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SUMMARY

In this paper we consider the efficient solving of the resulting algebraic system for elliptic optimal control
problems with mixed finite element discretization. We propose a block diagonal preconditioner for the
symmetric and indefinite algebraic system solved with minimum residual method, which is proved to be
robust and optimal with respect to both the mesh size and the regularization parameter. The block diagonal
preconditioner is constructed based on an isomorphism between appropriately chosen solution space and
its dual for a general control problem with combined state and gradient state observations in the objective
functional. Numerical experiments confirm the efficiency of our proposed preconditioner. Copyright c© 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Optimization problem with PDE constraints, including the optimal control problems and inverse
problems, play an increasing role in modern science and engineering. The requirement for fast
and efficient simulations of such kind of problems also stimulates the development of related
fields such as optimization, numerical analysis and numerical linear algebra. Here we refer to the
monographs [26], [21] on the theoretical and numerical developments of PDE constrained optimal
control problems.

Finite element method is among one of the most popular approaches to solve PDE-constrained
optimal control problems, we refer to [21] and [27] for a priori and a posteriori error estimates.
For nonstandard finite element method such as mixed method, we refer to [11, 12, 27] for related
convergence results for elliptic and Stokes control problems. The first order optimality system of
optimal control problems governed by PDEs consists of the state equation, the adjoint equation
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and the control equation which can be viewed as a saddle point problem. The finite element
discretization (standard or nonstandard) of optimal control problems usually results in a large scaled
indefinite algebraic system with parameter dependency, whose condition number grows when the
mesh size and the regularization parameter approach to zero. Solving this system presents significant
challenges. In recent years, efficient solver of algebraic system related to optimal control problems
attracts a lot of attentions and plenty of efficient algorithms and preconditioners are proposed to
solve different type of optimal control problems.

Here we give a short overview on recent developments of efficient solvers for algebraic systems
related to the standard finite element discretization of optimal control problems. There are a lot
of works on efficient preconditioning for unconstrained optimal control problems. For solving and
preconditioning a class of block two-by-two linear systems arising from the Galerkin finite element
discretizations of a class of distributed control problems, Bai and his collaborators constructed
block-counter-diagonal and block-counter-tridiagonal preconditioning matrices to precondition the
Krylov subspace methods such as GMRES in [4], and a preconditioned modified Hermitian and
skew-Hermitian splitting iteration scheme in [5]. We also refer to [40] and [41] for various block-
triangular preconditioners. In [45] the authors proposed a symmetric indefinite preconditioner for
saddle point problems resulted from optimal control problems and showed its robustness with
respect to the mesh size and regularization parameter. In [41] the authors proposed a preconditioned
conjugate gradient method in nonstandard inner products to solve the saddle-point systems with
applications in optimizations. In [30] the authors proposed two block preconditioners for elliptic
optimal control problems in either reduced Schur complement system for control variable or
saddle point problem and showed their mesh independencies. Zulehner ( [52]) proposed a robust
block preconditioner for saddle point problems arising from elliptic and Stokes distributed control
problems by searching for appropriate nonstandard norms. In [36] Pearson and Wathen proposed
a robust block preconditioner with a new approximation of the Schur complement. For efficient
multigrid method to solve elliptic optimal control problems we refer to [9, 42, 44, 47].

Additionally, control or state constraints may be incorporated into optimal control problems due
to the physical restriction; this will introduce additional difficulties for efficient preconditioning.
Stoll and Wathen ( [46]) studied the preconditioning for the saddle point problems arising from
the primal-dual active set algorithm applied to PDE-constrained optimal control problems. Schiela
and Ulbrich ( [43]) proposed two strategies for preconditioning linear operator equations that arise
in PDE constrained optimal control problem with control or state constraints in the framework
of conjugate gradient methods. Herzog and Sachs ( [20]) generalized the idea of [45] to solve
control problems with pointwise control constraints, mixed control-state constraints and of Moreau-
Yosida penalty type by using a preconditioned conjugate gradient method in a nonstandard inner
product where the condition numbers for each case were also estimated. In [35] the authors studied
the preconditioning technique for state-constrained optimal control problems with Moreau-Yosida
penalty. In [15] the authors presented a new multigrid preconditioner for the linear systems arising
in the semismooth Newton method solution of certain control-constrained, quadratic distributed
optimal control problems. Herzog and Mach proposed in [19] three different preconditioners for
elliptic optimal control problems with pointwise state gradient constraints by employing a quadratic
penalty approach together with a semismooth Newton iteration, and proved the mesh independency
of the spectral properties of the preconditioned linear Newton saddle-point systems.

Due to the close relation between PDE-constrained optimal control problems and parameter
idenfitification problems, there are also some attempts for preconditioning inverse problems. In [18]
the authors used a variant of symmetric QMR to solve the KKT system of parameter estimation
problems in all-at-once approach, an effective preconditioner was obtained by solving the reduced
Hessian system approximately. In [32] Nielsen and Mardal studied the efficient preconditioning for
optimality system arising from inverse problems and showed that the number of iterations needed
to solve the preconditioned problem by the minimal residual method was bounded independently
of the mesh parameter, used in the finite element discretization, and increases only moderately as
the regularization parameter approaching to zero, see also [33] for the analysis of minimum residual
method to solve such kind of saddle point problems.
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The above mentioned results are mainly based on the standard finite element discretizations of the
underlying optimal control problems. Mixed finite element method, aiming to recover both the scalar
state and the flux simultaneously, also finds many applications in solving optimal control problems,
especially for control problems with gradient state observations in the objective functional. In [12]
the authors studied the mixed finite element approximations of a linear-quadratic elliptic distributed
optimal control problem, while in [11] the superconvergence of mixed finite element method for
elliptic optimal control problems was studied. In [17] the authors used the mixed finite element
method to approximate the Dirichlet boundary control problems where the mixed variational form
can deal with the inhomogeneous Dirichlet boundary condition naturally. Mixed finite element
method was also used to solve optimal control problems with gradient state constraints in [13].
Despite the extensive applications of mixed finite element method in optimal control problems, we
are not aware of any works on efficient solver for the resulting algebraic systems of such kind of
problems. We note that the resulting algebraic system is a large scaled symmetric and indefinite
matrix which has a big demand for efficient solvers. In this paper, we intend to fill this gap by
proposing robust and optimal a preconditioner for elliptic optimal control problems with mixed
finite element discretization.

Generally speaking, the method to solve the algebraic system related to optimal control problems
can be classified into two categories. The first approach is to eliminate the state variables and
Lagrange multipliers and correspondingly, the state equations and adjoint equations to reduce the
system to a Schur complement system involving only the control variables. One can then design
preconditioner for this reduced system. On each iteration for solving the control variables one needs
to solve the state and adjoint state equations, where the efficient methods for forward PDE such as
multigrid method or preconditioner can be incorporated. For related work we refer to [8, 30]. The
above elimination procedure is termed a reduced space method, in contrast to a full space method of
the second approach, or one-shot approach (also called all-at-once), in which one solves for the state,
control, and adjoint state simultaneously. In this case the multigrid algorithms or preconditioner
should be designed for this saddle point system which usually yields block type preconditioner.
We refer to [41, 42, 45, 52] for more details. We remark that, for the first approach, the efficient
preconditioning for the Schur complement system is generally difficult and the subproblems should
be solved accurately to guarantee the convergence of the algorithm, and we would expect some kind
of convenience via the second approach. Additionally, as mentioned in [31, 38], a block diagonal
preconditioner is a natural choice for the saddle point problem in an infinite dimensional Hilbert
space. The block diagonal preconditioner for the associated stable discretization problem can be
constructed immediately, once the proper inner product is defined on the Hilbert space. Meanwhile,
one can construct block triangular preconditioners based on the proper inner product for some
special problems. We refer to [28, 29] for the details. Here we adopt the second approach and
propose a block diagonal PMinRes ( [34]) algorithm for solving elliptic optimal control problems
discretized with mixed finite elements under the framework proposed in [31]. The preconditioner
covers the case with or without gradient state observations in the objective functional, which is
further shown to be robust with respect to both the mesh size and the regularization parameter.
Numerical experiments confirm the efficiency of our proposed algorithms.

Finally, we remark that it is a widely used way to (present a problem into its mixed formulation
and) solve a mixed system by preconditioning techniques; we refer to, e.g., [37, 49–51] for more
discussion. Also, for our present problem, the main computational costs are taken by H(div) solvers,
and we refer to, e.g., [2, 3, 16, 22, 24, 25] for many discussions on the solvers and their applications.

The remaining of the paper is organized as follows: In Section 2 we present the linear system
generated from the mixed finite element discretization of elliptic optimal control problems. We
also give an optimal block diagonal preconditioner for the linear system and the incorporation
of Hiptmair-Xu preconditioner ( [24]) for solving the div∗div subproblems appeared in the block
diagonal preconditioner. In Section 3 we give the stability analysis for both the continuous and
discrete optimality systems and prove the optimality of the proposed preconditioner. We carry out
several numerical experiments in Section 4 to confirm the efficiency of our proposed algorithms.
The paper ends with a concluding remark in Section 5.
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In this paper, we will use the following notation. Let Ω ⊂ R2 be a polygonal domain and χ[0,+∞)(x)
be the characteristic function of the interval [0,+∞). We denote Hm(Ω) the usual Hilbert spaces
with norms ‖ · ‖m. Let Hm

0 (Ω) be the completion space of functions in C∞0 (Ω) under the norm
‖ · ‖m. Denote H(div; Ω) :=

{
τ
˜
∈ (L2(Ω))2 : divτ

˜
∈ L2(Ω)

}
. Denote L2

ρ(Ω) the Hilbert space with

inner product (ρ·, ·) for some positive weight function ρ, and tL2(Ω) ∩ wH(div; Ω) the Hilbert space
with the inner product t2(·, ·) + w2(div·, div·) for positive constants t and w.

2. LINEAR SYSTEM AND OPTIMAL SOLVER

2.1. Generation of the linear algebraic system

In this paper, we consider the following elliptic distributed optimal control problem

min
u∈L2(Ω)

J(y, u) =
β

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖a∇y − g

˜
d‖

2
(L2(Ω))2 +

α

2
‖u‖2L2(Ω) (1)

subject to {
−∇ · a∇y = f + u in Ω,

y = 0 on ∂Ω,
(2)

where Ω ⊂ R2 is a polygonal domain, yd ∈ L2(Ω) and g
˜

d ∈ (L2(Ω))2 are the desired states, α > 0

is the regularization parameter, β and γ are nonnegative constants such that β + γ > 0, and a is
the diffusion coefficient satisfying C0 > a > c0 > 0 for some positive constants C0 and c0. We note
that β = 0 corresponds to problem with pure gradient state observation and γ = 0 corresponds to
problem with pure state observation.

It is clear that the above optimization problem is coercive and strictly convex. By standard
arguments (see [26]) we can prove that it admits a unique solution and the solution can be
characterized by the following first order necessary (also sufficient) optimality conditions:

−∇ · a∇y = f + u in Ω, y = 0 on ∂Ω,
−∇ · a∇r = β(y − yd) − γ∇ · a(a∇y − g

˜
d) in Ω, r = 0 on ∂Ω,

αu + r = 0 in Ω,

(3)

where r ∈ H1
0(Ω) is the so-called adjoint state.

In the following we consider the mixed formulation for the above optimal control problems.
Firstly, we consider the mixed variational form of the state equation by introducing the flux ϕ

˜
= a∇y:

find (y, ϕ
˜
) ∈ L2(Ω) × H(div; Ω) such that (see [10])


(a−1ϕ

˜
, τ
˜
) + (y, divτ

˜
) = 0 ∀τ

˜
∈ H(div; Ω),

−(divϕ
˜
, s) = ( f + u, s) ∀s ∈ L2(Ω), (4)

with which we can formulate the following optimal control problems in mixed variational form (see,
e.g., [11, 12, 17])

min
u∈L2(Ω)

J(y, u) =
β

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖ϕ

˜
− g

˜
d‖

2
(L2(Ω))2 +

α

2
‖u‖2L2(Ω) subject to (4). (5)

Therefore, the first order optimality conditions consist of the following equations
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α(u, z) +(r, z) = 0 ∀ z ∈ L2(Ω),
γ(ϕ

˜
, ψ

˜
) (a−1σ

˜
, ψ

˜
) +(r, divψ

˜
) = (γg

˜
d, ψ

˜
) ∀ψ

˜
∈ H(div; Ω),

β(y, q) +(q, divσ
˜

) = (βyd, q) ∀ q ∈ L2(Ω),

(a−1ϕ
˜
, τ
˜
) +(y, divτ

˜
) = 0 ∀ τ

˜
∈ H(div; Ω),

(u, s) +(divϕ
˜
, s) = (− f , s) ∀ s ∈ L2(Ω).

(6)

Let Hh(div) ⊂ H(div; Ω) and L2
h ⊂ L2(Ω) be some proper conforming mixed finite element spaces.

Then we can formulate the discrete optimal control problem in mixed form (see, e.g., [11, 12, 17])

min
uh∈L2

h

J(yh, uh) =
β

2
‖yh − yd‖

2
L2(Ω) +

γ

2
‖ϕ

˜
h − g

˜
d‖

2
(L2(Ω))2 +

α

2
‖uh‖

2
L2(Ω) (7)

subject to 
(a−1ϕ

˜
h, τ

˜
h) + (yh, divτ

˜
h) = 0 ∀τ

˜
h ∈ Hh(div),

−(divϕ
˜

h, sh) = ( f + uh, sh) ∀sh ∈ L2
h.

(8)

Similar to the continuous case, we can prove the existence of a unique solution for the above
discretized optimal control problems. Moreover, a discretized system of first order optimality
conditions can be derived analogue to (6):

α(uh, zh) +(rh, zh) = 0 ∀ zh ∈ L2
h,

γ(ϕ
˜

h, ψ
˜

h) (a−1σ
˜

h, ψ
˜

h) +(rh, divψ
˜

h) = γ(g
˜

d, ψ
˜

h) ∀ψ
˜

h ∈ Hh(div),

β(yh, qh) +(qh, divσ
˜

h) = β(yd, qh) ∀ qh ∈ L2
h,

(a−1ϕ
˜

h, τ
˜

h) +(yh, divτ
˜

h) = 0 ∀ τ
˜

h ∈ Hh(div),

(u, s) +(divϕ
˜

h, sh) = (− f , sh) ∀ sh ∈ L2
h.

(9)
In this paper, we choose particularly Hh(div) to be the Raviart-Thomas element space of lowest
order, and L2

h to be the space of piecewise constants. We refer to [11] and [12] for the convergence
of the mixed finite element discretization of above optimal control problem.

Let the set of basis functions of Hh(div) be Bh(div) :=
{
φ
˜

i : i = 1, ....,N
}

and that of L2
h be

Bh(L2) :=
{
ψk : k = 1, ....,M

}
. By representing

uh =

M∑
k=1

Uh(k)ψk, ϕ
˜

h =

N∑
i=1

Φh(i)φ
˜

i, yh =

M∑
k=1

Yh(k)ψk, σ
˜

h =

N∑
i=1

Σh(i)φ
˜

i, rh =

M∑
k=1

Rh(k)ψk, (10)

we rewrite (9) in the following equivalent matrix form
αBh 0 0 0 Bh

0 γBh 0 B̂h CT
h

0 0 βBh Ch 0
0 B̂h CT

h 0 0
Bh Ch 0 0 0



Uh
Φh
Yh
Σh
Rh

 =


0

Gd
h

Yd
h

0
Fh

 , (11)

where Bh = ((φ
˜

i, φ
˜

j))N×N , B̂h = ((a−1φ
˜

i, φ
˜

j))N×N , Bh = ((ψk, ψt))M×M , and Ch = ((ψk, divφ
˜

j))M×N ,

namely the stiffness and (weighted) mass matrices on Hh(div) and L2
h, and Gd

h = [γ(g
˜

d, φ
˜

i)]N×1,

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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Yd
h = [β(yd, ψi)]M×1, and Fh = [−( f , ψi)]M×1. In the sequel, we focus ourselves on solving the linear

system with respect to

Aα,β,γ,h :=


αBh 0 0 0 Bh

0 γBh 0 B̂h CT
h

0 0 βBh Ch 0
0 B̂h CT

h 0 0
Bh Ch 0 0 0

 . (12)

2.2. An optimal preconditioner of (12)

A main result of this paper is as follows. Denote Qh = ((divφ
˜

i, divφ
˜

j))N×N , δ1 = max{γ, χ[0,+∞)(β −

γ)(αβ)1/2} and δ2 = max{β, γ}. Define Pα,β,γ,h by

Pα,β,γ,h = diag
{

1
α

B−1
h , (δ1Bh + αQh)−1, δ−1

2 B−1
h , (δ−1

1 Bh + δ−1
2 Qh)−1, αB−1

h

}
, (13)

i.e.,

Pα,β,γ,h =



diag
{

1
α

B−1
h , (γBh + αQh)−1,

1
γ

B−1
h , γ(Bh + Qh)−1, αB−1

h

}
, if γ > β;

diag
{

1
α

B−1
h , ((αβ)1/2Bh + αQh)−1,

1
β

B−1
h , ((αβ)−1/2Bh + β−1Qh)−1, αB−1

h

}
, if β ≥ γ and αβ ≥ γ2;

diag
{

1
α

B−1
h , (γBh + αQh)−1,

1
β

B−1
h , (γ−1Bh + β−1Qh)−1, αB−1

h

}
, if β ≥ γ and αβ < γ2.

Then Pα,β,γ,h is a robust preconditioner of Aα,β,γ,h. Indeed, define the condition number κ of
Pα,β,γ,hAα,β,γ,h as

κ(Pα,β,γ,hAα,β,γ,h) :=
max |λ(Pα,β,γ,hAα,β,γh)|
min |λ(Pα,β,γ,hAα,β,γ,h)|

,

and then we have the theorem below, the proof of which is postponed to next sections.

Theorem 1
The condition number κ(Pα,β,γ,hAα,β,γ,h)) is bounded uniformly with respect to α, β, γ and h.

Note that the main work of carrying out the preconditioner Pα,β,γ,h is to invert the matrices like
γBh + αQh which is the stiffness matrix of the div∗div system and etc.. We can employ the Hiptmair-
Xu preconditioning technique ( [24]) to transforming them to Poisson solvers.

Let H1
h be the linear finite element subspace of H1(Ω) with basis functions Bh. Then curl H1

h =

{τ
˜

h ∈ Hh(div) : divτ
˜

h = 0}, where curl := (∂x2 ,−∂x1 ) is perpendicular to ∇. We will write it as ∇⊥ in

the sequel. Denote

• Dε,ϑ,h: the diagonal of εBh + ϑQh;

• Lh and Mh: the stiffness matrix of inner product (∇·,∇·) and the mass matrix of inner product (·, ·)
corresponding to the basis Bh on H1

h , respectively;

• Pdiv,h: the matrix representation of the nodal interpolation operator Πdiv
h from (H1

h)2 to Hh(div)
corresponding to Bh and Bh(div);

• Gh: the matrix representation of operator ∇⊥ : H1
h 7→ Hh(div) corresponding to the basis Bh and

Bh(div) where ∇⊥ := (∂x2 ,−∂x1 );

• Ch: the discrete Laplacian (matrix) corresponding to the basis Bh on H1
h .

With this notation, define the Hiptmair-Xu preconditioner as (see, [24])

Rε,ϑ,h := (Dε,ϑ,h)−1 + Pdiv,h(ϑLh + εMh)−1PT
div,h + ε−1Gh(−Ch)−1GT

h . (14)

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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Lemma 2
( [24]) The condition number of Rε,ϑ,h(εBh + ϑQh) is uniformly bounded with respect to ε, ϑ and h.

In real applications, the exact inverse of the Laplacian matrices can be replaced by some norm
equivalent solvers, such as multigrid solvers or domain decomposition solvers and as mentioned
in [24], the theoretical results in Lemma 2 still hold. We state this exactly in the following corollary.
Denote Pϑ,ε and PC the spectral equivalent preconditioners of ϑLh + εMh and −Ch respectively. Let

R̃ε,ϑ,h := (Dε,ϑ,h)−1 + Pdiv,hPϑ,εPT
div,h + ε−1GhPCGT

h .

Corollary 3
The condition number of R̃ε,ϑ,h(εBh + ϑQh) is uniformly bounded with respect to ε, ϑ and h.

We can inverte γBh + αQh and other matrices optimally by the aid of the Hiptmair-Xu
preconditioner. Moreover, we can just use Hiptmair-Xu preconditioner in the place of, e.g.,
(γBh + αQh)−1. Namely, we have another preconditioner below.

Define P′α,β,γ,h by

P′α,β,γ,h = diag
{

1
α

B−1
h , Rδ1,α,h, δ

−1
2 B−1

h ,Rδ−1
1 ,δ−1

2 ,h, αB−1
h

}
. (15)

The theorem below follows from Theorem 1 and Lemma 2.

Theorem 4
The condition number κ(P′α,β,γ,hAα,β,γ,h)) is bounded uniformly with respect to α, β, γ and h.

2.3. A reduced system and its preconditioning

By eliminating the control variable u, the original problem (6) can be rewritten formally to the
following linear system of smaller size

γId
˜

0 Îd
˜

div∗

0 βId div 0
Îd
˜
∗ div∗ 0 0

div 0 0 − 1
α

Id




ϕ
˜
y
σ
˜
r

 =


γg

˜
d

βyd
0
− f

 , (16)

where we write the variational problem in the formal operator form. Here Id and Id
˜

denote the

identity operators for scalar and vector, Îd
˜

denote the operator associated with (a−1·, ·) term and div

denotes the divergence operator with div∗ its adjoint.
By introducing finite element spaces with certain basis functions, we generate the linear system

corresponding to the discretization of (16) as
γBh 0 B̂h CT

h
0 βBh Ch 0

B̂h CT
h 0 0

Ch 0 0 − 1
α

Bh




Φh
Yh
Σh
Rh

 =


γGd

h
βYd

h
0

Fh

 . (17)

Denote

Ar
α,β,γ,h :=


γBh 0 B̂h CT

h
0 βBh Ch 0

B̂h CT
h 0 0

Ch 0 0 − 1
α

Bh

 . (18)

Similarly, we can present a preconditioner forAr
α,β,γ,h. Define Pr

α,β,γ,h as follows:

Pr
α,β,γ,h := diag

{
(δ1Bh + αQh)−1, δ−1

2 B−1
h , (δ−1

1 Bh + δ−1
2 Qh)−1, αB−1

h

}
, (19)

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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i.e.,

Pr
α,β,γ,h =



diag
{

(γBh + αQh)−1,
1
γ

B−1
h , γ(Bh + Qh)−1, αB−1

h

}
, if γ > β;

diag
{

((αβ)1/2Bh + αQh)−1,
1
β

B−1
h , ((αβ)−1/2Bh + β−1Qh)−1, αB−1

h

}
, if β ≥ γ and αβ ≥ γ2;

diag
{

(γBh + αQh)−1,
1
β

B−1
h , (γ−1Bh + β−1Qh)−1, αB−1

h

}
, if β ≥ γ and αβ < γ2.

Then similar to Theorem 1, we have the theorem below.

Theorem 5
The condition number κ(Pr

α,β,γ,hA
r
α,β,γ,h) is bounded uniformly with respect to α, β, γ and h.

Again, we can use Hiptmair-Xu preconditioner to take the place where inversion of Qh needed.
Define

Pr
α,β,γ,h

′ := diag
{

Rδ1,α,h, δ
−1
2 B−1

h ,Rδ−1
1 ,δ−1

2 ,h, αB−1
h

}
. (20)

The theorem below follows from Lemma 2 and Theorem 5.

Theorem 6
The condition number κ(Pr

α,β,γ,h
′Ar

α,β,γ,h) is bounded uniformly with respect to α, β, γ and h.

Remark 7
According to Corollay 3, in real application, the block of the form Rε,ϑ,h can be replaced by
R̃ε,ϑ,h which makes the preconditioners more practical and the theoretical results in Theorem 4
and Theorem 6 hold as well.

3. PROOF OF THE ROBUST OPTIMALITY OF THE PRECONDITIONER

In this section, we prove Theorem 1 by presenting stability analysis for the relevant continuous and
discretized systems. Theorem 5 is proved the same way. Theorems 4 and 6 follow immediately.

3.1. Stability analysis of the system (6)

Firstly, we rewrite (6) in the general form

α(u, z) +(r, z) = (l, z) ∀ z ∈ L2(Ω),
γ(ϕ

˜
, ψ

˜
) (a−1σ

˜
, ψ

˜
) +(r, divψ

˜
) = ( f

˜
, ψ

˜
) ∀ψ

˜
∈ H(div; Ω),

β(y, q) +(q, divσ
˜

) = (g, q) ∀ q ∈ L2(Ω),

(a−1ϕ
˜
, τ
˜
) +(y, divτ

˜
) = (h

˜
, τ
˜
) ∀ τ

˜
∈ H(div; Ω),

(u, s) +(divϕ
˜
, s) = ( j, s) ∀ s ∈ L2(Ω).

(21)

The stability of the system is constructed as the theorem below.

Theorem 8
Given (l, f

˜
, g, h

˜
, j) ∈ W ′

α,β,γ, there exists a unique (u, ϕ
˜
, y, σ

˜
, r) ∈ Wα,β,γ, such that (21) holds, and

‖(u, ϕ
˜
, y, σ

˜
, r)‖Wα,β,γ

=
∼ ‖(l, f

˜
, g, h

˜
, j)‖W′α,β,γ := sup

(z,ψ
˜
,q,τ

˜
,s)∈Wα,β,γ\{0}

(l, z) + ( f
˜
, ψ

˜
) + (g, q) + (h

˜
, τ
˜
) + ( j, s)

‖(u, ϕ
˜
, y, σ

˜
, r)‖Wα,β,γ

,

(22)
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where Wα,β,γ is defined by Wα,β,γ := Uα,β,γ × Vα,β,γ, whereas

Uα,β,γ = α1/2L2(Ω) ×
[
δ1/2

1 L2(Ω) ∩ α1/2H(div; Ω)
]
× δ1/2

2 L2(Ω),

Vα,β,γ =
[
δ−1/2

1 L2(Ω) ∩ δ−1/2
2 H(div; Ω)

]
× α−1/2L2(Ω),

i.e.,

(1) if γ > β, then

Uα,β,γ = α1/2L2(Ω) ×
[
γ1/2L2(Ω) ∩ α1/2H(div; Ω)

]
× γ1/2L2(Ω),

Vα,β,γ =
[
γ−1/2L2(Ω) ∩ γ−1/2H(div; Ω)

]
× α−1/2L2(Ω).

(2) if β ≥ γ and αβ ≥ γ2, then

Uα,β,γ = α1/2L2(Ω) ×
[
(αβ)1/4L2(Ω) ∩ α1/2H(div; Ω)

]
× β1/2L2(Ω),

Vα,β,γ =
[
(αβ)−1/4L2(Ω) ∩ β−1/2H(div; Ω)

]
× α−1/2L2(Ω).

(3) if β ≥ γ and αβ < γ2, then

Uα,β,γ = α1/2L2(Ω) ×
[
γ1/2L2(Ω) ∩ α1/2H(div; Ω)

]
× β1/2L2(Ω),

Vα,β,γ =
[
γ−1/2L2(Ω) ∩ β−1/2H(div; Ω)

]
× α−1/2L2(Ω).

We postpone the proof of Theorem 8 after some technical lemmas.

Lemma 9
[48, Sec. 10] There exists orthogonal decomposition of H(div; Ω), which reads

H(div; Ω) = ∇⊥H1(Ω) ⊕ (∇⊥H1(Ω))⊥,

where (∇⊥H1(Ω))⊥ is orthogonal to ∇⊥H1(Ω) in both the L2
ρ(Ω) inner product for any positive

weight function ρ and the H(div; Ω) product.
Furthermore, for ϕ

˜
∈ H(div; Ω), if ϕ

˜
= ϕ

˜
1 + ϕ

˜
2 with ϕ

˜
1 ∈ ∇

⊥H1(Ω), and ϕ
˜

2 ∈ (∇⊥H1(Ω))⊥, then

divτ
˜

1 = 0 and cρ(‖τ
˜

1‖
2
ρ + ‖divτ

˜
2‖

2
0) ≤ ‖τ

˜
‖2H(div;Ω) ≤ Cρ(‖τ

˜
1‖

2
ρ + ‖divτ

˜
2‖

2
0), i.e., cρ(‖τ

˜
1‖

2
ρ + ‖divτ

˜
‖20) ≤

‖τ
˜
‖2H(div;Ω) ≤ Cρ(‖τ

˜
1‖

2
ρ + ‖divτ

˜
‖20) with cρ and Cρ uniformly in H(div; Ω) .

In the sequel, for ϕ
˜
, τ
˜
∈ H(div; Ω), we always denote their decompositions by ϕ

˜
= ϕ

˜
1 + ϕ

˜
2 and

τ
˜

= τ
˜

1 + τ
˜

2, with ϕ
˜

1, τ
˜

1 ∈ ∇
⊥H1(Ω), and ϕ

˜
2, τ

˜
2 ∈ (∇⊥H1(Ω))⊥.

Lemma 10
For each y ∈ L2(Ω), there exist τ

˜
y ∈ H(div; Ω) such that,

divτ
˜

y = y and ‖τ
˜

y‖0 ≤ CΩ‖y‖0,

where CΩ is a positive constant uniform for L2(Ω) and H(div,Ω).

Proof
We prove the lemma by a constructive approach. Let (p

˜
, û) ∈ H(div; Ω) × L2(Ω) be such that


(p
˜
, q

˜
) + (û, divq

˜
) = 0 ∀ q

˜
∈ H(div; Ω),

(divp
˜
, v̂) = (y, v̂) ∀ v̂ ∈ L2(Ω).

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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10 GONG, TAN AND ZHANG

Then we have
‖p

˜
‖H(div;Ω) + ‖û‖0 ≤ CΩ‖y‖0

for some constant CΩ. Setting τ
˜

y = p
˜

we obtain the desired result. �

Proof of Theorem 8 Define bilinear forms

A((u, ϕ
˜
, y), (z, ψ

˜
, q)) := α(u, z) + γ(ϕ

˜
, ψ

˜
) + β(y, q)

for any (u, ϕ
˜
, y), (z, ψ

˜
, q) ∈ L2(Ω) × H(div; Ω) × L2(Ω) and

B((z, ψ
˜
, q), (τ

˜
, s)) := (a−1ψ

˜
, τ
˜
) + (q, divτ

˜
) + (z, s) + (divψ

˜
, s)

for any (z, ψ
˜
, q) ∈ L2(Ω) × H(div; Ω) × L2(Ω) and (τ

˜
, s) ∈ H(div; Ω) × L2(Ω). Then problem (6)

can be reformulated as the following saddle point problem: Find ((u, ϕ
˜
, y), (σ

˜
, r)) ∈ (L2(Ω) ×

H(div; Ω) × L2(Ω)) × (H(div; Ω) × L2(Ω)) such that
A((u, ϕ

˜
, y), (z, ψ

˜
, q)) + B((z, ψ

˜
, q), (σ

˜
, r)) = (l, z) + ( f

˜
, ψ

˜
) + (g, q),

B((u, ϕ
˜
, y), (τ

˜
, s)) = (h

˜
, τ
˜
) + ( j, s) (23)

holds for any (z, ψ
˜
, q) ∈ L2(Ω) × H(div; Ω) × L2(Ω) and any (τ

˜
, s) ∈ H(div; Ω) × L2(Ω). We follow

the standard approach (see [10]) to prove the theorem case by case. Actually it is quite direct
to verify the continuity of A(·, ·) and B(·, ·) for the cases. Then, define ker(B) :=

{
(z, ψ

˜
, q) ∈ U :

B((z, ψ
˜
, q), (τ

˜
, s)) = 0, ∀ (τ

˜
, s) ∈ V

}
. For any (u, ϕ

˜
, y) ∈ ker(B) it holds that


(a−1ϕ

˜
, τ
˜
) + (y, divτ

˜
) = 0, ∀τ

˜
∈ H(div; Ω),

(u, s) + (divϕ
˜
, s) = 0, ∀s ∈ L2(Ω),

(24)

which implies divϕ
˜

= −u. We are going to check the coercivity of A(·, ·) on ker(B) and the inf-sup

condition case by case. For simplicity, we drop the subscript α, β, γ below without ambiguity.

Case I: γ > β Given (u, ϕ
˜
, y) ∈ ker(B), set τ

˜
= τ

˜
y as in (24), then by Lemma 10 we have

(y, y) = (y, divτ
˜

y) = −(a−1ϕ
˜
, τ
˜

y) 6 c−1
0 ‖ϕ

˜
‖0‖τ

˜
y‖0 6 c−1

0 CΩ‖ϕ
˜
‖0‖y‖0.

Hence, ‖y‖0 6 c−1
0 CΩ‖ϕ

˜
‖0. Therefore,

α‖u‖20 + γ‖ϕ
˜
‖20 + α‖divϕ

˜
‖20 + γ‖y‖20 ≤ α‖u‖20 + γ‖ϕ

˜
‖20 + α‖u‖20 + γc−2

0 C2
Ω‖ϕ

˜
‖20

≤ max{1 + c−2
0 C2

Ω, 2}(α‖u‖
2
0 + γ‖ϕ

˜
‖20)

≤ max{1 + c−2
0 C2

Ω, 2}A((u, ϕ
˜
, y), (u, ϕ

˜
, y)),
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which implies the coercivity ofA on ker(B).
Now, given (τ

˜
, s) ∈ V , set y = γ−1divτ

˜
, ϕ

˜
= γ−1τ

˜
1, and u = α−1s, then by Lemma 9 we have

B((u, ϕ
˜
, y), (τ

˜
, s)) = (a−1ϕ

˜
, τ
˜
) + (y, divτ

˜
) + (u, s) + (divϕ

˜
, s)

= γ−1(a−1τ
˜

1, τ
˜
) + (γ−1divτ

˜
, divτ

˜
) + α−1(s, s)

= (γ−1(‖τ
˜

1‖
2
ρ + ‖divτ

˜
‖20) + α−1‖s‖20)

≥ min{C−1
ρ , 1}(γ

−1(‖τ
˜
‖20 + ‖divτ

˜
‖20) + α−1‖s‖20)

= min{C−1
ρ , 1}‖(τ˜

, s)‖2V

and

α‖u‖20 + γ‖ϕ
˜
‖20 + α‖divϕ

˜
‖20 + γ‖y‖20 = α−1‖s‖20 + γ−1‖τ

˜
1‖

2
0 + γ−1‖divτ

˜
‖20 ≤ max{1,C0c−1

ρ , c
−1
ρ }‖(τ˜

, s)‖2V .

Therefore, we have

sup
(u,ϕ

˜
,y)∈U

B((u, ϕ
˜
, y), (τ

˜
, s))

‖(u, ϕ
˜
, y)‖U

>
min{C−1

ρ , 1}√
max{1,C0c−1

ρ ,c−1
ρ }

‖(τ
˜
, s)‖V .

The inf-sup condition is proved.

Case II. γ ≤ β, and αβ ≥ γ2 Again, for ∀(u, ϕ
˜
, y) ∈ ker(B), set τ

˜
= ϕ

˜
in (24), then we have

(αβ)1/2(a−1ϕ
˜
, ϕ

˜
) = −(αβ)1/2(y, divϕ

˜
) = (αβ)1/2(y, u) 6 2(α‖u‖20 + β‖y‖20),

which in turn implies

(αβ)1/2(ϕ
˜
, ϕ

˜
) 6 2C0(α‖u‖20 + β‖y‖20).

Therefore,

α‖u‖20 + (αβ)1/2‖ϕ
˜
‖20 + α‖divϕ

˜
‖20 + β‖y‖20 ≤ α‖u‖20 + 2C0(α‖u‖20 + β‖y‖20) + α‖u‖20 + β‖y‖20

≤ max{2 + 2C0, 1 + 2C0}(α‖u‖20 + β‖y‖20)
≤ max{2 + 2C0, 1 + 2C0}A((u, ϕ

˜
, y), (u, ϕ

˜
, y)).

This gives the coercivity ofA on ker(B).
Now, given (τ

˜
, s) ∈ V , set y = β−1divτ

˜
− (αβ)−1/2s, ϕ

˜
= (αβ)−1/2τ

˜
and u = α−1s, and we are led to

B((u, ϕ
˜
, y), (τ

˜
, s))

= (a−1ϕ
˜
, τ
˜
) + (y, divτ

˜
) + (u, s) + (divϕ

˜
, s)

= (αβ)−1/2(a−1τ
˜
, τ
˜
) + (β−1divτ

˜
− (αβ)−1/2s, divτ

˜
) + α−1(s, s) + (αβ)−1/2(s, divτ

˜
)

≥ min{C−1
0 , 1}((αβ)−1/2‖τ

˜
‖20 + β−1‖divτ

˜
‖20 + α−1‖s‖20) = min{C−1

0 , 1}‖(τ
˜
, s)‖2V

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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and

α‖u‖20 + (αβ)1/2‖ϕ
˜
‖20 + α‖divϕ

˜
‖20 + β‖y‖20

= α−1‖s‖20 + (αβ)−1/2‖τ
˜
‖20 + β−1‖divτ

˜
‖20 + β‖β−1divτ

˜
− (αβ)−1/2s‖20

≤ α−1‖s‖20 + (αβ)−1/2‖τ
˜
‖20 + β−1‖divτ

˜
‖20 + 2β(β−2‖divτ

˜
‖20 + (αβ)−1‖s‖20) ≤ 3‖(τ

˜
, s)‖2V .

Therefore, it holds

sup
(u,ϕ

˜
,y)∈U

B((u, ϕ
˜
, y), (τ

˜
, s))

‖(u, ϕ
˜
, y)‖U

>
min{C−1

0 , 1}
√

3
‖(τ

˜
, s)‖V .

This proves the inf-sup condition. Thus we finish the proof of the second case.

Case III. γ ≤ β, and αβ < γ2. For ∀(u, ϕ
˜
, y) ∈ ker(B), by (24) we have

α‖u‖20 + γ‖ϕ
˜
‖20 + α‖divϕ

˜
‖20 + β‖y‖20 = α‖u‖20 + γ‖ϕ

˜
‖20 + α‖u‖20 + β‖y‖20

≤ 2A((u, ϕ
˜
, y), (u, ϕ

˜
, y)).

This gives the coercivity desired.
Given (τ

˜
, s) ∈ V , if we set y = β−1divτ

˜
− γ−1s, ϕ

˜
= γ−1τ

˜
and u = α−1s, we can deduce

B((u, ϕ
˜
, y), (τ

˜
, s)) = (a−1ϕ

˜
, τ
˜
) + (y, divτ

˜
) + (u, s) + (divϕ

˜
, s)

= γ−1(a−1τ
˜
, τ
˜
) + (β−1divτ

˜
− γ−1s, divτ

˜
) + α−1(s, s) + γ−1(s, divτ

˜
)

≥ min{C−1
0 , 1}(γ−1‖τ

˜
‖20 + β−1‖divτ

˜
‖20 + α−1‖s‖20) = min{C−1

0 , 1}‖(τ
˜
, s)‖2V

and

α‖u‖20 + γ‖ϕ
˜
‖20 + α‖divϕ

˜
‖20 + β‖y‖20

= α−1‖s‖20 + γ−1‖τ
˜
‖20 + αγ−2‖divτ

˜
‖20 + β‖β−1divτ

˜
− γ−1s‖20

≤ α−1‖s‖20 + γ−1‖τ
˜
‖20 + β−1‖divτ

˜
‖20 + 2β(β−2‖divτ

˜
‖20 + γ−2‖s‖20) ≤ 3‖(τ

˜
, s)‖2V .

Therefore,

sup
(u,ϕ

˜
,y)∈U

B((u, ϕ
˜
, y), (τ

˜
, s))

‖(u, ϕ
˜
, y)‖U

>
min{C−1

0 , 1}
√

3
‖(τ

˜
, s)‖V .

This proves the inf-sup condition. We thus finish the proof of the third case.
Combining the above three cases we complete the proof of the theorem. �

3.2. Stability analysis of (9)

Define Uα,β,γ,h by the product of L2
h × Hh(div) × L2

h equipped with the same topology as Uα,β,γ and
Vα,β,γ,h by the product of Hh(div) × L2

h equipped with the same topology as Vα,β,γ.
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Theorem 11
Assume the two items below are true:

1. there exists a C > 0, such that given yh ∈ L2
h, there exists a τ

˜
y,h ∈ Hh(div), such that divτ

˜
y,h = yh

and ‖τ
˜

y,h‖0,Ω 6 C‖yh‖0,Ω;

2. there exists a C > 0, such that ‖τ
˜

h‖div,Ω 6 C‖divτ
˜

h‖0,Ω for τ
˜

h ∈ (∇⊥H1
h)⊥.

Then (9) induces an isomorphism between Wα,β,γ,h := Uα,β,γ,h × Vα,β,γ,h to its dual.

The proof is the same as that of Theorem 8, and we omit it here.

Remark 12
The two assumptions of Theorem 8 hold for the Raviart-Thomas element space of lowest order
(Hh(div)) and piecewise constants(L2

h). (c.f. [1, 23].)

Proof of Theorem 1 Based on Theorem 11, for any Z ∈ R3M+2N \ {0}, we have

|ZtAα,β,γ,hZ| 6 C1ZtP−1
α,β,γ,hZ

and

sup
T∈R3M+2N\{0}

TtAα,β,γ,hZ√
ZtP−1

α,β,γ,hZ
√

TtP−1
α,β,γ,hT

> C2.

This implies that |λ(Pα,β,γ,hAα,β,γ,h)| is bounded from above and from below away from 0. This
finishes the proof. �

4. NUMERICAL EXPERIMENTS

In this section we carry out several numerical experiments to confirm the efficiency of our
proposed block diagonal preconditioners. We use minimum residual method (MINRES) to solve
the symmetric and indefinite linear system. For different mesh size and regularization parameter,
we list the condition numbers of preconditioned matrix Pr

α,β,γ,hA
r
α,β,γ,h, the iteration numbers for

MINRES without preconditioner and with block diagonal preconditioner Pr
α,β,γ,h, and the iteration

numbers for MINRES with block diagonal preconditioner Pr
α,β,γ,h

′ (where the div∗div subproblems
are replaced by the Hiptmair-Xu preconditioners). For all the experiments we set the tolerance for
the residual of MINRES algorithm as 1.0e − 8 and consider only a = 1 in (2).

In the following, we consider three numerical examples:

• the first one with only state observation, i.e. β = 1 and γ = 0;

• the second one with only gradient state observations, i,e. β = 0 and γ = 1;

• the last one with both state and gradient state observations, i.e. β = 1 and γ = 1.

The numerical results presented in the following part are the results associated with the
reduced system (17). For the system (11), we do the same numerical tests with the corresponding
preconditioners and they give the similar numerical performances as the reduced case. Hence, we
omit them here for conciseness. Meanwhile, we also carry out the numerical experiments on non-
convex domains like “L-”shape domains, and the numerical performances are almost the same. We
omit them for conciseness as well.

Example 13
Let Ω = (0, 1)2, we set β = 1 and γ = 0, yd = sin(πx1) sin(πx2) and f = 2π2 sin(πx1) sin(πx2).
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Table I. Condition number of Pr
α,β,γ,hA

r
α,β,γ,h versus Dofs and α for Example 13.

PPPPPPPPα
Nodes

41 145 545 2113

1.0e − 1 2.8940 2.8903 2.8894 2.8891
1.0e − 2 3.2155 3.2161 3.2162 3.2163
1.0e − 3 3.2378 3.2532 3.2571 3.2581
1.0e − 4 3.1938 3.2479 3.2627 3.2665
1.0e − 5 3.0839 3.2111 3.2521 3.2636
1.0e − 6 2.8782 3.1146 3.2223 3.2561
1.0e − 7 2.2008 2.9312 3.1411 3.2314

Table II. Iteration number versus Dofs and α for Example 13 with direct MINRES.

PPPPPPPPα
Nodes

41 145 545 2113 8321

1.0e − 1 46 190 450 898 1788
1.0e − 2 46 147 290 582 1164
1.0e − 3 56 168 318 593 1146
1.0e − 4 134 491 818 1334 2426
1.0e − 5 173 923 3052 5452 6601
1.0e − 6 126 568 2191 6296 12803
1.0e − 7 92 285 928 2959 8716

Table III. Iteration number of PMinRes versus Dofs and α for Example 13 with preconditioner Pr
α,β,γ,h.

PPPPPPPPα
Nodes

41 145 545 2113 8321 33025

1.0e − 1 18 18 18 18 18 14
1.0e − 2 22 22 21 20 20 18
1.0e − 3 25 26 23 22 22 18
1.0e − 4 30 30 29 26 26 26
1.0e − 5 30 35 32 30 28 24
1.0e − 6 34 38 38 36 34 32
1.0e − 7 30 38 38 36 34 30

In the first example we do not consider gradient observation. It is clear that y approaches to
yd as α→ 0 and thus u approaches to zero. We test this example with fixed α but increased
number of nodes or with fixed number of nodes but decreased α, respectively. In Table I we list
the condition numbers of the preconditioned matrix Pr

α,β,γ,hA
r
α,β,γ,h, with respect to the mesh size

and the regularization parameter. We can observe the independency of the condition numbers with
respect to the two parameters which show the robustness of the proposed preconditioner.

In Table II we give the iteration numbers of MINRES without any preconditioners. We can see
that the iteration numbers grow as the mesh size decreases and the regularization parameter goes to
zero. We also show in Table III the results with preconditioner Pr

α,β,γ,h, where the iteration numbers
keep stable as the mesh size decreases. We observe a slightly dependency of the iteration numbers
on the regularization parameter α that is due to the fact that our preconditioner is α-dependent
and the stopping criteria of MINRES could be chosen as α-dependent, which is not realized in our
numerical experiments. When evaluating the preconditioner one needs to solve div∗div subproblems
which may be costly when the number of DOFs is large, this can be alleviated by the Hiptmair-Xu
preconditioner. In Table IV we give the results with the preconditioner Pr

α,β,γ,h
′. Compared to Table

III we have larger iteration numbers in this case but is paid back with cheaper computational cost.
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Table IV. Iteration number of PMinRes versus Dofs and α for Example 13 with preconditioner Pr
α,β,γ,h

′.

PPPPPPPPα
Nodes

41 145 545 2113 8321 33025

1.0e − 1 42 70 78 82 82 84
1.0e − 2 44 72 80 84 86 88
1.0e − 3 44 74 84 88 90 92
1.0e − 4 43 73 85 87 91 93
1.0e − 5 45 61 75 81 85 87
1.0e − 6 53 62 65 75 79 81
1.0e − 7 47 91 65 65 73 77

Table V. Condition number of Pr
α,β,γ,hA

r
α,β,γ,h versus Dofs and α for Example 14.

PPPPPPPPα
Nodes

41 145 545 2113

1.0e − 1 2.6180 2.6180 2.6180 2.6180
1.0e − 2 2.6180 2.6180 2.6180 2.6180
1.0e − 3 2.6180 2.6180 2.6180 2.6180
1.0e − 4 2.6180 2.6180 2.6180 2.6180
1.0e − 5 2.6180 2.6180 2.6180 2.6180
1.0e − 6 2.6180 2.6180 2.6180 2.6180
1.0e − 7 2.6180 2.6180 2.6180 2.6180

Table VI. Iteration number versus Dofs and α for Example 14 with direct MinRes.

PPPPPPPPα
Nodes

41 145 545 2113 8321

1.0e − 1 47 294 702 1446 2906
1.0e − 2 63 420 878 1583 3080
1.0e − 3 105 565 1434 2974 5784
1.0e − 4 117 591 1282 3048 6874
1.0e − 5 133 636 1485 2917 5830
1.0e − 6 145 688 1575 3201 6133
1.0e − 7 153 715 1611 3319 6556

Example 14
Let Ω = (0, 1)2, we set β = 0 and γ = 1, g

˜
d = (π cos(πx1) sin(πx2), π sin(πx1) cos(πx2)) and f =

2π2 sin(πx1) sin(πx2).

In the second example we consider only gradient observations of the state. It is clear that ∇y
approaches to g

˜
d as α→ 0 and thus u approaches to zero. As in Example 13 we also test this

example with fixed α but increased number of nodes or with fixed number of nodes but decreased
α, respectively. We list the condition numbers of the preconditioned matrix Pr

α,β,γ,hA
r
α,β,γ,h in Table

V with respect to the mesh size and the regularization parameter. Although the condition numbers
are almost the same for different cases as shown in Table V, they may differ if we consider more
significant digits. We also list in Table VI, VII, VIII the iteration numbers of MINRES without
preconditioners, with preconditioners Pr

α,β,γ,h and Pr
α,β,γ,h

′, resepctively. We can observe the similar
phenomenon as in Example 13.
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Table VII. Iteration number of PMinRes versus Dofs and α for Example 14 with block diagonal
preconditioner Pr

α,β,γ,h.

PPPPPPPPα
Nodes

41 145 545 2113 8321 33025

1.0e − 1 15 13 12 11 11 9
1.0e − 2 17 17 15 13 13 12
1.0e − 3 16 18 19 17 15 13
1.0e − 4 12 15 18 17 16 14
1.0e − 5 11 12 12 15 16 16
1.0e − 6 11 11 11 10 11 13
1.0e − 7 12 9 9 11 10 10

Table VIII. Iteration number of PMinRes versus Dofs and α for Example 14 with preconditioner Pr
α,β,γ,h

′.

PPPPPPPPα
Nodes

41 145 545 2113 8321 33025

1.0e − 1 39 54 58 62 64 105
1.0e − 2 33 49 56 58 62 111
1.0e − 3 36 44 49 55 59 61
1.0e − 4 37 55 52 47 51 113
1.0e − 5 37 58 62 55 49 187
1.0e − 6 36 58 63 60 57 109
1.0e − 7 36 58 63 61 60 57

Table IX. Condition number of Pr
α,β,γ,hA

r
α,β,γ,h versus Dofs and α for Example 15.

PPPPPPPPα
Nodes

41 145 545 2113

1.0e − 1 2.6949 2.6936 2.6932 2.6932
1.0e − 2 2.6442 2.6441 2.6440 2.6440
1.0e − 3 2.6215 2.6215 2.6215 2.6215
1.0e − 4 2.6184 2.6184 2.6184 2.6184
1.0e − 5 2.6181 2.6181 2.6181 2.6181
1.0e − 6 2.6180 2.6180 2.6180 2.6180
1.0e − 7 2.6180 2.6180 2.6180 2.6180

Example 15
Let Ω = (0, 1)2, we set β = γ = 1, yd = sin(πx1) sin(πx2), g

˜
d = (π cos(πx1) sin(πx2),

π sin(πx1) cos(πx2)) and f = 2π2 sin(πx1) sin(πx2).

In the last example we consider problem with both state and gradient state observations. As in two
previous examples we test this example with fixed α but increased number of nodes or with fixed
number of nodes but decreased α, respectively. We list the condition numbers of the preconditioned
matrix Pr

α,β,γ,hA
r
α,β,γ,h in Table IX with respect to the mesh size and the regularization parameter.

We also list in Table X, XI, XII the iteration numbers of MINRES without preconditioners, with
preconditioners Pr

α,β,γ,h and Pr
α,β,γ,h

′, resepctively. We can observe the similar phenomenon as in
previous two examples.
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Table X. Iteration number versus Dofs and α for Example 15 with direct MinRes.

PPPPPPPPα
Nodes

41 145 545 2113 8321

1.0e − 1 46 180 393 790 1566
1.0e − 2 85 238 387 676 1265
1.0e − 3 92 317 828 1414 2169
1.0e − 4 100 385 1004 2030 3702
1.0e − 5 115 496 1197 2297 4412
1.0e − 6 136 593 1395 2729 5138
1.0e − 7 147 650 1539 3006 5750

Table XI. Iteration number of PMinRes versus Dofs and α for Example 15 with preconditioner Pr
α,β,γ,h.

PPPPPPPPα
Nodes

41 145 545 2113 8321 33025

1.0e − 1 18 16 16 16 14 12
1.0e − 2 18 19 19 17 17 16
1.0e − 3 16 20 21 18 16 14
1.0e − 4 10 13 15 16 14 12
1.0e − 5 7 7 10 11 12 10
1.0e − 6 6 7 7 7 8 10
1.0e − 7 5 5 6 6 6 6

Table XII. Iteration number of PMinRes versus Dofs and α for Example 15 with preconditioner Pr
α,β,γ,h

′.

PPPPPPPPα
Nodes

41 145 545 2113 8321 33025

1.0e − 1 44 64 70 73 77 79
1.0e − 2 38 51 60 65 67 70
1.0e − 3 30 46 49 55 58 60
1.0e − 4 29 49 48 49 51 54
1.0e − 5 30 53 55 51 47 49
1.0e − 6 28 53 58 56 52 47
1.0e − 7 28 53 58 57 56 53

5. CONCLUDING REMARKS

In this paper, we study preconditioning the linear systems in saddle point formulation generated
from the mixed finite element discretization of optimal control problems. We present optimal
preconditioners for the systems, which are robust and uniformly optimal with respect to the
parameters including mesh size. Both theoretical analysis and numerical verification are given. By
the aid of the Hiptmair-Xu preconditioner, the work of carrying out the preconditioners can be
transformed to Poisson solvers, and the cost can be shown optimal.

In current paper we only consider the two dimensional case, the extension to three diemensional
case is also possible with slight modifications. In real application, the Poisson solver in the
implementation of the Hiptmair-Xu preconditioner can be replaced by geometric or algebraic
multigrid algorithms or other efficient preconditioners. This can reduce the computational time of
our proposed preconditioner significantly and the possible increased MINRES iterations will be
compensated by substantially saved computational time.
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