Similar to (2.16)-(2.17), standard a posterior error estimates for elliptic boundary
value problems give the following upper bounds (see, e.g., [36]) which show the reliability of the
error estimators.

Lemma 3.4. Let S and Sh be the continuous and discrete solution operators defined above. Then
the following a posteriori error estimates hold

‖Suh − Shuh‖2a,Ω 6 C̃1η
2
y,h(yh,Ω),(3.44)

‖S∗(Shuh − yd)− S∗h(Shuh − yd)‖2a,Ω 6 C̃1η
2
p,h(ph,Ω).(3.45)

Then we can also derive the following global a posteriori error lower bounds, i.e., the global
efficiency of the error estimators.

Lemma 3.5. Let S and Sh be the continuous and discrete solution operators defined above. Then
the following a posteriori error lower bounds hold

C̃2η
2
y,h(yh,Ω) 6 ‖Suh − Shuh‖2a,Ω + C̃3osc2(uh − Lyh, Th),(3.46)

C̃2η
2
p,h(ph,Ω) 6 ‖S∗(Shuh − yd)− S∗h(Shuh − yd)‖2a,Ω

+C̃3osc2(yh − yd − L∗ph, Th).(3.47)

Let h0 ∈ (0, 1) be the mesh size of the initial mesh Th0
and define

κ̃(h0) := sup
h∈(0,h0]

κ(h).

It is obvious that κ̃(h0)� 1 if h0 � 1. For ease of exposition we also define the following quantities:

η2
h((yh, ph), T ) = η2

y,h(yh, T ) + η2
p,h(ph, T ),

osc2((yh, ph), T ) = osc2(uh − Lyh, T ) + osc2(yh − yd − L∗ph, T ),
11



and the straightforward modifications for η2
h((yh, ph),Ω) and osc2((yh, ph), Th).

Now we state the following a posteriori error estimates for the finite element approximation of
the optimal control problem.

Theorem 3.6. Let h ∈ (0, h0). Assume that (u, y, p) ∈ Uad ×H1
0 (Ω) ×H1

0 (Ω) and (uh, yh, ph) ∈
Uad × Vh × Vh are the solutions of problems (3.1)-(3.2) and (3.7)-(3.8), respectively. Then there
exist positive constants C1, C2 and C3, independent of the mesh size h, such that

‖(y − yh, p− ph)‖2a 6 C1η
2
h((yh, ph),Ω)(3.48)

and

C2η
2
h((yh, ph),Ω) 6 ‖(y − yh, p− ph)‖2a + C3osc2((yh, ph), Th)(3.49)

provided h0 � 1.

Proof. Note that yh = Suh, yh = Shuh, ph = S∗(Shuh − yd) and ph = S∗h(Shuh − yd). From the
estimates (3.20)-(3.21) and Lemmas 3.4 and 3.5 we have

‖(y − yh, p− ph)‖2a 6 2(‖yh − yh‖2a,Ω + ‖ph − ph‖2a,Ω) + Ĉ1κ
2(h)‖(y − yh, p− ph)‖2a

6 2C̃1η
2
h((yh, ph),Ω) + Ĉ1κ̃

2(h0)‖(y − yh, p− ph)‖2a
and

C̃2η
2
h((yh, ph),Ω) 6 (‖yh − yh‖2a,Ω + ‖ph − ph‖2a,Ω) + C̃3osc2((yh, ph), Th)

6 ‖(y − yh, p− ph)‖2a,Ω + C̃3osc2((yh, ph), Th)

+Ĉ2κ̃
2(h0)‖(y − yh, p− ph)‖2a.

We obtain the desired results by choosing

C1 =
2C̃1

1− Ĉ1κ̃2(h0)
, C2 =

C̃2

1 + Ĉ2κ̃2(h0)
, C3 =

C̃3

1 + Ĉ2κ̃2(h0)
.(3.50)

�

Now we present the adaptive algorithm for solving optimal control problems. Note that there
are two error estimators ηy,h(yh, T ) and ηp,h(ph, T ) contributed to the state approximation and
adjoint state approximation, respectively. We use the sum of the two estimators as our indicators
for the marking strategy. The marking algorithm based on Dörfler’s strategy for optimal control
problems can be described as follows

Algorithm 3.7. Dörfler’s marking strategy for OCPs

(1) Given a parameter 0 < θ < 1;

(2) Construct a minimal subset T̃h ⊂ Th such that∑
T∈T̃h

η2
h((yh, ph), T ) > θη2

h((yh, ph),Ω).

(3) Mark all the elements in T̃h.

Then we can present the adaptive finite element algorithm for the optimal control problem
(3.7)-(3.8) as follows:

Algorithm 3.8. Adaptive finite element algorithm for OCPs:

(1) Given an initial mesh Th0
with mesh size h0, construct the finite element space Vh0

.
(2) Set k = 0 and solve the optimal control problem (3.7)-(3.8) to obtain (uhk , yhk , phk) ∈

Uad × Vhk × Vhk .
(3) Compute the local error indicator ηhk((yhk , phk), T ).

(4) Construct T̃hk ⊂ Thk by the marking Algorithm 3.7.

(5) Refine T̃hk to get a new conforming mesh Thk+1
by procedure REFINE.
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(6) Construct the finite element space Vhk+1
and solve the optimal control problem (3.7)-(3.8)

to obtain (uhk+1
, yhk+1

, phk+1
) ∈ Uad × Vhk+1

× Vhk+1
.

(7) Set k = k + 1 and go to Step (3).

4. Convergence of AFEM for the optimal control problem

In this section we intend to prove the convergence of the adaptive Algorithm 3.8. The proof
uses some ideas of [11, 16] and some results of [7]. Following Theorem 3.3, we may firstly establish
some relationships between the two level approximations, which will be used in our analysis for
both convergence and optimal complexity.

Theorem 4.1. Let h,H ∈ (0, h0) and (u, y, p) ∈ Uad ×H1
0 (Ω)×H1

0 (Ω) be the solution of problem
(3.1)-(3.2). Assume that (uh, yh, ph) ∈ Uad × Vh × Vh and (uH , yH , pH) ∈ Uad × VH × VH are the
solutions of problem (3.7)-(3.8), respectively. Define yH := SuH and pH := S∗(SHuH −yd). Then
the following properties hold

‖y − yh‖a,Ω = ‖yH −RhyH‖a,Ω +O(κ̃(h0))
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)
,(4.1)

‖p− ph‖a,Ω = ‖pH −RhpH‖a,Ω +O(κ̃(h0))
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)
,(4.2)

osc(uh − Lyh, Th) = osc(uH − LRhyH , Th) +O(κ̃(h0))
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

+‖y − yH‖a,Ω + ‖p− pH‖a,Ω
)
,(4.3)

osc(yh − yd − L∗ph, Th) = osc(yH − yd − L∗RhpH , Th) +O(κ̃(h0))
(
‖y − yh‖a,Ω

+‖p− ph‖a,Ω + ‖y − yH‖a,Ω + ‖p− pH‖a,Ω
)

(4.4)

and

ηy,h(yh,Ω) = η̃h(RhyH ,Ω) +O(κ̃(h0))
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)
,(4.5)

ηp,h(ph,Ω) = η̃h(RhpH ,Ω) +O(κ̃(h0))
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)

(4.6)

provided h0 � 1.

Proof. Note that

y − yh = yH −RhyH +Rh(yH − yh) + y − yH(4.7)

and

p− ph = pH −RhpH +Rh(pH − ph) + p− pH .(4.8)

On the other hand, it follows from (2.4), the triangle inequality and the stability results for elliptic
equation that

‖Rh(yH − yh)‖a,Ω + ‖y − yH‖a,Ω . ‖yH − yh‖a,Ω + ‖y − yH‖a,Ω
. ‖y − yh‖a,Ω + ‖y − yH‖a,Ω
. ‖u− uh‖0,Ω + ‖u− uH‖0,Ω(4.9)

and

‖Rh(pH − ph)‖a,Ω + ‖p− pH‖a,Ω . ‖pH − ph‖a,Ω + ‖p− pH‖a,Ω
. ‖y − yh‖0,Ω + ‖y − yH‖0,Ω
. ‖u− uh‖0,Ω + κ(h)‖y − yh‖a,Ω

+‖u− uH‖0,Ω + κ(H)‖y − yH‖a,Ω,(4.10)
13



where in the last inequality we used (3.25). It follows from (3.35) that

‖Rh(yH − yh)‖a,Ω + ‖y − yH‖a,Ω + ‖Rh(pH − ph)‖a,Ω + ‖p− pH‖a,Ω
. κ(h)

(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

)
+ κ(H)

(
‖y − yH‖a,Ω + ‖p− pH‖a,Ω

)
. κ̃(h0)

(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω + ‖y − yH‖a,Ω + ‖p− pH‖a,Ω

)
(4.11)

provided h0 � 1. Combining this with (4.7)-(4.8) yields (4.1) and (4.2).
Then we prove (4.3)-(4.4). Note that

uh − Lyh = uH − LRhyH + LRh(yH − yh) + (uh − uH),(4.12)

yh − yd − L∗ph = yH − yd − L∗RhpH + L∗Rh(pH − ph) + (yh − yH).(4.13)

From Lemma 2.2 we have

osc(LRh(yH − yh), Th) . ‖Rh(yH − yh)‖a,Ω,
osc(L∗Rh(pH − ph), Th) . ‖Rh(pH − ph)‖a,Ω,

which together with (4.11) imply

osc(LRh(yH − yh), Th) + osc(L∗Rh(pH − ph), Th)

. κ̃(h0)
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω + ‖y − yH‖a,Ω + ‖p− pH‖a,Ω

)
.(4.14)

Moreover, since f̄T is the L2-projection of f onto piecewise polynomials on T , there holds

osc(f, Th) =
( ∑
T∈Th

‖hT (f − f̄T )‖20,T
) 1

2

. ‖f‖0,Ω.

By using the triangle inequality and (3.25) we thus have

osc(uh − uH , Th) . ‖uh − uH‖0,Ω . ‖u− uh‖0,Ω + ‖u− uH‖0,Ω,
osc(yh − yH , Th) . ‖yh − yH‖0,Ω . ‖u− uh‖0,Ω + ‖u− uH‖0,Ω

+κ(H)‖y − yH‖a,Ω + κ(h)‖y − yh‖a,Ω,

which together with (3.35) yield

osc(uh − uH , Th) . κ̃(h0)
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

+‖y − yH‖a,Ω + ‖p− pH‖a,Ω
)
,(4.15)

osc(yh − yH , Th) . κ̃(h0)
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

+‖y − yH‖a,Ω + ‖p− pH‖a,Ω
)
.(4.16)

We can conclude the desired results (4.3)-(4.4) from the definition of the data oscillation and
(4.12)-(4.16).

Now it remains to prove (4.5) and (4.6). From the definition of yH and yh we know that yh−yH
is the solution of an elliptic boundary value problem with right hand side uh−uH . It follows from
(2.17) and (4.9) that

η̃h(Rh(yh − yH),Ω) . ‖(yh − yH)−Rh(yh − yH)‖a,Ω
+osc(uh − uH − LRh(yh − yH), Th)

. ‖u− uh‖0,Ω + ‖u− uH‖0,Ω
+osc(uh − uH − LRh(yh − yH), Th).(4.17)
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From (2.14), (3.35), (4.14) and (4.15) we are led to

osc(uh − uH − LRh(yh − yH), Th) . κ̃(h0)
(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

+‖y − yH‖a,Ω + ‖p− pH‖a,Ω
)
.(4.18)

Note that

ηy,h(yh,Ω) = η̃h(Rhyh,Ω) = η̃h(RhyH +Rh(yh − yH),Ω).

Combining this with (3.35), (4.17) and (4.18) gives

ηy,h(yh,Ω) = η̃h(RhyH ,Ω) + κ̃(h0)
(
‖y − yh‖a,Ω + ‖y − yH‖a,Ω

+‖p− ph‖a,Ω + ‖p− pH‖a,Ω
)
,

which proves (4.5). Similarly we can prove (4.6). Thus, we complete the proof of the theorem. �

Now we are ready to prove the error reduction for the sum of the energy errors and the scaled
error estimators of the state y and the adjoint state p, between two consecutive adaptive loops.

Theorem 4.2. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of problem (3.1)-(3.2) and
(uhk , yhk , phk) ∈ Uad × Vhk × Vhk be a sequence of solutions to problem (3.7)-(3.8) produced by
Algorithm 3.8. Then there exist constants γ > 0 and β ∈ (0, 1) depending only on the shape
regularity of meshes and the parameter θ used by Algorithm 3.7, such that for any two consecutive
iterates k and k + 1, we have

‖(y − yhk+1
, p− phk+1

)‖2a + γη2
hk+1

((yhk+1
, phk+1

),Ω)

6 β2
(
‖(y − yhk , p− phk)‖2a + γη2

hk
((yhk , phk),Ω)

)
(4.19)

provided h0 � 1. Therefore, Algorithm 3.8 converges with a linear rate β, namely, the k-th iterate
solution (uhk , yhk , phk) of Algorithm 3.8 satisfies

‖(y − yhk , p− phk)‖2a + γη2
hk

((yhk , phk),Ω) 6 C0β
2k,(4.20)

where C0 = ‖(y − yh0 , p− ph0)‖2a + γη2
h0

((yh0 , ph0),Ω).

Proof. For convenience, we use (uH , yH , pH) and (uh, yh, ph) to denote (uhk , yhk , phk) and
(uhk+1

, yhk+1
, phk+1

), respectively. So it suffices to prove that for (uH , yH , pH) and (uh, yh, ph),
there holds

‖(y − yh, p− ph)‖2a + γη2
h((yh, ph),Ω)

6 β2
(
‖(y − yH , p− pH)‖2a + γη2

H((yH , pH),Ω)
)
.(4.21)

Recall that yH := SuH , yh := Suh and pH := S∗(SHuH − yd), ph := S∗(Shuh − yd). It follows
from Algorithm 3.7 that Dörfler’s marking strategy is satisfied for (yH , pH). So we conclude from

Theorem 2.4 that there exist constants γ̃ as defined in (2.24) and β̃ ∈ (0, 1) satisfying

‖(yH −RhyH , pH −RhpH)‖2a + γ̃
(
η̃2
h(RhyH ,Ω) + η̃2

h(RhpH ,Ω)
)

6 β̃2
(
‖(yH −RHyH , pH −RHpH)‖2a + γ̃

(
η̃2
H(RHyH ,Ω) + η̃2

H(RHpH ,Ω)
))
.(4.22)

Note that RHyH = yH and RHpH = pH , we thus have

‖(yH −RhyH , pH −RhpH)‖2a + γ̃
(
η̃2
h(RhyH ,Ω) + η̃2

h(RhpH ,Ω)
)

6 β̃2
(
‖(yH − yH , pH − pH)‖2a + γ̃

(
η2
y,H(yH ,Ω) + η2

p,H(pH ,Ω)
))
.(4.23)
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We conclude from (4.1)-(4.2) and (4.5)-(4.6) that there exists a constant Ĉ4 > 0 such that

‖(y − yh, p− ph)‖2a + γ̃η2
h((yh, ph),Ω)

6 (1 + δ1)‖(yH −RhyH , pH −RhpH)‖2a + (1 + δ1)γ̃
(
η̃2
h(RhyH ,Ω) + η̃2

h(RhpH ,Ω)
)

+Ĉ4(1 + δ−1
1 )κ̃2(h0)

(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
+Ĉ4(1 + δ−1

1 )κ̃2(h0)γ̃
(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
,

where Young’s inequality with δ1 is used and δ1 ∈ (0, 1) satisfies

(1 + δ1)β̃2 < 1.(4.24)

Thus, there exists a positive constant Ĉ5 depending on Ĉ4 and γ̃ such that Ĉ4(1 + δ−1
1 )(1 + γ̃) 6

Ĉ5δ
−1
1 and

‖(y − yh, p− ph)‖2a + γ̃η2
h((yh, ph),Ω)

6 (1 + δ1)
(
‖(yH −RhyH , pH −RhpH)‖2a + γ̃

(
η̃2
h(RhyH ,Ω) + η̃2

h(RhpH ,Ω)
))

+Ĉ5δ
−1
1 κ̃2(h0)

(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
.(4.25)

It follows from (4.23) and (4.25) that

‖(y − yh, p− ph)‖2a + γ̃η2
h((yh, ph),Ω)

6 (1 + δ1)β̃2
(
‖(yH − yH , pH − pH)‖2a + γ̃η2

H((yH , pH),Ω)
)

+Ĉ5δ
−1
1 κ̃2(h0)

(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
.(4.26)

Then using Theorem 3.3 we arrive at

‖(y − yh, p− ph)‖2a + γ̃η2
h((yh, ph),Ω)

6 (1 + δ1)β̃2
(

(1 + Ĉ6κ̃(h0))2‖(y − yH , p− pH)‖2a + γ̃η2
H((yH , pH),Ω)

)
+Ĉ5δ

−1
1 κ̃2(h0)

(
‖(y − yh, p− ph)‖2a + ‖(y − yH , p− pH)‖2a

)
,

6 (1 + δ1)β̃2
(
‖(y − yH , p− pH)‖2a + γ̃η2

H((yH , pH),Ω)
)

+
(
Ĉ5δ

−1
1 κ̃2(h0) + (1 + δ1)β̃2

(
2Ĉ6κ̃(h0) + Ĉ2

6 κ̃
2(h0)

))
‖(y − yH , p− pH)‖2a

+Ĉ5δ
−1
1 κ̃2(h0)‖(y − yh, p− ph)‖2a,

and thus

‖(y − yh, p− ph)‖2a + γ̃η2
h((yh, ph),Ω)

6 (1 + δ1)β̃2
(
‖(y − yH , p− pH)‖2a + γ̃η2

H((yH , pH),Ω)
)

+C4κ̃(h0)‖(y − yH , p− pH)‖2a + C4δ
−1
1 κ̃2(h0)‖(y − yh, p− ph)‖2a,(4.27)

where C4 is a positive constant depending on Ĉ5 and Ĉ6 when h0 � 1. So we can derive

(1− C4δ
−1
1 κ̃2(h0))‖(y − yh, p− ph)‖2a + γ̃η2

h((yh, ph),Ω)

6
(

(1 + δ1)β̃2 + C4κ̃(h0)
)
‖(y − yH , p− pH)‖2a + (1 + δ1)β̃2γ̃η2

H((yH , pH),Ω),(4.28)

or equivalently,

‖(y − yh, p− ph)‖2a +
γ̃

1− C4δ
−1
1 κ̃2(h0)

η2
h((yh, ph),Ω)

6
(1 + δ1)β̃2 + C4κ̃(h0)

1− C4δ
−1
1 κ̃2(h0)

‖(y − yH , p− pH)‖2a +
(1 + δ1)β̃2γ̃

1− C4δ
−1
1 κ̃2(h0)

η2
H((yH , pH),Ω).(4.29)
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Since κ̃(h0)� 1 provided that h0 � 1, we can define the constant β as

β :=
( (1 + δ1)β̃2 + C4κ̃(h0)

1− C4δ
−1
1 κ̃2(h0)

) 1
2

,(4.30)

which satisfies β ∈ (0, 1) if h0 � 1 in view of (4.24). Then

‖(y − yh, p− ph)‖2a +
γ̃

1− C4δ
−1
1 κ̃2(h0)

η2
h((yh, ph),Ω)

6 β2
(
‖(y − yH , p− pH)‖2a +

(1 + δ1)β̃2γ̃

(1 + δ1)β̃2 + C4κ̃(h0)
η2
H((yH , pH),Ω)

)
.(4.31)

Now we choose

γ :=
γ̃

1− C4δ
−1
1 κ̃2(h0)

,(4.32)

it is obvious that

(1 + δ1)β̃2γ̃

(1 + δ1)β̃2 + C4κ̃(h0)
=

(1 + δ1)β̃2(1− C4δ
−1
1 κ̃2(h0))

(1 + δ1)β̃2 + C4κ̃(h0)
γ < (1− C4δ

−1
1 κ̃2(h0))γ < γ.

Then we obtain (4.21), this completes the proof. �

Remark 4.3. We remark that the requirement h0 � 1 on the initial mesh Th0
is not restrictive

for the convergence analysis of AFEM for nonlinear problems, such as optimal control problems
studied in this paper, see, e.g., [14]. For a similar requirement we refer to [10, 11] for the conver-
gence analysis of adaptive finite element eigenvalue computations and to [31] for the adaptive finite
element computations for nonsymmetric boundary value problems, we should also mention [16] for
an adaptive finite element method of semilinear elliptic equations.

Remark 4.4. In the adaptive Algorithm 3.8 we use the sum of the error estimators ηy,h(yh, T )
contributed to the state approximation and ηp,h(ph, T ) contributed to the adjoint state approxima-

tion as an indicator to select the subset T̃h for refinement. This marking strategy enables us to
prove the convergence and quasi-optimality (see Section 5) of AFEM for optimal control problems.
We remark that it is also possible to apply Dörfler’s strategy to the contributions ηy,h(yh, T ) and
ηp,h(ph, T ) as follows:

• Construct a minimal subset T̃h,1 ⊂ Th such that
∑

T∈T̃h,1
η2
y,h(yh, T ) > θη2

y,h(yh,Ω).

• Construct another minimal subset T̃h,2 ⊂ Th such that
∑

T∈T̃h,2
η2
p,h(ph, T ) > θη2

p,h(ph,Ω).

• Set T̃h := T̃h,1 ∪ T̃h,2 and mark all the elements in T̃h.

With this marking strategy we can also prove the convergence of AFEM for optimal control problems
by using the results of [7, 11] for single boundary value problems. To be more specific, the error
reduction (4.22) can be derived separately for the state and adjoint state approximations. However,
the resulting over-refinement for this marking strategy prevents us to prove the quasi-optimality of
the adaptive algorithm.

We also would like to point out that in our convergence analysis we used the same mesh for
the state and adjoint state approximations, another possibility is to use different meshes for the
state and adjoint state. Therefore, starting from the same initial mesh we obtain different adaptive
meshes for the state and adjoint state approximations where the refinement of each mesh can be
generated by the error indicators corresponding to the respective state and adjoint state equations.
It will be an interesting topic to prove the convergence of AFME based on the above different
discretizations for primal and dual variables.
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5. Complexity of AFEM for the optimal control problem

In this section we intend to analyze the complexity of the adaptive finite element algorithm for
optimal control problems based on known results on the complexity for elliptic boundary value
problems. The proof uses some ideas of [11, 16] and some results of [7].

Similar to [7] and [11], for our purpose to analyse the complexity of AFEM for optimal control
problems we need to introduce a function approximation class as follows

Asγ :=
{

(y, p, yd) ∈ H1
0 (Ω)×H1

0 (Ω)× L2(Ω) : |(y, p, yd)|s,γ < +∞
}
,

where γ > 0 is some constant and

|(y, p, yd)|s,γ = sup
ε>0

ε inf
T⊂Th0

: inf (‖(y−yT ,p−pT )‖2a
+(γ+1)osc2((yT ,pT ),T ))1/26ε

(#T −#Th0)s.

Here T ⊂ Th0
means that T is a refinement of Th0

, yT and pT are elements of the finite element
space corresponding to the partition T . It is seen from the definition that Asγ = As1 for all γ > 0,
thus we use As throughout the paper with corresponding norm | · |s. So As is the class of functions
that can be approximated with a given tolerance ε by continuous piecewise linear polynomial

functions over a partition T with number of degrees of freedom #T −#Th0
. ε−1/s|v|1/ss .

Now we are in the position to prepare for the proof of optimal complexity of Algorithm 3.8 for the
optimal control problem (3.1)-(3.2). At first, we define yhk := Suhk and phk := S∗(Shkuhk − yd).
Then we have the following result.

Lemma 5.1. Let (uhk , yhk , phk) ∈ Uad×Vhk ×Vhk and (uhk+1
, yhk+1

, phk+1
) ∈ Uad×Vhk+1

×Vhk+1

be discrete solutions of problem (3.7)-(3.8) over mesh Thk and its refinement Thk+1
with marked

elements Mhk . Suppose they satisfy the following property

‖(y − yhk+1
, p− phk+1

)‖2a + γ∗osc2((yhk+1
, phk+1

), Thk+1
)

6 β2
∗

(
‖(y − yhk , p− phk)‖2a + γ∗osc2((yhk , phk), Thk)

)
(5.1)

with γ∗ and β∗ some positive constants. Then for the associated state and adjoint state approxi-
mations we have

‖(yhk −Rhk+1
yhk , phk −Rhk+1

phk)‖2a + γ̃∗osc2((Rhk+1
yhk ,Rhk+1

phk), Thk+1
)

6 β̃2
∗

(
‖(yhk −Rhkyhk , phk −Rhkphk)‖2a + γ̃∗osc2((yhk , phk), Thk)

)
(5.2)

with

β̃∗ :=
( (1 + δ1)β2

∗ + C5κ̃(h0)

1− C5δ
−1
1 κ̃2(h0)

) 1
2

, γ̃∗ :=
γ∗

1− C5δ
−1
1 κ̃2(h0)

,

where C5 is some constant depending on C∗, Ĉ5 and Ĉ6. Ĉ5, Ĉ6 and δ1 ∈ (0, 1) are some constants
as in the proof of Theorem 4.2.

Proof. The proof follows along the lines of the proof of Theorem 4.2 when (4.5)-(4.6) are replaced
by (4.3)-(4.4). Specifically, in the proof of Theorem 4.2 we use (4.22), Theorem 3.3 and Theorem
4.1 to prove (4.21). Conversely, here we need to prove (4.22) from (4.21), Theorem 3.3 and Theorem

4.1. The definitions of β̃∗ and γ̃∗ are very similar to (4.30) and (4.32). �

Next, we are able to derive a result similar to Lemma 2.6 concerning the optimality of Dörfler’s
marking strategy for the optimal control problems.

Corollary 5.2. Let (uhk , yhk , phk) ∈ Uad×Vhk×Vhk and (uhk+1
, yhk+1

, phk+1
) ∈ Uad×Vhk+1

×Vhk+1

be discrete solutions of problem (3.7)-(3.8) over the mesh Thk and its refinement Thk+1
with marked

elements Mhk . Suppose they satisfy the following property

‖(y − yhk+1
, p− phk+1

)‖2a + γ∗osc2((yhk+1
, phk+1

), Thk+1
)

6 β2
∗(‖(y − yhk , p− phk)‖2a + γ∗osc2((yhk , phk), Thk))
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with constants γ∗ > 0 and β∗ ∈ (0,
√

1
2 ). Then the set RThk→Thk+1

of refined elements satisfies the

Dörfler property ∑
T∈RThk→Thk+1

η2
hk

((yhk , phk), T ) > θ̂
∑
T∈Thk

η2
hk

((yhk , phk), T )(5.3)

with θ̂ =
C̃2(1−2β̃2

∗)

C̃0(C̃1+(1+2C2
∗C̃1)γ̃∗)

and C̃0 = max(1, C̃3

γ̃∗
).

Proof. From the statement of this corollary we know that the assumption (5.1) in Lemma 5.1 is
satisfied, due to Lemma 5.1 we can conclude (5.2). Note that yhk = Rhkyhk and phk = Rhkphk .

By the lower bounds in Lemma 3.5 and the definition of C̃0 we have

(1− 2β̃2
∗)C̃2η

2
hk

((yhk , phk),Ω) 6 (1− 2β̃2
∗)
(
‖(yhk − yhk , phk − phk)‖2a + C̃3osc2((yhk , phk), Thk)

)
= (1− 2β̃2

∗)
(
‖(yhk − yhk , phk − phk)‖2a +

C̃3

γ̃∗
γ̃∗osc2((yhk , phk), Thk)

)
6 C̃0(1− 2β̃2

∗)
(
‖(yhk − yhk , phk − phk)‖2a + γ̃∗osc2((yhk , phk), Thk)

)
.

Thus, it follows from (5.2) that

C̃2

C̃0

(1− 2β̃2
∗)
∑
T∈Thk

η2
hk

((yhk , phk), T )

6 (1− 2β̃2
∗)
(
‖(yhk − yhk , phk − phk)‖2a + γ̃∗osc2((yhk , phk), Thk)

)
= ‖(yhk − yhk , phk − phk)‖2a + γ̃∗osc2((yhk , phk), Thk)

−2β̃2
∗

(
‖(yhk − yhk , phk − phk)‖2a + γ̃∗osc2((yhk , phk), Thk)

)
6 ‖(yhk − yhk , phk − phk)‖2a + γ̃∗osc2((yhk , phk), Thk)

−2
(
‖(yhk −Rhk+1

yhk , phk −Rhk+1
phk)‖2a + γ̃∗osc2((Rhk+1

yhk ,Rhk+1
phk), Thk+1

)
)

6 ‖(yhk − yhk , phk − phk)‖2a − ‖(yhk −Rhk+1
yhk , phk −Rhk+1

phk)‖2a
+γ̃∗

(
osc2((yhk , phk), Thk)− 2osc2((Rhk+1

yhk ,Rhk+1
phk), Thk+1

)
)
.(5.4)

Note that yhk and Rhk+1
yhk are the Galerkin projections of yhk on Vhk and Vhk+1

, respectively.
From the standard Galerkin orthogonality we have

‖(yhk − yhk , phk − phk)‖2a − ‖(yhk −Rhk+1
yhk , phk −Rhk+1

phk)‖2a
= ‖(yhk −Rhk+1

yhk , phk −Rhk+1
phk)‖2a.(5.5)

By (2.15), the triangle and Young’s inequalities we have

osc2((yhk , phk), T ) 6 2osc2((Rhk+1
yhk ,Rhk+1

phk), T )

+2C2
∗‖(yhk −Rhk+1

yhk , phk −Rhk+1
phk)‖2a,

which together with the dominance of the indicator over oscillation (see [7, Remark 2.1])

osc2(uhk − Lyhk , T ) 6 η2
y,hk

(yhk , T ),(5.6)

osc2(yhk − yd − L∗phk , T ) 6 η2
p,hk

(phk , T )(5.7)
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implies

osc2((yhk , phk), Thk)− 2osc2((Rhk+1
yhk ,Rhk+1

phk), Thk+1
)

6
∑

T∈RThk→Thk+1

osc2((yhk , phk), T ) + osc2((yhk , phk), Thk ∩ Thk+1
)

−2osc2((Rhk+1
yhk ,Rhk+1

phk), Thk ∩ Thk+1
)

6
∑

T∈RThk→Thk+1

η2
hk

((yhk , phk), T ) + 2C2
∗‖(yhk −Rhk+1

yhk , phk −Rhk+1
phk)‖2a

6 (1 + 2C2
∗ C̃1)

∑
T∈RThk→Thk+1

η2
hk

((yhk , phk), T ),(5.8)

where we used (2.25) in the last inequality. Combining (5.4)-(5.8) and (2.25) we obtain

C̃2

C̃0

(1− 2β̃2
∗)
∑
T∈Thk

η2
hk

((yhk , phk), T )

6 (C̃1 + (1 + 2C2
∗ C̃1)γ̃∗)

∑
T∈RThk→Thk+1

η2
hk

((yhk , phk), T ).(5.9)

By choosing

θ̂ :=

C̃2

C̃0
(1− 2β̃2

∗)

C̃1 + (1 + 2C2
∗ C̃1)γ̃∗

=
C̃2(1− 2β̃2

∗)

C̃0(C̃1 + (1 + 2C2
∗ C̃1)γ̃∗)

we complete the proof. �

Lemma 5.3. Let (y, p, yd) ∈ As and Thk (k > 0) be a sequence of meshes generated by Algorithm
3.8 starting from the initial mesh Th0

. Let Thk+1
= REFINE(Thk ,Mhk) where Mhk is produced by

Algorithm 3.7 with θ satisfying θ ∈ (0, C2γ
C3(C1+(1+2C2

∗C1)γ) ). Then

#Mhk 6 C5

(
‖(y − yhk , p− phk)‖2a + γosc2((yhk , phk), Thk)

)− 1
2s |(y, p, yd)|

1
s
s ,(5.10)

where the constant C5 depends on the discrepancy between θ and C2γ
C3(C1+(1+2C2

∗C1)γ) .

Proof. Let ρ, ρ1 ∈ (0, 1) satisfy ρ1 ∈ (0, ρ) and

θ <
C2γ

C3(C1 + (1 + 2C2
∗C1)γ)

(1− ρ2).

Choose δ1 ∈ (0, 1) to satisfy (4.24) and

(1 + δ1)2ρ2
1 6 ρ

2,(5.11)

which implies

(1 + δ1)ρ2
1 < 1.(5.12)

Set

ε =
1√
2
ρ1

(
‖(y − yhk , p− phk)‖2a + γosc2((yhk , phk), Thk)

) 1
2

and let Thε be a refinement of Th0 with minimal degrees of freedom satisfying

‖(y − yhε , p− phε)‖2a + (γ + 1)osc2((yhε , phε), Thε) 6 ε2.(5.13)

We can conclude from the definition of As that

#Thε −#Th0
. ε−

1
s |(y, p, yd)|

1
s
s .
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Let Th∗ := Thε ⊕ Thk be the smallest common refinement of Thε and Thk . Let Vhε ⊂ H1
0 (Ω) and

Vh∗ ⊂ H1
0 (Ω) be the finite element spaces defined on Thε and Th∗ , respectively. Assume that

(uhε , yhε , phε) ∈ Uad × Vhε × Vhε is the solution of problem (3.7)-(3.8).
Define yhε := Suhε and phε := S∗(Shεuhε − yd). From the definition of oscillation we can

conclude from Lemma 2.2 that

osc(uhε − LRh∗yhε , Th∗) 6 osc(uhε − LRhεyhε , Th∗) + osc(L(Rh∗ −Rhε)yhε , Th∗)
6 osc(uhε − LRhεyhε , Th∗) + C∗‖(Rh∗ −Rhε)yhε‖a,Ω

and

osc(yhε − yd − L∗Rh∗phε , Th∗) 6 osc(yhε − yd − L∗Rhεphε , Th∗) + osc(L∗(Rh∗ −Rhε)phε , Th∗)
6 osc(yhε − yd − L∗Rhεphε , Th∗) + C∗‖(Rh∗ −Rhε)phε)‖a,Ω.

Then from Young’s inequality we have

osc2((Rh∗yhε ,Rh∗phε), Th∗) 6 2osc2((Rhεyhε ,Rhεphε), Th∗)
+2C2

∗‖((Rh∗ −Rhε)yhε , (Rh∗ −Rhε)phε))‖2a.

Due to the orthogonality

‖(yhε −Rh∗yhε , phε −Rh∗phε)‖2a = ‖(yhε −Rhεyhε , phε −Rhεphε)‖2a
−‖((Rh∗ −Rhε)yhε , (Rh∗ −Rhε)phε))‖2a,

we arrive at

‖(yhε −Rh∗yhε , phε −Rh∗phε)‖2a +
1

2C2
∗

osc2((Rh∗yhε ,Rh∗phε), Th∗)

6 ‖(yhε −Rhεyhε , phε −Rhεphε)‖2a +
1

C2
∗

osc2((Rhεyhε ,Rhεphε), Th∗).

From (2.24) of Theorem 2.4 we can see that γ̃ 6 1
2C2
∗

, which implies

‖(yhε −Rh∗yhε , phε −Rh∗phε)‖2a + γ̃osc2((Rh∗yhε ,Rh∗phε), Th∗)

6 ‖(yhε −Rhεyhε , phε −Rhεphε)‖2a +
1

C2
∗

osc2((Rhεyhε ,Rhεphε), Th∗)

6 ‖(yhε −Rhεyhε , phε −Rhεphε)‖2a + (γ̃ + σ)osc2((Rhεyhε ,Rhεphε), Th∗)

with σ = 1
C2
∗
− γ̃ ∈ (0, 1). Following the similar procedure as in the proof of Theorem 4.2 when

(4.5)-(4.6) are replaced by (4.3)-(4.4), we are led to

‖(y − yh∗ , p− ph∗)‖2a + γosc2((yh∗ , ph∗), Th∗)

6 β2
0

(
‖(y − yhε , p− phε)‖2a + (γ + σ)osc2((yhε , phε), Thε)

)
6 β2

0

(
‖(y − yhε , p− phε)‖2a + (γ + 1)osc2((yhε , phε), Thε)

)
,(5.14)

where

β0 :=
( (1 + δ1) + C4κ̃(h0)

1− C4δ
−1
1 κ̃2(h0)

) 1
2

and C4 is the constant that appeared in the proof of Theorem 4.2. Thus, it follows from (5.13),
(5.14) and the definition of ε that

‖(y − yh∗ , p− ph∗)‖2a + γosc2((yh∗ , ph∗), Th∗)

6 β2
1

(
‖(y − yhk , p− phk)‖2a + γosc2((yhk , phk), Thk)

)
(5.15)

with β1 = 1√
2
β0ρ1.

21



In view of (5.12) and the definitions of β0 and β1 we have β2
1 ∈ (0, 1

2 ) provided h0 � 1. It
follows from Corollary 5.2 that∑

T∈RThk→Th∗

η2
hk

((yhk , phk), T ) > θ1

∑
T∈Thk

η2
hk

((yhk , phk), T ),(5.16)

where θ1 =
C̃2(1−2β̃2

1)

C̃5(C̃1+(1+2C2
∗C̃1)γ̃1)

, γ̃1 = γ

1−C5δ
−1
1 κ̃2(h0)

, C̃5 = max(1, C̃3

γ̃1
) and

β̃1 =
( (1 + δ1)β2

1 + C5κ̃(h0)

1− C5δ
−1
1 κ̃2(h0)

) 1
2

.

It follows from the definition of γ in (2.24) and γ̃ in (4.32) that γ̃1 < 1, which together with C̃3 > 1

(see [11]) implies C̃5 = C̃3

γ̃1
. Since h0 � 1, we obtain that γ̃1 > γ and β̃1 ∈ (0, 1√

2
ρ) from (5.11). It

is easy to see from (3.50) and γ̃1 > γ that

θ1 =
C̃2(1− 2β̃2

1)
C̃3

γ̃1
(C̃1 + (1 + 2C2

∗ C̃1)γ̃1)
>

C̃2

C̃3( C̃1

γ̃1
+ 1 + 2C2

∗ C̃1)
(1− ρ2)

=
C2(1 + Ĉ2κ̃

2(h0))

C3(1 + Ĉ2κ̃2(h0))(C1(1−Ĉ1κ̃2(h0))
2γ̃1

+ 1 + C2
∗C1(1− Ĉ1κ̃2(h0)))

(1− ρ2)

>
C2

C3(C1

γ + 1 + 2C2
∗C1)

(1− ρ2) =
C2γ

C3(C1 + (1 + 2C2
∗C1)γ)

(1− ρ2) > θ,(5.17)

provided h0 � 1. This implies∑
T∈RThk→Th∗

η2
hk

((yhk , phk), T ) > θ
∑
T∈Thk

η2
hk

((yhk , phk), T ).

Note that Algorithm 3.7 selects a minimal set Mhk = T̃hk satisfying∑
T∈Mhk

η2
hk

((yhk , phk), T ) > θ
∑
T∈Thk

η2
hk

((yhk , phk), T ).

Thus,

#Mhk 6 #RThk→Th∗ 6 #Th∗ −#Thk 6 #Thε −#Th0

6 (
1√
2
ρ1)−

1
s

(
‖(y − yhk , p− phk)‖2a + γosc2((yhk , phk), Thk)

)− 1
2s |(y, p, yd)|

1
s
s ,

which is the desired result with an explicit dependance on the discrepancy between θ and
C2γ

C3(C1+(1+2C2
∗C1)γ) . �

We are now ready to prove that Algorithm 3.8 possesses optimal complexity for the state and
adjoint state approximations.

Theorem 5.4. Let (u, y, p) ∈ Uad × H1
0 (Ω) × H1

0 (Ω) be the solution of problem (3.1)-(3.2) and
(uhn , yhn , phn) ∈ Uad × Vhn × Vhn be a sequence of solutions of problem (3.7)-(3.8) corresponding
to a sequence of finite element spaces Vhn with partitions Thn produced by Algorithm 3.8. Then the
n-th iterate solution (yhn , phn) of Algorithm 3.8 satisfies the optimal bound

‖(y − yhn , p− phn)‖2a + γosc2((yhn , phn), Thn) . (#Thn −#Th0
)−2s,(5.18)

where the hidden constant depends on the exact solution (u, y, p) and the discrepancy between θ

and C2γ
C3(C1+(1+2C2

∗C1)γ) .
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Proof. It follows from (2.22) and (5.10) that

#Thn −#Th0 .
n−1∑
k=0

#Mhk

.
n−1∑
k=0

(
‖(y − yhk , p− phk)‖2a + γosc2((yhk , phk), Thk)

)− 1
2s |(y, p, yd)|

1
s
s .(5.19)

From the lower bound (3.49) we have

‖(y − yhk , p− phk)‖2a + γη2
hk

((yhk , phk),Ω) 6 C6

(
‖(y − yhk , p− phk)‖2a + γosc2((yhk , phk), Thk)

)
,

where C6 = max(1 + γ
C2
, C3

C2
). Then we arrive at

#Thn −#Th0
.
n−1∑
k=0

(
‖(y − yhk , p− phk)‖2a + γη2

hk
((yhk , phk),Ω)

)− 1
2s |(y, p, yd)|

1
s
s .(5.20)

Due to (4.19), we obtain for 0 6 k < n that

‖(y − yhn , p− phn)‖2a + γη2
hn((yhn , phn),Ω) 6 β2(n−k)

(
‖(y − yhk , p− phk)‖2a + γη2

hk
((yhk , phk),Ω)

)
.

Thus,

#Thn −#Th0
.

(
‖(y − yhn , p− phn)‖2a + γη2

hn((yhn , phn),Ω)
)− 1

2s |(y, p, yd)|
1
s
s

n−1∑
k=0

β
n−k
s

.
(
‖(y − yhn , p− phn)‖2a + γη2

hn((yhn , phn),Ω)
)− 1

2s |(y, p, yd)|
1
s
s ,(5.21)

where the last inequality holds due to the fact that β < 1.
From (5.6)-(5.7) we have

osc2((yhn , phn), Thn) 6 η2
hn((yhn , phn),Ω),

which together with (5.21) yields

#Thn −#Th0 .
(
‖(y − yhn , p− phn)‖2a + γosc2((yhn , phn), Thn)

)− 1
2s

,(5.22)

this completes the proof. �

Remark 5.5. From (3.35) and the equivalence property (3.13) we can conclude that Theorem 4.2
also implies the convergence of ‖u−uhn‖0,Ω, namely, for the n-th iterate solution uhn of Algorithm
3.8 there holds

‖u− uhn‖20,Ω . β2n.(5.23)

We remark that the control variable can also be included into the complexity analysis of AFEM for
optimal control problems to obtain

‖u− uhn‖20,Ω . (#Thn −#Th0
)−2s.(5.24)

However, the above results are sub-optimal for the optimal control as illustrated by the numerical
results in Section 6. To prove the optimality of the AFEM for the control variable, it seems that we
need to work with an AFEM based on L2-norm error estimators. We refer to [20] for an optimal
a priori error estimate. We expect that the results in [12] will enable us to prove the optimal
convergence of the AFEM for the optimal control u, this will be postponed to future work.
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6. Numerical experiments

In this section we carry out some numerical tests in two dimensions to support our theoretical
results obtained in this paper. We take the elliptic operator L as −∆ with homogeneous Dirichlet
boundary conditions for all the examples.

Example 6.1. This example is taken from [1]. The domain Ω can be described in polar coordinates
by

Ω = {(r, ϑ), 1 < r < 1, 0 < ϑ <
3

2
π}.

We take the exact solutions as

y(r, ϑ) = (rλ − rν1) sin(λϑ),

p(r, ϑ) = α(rλ − rν2) sin(λϑ),

u(r, ϑ) = P[a,b]{−
p

α
}

with λ = 2
3 and ν1 = ν2 = 5

2 . We set α = 0.1, a = −0.3 and b = 1. We assume the additional
right hand side f for the state equation.

We give the numerical results for the optimal control approximation by Algorithm 3.8 with
parameter θ = 0.4 and θ = 0.5. Figure 1 shows the profiles of the numerically computed optimal
state and adjoint state. We present in Figure 2 the triangulations by Algorithm 3.8 after 8 and 10
adaptive iterations. We can see that the meshes are concentrated on the reentrant corner where the
singularities are located. We also illustrate the active sets of the continuous solution, the discrete
solutions with variational control discretization and piecewise linear control discretization after 9
adaptive iterations with θ = 0.4. In this example only the lower bound u > −0.3 is active. Figure
3 clearly shows that the active set crosses element edges and is not restricted to finite element
edges by our variational discretization for control u, and is much closer to that of the continuous
solution compared with full control discretization.
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Figure 1. The profiles of the discretised optimal state yh (left) and adjoint state
ph (right) for Example 6.1 on the adaptively refined mesh.

To illustrate the efficiency of adaptive finite element method for solving optimal control prob-
lems, we show in the left plot of Figure 4 the error histories of the optimal control, state and adjoint
state with uniform refinement. We can only observe the reduced orders of convergence which are
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Figure 2. The meshes after 8 (left) and 10 (right) adaptive iterations for Example
6.1 generated by Algorithm 3.8 with θ = 0.4.
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Figure 3. Left: The red line depicts the boarder of the active set of the con-
tinuous solution, the blue line depicts the boarder of the active set when using
variational discretization, and the cyan line depicts the boarder of the active set
obtained by using piecewise linear, continuous controls for Example 6.1. Right:
Zoom near the corner.

less than one for the energy norms of the state and adjoint state, and less than two for the L2-norm
of the control. In the right plot of Figure 4 we present the convergence behaviours of the optimal
control, state and adjoint state, as well as the error estimators ηy,h(yh,Ω) and ηp,y(ph,Ω) for the
state and adjoint state equations with adaptive refinement. In Figure 5 we present the conver-
gence of the error ‖(y − yh, p− ph)‖a and error indicator ηh((yh, ph),Ω) with θ = 0.4 and θ = 0.5,
respectively. It is shown from Figure 5 that the error ‖(y − yh, p − ph)‖a is proportional to the a
posteriori error estimators, which implies the efficiency of the a posteriori error estimators given in
Section 3. Moreover, we can also observe that the convergence order of the error ‖(y−yh, p−ph)‖a
is approximately parallel to the line with slope −1/2 which is the optimal convergence rate we can
expect by using linear finite elements, this coincides with our theory in Section 5. For the error
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‖u−uh‖0,Ω we can observe a reduction with slope −1, which is better than the results presented in
Remark 5.5, and strongly suggests that the convergence rate for the optimal control is not optimal.
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Figure 4. The convergence history of the optimal control, state and adjoint state
on uniformly refined meshes (left), and the convergence of the errors and estima-
tors on adaptively refined meshes (right) for Example 6.1 generated by Algorithm
3.8.
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Figure 5. The convergence history of the optimal control, the state and adjoint
state and error indicator on adaptively refined meshes with θ = 0.4 (left) and
θ = 0.5 (right) for Example 6.1 generated by Algorithm 3.8.

Example 6.2. In the second example we consider an optimal control problem without explicit
solutions. We set Ω = (−1, 1)2, α = 10−3, a = −10 and b = 10. The desired state yd is chosen as
10, 1, −10 and −1 in the first, second, third and fourth quadrant, respectively.
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Similar to the above example Figure 6 shows the profiles of the numerically computed optimal
state and adjoint state. We present in the left plot of Figure 7 the triangulation generated by
Algorithm 3.8 after 8 adaptive iterations with parameter θ = 0.5. From Figure 6 we can see
that the state and adjoint state are very smooth, so the AFEM should produce a quasi-uniform
mesh in this case and indeed we can observe this phenomena from the left plot of Figure 7. Since
there are no explicit solutions we can not show the convergence of the error ‖(y − yh, p − ph)‖a
as in Example 6.1. Instead we show in the right plot of Figure 7 the convergence of the error
indicator ηh((yh, ph),Ω), the error estimators ηy,h(yh,Ω) and ηp,y(ph,Ω) for the state and adjoint
state equations. We can observe an error reduction with slope −1/2. We also plot in Figure 8
the boarders of the active sets when using variational control discretization and piecewise linear
control discretization. In this example, both the upper and lower bounds are active and we can
observe a very sharp boundary between the active sets of the upper and lower bounds.
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Figure 6. The profiles of the discretised optimal state yh (left) and adjoint state
ph (right) for Example 6.2 on adaptively refined mesh.

Example 6.3. In this example we consider an optimal control problem without explicit solutions
defined on domain Ω = (−1, 1) × (−1, 1)\[0, 1) × (x1, 0]. We set α = 10−2, a = 0 and b = 8. We
take the desired state yd = 2.

We show in Figure 9 the profiles of the numerically computed optimal state and adjoint state,
singularities for both the state and adjoint state can be observed around the reentrant corner. We
present in the left plot of Figure 10 the triangulation generated by Algorithm 3.8 after 8 adaptive
iterations with θ = 0.5 which is locally refined around the corner. Similar to Examples 6.1 and 6.2
we also illustrate the active sets of the discrete solutions with both variational discretization and
piecewise linear discretization after 9 adaptive iterations with θ = 0.4. In this example only the
upper bound u 6 8 is active. Figure 11 clearly shows the advantage of variational dicretization
over full discretization for control u. Since there are no explicit solutions we show in the right plot
of Figure 10 the convergence of the error indicator ηh((yh, ph),Ω), the error estimators ηy,h(yh,Ω)
and ηp,y(ph,Ω) for the state and adjoint state equations. We can also observe an error reduction
with slope −1/2.

7. Conclusion and outlook

In this paper we give a rigorous convergence analysis of the adaptive finite element algorithm
for optimal control problems governed by linear elliptic equations. We prove that the AFEM is a
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Figure 7. The mesh (left) after 8 adaptive iterations and the convergence history
of the error estimators on adaptively refined meshes (right) with θ = 0.5 for
Example 6.2 generated by Algorithm 3.8.
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Figure 8. Left: The blue (upper bound) and yellow (lower bound) lines depict
the boarders of the active sets when using variational discretization, and the red
(upper bound) and cyan (lower bound) lines depict the boarders of the active sets
obtained by using piecewise linear, continuous controls for Example 6.2. Right:
Zoom near the origin.

contraction, for the sum of the energy errors and the scaled error estimators of the state y and the
adjoint state p, between two consecutive adaptive loops. We also show that the AFEM yields a
decay rate of the energy errors of the state y and the adjoint state p plus oscillations of the state
and adjoint state equations in terms of the number of degrees of freedom.

We expect that the results should also be valid for optimal Neumann boundary control prob-
lems (see [27]) by the following observations. The key point for the convergence analysis is the
equivalence property presented in Theorem 3.3 where the relation between the finite element op-
timal control approximation and the standard finite element boundary value approximation is
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Figure 10. The mesh (left) after 10 adaptive iteration and the convergence his-
tory of the error estimators on adaptively refined meshes (right) with θ = 0.4 for
Example 6.3 generated by Algorithm 3.8.

established. Consider the governing equation of the Neumann boundary control problem:{
Ly = f in Ω,
A∇y · n = u on ∂Ω.

Similar to the proof of Theorem 3.3 we can conclude from the trace theorem that

‖u− uh‖0,∂Ω . κ
1
2 (h)(‖y − yh‖a,Ω + ‖p− ph‖a,Ω),

where uh is the discrete optimal control. Then we can obtain the counterpart of (3.20)-(3.21) for
Neumann boundary control problems

‖y − yh‖a,Ω = ‖yh − yh‖a,Ω +O(κ
1
2 (h))

(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

)
,

‖p− ph‖a,Ω = ‖ph − ph‖a,Ω +O(κ
1
2 (h))

(
‖y − yh‖a,Ω + ‖p− ph‖a,Ω

)
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Figure 11. Left: The blue line depicts the boarder of the active set when using
variational discretization and the red line depicts the boarder of the active set
obtained by using piecewise linear, continuous controls for Example 6.3. Right:
Zoom near the corner.

provided h0 � 1. Thus, the convergence and complexity analysis of AFEM carries out to the
Neumann boundary control problems.

There are many important issues remained unsolved for the convergence analysis of AFEM for
optimal control problems compared to AFEM for boundary value problems. Firstly, at this moment
we only prove the optimality of AFEM for energy errors of the state and adjoint state variables,
the convergence for the optimal control u is sub-optimal. To prove the optimality of AFEM for
the optimal control u it seems that we should work on the optimality of AFEM for boundary
value problems under L2-norms, as done in [12]. This complicates the convergence analysis with
additional restrictions to the adaptive algorithms and will be postponed to future work.

Secondly, the convergence analysis of the adaptive finite element algorithm for other kinds of
optimal control problems like Stokes control problems (see [28]), and non-standard finite element
algorithm such as mixed finite element methods (see [8]) remains open and will be addressed in
forthcoming papers.

Thirdly, we only prove the convergence of AFEM for optimal control problems with control
constraints using a variational control discretization. The full control discretization concept by
using piecewise constant or piecewise linear finite elements is also very important among the
numerical methods for control problems. This kind of control discretization results in an additional
discretised control space and an additional contribution to the a posteriori error estimators (see [22])
which should be incorporated within the adaptive algorithm and the corresponding convergence
analysis. We also intend to generalise our approach in this paper to analyse the convergence of
AFEM for optimal control problems with full control discretization in the future.
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