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Abstract: In this paper we study the adaptive finite element method for parabolic equations
with Dirac measure. Two kinds of problems with separate measure data in time and measure data
in space are considered. It is well known that the solutions of such kind of problems may exhibit
lower regularity due to the existence of the Dirac measure, and thus fit to adaptive FEM for space
discretization and variable time steps for time discretization. For both cases we use piecewise
linear and continuous finite elements for the space discretization and backward Euler scheme, or
equivalently piecewise constant discontinuous Galerkin method, for the time discretization, the a
posteriori error estimates based on energy and L2 norms for the fully discrete problems are then
derived to guide the adaptive procedure. Numerical results are provided at the end of the paper
to support our theoretical findings.
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1. Introduction

Let Ω ⊂ Rd, d = 2 or 3 be an open bounded convex polygonal or polyhedral domain with
Lipschitz boundary Γ = ∂Ω and T > 0 be a real number. The purpose of this paper is to consider
the finite element approximations of the following parabolic equations with measure data in space

(1.1)

 ∂ty +Ay = g(x, t)δγ(t) in ΩT ,
y = 0 on ΓT ,
y(·, 0) = y0 in Ω

and parabolic equations with measure data in time

(1.2)

 ∂ty +Ay = g(x, t)δt0 in ΩT ,
y = 0 on ΓT ,
y(·, 0) = y0 in Ω,

where ΩT = Ω× (0, T ) and ΓT = ∂Ω× (0, T ), ∂ty = ∂y
∂t , the operator A is a second order elliptic

partial differential operator, y0 ∈ L2(Ω) is the given initial condition, g is a given function such
that g ∈ L2(0, T ; C(Ω)) for (1.1) and g ∈ C([0, T ];L2(Ω)) for (1.2).

In equation (1.1), we assume that γ(t) is a lower dimensional time-continuous manifold which
is strictly contained in Ω for all t ∈ [0, T ] (see [10, 22] for similar definition). δγ(t) denotes the
Dirac measure in space on γ(t). We note that γ(t) can be a point, a curve or even a surface if
d = 3, it can be static and independent of time t or evolves in the time horizon. For simplicity we
assume that γ(t) is a Lipschitz-continuous m-dimensional manifold in Ω with 0 6 m 6 d−1 for all
t ∈ [0, T ], and the distance between γ(t) and ∂Ω is positive for all t ∈ [0, T ]. The m-dimensional
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Hausdorff measure of γ(t) ⊂ Ω in Rd is finite for all t ∈ [0, T ]. When m = 0, γ(t) will reduce to
a single point or a finite number of points for each t ∈ [0, T ]; when m = 1, γ(t) is a C2-curve s.t.
γ(t) ⊂ ∂D for some d-dimensional C2-domain D ⊂⊂ Ω for each t ∈ [0, T ]; when m = 2, γ(t) is
a C2-surface s.t. γ(t) ⊂ ∂D for some 3-dimensional C2-domain D ⊂⊂ Ω for each t ∈ [0, T ]. In
equation (1.2) we assume that δt0 denotes the Dirac measure in time on given point t0 ∈ (0, T ).

The problems of form (1.1) with measure data in space can be used to model the potential
of an electric field with an electric charge distribution. This kind of problems also arise in other
different applications, for instance, modeling of acoustic monopoles, transport equations for effluent
discharge in aquatic media, and so on. Also, there are some applications in inverse problems
where one attempts to identify the moving pointwise sources in the heat and convection-diffusion
equations, see for example [2]. One of the most import applications of parabolic equations with
measure data appears in optimal control theory. For instance, problems of form (1.1) with measure
data in space can serve as the state equation of some parabolic optimal control problems with
pointwise control (see [17], [21] and [24] for more details) and sparse controls (see [8]), or can
be used to model air or water pollution control problems (see [31]). Moreover, parabolic optimal
control problems with controls acting on a lower dimensional manifold also involve such kind of
parabolic equations with Dirac measure in space where the measure data may evolve in the time
horizon, we refer to [10] and [22] for more details.

On the other hand, parabolic equations of form (1.2) with measure data in time also appear in
the optimality conditions of some optimal control problems with state constraints, for example,
pointwise state constraints in time, and serve as the so-called adjoint state equation, we refer to
[7] and [32] for more details on this kind of optimal control problems.

There have already appeared some contributions to the theoretical and numerical analysis for
partial differential equations with measure data. Boccardo and Gallouët studied the existence
of solutions for quasi-linear elliptic and parabolic equations involving measure data in [5], Casas
studied in [7] the linear parabolic problems with measure data and improved the results of [5]
by exploiting the linearity of the equation. The finite element method for elliptic equation with
Dirac measure data has been extensively studied (see, e.g., [6] and the references cited therein).

Casas gave an optimal error estimate of order O(h2− d
2 ) in [6], where h is the mesh size of space

triangulation and d is the dimension of Ω. Based on the similar duality argument Gong derived a
priori error estimates for finite element approximations of parabolic equations with measure data
in [23].

It is well known that the solutions of PDEs with measure data exhibit low regularity, thus the
well developed adaptive finite element method fits to this kind of problems for the sake of accuracy
enhancement. To this end, the a posteriori error estimators should be constructed to guide the
adaptive procedure, which is the main purpose of this paper. We refer to [37] for an excellent
review for a posteriori error estimates of different types. As for the a posteriori error estimates and
adaptive finite element methods for parabolic equations, we mention the earlier work of Eriksson
and Johnson in [19] and [20], and followed by Picasso in [34], Chen and Jia ([13]) and Kreuzer
et al ([27]). We do not aware of much work on the a posteriori error estimates for PDEs with
measure data, among them we should mention the work of Araya et al in [3], where a posteriori
error estimates for elliptic problems with Dirac delta source terms are derived. In this work we
intend to derive the a posteriori error estimators for parabolic equations with measure data in
both space and time. To the best of our knowledge this is the first contribution on this subject
in the literature. We emphasize that our problems are different from the case studied in [13], [27]
and [34], where the right hand sides of equations (1.1) and (1.2) belong to L2(0, T ;L2(Ω)) and
are much regular than the measure data. At last, the derived a posterior error indicators can be
used to guide the space-time adaptive algorithm. In current paper we assume that the domain
Ω is convex, we remark that this is not restrictive as the singularity of the solutions of parabolic
equation with measure data is not caused by the reentrant corner of the domain but the singular
data.
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Compared with standard FEM, adaptive finite element methods are more suitable for solving
problems with singularity, as it is desirable to solve a series of small scale problems other than
solving a large scale problem. For time-dependent problems where the singularity may evolve in
the time horizon, adaptive algorithms can provide accurate approximations by producing meshes
which can capture the varying singularity through mesh refinement and coarsening, while the
standard FEM usually results in a very fine mesh if we want to approximate the solution with
similar accuracy. It is worthy pointing out that adaptive finite element methods pose difficulties
on implementation than standard FEM, such as the mesh refinement and coarsening algorithm, the
interpolation of solutions between different mesh levels and so on. However, a lot of popular finite
element packages have already been well developed which make the adaptive algorithms efficient
and easy to implement, we refer to, e.g., [11], [35] and [38].

The remainder of this paper is organized as follows. In Section 2 we give some notations and
results concerning the parabolic equations with measure data in space and time. In Section 3 and 4
we consider parabolic equations with measure data in space and time separately, and establish the
fully discrete finite element approximation based on continuous in space and discontinuous in time
method and derive a posteriori error estimates between the corresponding continuous and discrete
solutions. The a posteriori error estimates derived below are then used to guide the adaptive
procedure in Section 5 with some numerical experiments.

2. Parabolic equations with measure data

In this paper we adopt the standard notation W l,p(Ω) for Sobolev space on Ω with norm ‖·‖l,p,Ω
and seminorm | · |l,p,Ω. We denote W l,2(Ω) by H l(Ω) and set H1

0 (Ω) ≡ {v ∈ H1(Ω) : v|∂Ω = 0}.
Let M(Ω) denote the space of the real and regular Borel measures on Ω, which can be defined as
the dual space of C(Ω) with its natural norm

‖µ‖M(Ω) = sup{
∫

Ω

vdµ : v ∈ C(Ω) and ‖v‖C(Ω) 6 1},

andM[0, T ] be the space of the real and regular Borel measures in [0, T ], which can also be defined
as the dual space of C[0, T ] with its natural norm

‖µ‖M[0,T ] = sup{
∫ T

0

vdµ : v ∈ C[0, T ] and ‖v‖C[0,T ] 6 1}.

Then it is clear that δγ(t) ∈ L2(0, T ;M(Ω)) and δt0 ∈M[0, T ] (see [10, 23]).

We denote by Ls(0, T ;W l,p(Ω)) the Banach space of all Ls integrable functions from (0, T )

into W l,p(Ω) with norm ‖v‖Ls(0,T ;W l,p(Ω)) =
( ∫ T

0
‖v‖sl,p,Ωdt

) 1
s

for s ∈ [1,∞) and the standard

modification for s =∞. Similarly, we define the space Hr(0, T ;W l,p(Ω)), the details can be found
in [29, Chap.4]. Let Hs,r(ΩT ) = L2(0, T ;Hs(Ω) ∩ H1

0 (Ω)) ∩ Hr(0, T ;L2(Ω)) equipped with the
norm

‖w‖s,r =
(∫ T

0

‖w(·, t)‖2s,Ωdt+

∫
Ω

‖w(x, ·)‖2r,[0,T ]dx
) 1

2

,

where ‖ · ‖r,[0,T ] denotes the norm on Hr([0, T ]). We set

W (0, T ) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)),

it is straightforward that W (0, T ) ↪→ C([0, T ];L2(Ω)) (see [29, Chap.1, Sec.3]). We also set

X(0, T ) := L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) ↪→ C([0, T ];H1

0 (Ω)).

In addition, c or C denotes a general positive constant independent of mesh size h and time step
size k.
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The operator A is assumed to be a second order elliptic partial differential operator of the form

Ay = −
d∑

i,j=1

∂xj
(aij∂xi

y) + a0y,

where a0 ∈ L∞(Ω), a0(x) > 0 for all x ∈ Ω, aij ∈W 1,∞(Ω) (1 6 i, j 6 d) and satisfies the following
uniform ellipticity condition:

d∑
i,j=1

aijξiξj > c|ξ|2, c > 0 ∀ ξ ∈ Rd, x ∈ Ω.

We will denote by A∗ the adjoint operator of A:

A∗y = −
d∑

i,j=1

∂xj
(aji∂xi

y) + a0y.

Thus we can define the following bilinear forms on Ω and ΩT :

a(v, w) =

d∑
i,j=1

∫
Ω

(aij∂xiv∂xjw + a0vw)dx ∀ v, w ∈ H1(Ω)

and

a(v, w)ΩT
=

d∑
i,j=1

∫
ΩT

(aij∂xiv∂xjw + a0vw)dxdt ∀ v, w ∈ L2(0, T ;H1(Ω)).

We denote the L2-inner products on L2(Ω) and L2(ΩT ) by

(v, w) =

∫
Ω

vwdx ∀ v, w ∈ L2(Ω)

and

(v, w)ΩT
=

∫
ΩT

vwdxdt ∀ v, w ∈ L2(ΩT ).

Lemma 2.1. Assume that Ω is a convex domain. For f ∈ L2(ΩT ), let ψ be the solution of
following backward in time parabolic problem:

(2.1)

 −∂tψ +A∗ψ = f in ΩT ,
ψ = 0 on ΓT ,
ψ(T ) = 0 in Ω.

Then there holds ψ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) ↪→ C([0, T ];H1

0 (Ω)) and satisfies
([29, Ch.4, Sec.6])

(2.2) ‖ψ‖L2(0,T ;H2(Ω)) + ‖ψt‖L2(0,T ;L2(Ω)) 6 C‖f‖L2(0,T ;L2(Ω))

and

(2.3) ‖ψ(·, 0)‖H1(Ω) 6 C‖f‖L2(0,T ;L2(Ω)).

Now we are in the position to study the parabolic equations with measure data. At first we
consider the parabolic equations (1.1) with measure data in space. The weak solution of problems
(1.1) can be defined by transposition techniques (see Lions and Magenes [29, Ch.4, Sec.9]). The
existence of a unique solution of problem (1.1) and it’s regularity have been proved in [23].

Theorem 2.2. Assume that γ(t) is a Lipschitz-continuous m-dimensional manifold in Ω with
0 6 m 6 d− 1 for all t ∈ [0, T ], and the distance between γ(t) and ∂Ω is positive for all t ∈ [0, T ].
With the assumption that y0 ∈ L2(Ω) and g ∈ L2(0, T ; C(Ω)), problem (1.1) admits a unique
solution y ∈ L2(0, T ;L2(Ω)) in the sense that

−(y, ∂tv)ΩT
+ (y,A∗v)ΩT

= 〈gδγ(t), v〉ΩT
+ (y0, v(·, 0)) ∀ v ∈ X(0, T )(2.4)
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with v(·, T ) = 0, here

〈gδγ(t), v〉ΩT
=

∫
ΩT

gvdδγ(t) =

{ ∫ T
0
g(γ(t), t)v(γ(t), t)dt if m = 0;∫ T

0

∫
γ(t)

g(x, t)v(x, t)dxdt if m > 1

for all v ∈ L2(0, T ; C(Ω)). Besides, there exist a constant C only depending on Ω and γ(t), such
that

‖y‖L2(0,T ;L2(Ω)) 6 C(‖g‖L2(0,T ;L∞(Ω)) + ‖y0‖L2(Ω)).

Moreover, we have y ∈ L2(0, T ;W 1,p
0 (Ω)) and ∂ty ∈ L2(0, T ;W−1,p(Ω)) such that

〈yt, v〉I + a(y, v)ΩT
= 〈gδγ(t), v〉ΩT

∀ v ∈ L2(0, T ;W 1,q(Ω)),(2.5)

where p ∈ (1, d
d−1 ) if d−m > 1 and p = 2 if d−m = 1, q is the conjugate number of p such that

1
p + 1

q = 1, 〈·, ·〉I denotes the duality pairing between L2(0, T ;W−1,p(Ω)) and L2(0, T ;W 1,q
0 (Ω)).

Proof. Since δγ(t) ∈ L2(0, T ;M(Ω)), the existence of a unique solution in the sense of (2.4) has been

proved in [23]. Moreover, in case of d−m > 1 we have q > d for p ∈ (1, d
d−1 ) and therefore W 1,q

0 (Ω)

is embedded into C(Ω), it follows that gδγ(t) can be identified as an element of L2(0, T ;W−1,p(Ω)).

SinceA : W 1,p
0 (Ω)→W−1,p(Ω) is an isomorphism, using the results from [18] on maximal parabolic

regularity we conclude that equation (1.1) admits a unique solution y ∈ L2(0, T ;W 1,p
0 (Ω)) and

yt ∈ L2(0, T ;W−1,p(Ω)) for all p ∈ (1, d
d−1 ) in the sense of (2.5). Similarly, in case of d −m = 1

we note that gδγ(t) can be identified as an element of L2(0, T ;H−1(Ω)) (see [22]) by using the

trace theorem, thus we can conclude that y ∈ L2(0, T ;H1
0 (Ω)) and yt ∈ L2(0, T ;H−1(Ω)). This

completes the proof. �

In the following, we give several typical examples of parabolic equations with measure data in
space appeared in the literature.

Example 2.3. (1) In the parabolic optimal control problems with pointwise control (see [24]),
the measure data is a Dirac measure concentrated on one or a combination of stationary
spatial points. In this case the right hand side of (1.1) takes the form u(t)δx0 with u(t)
serving as the control, while δγ(t) equals to the Dirac measure δx0

with x0 the spatial point.
(2) In the inverse problems of identifying a moving pointwise source (see [2]), one usually

encounters the parabolic equations with right hand side g(x, t)δx(t), where g(x, t) is the
strength of the source and δx(t) is the Dirac measure concentrated on the moving spatial
point x(t).

(3) In the parabolic optimal control problems with controls acting on a lower dimensional
manifold (see [10, 22]), one encounters the parabolic state equation with right hand side
u(x, t)δγ(t), here u(x, t) is the control and γ(t) is a lower dimensional continuous manifold
which is strictly contained in Ω for all t ∈ [0, T ]. δγ(t) denotes the Dirac measure on γ(t).
We note that in this case γ(t) can be a point, a curve if d > 2 or even a surface if d = 3,
it can be static and independent of time t or evolves in the time horizon.

Then we consider the parabolic equations with measure data in time. Similarly, the weak
solution of problems (1.2) can be defined by transposition techniques. In the following theorem we
will give the results on the existence and uniqueness as well as regularity of solution of problem
(1.2) which was also proved in [23].

Theorem 2.4. [23] With the assumption that y0 ∈ L2(Ω) and g ∈ C([0, T ];L2(Ω)), problem (1.2)
admits a unique solution y ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) such that

−(y, ∂tv)ΩT
+ a(y, v)ΩT

= 〈gδt0 , v〉ΩT
+ (y0, v(·, 0)) ∀ v ∈W (0, T )(2.6)

with v(·, T ) = 0 and

‖y‖L2(0,T ;H1
0 (Ω)) + ‖y‖L∞(0,T ;L2(Ω)) 6 C(‖g‖L∞(0,T ;L2(Ω)) + ‖y0‖L2(Ω)).
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Here

〈gδt0 , v〉ΩT
=

∫
ΩT

gvdδt0 =

∫
Ω

g(x, t0)v(x, t0)dx, ∀v ∈ C([0, T ];L2(Ω)).

Remark 2.5. We remark that although we assume that Ω is convex in current paper, the convexity
assumption is not necessary to prove the existence of a unique solution for problems (1.1) and (1.2).

In the following, we give an example of parabolic equation with measure data in time which
appears in the optimal control theory.

Example 2.6. Consider the following optimal control problems governed by parabolic PDE:

min J(y, u) = 1
2‖y − yd‖

2
L2(ΩT ) + α

2 ‖u‖
2
L2(ΩT )(2.7)

subject to

(2.8)


∂ty +Ay = u in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where y denotes the state variable and u denotes the control. If we impose state constraints point-
wise in time, i.e. (see, e.g., [32])∫

Ω

f(x, t, y(x, t))dx 6 b(t) ∀ t ∈ [0, T ](2.9)

with given functions b : [0, T ]→ R and f : Ω× [0, T ]×L2(0, T ;L2(Ω))→ R, then the adjoint state
p associated to the first order optimality conditions satisfies

(2.10)


−∂tp+A∗p = y − yd + µΩT

in ΩT ,

p = µΓT
on ΓT ,

p(·, T ) = µT in Ω

in the sense of distributions (see, e.g., [32]). Here µΩT
:= µ|ΩT

, µΓT
:= µ|ΓT

and µT := µ|Ω×{T}.
The Lagrange multiplier µ associated to the state constraints (2.9) appears to be a measure only in
time, and can be decomposed as µ = gδt0 , g and δt0 are given such that g ∈ C([0, T ];L2(Ω)) and
δt0 ∈ M[0, T ]. Thus the associated (to the state) adjoint equation exhibits the similar structure of
(1.2).

3. Fully discrete approximations of parabolic equations with Dirac measure in
space and a posteriori error estimates

Let us consider the finite element approximations of problem (2.4) in this section. To this aim,
we consider a family of triangulation T h of Ω, such that Ω =

⋃
τ∈T h τ . We denote hτ the diameter

of each element τ ∈ T h and set h := max
τ∈T h

hτ . We suppose that Ω is the union of the elements of

T h. This triangulation is supposed to be shape regular in the usual sense ([14, p.124]).
Here we consider only d-simplex elements, as they are among the most widely used ones. Asso-

ciated with T h is a finite dimensional subspace Vh of C(Ω), such that χ|τ are linear polynomials for

∀χ ∈ Vh and τ ∈ T h. Wet set V̊h = Vh ∩H1
0 (Ω). Let Eh be the set consisting of the interelement

edges on the interior of the domain. The quantity[ ∂v
∂nA

]
= (A∇v)τ · nτ + (A∇v)τ ′ · nτ ′

defined on the edge l ∈ Eh, l = τ̄ ∩ τ̄ ′, measures the jump of v across the element edge l. Here nτ
denotes the unit outward normal vector to ∂τ and A = (aij(x))d×d.

Moreover, we introduce the well known error estimates for the Clément type interpolation (see
[15] and [36] for more details), which will be used in the a posteriori error analysis in this paper.
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Lemma 3.1. Let π̂ be the Clément type interpolation operator defined in [15], then for any v ∈
H1(Ω) and all element τ ,

(3.1) ‖v − π̂v‖L2(τ) + hτ‖∇(v − π̂v)‖L2(τ) 6
∑

τ̄ ′∩τ̄ 6=∅

Chτ |∇v|L2(τ ′),

(3.2) ‖v − π̂v‖L2(l) 6
∑
l⊂τ̄ ′

Ch
1/2
l |∇v|L2(τ ′),

where l is the edge or face of the element τ .

We next consider the fully discrete approximations by using the piecewise constant discontinuous
Galerkin scheme (dG(0) for short) in time, or equivalently backward Euler scheme. We consider a
partitioning of the time interval Ī = [0, T ] as

Ī = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IN

with subintervals In = (tn−1, tn] of size kn := tn − tn−1 > 0 and time points

0 = t0 < t1 < · · · < tN−1 < tN = T.

We define the discretization parameter k as a piecewise constant function by setting k|In = kn
for n = 1, 2, · · · , N . For n = 0, 1, 2, · · · , N , we construct the finite element spaces V̊ nh ∈ H1

0 (Ω)

(similar to V̊h) with the mesh T hn (similar to T h). Similar to Eh we also denote Ehn the union of
interelement edges of T hn . On each In we define the L2-projection operator πn onto the piecewise
constant space P0(In) as πnv := 1

kn

∫
In
vdt. Let Pnh be the L2(Ω)-projection operator defined from

L2(Ω) to V̊ nh :

(Pnh y, vh) = (y, vh) ∀ vh ∈ V̊ nh .(3.3)

At first we consider the fully discrete finite element approximations of parabolic equations (1.1)

with Dirac measure in space, which is to find Y nh ∈ V̊ nh , n = 1, 2, · · · , N , such that
(Y nh − Y n−1

h

kn
, wh

)
+ a(Y nh , wh) = 〈gδγ(t), wh〉In , ∀ wh ∈ V̊ nh ,

Y 0
h (x) = yh0 (x), x ∈ Ω,

(3.4)

where yh0 := P 0
hy0 ∈ V̊ 0

h is an approximation of y0. Here

〈gδγ(t), vh〉In =
1

kn

∫
Ω×In

gvhdδγ(t) =

{
1
kn

∫
In
g(γ(t), t)vh(γ(t))dt if m = 0, ∀ vh ∈ V̊ nh ;

1
kn

∫
In

∫
γ(t)

g(x, t)vh(x)dxdt if m > 1, ∀ vh ∈ V̊ nh .

Obviously the above fully discrete finite element scheme admits a unique solution, the stability
result of above scheme was also proved in [23]. In the following we denote Yh the fully discrete
finite element approximation of y, which is piecewise constant in time and piecewise linear in space
on each time interval.

On each time interval In we denote Mh
n the set consisting of the elements where the measure

data δγ(t) concentrates on. Note that we can only expect that y ∈ C([0, T ];W−ε,p(Ω)) for any ε > 0
in the case d − m > 1. Therefore, we are not able to derive a posteriori error estimates under
L∞(0, T ;L2(Ω))-norm as in [13] and [27].

Since the solution y of problem (2.4) belongs to L2(0, T ;W 1,p(Ω)) for all p ∈ (1, d
d−1 ), we have

y ∈ L2(0, T ;Ls(Ω)) for all s < dp
d−p , which means s < +∞ when d = 2 and s < 3 when d = 3.

In the following we will derive L2(0, T ;L2(Ω))-norm a posteriori error estimates. To improve the
readability of the paper we postpone all the proofs to an appendix.
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Theorem 3.2. Assume that g ∈ L2(0, T ; C(Ω)), y0 ∈ L2(Ω) and γ(t) is a m-dimensional manifold

with d − m > 1. Let y ∈ L2(0, T ;L2(Ω)) be the solution of problem (2.4), and Y nh ∈ V̊ nh , n =
1, 2, · · · , N be the solution of problem (3.4). Then there holds

N∑
n=1

∫
In

‖y − Y nh ‖2L2(Ω)dt 6 C
( N∑
n=1

kn(ξnres + ξnrhs + ξntime) + ξini

)
,(3.5)

where

ξnres : =
∑
τ∈T h

n

h4
τ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥2

L2(τ)
+
∑
l∈Ehn

h3
l

∥∥∥[∂Y nh
∂nA

]∥∥∥2

L2(l)
;

ξini := ‖y0 − Y 0
h ‖2L2(Ω);

ξnrhs :=


1
kn

∫
In

∑
τ∈Mh

n

(‖g − πng(γ(tn), t)‖2L∞(τ) + h4−d
τ ‖g‖2L∞(τ))dt if m = 0;

1
kn

∫
In

(‖g − πng(γ(tn), t)‖2L2(γ(t)) +
∑

τ∈Mh
n

h4−d
τ ‖g‖2L2(γ(t)∩τ))dt if m > 0;

ξntime := ‖Y nh − Y n−1
h ‖2L2(Ω),

C is a positive constant depending only on Ω, γ(t) and the shape regularity of the triangulation.

In the following we will derive a posteriori error estimate under L2(0, T ;W 1,p(Ω))-norm (p ∈
(1, d

d−1 )) between the solutions of problem (2.4) and (3.4).

Theorem 3.3. Assume that g ∈ L2(0, T ; C(Ω)) and y0 ∈ L2(Ω), γ(t) is a m-dimensional manifold

with d −m > 1. Let y ∈ L2(0, T ;W 1,p
0 (Ω)) be the solution of problem (2.4), and Y nh ∈ V̊ nh , n =

1, 2, · · · , N be the solution of problem (3.4). Then it holds that

N∑
n=1

∫
In

‖y − Y nh ‖2W 1,p(Ω)dt 6 C
( N∑
n=1

kn(ηnres + ηnrhs + ηntime) + ηini

)
,(3.6)

where p is defined in Theorem 2.2 and

ηnres : =
( ∑
τ∈T h

n

hpτ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥p
Lp(τ)

+
∑
l∈Ehn

hl

∥∥∥[∂Y nh
∂nA

]∥∥∥p
Lp(l)

) 2
p

;

ηini := ‖y0 − Y 0
h ‖2Lp(Ω);

ηnrhs :=


1
kn

∫
In

(
∑

τ∈Mh
n

‖g − πng(γ(tn), t)‖pL∞(τ) + h
d−(d−1)p
τ ‖g‖pL∞(τ))

2
p if m = 0;

1
kn

∫
In

(‖g − πng(γ(tn), t)‖2L2(γ(t)) + (
∑

τ∈Mh
n

h
d−(d−1)p
τ ‖g‖pL2(γ(t)∩τ))

2
p ) if m > 0;

ηntime := ‖Y nh − Y n−1
h ‖2W 1,p(Ω),

C is a positive constant depending only on Ω, γ(t) and the shape regularity of the triangulation.

Remark 3.4. If the measure data δγ(t) is of Dirac type δxc
with stationary point xc, then the error

estimator ξnrhs reduces to

1

kn

∫
In

((g − πng)2(xc, t) + h4−d
τxc

g2(xc, t))dt,

where xc is the point where Dirac measure δxc
concentrates on and τxc

is the element containing xc.
Furthermore, if xc is the node of the triangulation T hn (n = 1, 2, · · · , N), then the second term of
the above error estimator vanishes, since in the error estimate of E4 the term (ψ−πnhψ)(xc, t) = 0
for all triangulation nodes xc. The same situations occur for the error estimator ηnrhs.
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Note that if d − m = 1, we can conclude from Theorem 2.2 that y ∈ L2(0, T ;H1(Ω)) ∩
C([0, T ];L2(Ω)). Then we are able to derive the following standard a posteriori error estimates
following the approaches of [9] and [19].

Theorem 3.5. Assume that g ∈ L2(0, T ; C(Ω)) and y0 ∈ L2(Ω), γ(t) is a m-dimensional manifold

with d − m = 1. Let y ∈ L2(0, T ;H1
0 (Ω)) be the solution of problem (2.4), and Y nh ∈ V̊ nh , n =

1, 2, · · · , N be the solution of problem (3.4). Then for any 1 6 J 6 N it holds that

‖y(·, tJ)− Y Jh ‖2L2(Ω) 6 CJ max
16n6J

(ηnres + η̂nrhs + ηntime) + ηini,(3.7)

where ηnres, ηini and ηntime are defined in Theorem 3.3 in the case p = 2, and

η̂nrhs :=

∫
In

(‖g − πng(γ(tn), t)‖2L2(γ(t)) +
∑
τ∈Mh

n

hτ‖g‖2L2(γ(t)∩τ)),

CJ (J = 1, · · · , N) are positive constants depending only on Ω, γ(t) and the shape regularity of the
triangulation.

Proof. The proof is very similar to [9] and [19] and we omit it here. �

Remark 3.6. The a posteriori error estimators presented in Theorem 3.2, 3.3 and 3.5 consist of
three parts: error estimator ξtime (or ηtime) due to time discretization, error estimator ξspace (or
ηspace) and ξrhs (or ηrhs) due to space discretization and the part ξini (or ηini) from initial value
approximation. In our adaptive finite element procedure, the estimator ξtime (or ηtime) is used
to guide time step adaptivity and the estimator ξspace (or ηspace) and ξrhs (or ηrhs) are used as
indicator for space mesh adaptivity. ξini (or ηini) is used to generate a mesh on which an accurate
initial value approximation can be obtained.

4. Fully discrete approximations of parabolic equations with Dirac measure in
time and a posteriori error estimate

Now we are in a position to define the fully discrete approximations to parabolic equations with
measure data in time. The fully discrete approximation scheme of (2.6) is to find Y nh ∈ V̊ nh , n =
1, 2, · · · , N , such that

(Y nh − Y n−1
h

kn
, wh

)
+ a(Y nh , wh) = 〈gδt0 , wh〉In , ∀wh ∈ V̊ nh ,

Y 0
h (x) = yh0 (x), x ∈ Ω.

(4.1)

Here

〈gδt0 , vh〉In =
1

kn

∫
Ω×In

vhgdδt0 =
1

kn

∫
Ω

g(x, t0)vh(x)dx, ∀vh ∈ V̊ nh ,

where we required t0 ∈ (tn, tn+1) for some n ∈ N, and yh0 is the L2-projection of y0 in V̊ 0
h .

We denote I the set of indices for time partitions where the measure data δt0 concentrates on.
Now we are ready to estimate the error between the solution y of continuous problem (2.6) and
the solution Y nh (n = 1, 2, · · · , N) of the fully discrete problem (4.1). Similar to Theorem 3.2 we
are able to derive L2(0, T ;L2(Ω))-norm a posteriori error estimates.

Theorem 4.1. Assume that g ∈ C([0, T ];L2(Ω)) and y0 ∈ L2(Ω). Let y ∈ L2(0, T ;H1
0 (Ω)) ∩

L∞(0, T ;L2(Ω)) be the solution of problem (2.6), and Y nh ∈ V̊ nh (n = 1, 2, · · · , N) be the solution
of problem (4.1). Then we have

N∑
n=1

∫
In

‖y − Y nh ‖2L2(Ω)dt 6 C
( N∑
n=1

kn(ξnres + ξntime) + ξ̃rhs + ξini

)
,(4.2)
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where ξnres, ξini and ξntime are defined in Theorem 3.2, and

ξ̃rhs :=
∑
τ∈T h

I

(kI‖g(·, t0)‖2L2(τ) + h2
τ‖g(·, t0)‖2L2(τ)),

C is a positive constant depending only on Ω, t0 and the shape regularity of the triangulation.

Similar to the last section, in the following we derive an error estimate under L2(0, T ;H1(Ω))-
norm.

Theorem 4.2. Assume that g ∈ C([0, T ];L2(Ω)) and y0 ∈ L2(Ω). Let y ∈ L2(0, T ;H1
0 (Ω)) ∩

L∞(0, T ;L2(Ω)) be the solution of problem (2.6), and Y nh ∈ V̊ nh (n = 1, 2, · · · , N) be the solution
of problem (4.1). Then we have

N∑
n=1

∫
In

‖y − Y nh ‖2H1(Ω)dt 6 C
( N∑
n=1

kn(ηnres + ηntime) + η̃rhs + ηini

)
,(4.3)

where ηnres, ηini and ηntime are defined in Theorem 3.3 in the case p = 2, and

η̃rhs :=
∑
τ∈T h

I

‖g(·, t0)‖2L2(τ),

C is a positive constant depending only on Ω, t0 and the shape regularity of the triangulation.

5. Adaptive algorithm and numerical experiments

Adaptive finite element procedures consist of the following steps

Solve→ Estimate→ Refine/Coarsen.

The step Solve is beyond the scope of this paper, while the step Estimate has been done in the
above sections. This section is devoted to the constructing of time-step and mesh refinement and
coarsening algorithms based on the error equi-distribution strategy. For a detailed research on
algorithm design and convergence analysis for linear parabolic equation we refer to [13] and [27].

We can not directly use the results of Theorem 3.2, 3.3, 4.1 and 4.2 for the adaptive strategy
because the time stock. As in [9] and [33] we may use ζnspace := ξnres + ξnrhs, ζ

n
time := ξntime,

ζinit := ξinit in Theorem 3.2 and ζnspace := ηnres + ηnrhs, ζ
n
time := ηntime, ζinit := ηinit in Theorem

3.3 as error indicators on each time step for parabolic equation with measure data in space and
the similar adaptation of Theorem 4.1 and 4.2 for parabolic equation with measure data in time.
In the following numerical examples we only consider the adaptivity by using the error estimates
derived under L2(0, T ;L2(Ω))-norm.

Let TOLtime be the total tolerance allowed for the part of a posteriori error estimate related to
the time discretization, that is

( N∑
n=1

kn(ζntime)
2
) 1

2 6 TOLtime.(5.1)

Our goal is to achieve the following error equi-distributions:

ζntime 6
TOLtime

T
.(5.2)

If (5.2) is violated in current step, the step size should be refined, otherwise, if

ζntime 6 θtime
TOLtime

T
,(5.3)

then the current step size should be enlarged to reduce computational cost.
10



For the space mesh refinement we follow the similar idea. Let TOLspace denote the tolerance
for the part of a posteriori error estimates related to space triangulation, our aim is to achieve( N∑

n=1

kn(ζnspace)
2
) 1

2 6 TOLspace.(5.4)

We do space adaptivity on each time step until that

ζnspace 6
TOLspace

T
.(5.5)

On each time step we use the fully adapted space mesh from last time step as the initial mesh.
Since the location of singularity of the solution may vary with respect to time evolution, we need
the mesh coarsening to save the computation cost, here we following the ideas of the adaptive
finite element library AFEM ([12]), where the mesh refinement and coarsening algorithms are
implemented by using the bisection algorithm. On each time step we refine the minimum set of
elements Sn ⊂ T hn verifying

ζnspace(Sn) > θζnspace(T hn ),

and we mark the minimum set of elements Cn ⊂ T hn to coarsen verifying

ζnspace(Cn) 6 θcζ
n
space(T hn ),

where ηnspace(Sn) denotes the sum of elementwise error estimators in Sh and ηnspace(T hn ) the sum

of elementwise error estimators in T hn . Now we give the space-time adaptive algorithm as follows.

Algorithm 5.1. Space-time adaptive algorithm
Given tolerances TOLtime, TOLspace, parameter δ1 ∈ (0, 1), δ2 > 1 and θtime ∈ (0, 1). Start

with initial time step k0, initial mesh T h0 , and initial solution Y 0
h . Set n = 1 and t0 = 0.

(I) Compute the initial error indicator ζinit, refine T h0 to get a mesh such that ζinit < TOLspace.
(II) While tn < T , do
Given Y n−1

h from the previous time step at time tn−1, with the mesh T hn−1 and time step size
kn−1.

(1) Set T hn := T hn−1, kn := kn−1 and tn = tn−1 + kn.

(a) Solve the discrete equation for Y nh on mesh T hn with time step size kn and data Y n−1
h .

(b) Compute the a posteriori error estimates on T hn .
(2) while (5.2) is not satisfied

(a) Set kn := δ1kn−1 and tn := tn−1 + kn.
(b) Solve the discrete equation for Y nh on mesh T hn with time step size kn and data Y n−1

h .

(c) Compute the a posteriori error estimates on T hn .
end while.

(3) while (5.5) is not satisfied
(a) Refine and coarsen mesh T hn to generate a new mesh T hn .
(b) Solve the discrete equation for Y nh on mesh T hn with time step size kn and data Y n−1

h .

(c) Compute the a posteriori error estimates on T hn .
(d) while (5.2) is not satisfied do

(i) Set kn := δ1kn−1 and tn := tn−1 + kn.
(ii) Solve the discrete equation for Y nh on mesh T hn with time step size kn and data

Y n−1
h .

(iii) Compute the a posteriori error estimates on T hn .
end while

end while
(4) If (5.3) is satisfied then

kn := δ2kn.
end if

11



end while

In the following of this section we will carry out some numerical experiments to support our
theoretical findings. We set the parameters appear in Algorithm 5.1 as δ1 = 0.5, δ2 = 2, θtime = 0.5,
θ = 0.2 and θc = 0.05.

5.1. Parabolic equations with measure data in space. At first, we consider the following
parabolic equation with Dirac source term in space:

yt −∆y = f + g(t)δγ in ΩT ,

y = yd on ΓT ,

y(0) = 0 in Ω.

For ease of constructing examples we may admit some additional regular parts to appear in the
right hand side.

Example 5.2. The first example is taken from [22] with modifications. Let ΩT = (−1, 1)2× (0, 1).
We take the exact solution as

y(x, t) = − 1

2π
log |x− γ(t)| · g(t),

where g(t) is defined as follows

g(t) = 1− e−500×(t−0.5)2

.

After simple calculation we see δγ is the Dirac measure at spatial point γ(t) = (0.4 cos(2πt), 0.4 sin(2πt)).

In this example we set TOLtime = TOLspace = 0.005. In Figure 1 we show the profiles of
the solutions and their corresponding adaptively refined meshes at different time nodes. Since the
Dirac source is moving around, the mesh refinement and coarsening on each time step are crucial to
reduce the computational cost. From Figure 1 we can observe that the singularity can be captured
by the adaptive mesh satisfactorily on each time node. In Figure 2 we report the number of degrees
of freedom (DOF) and time step size, and find that the adaptive refined mesh and time step are
adapted to the exact solution very well. Especially, when the solution changes very fast in time
around time level 0.5 the time step size becomes very small. We also report the L2-norm errors of
the solutions at different time nodes in Figure 3 together with the error indicators.

To give some quantitative assessments of derived a posteriori error estimators and the perfor-
mance of the adaptive algorithm, we list in Table 1 the number of time steps N , the average
number of nodes of the meshes, the total estimated error η, the total L2-norm error E and the
effectiveness index defined by eff := η

E , for different values of TOL for Example 5.2. We observe
that the effectiveness index is stable with respect to the tolerance, which is very similar to that of
[13] and confirms the efficiency of the error estimator derived in this paper.

Table 1. The number of time steps N , the average number of nodes of the meshes
‘Node’, the total estimated error η, the total L2-norm error E and the effectiveness
index ‘eff’, for different values of ‘TOL’ for Example 5.2.

TOL N Node E η eff
0.06 1694 224 9.273e-2 6.207e-1 6.694
0.04 2177 280 7.470e-2 5.510e-1 7.376
0.02 3552 507 5.151e-2 3.976e-1 7.719
0.01 4266 991 3.616e-2 2.523e-1 6.977
0.005 4856 2018 1.808e-2 1.548e-1 8.562
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Figure 1. The profiles of the solutions Yh (left) and their corre-
sponding adaptively refined meshes (right) at different time nodes t =
0, 0.25, 0.49375, 0.5054687, 0.750396, 0.9972656 for Example 5.2.

5.2. Parabolic equations with measure data in time. Then we consider the following para-
bolic equation with Dirac right hand side in time:

∂ty −∆y = f + g(x, t)δt0 in ΩT ,

y = yd on ΓT ,

y(·, 0) = y0 in Ω,

where g(x, t) ∈ C([0, T ];L2(Ω)) and δt0 is the Dirac measure concentrated on the time node t0 ∈
(0, T ). For ease of constructing examples we may also admit some additional regular parts to
appear in the right hand side.

Example 5.3. The second example is a parabolic equation with Dirac measure in time (see [23]).
Let ΩT = (−1, 1)2 × (0, 1). We take the exact solution as

y(x, t) = 0.1 exp(−25|x− (t− 0.5)|2) ·


t2, t <

1

2
;

t2 + 2t, t >
1

2
.

After simple calculation we have

g(x, t)δt0 = 0.1 exp(−25|x− (t− 0.5)|2)δ 1
2
(t)(5.6)

with t0 = 0.5 and additional right hand side f .
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Figure 2. Numbers of DOF for spatial triangulation (left) on different time nodes
and the corresponding time step sizes (right) for time discretization for Example
5.2.
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Figure 3. The L2-norm errors (left) of the discrete solutions Yh and the corre-
sponding error estimators (right) on different time nodes for Example 5.2.

Note that the solution of this example is not continuous and exhibits a jump at t = 0.5.
Therefore, with the choice of ζnspace := ξnres + ξnrhs and ζntime =: ξntime the time step size may
be refined never-ending around t = 0.5, caused by the jump of the data and the solution. We
plot in Figure 4 the numbers of DOF for spatial triangulation on different time nodes and the
corresponding time step sizes for time discretization, where we set a minimum time step size and
choose TOLtime = 0.0025,TOLspace = 0.025. We observe that the meshes should be refined fine
enough to control the bound of the error indicators. In Figure 5 we show the L2-norm errors of
the solution at different time nodes and the error indicators. It is clear that the error indicator is
very big around the time node t = 0.5 in this case.
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Figure 4. Numbers of DOF for spatial triangulation (left) on different time nodes
and the corresponding time step sizes (right) for time discretization for Example
5.3.
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Figure 5. The L2-norm errors (left) of the discrete solutions Yh and the corre-
sponding error estimators (right) on different time nodes for Example 5.3.

As a remedy we use (ζnspace)
2 := kn((ξnres)

2 + (ξnrhs)
2) and (ζntime)

2 := kn(ξntime)
2 as error in-

dicators for parabolic equation with Dirac measure in time, compared to Example 5.2. In this
case we set TOLtime = TOLspace = 2.5e− 4. As in Example 5.2 we show in Figure 6 the profiles
of the solutions and their corresponding adaptively refined meshes at different time nodes. From
Figure 6 we can observe that the mesh nodes are concentrated on the place where the solution
varies largely. In Figure 7 we report the number of degrees of freedom (DOF) and the time step
size, and find that the adaptive refined mesh and time step are adapted to the exact solution very
well. Especially, when the solution has singularity in time around time node 0.5 the time step size
becomes very small. Moreover, to be consistent with the error indicators we compute the discrete
L2-norm errors of the solution at different time nodes, i.e., (kn‖Y nh − y(·, tn)‖2L2(Ω))

1
2 , which are
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illustrated in Figure 8 together with the error indicators. Figure 6, 7 and 8 show that the solution
is very small at the beginning and grows slowly and shows a jump at t = 0.5. We remark that the
last step size at time t = 1 is very small because we set t = 1.0 as the stopping rule of the code,
and it is not caused by the singularity of the solution.

Similarly, we list in Table 2 the number of time steps N , the average number of nodes of the
meshes, the total estimated error η, the total L2-norm error E and the effectiveness index, for
different values of TOL for Example 5.3. We can observe the similar phenomena as in Example
5.2.
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Figure 6. The profiles of the solutions Yh (left) and their corre-
sponding adaptively refined meshes (right) at different time nodes t =
0.1, 0.4, 0.4996094, 0.5749023, 0.7561523, 1.0 for Example 5.3.
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Appendix

Proof of Theorem 3.2: To derive the a posteriori error estimates we use the duality argument.
Let ψ be the solution of problem (2.1) with f ∈ L2(0, T ;L2(Ω)). Note that ψ = 0 on ∂Ω,
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Figure 7. Numbers of DOF for spatial triangulation (left) on different time nodes
and the corresponding time step sizes (right) for time discretization for Example
5.3.
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Figure 8. The L2-norm errors (left) of the discrete solutions Yh and the corre-
sponding error estimators (right) on different time nodes for Example 5.3.

ψN = ψ(T ) = 0, it follows from (2.4) and integrating by parts that∫
ΩT

(y − Yh)fdxdt =

∫ T

0

∫
Ω

(y − Yh)(−∂tψ +A∗ψ)dxdt

= −(y, ∂tψ)ΩT
+ (y,A∗ψ)ΩT

+

N∑
n=1

∫
In

((Yh, ∂tψ)− a(Yh, ψ))dt

= −
N∑
n=1

∫
In

(k−1
n (Y nh − Y n−1

h , ψn−1) + a(Y nh , ψ))dt+ 〈gδγ(t), ψ〉ΩT
+ (y0 − Y 0

h , ψ(·, 0)).

17



Table 2. The number of time steps N , the average number of nodes of the meshes
‘Node’, the total estimated error η, the total L2-norm error E and the effectiveness
index ‘eff’, for different values of ‘TOL’ for Example 5.3.

TOL N Node E η eff
4e-3 30 200 4.076e-3 6.267e-2 15.38
2e-3 46 284 3.321e-3 4.931e-2 14.85
1e-3 68 421 2.743e-3 3.931e-2 14.33
5e-4 105 624 2.275e-3 2.991e-2 13.15

2.5e-4 171 949 1.817e-3 2.454e-2 13.51

We define ψI such that ψI |In := πnhπnψ ∈ V̊ nh on each time interval In with πnh the standard

Lagrange interpolation operator onto V̊ nh . Note that ψ ∈ L2(0, T ;H2(Ω)) ↪→ L2(0, T ; C(Ω)), so the
Lagrange interpolation is well-defined. It follows from (3.4) that

N∑
n=1

k−1
n (Y nh − Y n−1

h , ψI) + a(Y nh , ψI) =

N∑
n=1

〈gδγ(t), ψI〉In .(5.7)

Then we have ∫
ΩT

(y − Yh)fdxdt

= −
N∑
n=1

∫
In

(
k−1
n (Y nh − Y n−1

h , ψn−1 − ψI) + a(Y nh , ψ − ψI)
)
dt

+(y0 − Y 0
h , ψ(·, 0)) + 〈gδγ(t), ψ − ψI〉ΩT

:= E1 + E2 + E3.(5.8)

Now we estimate the above terms one by one. Integrating by parts, using the definition of πn and
the estimates of the Lagrange interpolation ([14, Sec.3.1]) we are led to

E1 = −
N∑
n=1

∫
In

(
k−1
n (Y nh − Y n−1

h , ψn−1 − πnψ) +
∑
l∈Ehn

∫
l

[∂Y nh
∂nA

]
(ψ − πnhψ)ds

+
∑
τ∈T h

n

∫
τ

(
k−1
n (Y nh − Y n−1

h ) +AY nh
)
(ψ − πnhψ)dx

)
dt

6 C
[ N∑
n=1

kn

(
‖Y nh − Y n−1

h ‖2L2(Ω) +
∑
τ∈T h

n

h4
τ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥2

L2(τ)

+
∑
l∈Ehn

h3
l

∥∥∥[∂Y nh
∂nA

]∥∥∥2

L2(l)

)] 1
2

(‖∂tψ‖L2(0,T ;L2(Ω)) + ‖ψ‖L2(0,T ;H2(Ω))).(5.9)

For E2 we have

E2 = (y0 − Y 0
h , ψ(·, 0)) 6 C‖y0 − Y 0

h ‖L2(Ω)‖ψ(·, 0)‖L2(Ω).(5.10)
18



In case that m = 0, from the structure of E3 and L∞-error estimate for the Lagrange interpolation
we can deduce

E3 = 〈gδγ(t), ψ − ψI〉ΩT
=

N∑
n=1

∫
In

g(γ(t), t)(ψ − ψI)(γ(t), t)dt

=

N∑
n=1

(∫
In

g(γ(t), t)(ψ − πnψ)(γ(t), t)dt+

∫
In

g(γ(t), t)πn(ψ − πnhψ)(γ(t), t)dt
)

6 C

N∑
n=1

∫
In

∑
τ∈Mh

n

(
‖g − πng(γ(tn), t)‖L∞(τ)‖ψ − πnψ‖L∞(τ)

+‖g‖L∞(τ)‖πn(ψ − πnhψ)‖L∞(τ)

)
6 C

( N∑
n=1

∫
In

∑
τ∈Mh

n

(‖g − πng(γ(tn), t)‖2L∞(τ) + h4−d
τ ‖g‖2L∞(τ))dt

) 1
2 ‖ψ‖L2(0,T ;H2(Ω)).(5.11)

Similarly, in case that m > 0 we can derive

E3 = 〈gδγ(t), ψ − ψI〉ΩT
=

N∑
n=1

∫
In

∫
γ(t)

g(x, t)(ψ − ψI)(x, t)dxdt

=

N∑
n=1

(∫
In

∫
γ(t)

g(x, t)(ψ − πnψ)(x, t)dxdt+

∫
In

∫
γ(t)

g(x, t)πn(ψ − πnhψ)(x, t)dxdt
)

6 C

N∑
n=1

∫
In

(
‖g − πng(γ(tn), t)‖L2(γ(t))‖ψ − πnψ‖L2(γ(t))

+‖g‖L2(γ(t))‖πn(ψ − πnhψ)‖L2(γ(t))

)
dt

6 C
( N∑
n=1

∫
In

(‖g − πng(γ(tn), t)‖2L2(γ(t)) +
∑
τ∈Mh

n

h4−d
τ ‖g‖2L2(γ(t)∩τ))dt

) 1
2 ‖ψ‖L2(0,T ;H2(Ω)).(5.12)

Combining (5.8)-(5.12) and recalling (2.2)-(2.3) we obtain

‖y − Yh‖L2(0,T ;L2(Ω))

6 C
( N∑
n=1

kn

( ∑
τ∈T h

n

h4
τ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥2

L2(τ)
+
∑
l∈Ehn

h3
l

∥∥∥[∂Y nh
∂nA

]∥∥∥2

L2(l)

)) 1
2

+C‖y0 − Y 0
h ‖L2(Ω) + C

( N∑
n=1

∫
In

∑
τ∈Mh

n

(‖g − πng(γ(tn), t)‖2L∞(τ) + h4−d
τ ‖g‖2L∞(τ))dt

) 1
2

+C
( N∑
n=1

kn‖Y nh − Y n−1
h ‖2L2(Ω)

) 1
2

(5.13)

in the case m = 0. We can prove the similar result for the case m > 0, this completes the proof.
�

Proof of Theorem 3.3: Let q be the conjugate number of p such that 1
p + 1

q = 1, then we have

q > d > 2. Given ~Ψ ∈ L2(0, T ;Lq(Ω)d), consider now the following problem:

−〈ψt, w〉I + a(w,ψ)ΩT
=

∫ T

0

∫
Ω

~Ψ · ∇wdxdt ∀w ∈ L2(0, T ;W 1,p
0 (Ω))(5.14)
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with ψ(·, T ) = 0. Note that ~Ψ can be identified as an element of L2(0, T ;W−1,q(Ω)), it follows

that the above problem admits a unique solution ψ ∈ L2(0, T ;W 1,q
0 (Ω))∩H1(0, T ;W−1,q(Ω)) (see

[1] and [16]). From the embedding theorem in [1] (see, e.g., P. 180, Theorem 4.10.2) we conclude
that ψ ∈ C([0, T ]; (W−1,q(Ω),W 1,q(Ω)) 1

2 ,2
). Interpolation theory for Sobolev space and embedding

theorem for Besov space ([28, Corollary A.28]) imply that ψ ∈ C([0, T ];Lq(Ω)). Moreover, there
holds

‖ψ‖L2(0,T ;W 1,q
0 (Ω)) + ‖∂tψ‖L2(0,T ;W−1,q(Ω)) + ‖ψ‖C([0,T ];Lq(Ω)) 6 C‖~Ψ‖L2(0,T ;Lq(Ω)d).(5.15)

It follows from (2.5) and (5.14) that∫ T

0

∫
Ω

∇(y − Yh) · ~Ψdxdt = −〈ψt, y − Yh〉I +

∫ T

0

a(y − Yh, ψ)dt

= 〈yt, ψ〉I + 〈ψt, Yh〉I +

∫ T

0

(a(y, ψ)− a(Yh, ψ))dt+ (ψ(·, 0), y0)

= 〈gδγ(t), ψ〉ΩT
+ (ψ(·, 0), y0 − Y 0

h )−
N∑
n=1

∫
In

(k−1
n (Y nh − Y n−1

h , ψn−1) + a(Y nh , ψ))dt.(5.16)

On each time interval In we also define ψI |In := πnhπnψ ∈ V̊ nh with πnh the standard Lagrange

interpolation operator onto V̊ nh , which is well-defined due to the fact that ψ ∈ L2(0, T ;W 1,q(Ω)) ↪→
L2(0, T ; C(Ω)). Again, using (5.7) we arrive at∫ T

0

∫
Ω

∇(y − Yh) · ~Ψdxdt = −
N∑
n=1

∫
In

(k−1
n (Y nh − Y n−1

h , ψn−1 − ψI) + a(Y nh , ψ − ψI))dt

+(y0 − Y 0
h , ψ(·, 0)) + 〈gδγ(t), ψ − ψI〉ΩT

:= F1 + F2 + F3.(5.17)

Now it remains to estimate the above terms one by one. Integrating by parts, using the definition
of πn and the estimates of the Lagrange interpolation ([14, Sec.3.1]) result in

F1 = −
N∑
n=1

∫
In

(
k−1
n (Y nh − Y n−1

h , ψn−1 − πnψ) +
∑
l∈Ehn

∫
l

[∂Y nh
∂nA

]
(ψ − πnhψ)ds

+
∑
τ∈T h

n

∫
τ

(k−1
n (Y nh − Y n−1

h +AY nh )(ψ − πnhψ)dx)
)
dt

6 C

N∑
n=1

∫
In

(∥∥∥Y nh − Y n−1
h

kn

∥∥∥
W 1,p(Ω)

‖ψn−1 − πnψ‖W−1,q(Ω)

+
∑
τ∈T h

n

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥
Lp(τ)

‖ψ − πnhψ‖Lq(τ)

+
∑
l∈Ehn

∥∥∥[∂Y nh
∂nA

]∥∥∥
Lp(l)
‖ψ − πnhψ‖Lq(l)

)
dt

6 C
[ N∑
n=1

kn

( ∑
τ∈T h

n

‖Y nh − Y n−1
h ‖pW 1,p(τ) + hpτ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥p
Lp(τ)

+
∑
l∈Ehn

hl

∥∥∥[∂Y nh
∂nA

]∥∥∥p
Lp(l)

) 2
p
] 1

2

(‖∂tψ‖L2(0,T ;W−1,q(Ω)) + ‖ψ‖L2(0,T ;W 1,q(Ω))).(5.18)

For F2 we have

F2 = (y0 − Y 0
h , ψ(·, 0)) 6 C‖y0 − Y 0

h ‖Lp(Ω)‖ψ(·, 0)‖Lq(Ω).(5.19)
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In the case of m = 0, from the structure of F3 and L∞-norm error estimate of the Lagrange
interpolation we can deduce

F3 = 〈gδγ(t), ψ − ψI〉ΩT
=

N∑
n=1

∫
In

g(γ(t), t)(ψ − ψI)(γ(t), t)dt

=

N∑
n=1

(∫
In

g(γ(t), t)(ψ − πnψ)(γ(t), t)dt+

∫
In

g(γ(t), t)πn(ψ − πnhψ)(γ(t), t)dt
)

6 C

N∑
n=1

∫
In

∑
τ∈Mh

n

(
‖g − πng(γ(tn), t)‖L∞(τ)‖ψ − πnψ‖L∞(τ)

+‖g‖L∞(τ)‖πn(ψ − πnhψ)‖L∞(τ)

)
6 C

( N∑
n=1

∫
In

(
∑
τ∈Mh

n

‖g − πng(γ(tn), t)‖pL∞(τ) + hd−(d−1)p
τ ‖g‖pL∞(τ))

2
p dt
) 1

2 ‖ψ‖L2(0,T ;W 1,q(Ω)).(5.20)

Combining (5.18)-(5.20) and recalling (5.15) we obtain

∫ T

0

∫
Ω

∇(y − Yh) · ~Ψdxdt

6 C
([ N∑

n=1

kn

( ∑
τ∈T h

n

hpτ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥p
Lp(τ)

+
∑
l∈Ehn

hl

∥∥∥[∂Y nh
∂nA

]∥∥∥p
Lp(l)

) 2
p
] 1

2

+‖y0 − Y 0
h ‖Lp(Ω) + (

N∑
n=1

∫
In

(
∑
τ∈Mh

n

‖g − πng(γ(tn), t)‖pL∞(τ) + hd−(d−1)p
τ ‖g‖pL∞(τ))

2
p dt)

1
2

+(

N∑
n=1

kn‖Y nh − Y n−1
h ‖2W 1,p(Ω))

1
2

)
‖~Ψ‖L2(0,T ;Lq(Ω)d).(5.21)

Therefore

‖y − Yh‖L2(0,T ;W 1,p(Ω)) = sup
~Ψ∈L2(0,T ;Lq(Ω)d)\{0}

∫ T
0

∫
Ω
∇(y − Yh) · ~Ψdxdt

‖~Ψ‖L2(0,T ;Lq(Ω)d)

6 C
([ N∑

n=1

kn

( ∑
τ∈T h

n

hpτ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥p
Lp(τ)

+
∑
l∈Ehn

hl

∥∥∥[∂Y nh
∂nA

]∥∥∥p
Lp(l)

) 2
p
] 1

2

+‖y0 − Y 0
h ‖Lp(Ω) +

( N∑
n=1

∫
In

(
∑
τ∈Mh

n

‖g − πng(γ(tn), t)‖pL∞(τ) + hd−(d−1)p
τ ‖g‖pL∞(τ))

2
p dt
) 1

2

+
( N∑
n=1

kn‖Y nh − Y n−1
h ‖2W 1,p(Ω)

) 1
2

)
,(5.22)
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this completes the proof of the case m = 0. Similarly, in case that m > 0 we can derive

F3 = 〈gδγ(t), ψ − ψI〉ΩT
=

N∑
n=1

∫
In

∫
γ(t)

g(x, t)(ψ − ψI)(x, t)dxdt

=

N∑
n=1

(∫
In

∫
γ(t)

g(x, t)(ψ − πnψ)(x, t)dxdt+

∫
In

∫
γ(t)

g(x, t)πn(ψ − πnhψ)(x, t)dxdt
)

6 C

N∑
n=1

∫
In

(
‖g − πng(γ(tn), t)‖L2(γ(t))‖ψ − πnψ‖L2(γ(t)) + ‖g‖L2(γ(t))‖πn(ψ − πnhψ)‖L2(γ(t))

)
dt

6 C
( N∑
n=1

∫
In

‖g − πng(γ(tn), t)‖2L2(γ(t)) + (
∑
τ∈Mh

n

hd−(d−1)p
τ ‖g‖pL2(γ(t)∩τ))

2
p

) 1
2 ‖ψ‖L2(0,T ;W 1,q(Ω)).

Proceeding as above we can derive the desired results. �
Proof of Theorem 4.1: Let ψ be the solution of problem (2.1) with f ∈ L2(0, T ;L2(Ω)) and

ψI |In := πnhπnψ be the corresponding space-time interpolation. Proceeding as in the proof of
Theorem 3.2 we have∫

ΩT

(y − Yh)fdxdt = −
N∑
n=1

∫
In

(k−1
n (Y nh − Y n−1

h , ψn−1 − ψI) + a(Y nh , ψ − ψI))dt

+(y0 − Y 0
h , ψ(·, 0)) + 〈gδt0 , ψ − ψI〉ΩT

:= Ẽ1 + Ẽ2 + Ẽ3.(5.23)

The estimates of Ẽ1 and Ẽ2 are similar to E1 and E2 as in the proof of Theorem 3.2. For Ẽ3 we
have

Ẽ3 = 〈gδt0 , ψ − ψI〉ΩT
=

N∑
n=1

∫
In

∫
Ω

g(x, t)(ψ − ψI)(x, t)dxdδt0

=

∫
Ω

g(x, t0)(ψ − πnψ)(x, t0)dx+

∫
Ω

g(x, t0)πn(ψ − πnhψ)(x, t0)dx

6 C‖g(·, t0)‖L2(Ω)‖ψ − πnψ‖L∞(I;L2(Ω)) + C‖g(·, t0)‖L2(Ω)‖πn(ψ − πnhψ)‖L∞(I;L2(Ω))

6 C
( ∑
τ∈T h

I

(kI‖g(·, t0)‖2L2(τ) + h2
τ‖g(·, t0)‖2L2(τ))

) 1
2

(‖ψ‖L∞(0,T ;H1(Ω)) + ‖ψ‖H1(0,T ;L2(Ω))),(5.24)

where we used the error estimates

‖ψ − πnψ‖L∞(I;L2(Ω)) 6 Ck
1
2

I ‖ψ‖H1(0,T ;L2(Ω)), ‖ψ − πnhψ‖L∞(In;L2(τ)) 6 Chτ‖ψ‖L∞(In;H1(τ)).

Combining (5.9), (5.10), (5.23) and (5.24) we proved

‖y − Yh‖2L2(0,T ;L2(Ω))

6 C

N∑
n=1

kn

( ∑
τ∈T h

n

h4
τ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥2

L2(τ)
+
∑
l∈Ehn

h3
l

∥∥∥[∂Y nh
∂nA

]∥∥∥2

L2(l)

)
+C‖y0 − Y 0

h ‖2L2(Ω) + C
∑
τ∈T h

I

(kI‖g(·, t0)‖2L2(τ) + h2
τ‖g(·, t0)‖2L2(τ))

+C

N∑
n=1

kn‖Y nh − Y n−1
h ‖2L2(Ω),(5.25)

which completes the proof. �
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Proof of Theorem 4.2: Similar to the proof of Theorem 3.3, given ~Ψ ∈ L2(0, T ;L2(Ω)d), consider
now the following problem: Find ψ ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)) such that

−(ψt, w)ΩT
+ a(w,ψ)ΩT

= (~Ψ,∇w)ΩT
∀w ∈ L2(0, T ;H1

0 (Ω)).(5.26)

Then we have ψ ∈ C([0, T ];L2(Ω)) and

‖ψ‖L2(0,T ;H1
0 (Ω)) + ‖∂tψ‖L2(0,T ;H−1(Ω)) + ‖ψ‖C([0,T ];L2(Ω)) 6 C‖~Ψ‖L2(0,T ;L2(Ω)d).(5.27)

It follows from (2.6) and (5.26) and proceeding as in (5.17) we arrive at

∫ T

0

(∇(y − Yh), ~Ψ)dt = −
N∑
n=1

∫
In

(k−1
n (Y nh − Y n−1

h , ψn−1 − ψI) + a(Y nh , ψ − ψI))dt

+(y0 − Y 0
h , ψ(·, 0)) + 〈µ, ψ − ψI〉ΩT

:= F̃1 + F̃2 + F̃3,(5.28)

where in this case ψI |In := πnπ̂
n
hψ with π̂nh the Clément-type interpolation operator defined in

Lemma 3.1. Now it remains to estimate the above terms one by one. Similar to the proof of (5.18)
and (5.19), by setting p = 2 we can obtain

F̃1 = −
N∑
n=1

∫
In

(
k−1
n (Y nh − Y n−1

h , ψn−1 − πnψ) +
∑
l∈Ehn

∫
l

[∂Y nh
∂nA

]
(ψ − π̂nhψ)ds

+
∑
τ∈T h

n

∫
τ

(k−1
n (Y nh − Y n−1

h ) +AY nh )(ψ − π̂nhψ)dx
)
dt

6 C
[ N∑
n=1

kn

( ∑
τ∈T h

n

‖Y nh − Y n−1
h ‖2H1(τ) + h2

τ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥2

L2(τ)

+
∑
l∈Ehn

hl

∥∥∥[∂Y nh
∂nA

]∥∥∥2

L2(l)

)] 1
2

(‖∂tψ‖L2(0,T ;H−1(Ω)) + ‖ψ‖L2(0,T ;H1(Ω)))(5.29)

as well as

F̃2 = (y0 − Y 0
h , ψ(·, 0)) 6 C‖y0 − Y 0

h ‖L2(Ω)‖ψ(·, 0)‖L2(Ω).(5.30)

From the structure of F̃3 and the stability of Clément type interpolation we can deduce

F̃3 = 〈gδt0 , ψ − ψI〉ΩT
=

N∑
n=1

∫
In

∫
Ω

g(x, t)(ψ − ψI)(x, t)dxdδt0

=

∫
Ω

g(x, t0)(ψ − πnψ)(x, t0)dx+

∫
Ω

g(x, t0)πn(ψ − π̂nhψ)(x, t0)dx

6 C‖g(·, t0)‖L2(Ω)‖ψ − πnψ‖L∞(I;L2(Ω)) + C‖g(·, t0)‖L2(Ω)‖πn(ψ − π̂nhψ)‖L∞(I;L2(Ω))

6 C
( ∑
τ∈T h

I

‖g(·, t0)‖2L2(τ)

) 1
2 ‖ψ‖L∞(0,T ;L2(Ω)).(5.31)
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Combining (5.29)-(5.31) and recalling (5.27) we obtain∫ T

0

(∇(y − Yh), ~Ψ)dt

6 C
([ N∑

n=1

kn

( ∑
τ∈T h

n

h2
τ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥2

L2(τ)
+
∑
l∈Ehn

hl

∥∥∥[∂Y nh
∂nA

]∥∥∥2

L2(l)

)] 1
2

+C‖y0 − Y 0
h ‖L2(Ω) + C(

∑
τ∈T h

I

‖g(·, t0)‖2L2(τ))
1
2

+C(

N∑
n=1

kn‖Y nh − Y n−1
h ‖2H1(Ω))

1
2

)
‖~Ψ‖L2(0,T ;L2(Ω)d).(5.32)

Therefore

‖y − Yh‖L2(0,T ;H1(Ω)) = sup
~Ψ∈L2(0,T ;L2(Ω)d)\{0}

∫ T
0

(∇(y − Yh), ~Ψ)dt

‖~Ψ‖L2(0,T ;L2(Ω)d)

6 C
([ N∑

n=1

kn

( ∑
τ∈T h

n

h2
τ

∥∥∥Y nh − Y n−1
h

kn
+AY nh

∥∥∥2

L2(τ)
+
∑
l∈Ehn

hl

∥∥∥[∂Y nh
∂nA

]∥∥∥2

L2(l)

)] 1
2

+‖y0 − Y 0
h ‖L2(Ω) + (

∑
τ∈T h

I

‖g(·, t0)‖2L2(τ))
1
2 + (

N∑
n=1

kn‖Y nh − Y n−1
h ‖2H1(Ω))

1
2

)
,(5.33)

this completes the proof. �
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