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Abstract. We propose in this paper two kinds of continuity preserving discrete shape gradients of boundary type for PDE-
constrained shape optimizations. First, a modified boundary shape gradient formula for shape optimization problems governed by
elliptic Dirichlet problems was proposed recently based on the discrete variational outward normal derivatives. The advantages of
this new formula over the previous one lie in the improved numerical accuracy and the continuity along the boundary. In the current
paper we generalize this new formula to other shape optimization problems including the Laplace and Stokes eigenvalue optimization
problems, the shape optimization of Stokes or Navier-Stokes flows and the interface identification problems. We verify this new formula’s
numerical accuracy in different shape optimization problems and investigate its performance in several popular shape optimization
algorithms. The second contribution of this paper is to propose a continuous discrete shape gradients of boundary type for Neumann
problems, by using the ideas of gradient recovery techniques. The continuity property of the discrete boundary shape gradient is
helpful in certain shape optimization algorithms and provides certain flexibility compared to the previous discontinuous ones, which
are extensively discussed in the current paper.
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1. Introduction. Shape optimization is an old research field that can be traced back to the work of Hadamard
in 1908 [18], and followed subsequently by many researchers from the perspectives of theoretical analysis (cf. [1, 13]
and numerical simulations (cf. [10, 19, 20]). Nowadays, shape optimization is a hot research topic due to its
increasingly wide applications in various fields of modern science and engineering [1, 15, 20, 37, 41]. As most of
shape design problems involve partial differential equations (PDEs), it is difficult and usually impossible to obtain
the optimal shapes from theoretical analysis. Thus, numerical techniques find their powers to seek “approximate”
optimal shapes with the help of the efficient PDEs discretization methods and modern optimization algorithms
[22].

For discretizations of PDEs in shape optimization problems, finite element method is among the most popular
approaches (see e.g., [21]), partially due to its flexibility to deal with arbitrary computational domains that is
essential in shape optimization algorithms because the computational domain usually changes after each iteration.
For the shape evolution algorithm, gradient-type optimization methods are widely used to obtain the approximate
optimal domain shapes. For other optimization algorithms, e.g., the Newton or quasi-Newton type optimization
algorithms, we refer to [38, 40] and the references therein. To perform a gradient-type algorithm in shape opti-
mization, an essential ingredient is the so-called shape gradient, which is used to obtain feasible descent directions
and can be derived from Eulerian derivative. It is well recognized in the community of shape optimization that
the Eulerian derivatives can be derived by shape sensitivity analysis [15, 41], which measures the variations of a
certain shape functional with respect to shape variations of domain.

It is well-known that the Eulerian derivative of the shape functional has two representations, i.e., the distributed
form and the boundary form, which are equivalent to each other under certain smoothness assumptions. The
famous Hadamard-Zolésio structure theorem [15] shows that the shape gradient for a general shape functional can
be obtained by computing the Eulerian derivative in the form of a boundary integral assuming that the domain is
smooth enough. Several implications of this structure theorem make the boundary formula popular in the shape
optimization community. First, it tells us that the directional derivative of the objective functional depends only
on the normal component of the given direction on the boundary. Second, it gives an explicit choice of descent
direction for the objective functional which can then be utilized in shape gradient descent algorithms. On the
other hand, to obtain the descent direction by using the distributed shape gradient we have to solve an additional
equation posed on the whole computational domain (cf. [28]), makes this approach costly in applications as the
solutions to the state equation are already time-consuming. However, the distributed shape gradients do have
advantages. On the one hand, the derivation of distributed one allows for less regular solutions and domains. On
the other hand, the discretize-then-optimize and optimize-then-discretize approaches commute for the distributed
shape gradient while not for the boundary shape gradient ([6]). Moreover, it is very well suited to certain shape
optimization algorithms, for instance, the level set method [31] (see, e.g., [28] for solving a level-set transport
equation based on a gradient flow associated with the distributed Eulerian derivative). For the use of distributed
shape gradients in numerical algorithms, we refer to [8, 28, 39] and the references therein.

Recently, shape gradient of distributed type attracts more attentions in the shape optimization community,
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partly because of its higher order discrete accuracy over the boundary formula, as discovered in [24] for elliptic
problems, [47] for eigenvalue problems, and [46] for Stokes flows. The accuracy of approximate shape gradients
could be essential for the implementation of numerical optimization algorithms [15] and may influence the conver-
gence of shape optimization algorithms [6]. In [24], for the first time, the authors proved that the finite element
approximations of shape gradients in boundary formulations of Eulerian derivatives have lower convergence rate
with respect to the mesh size compared to the distributed one. It is further observed numerically in [29, 45] that
the approximate shape gradient computed with the traditional boundary formulation may fail to converge to the
optimal target domain, possibly because of the poor accuracy of the approximate shape gradients that may do
not ensure the descent of the gradient. To alleviate the accuracy loss for the approximations of boundary type
shape gradients, we proposed in [17] a modified boundary shape gradient for elliptic Dirichlet problems based on
the discrete variational normal derivatives of the state and adjoint equations. In [17], a priori error estimate for
the finite element approximations of the boundary type shape gradients with the proposed boundary corrections is
derived which shows higher order convergence rate and accuracy than those of the classical one, and is comparable
to the distributed one when the solutions are sufficiently smooth. However, the effectiveness of this improved
boundary formula in shape optimization problems is not justified. In this paper, we test the performance of the
boundary corrected shape gradient in two types of shape optimization algorithms: the scalar H1 shape gradient
flow method (Algorithm 1) and the Fourier boundary parametrization method (Algorithm 2), which is the first
contribution of this work. Numerical experiments show that this boundary correction can increase the robustness
and effectiveness of shape gradient algorithms for shape optimizations, and can be more efficient and insensitive
to the initial guess compared to the classical one. By presenting the corresponding discrete variational normal
derivatives, we also extend this kind of corrections to shape optimizations of the Laplace eigenvalues ([4, 7, 32]),
the Stokes eigenvalues [14, 34], the elliptic interface identification problem [2, 35], and the Stokes or Navier-Stokes
flows ([30, 46]). These generalizations of the improved boundary type shape gradient to several typical and bench-
mark shape optimization problems form the second contribution of this work. Nevertheless, a disadvantage of
the boundary formula and improved boundary formula is that it seems to be not straightforward to compute the
Eulerian derivatives in the framework of automated differentiation as in [16, 36].

We remark that another advantage of our proposed boundary shape gradient lies in its continuity along the
boundary. In [38, 40] the authors pointed out that due to the discontinuity of the discrete shape gradient, the
L2-projection has to be performed to bring back the continuity. However, the purpose of the projection is only
to obtain a continuous shape gradient but the numerical accuracy is not improved. The abstract framework to
obtain a descent direction based on the shape gradient is to solve an additional equation in an appropriate inner
product (cf. [11] for different approaches). We have mentioned above that one advantage of the boundary type
shape gradient over the distributed one is that it naturally offers an explicit choice of descent direction. However,
the discrete boundary shape gradient in its classical form cannot be directly used in certain shape optimization
algorithms because of its discontinuity, say, e.g., the Hadamard type, the Stefan-like and the surface diffusion flows,
all of which use certain extensions of the shape gradient [11]. For the level set method or the computationally
more efficient narrow band version [12, 42], one can either use a gradient flow based on the distributed Eulerian
derivative [28] or use the extension of the boundary type shape gradient, where the continuity is indispensable
for the finite-difference upwind schemes used in the discretization of the Hamilton-Jacobi equation [11, 42]. For
the level set method combined with the proposed improved boundary shape gradient, the level set function can
cut elements in the finite element mesh. One can assemble the boundary mass matrices in the discrete variational
formulations (2.13)-(2.14) by using the Dirac delta of level set functions, so that the integrals can be performed on
a strip domain near the boundary. For the ease of computing the gradient flow, the improved boundary Eulerian
derivative can also be extended to a strip domain near the boundary or even the whole domain by virtue of the
level set function. From the above concerns our proposed boundary type shape gradients for Dirichlet problems
will be favorable for such shape optimization algorithms. Moreover, the third contribution of this work is to use
the gradient recovery technique to bring back the continuity of the boundary type shape gradient for Neumann
problems, which leads to an improvement over the classical boundary formula. As proved in [17], the classical
discrete boundary type shape gradient for Neumann problems shares the similar convergence rate with that of
the distributed one, but is discontinuous along the boundary. Our proposed boundary type shape gradient brings
back the continuity and retains the convergence rate. We remark that the implementation of the gradient recovery
techniques presented in Section 2.2 for Neumann boundary value problems is simple yet has been already included
in commercial softwares.

The remaining of this paper is organized as follows. In §2 we recall our main ideas of improved boundary
type shape gradient for Dirichlet boundary value problems, and propose for Neumann boundary value problems
a modified boundary shape gradient that preserves continuity by using the gradient recovery technique. In §3, we
extend our ideas of improved boundary type shape gradient for elliptic Dirichlet problems to different kinds of
PDE-constrained shape optimization problems, including the eigenvalue optimization, the optimal shape design of
fluid flows, the interface identification, etc. In §4 we test the numerical accuracy of the proposed boundary type
shape gradients for both Dirichlet and Neumann boundary value problems. In §5 extensive numerical examples are
presented to show the effectiveness of the improved shape gradient in two popular shape optimization algorithms.
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A brief conclusion follows.
Let Ω be an open bounded domain in Rd (d = 2, 3) with Lipschitz boundary ∂Ω. Let Wm,p(Ω) and Wm,p(∂Ω)

be the usual Sobolev spaces defined on the domain Ω and its boundary ∂Ω, which are denoted respectively
by Hm(Ω) and Hm(∂Ω) when p = 2. Set H1

0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω}. For Σ = Γ or ∂Ω, we
denote by 〈·, ·〉Σ the inner product in L2(Σ) associated with the norm ‖ · ‖L2(Σ), or the duality pairing between

H−
1
2 (Σ) and H

1
2 (Σ). We use bold font to denote vector-valued spaces or variables. Set Hm(Ω) := Hm(Ω)d and

H1
0(Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω}. Let (·, ·) denote the inner product in L2(Ω) or L2(Ω) := L2(Ω)d. Denote

by ‖ · ‖ the Euclidean norm of a vector or the Frobenius norm of a matrix.

2. Shape optimization for elliptic boundary value problems. In this section we take the shape opti-
mization for elliptic boundary value problems as an example to illustrate our main ideas. We propose modified
boundary type shape gradients for both cases of Dirichlet and Neumann boundary conditions. We distinguish
in the following the Dirichlet and Neumann boundary conditions for boundary correction and gradient recovery,
respectively.

2.1. Boundary correction for elliptic Dirichlet boundary value problems. We consider the following
PDE-constrained shape functional J(·) : Ω 7→ R

J(Ω) =

∫
Ω

j(x, u(x))dx, (2.1)

where j : Ω × R → R is C1 with its partial derivative j′u(x, u) := ∂
∂uj(x, u) being locally Lipschitz continuous,

u : Ω→ R is the solution of the elliptic state equation with Dirichlet boundary condition{
−∆u+ u = f in Ω,

u = g on ∂Ω,
(2.2)

in which the functions f and g are assumed to belong to L2(Rd) and H2(Rd), respectively. Here, f and g are
identified with their restrictions onto Ω and ∂Ω, respectively. For compliance minimization problems we choose
j = fu; while for shape inverse problems we set simply j = 1

2 (u− uobs)
2 for some observation data uobs.

An essential ingredient of shape optimizations is the shape sensitivity analysis which measures the variations
of the shape functional with respect to shape variations of the domain. We consider the velocity method for shape
calculus (more details can be found in, e.g., [15, 41]). Let D ⊂ Rd (Ω ⊂ D) be a hold-all domain, whose boundary
∂D is piecewise C1. Denote

V 1(D) =
{
V ∈ D1

(
Rd;Rd

)
|V · n = 0 a.e. on ∂D except for the singular points x̄ of ∂D,

V(x̄) = 0 for all singular points x̄
}
,

where D1(Rd;Rd) denotes the space of differentiable functions, whose derivatives vanish at infinity. For a time
variable t ∈ [0, τ) with τ > 0, we choose a velocity field V = V(t,x) ∈ C

(
[0, τ);V 1(D)

)
. For any X ∈ D̄ and

t ∈ [0, τ), let x = x(t,X) satisfy the following flow system

dx

dt
(t,X) = V(t,x(t,X)), x(0,X) = X. (2.3)

Let Tt(V) : D̄ → D̄ with Tt(V)(X) := x(t,X) be the associated one-to-one transformation from D̄ onto D̄.
Denote Ωt = Tt(V)(Ω). Now we define the Eulerian derivative of J(Ω) at Ω in the direction V as follows

dJ(Ω;V) := lim
t↘0

J(Ωt)− J(Ω)

t
. (2.4)

For a given vector field V = V(t,x) in C([0, τ ];D1(Rd,Rd)), the Eulerian derivative dJ(Ω;V) of J in the direction
V can be formulated as an integral over a volume for the so-called distributed shape gradient, as well as an integral
on the boundary for the so-called boundary type shape gradient. Explicit formula for the Eulerian derivative of
J(Ω) relies on the solution p of the following adjoint problem{

−∆p+ p = j′u(·, u) in Ω,
p = 0 on ∂Ω.

(2.5)

Then we have the volumetric type Eulerian derivative (cf. [24, 20]):

dJ(Ω;V) =

∫
Ω

(
∇u · (DV +DVT )∇p− fV · ∇p+∇xj(·, u) · V + divV(j(·, u)−∇u · ∇p

− up) + (j′u(·, u)− p)(∇g · V)−∇p · ∇(∇g · V)
)

dx.

(2.6)
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Moreover, if the boundary is smooth enough, the Eulerian derivative can be equivalently written as the boundary
formula (cf. [24]):

dJD(Ω;V) =

∫
∂Ω

Vn

(
j(·, u) + ∂np∂n(u− g)

)
ds, (2.7)

where Vn := V · n.
The distributed integral (2.6) and the boundary integral (2.7) are equivalent representations of the Eulerian

derivative when the boundary is smooth. However, the formula (2.7) is more popular in the literature due to the
Hadamard-Zolésio structure theorem, which says that the boundary type formula admits a representative G(Ω) in
the space of distributions Dk(∂Ω), i.e., if ∂Ω is smooth, there holds

dJD(Ω;V) = 〈G(Ω), γ∂ΩV · n〉Dk(∂Ω), (2.8)

where γ∂ΩV · n is the trace for the normal component of V on the boundary ∂Ω. This implies that only normal
displacements of the boundary have an impact on the Eulerian derivative. Moreover, setting V = −G(Ω)n in (2.8)
simply gives an explicit descent direction.

However, the above two formulae (2.6) and (2.7) have different numerical behaviors on the discrete level with,
e.g., finite-element method. Let {Th}h>0 be a family of quasi-uniform and shape regular simplex triangulations of
domain Ω. For the domain with curved boundary we rely on the parametric finite elements (cf. [9, Section 10.4])
so that the elements may contain curved boundaries. Associated with Th we construct the finite element space Vh,
which consists of continuous piecewise polynomials of first-order such that Vh ⊂ H1(Ω). Denote V 0

h := Vh∩H1
0 (Ω)

and by Vh(∂Ω) the restriction of Vh to the boundary ∂Ω.
The discretized boundary type Eulerian derivative for the shape optimization problem reads:

dhJ
D(Ω;V) =

∫
∂Ω

Vn

(
j(·, uh) + ∂nph(∂nuh − ∂ng)

)
ds, (2.9)

where uh ∈ Vh and ph ∈ V 0
h solve the discrete state and adjoint state equations, respectively:

uh ∈ Vh, uh|∂Ω = gh : (∇uh,∇vh) + (uh, vh) = (f, vh) ∀vh ∈ V 0
h , (2.10)

ph ∈ V 0
h : (∇vh,∇ph) + (ph, vh) = (j′u(·, uh), vh) ∀vh ∈ V 0

h (2.11)

with gh being an approximation of g on ∂Ω. The formula (2.9) is extensively used in the literature and let us
call it the classical boundary formula. In [24] the authors compared the numerical performance of two discretized
shape gradients, one with a volumetric formulation while the other with a boundary formulation, and showed
that the volume type discrete shape gradient has better approximation property for state equations with Dirichlet
boundary conditions compared to the counterpart of boundary integrals.

In [17] a modified discrete shape gradient was proposed, which will be referred to as the improved formula

d̃hJ
D(Ω;V) =

∫
∂Ω

Vn

(
j(·, uh) + ∂hnph(∂hnuh − ∂ng)

)
ds, (2.12)

where ∂hnuh ∈ Vh(∂Ω) and ∂hnph ∈ Vh(∂Ω) solve the following discrete variational problems

〈∂hnuh, vh〉∂Ω = (∇uh,∇vh) + (uh, vh)− (f, vh) ∀vh ∈ Vh, (2.13)

〈∂hnph, vh〉∂Ω = (∇ph,∇vh) + (ph, vh)− (j′u(·, uh), vh) ∀vh ∈ Vh, (2.14)

respectively. We have shown that the above modified discrete shape gradients have comparable approximation
property to that of the volume integrals, i.e.,

|dJD(Ω;V)− d̃hJ
D(Ω;V)| . h2‖Vn‖H3/2(∂Ω), (2.15)

if we use piecewise linear finite element approximations to the state and adjoint state variables.
The modified boundary formulae (2.13)-(2.14) are motivated by the variational normal derivatives for elliptic

Dirichlet boundary value problems. In fact, for the state equation (2.2) it holds that ∂nu ∈ H−
1
2 (∂Ω) such that

〈∂nu, v〉∂Ω = (∇u,∇v) + (u, v)− (f, v) ∀v ∈ H1(Ω). (2.16)

Similarly, we have the variational problem for the outward normal derivative of solution to the adjoint equation
(2.5): Find ∂np ∈ H−

1
2 (∂Ω) such that

〈∂np, v〉∂Ω = (∇p,∇v) + (p, v)− (j′u(·, u), v) ∀v ∈ H1(Ω). (2.17)

Therefore, on the discrete level we can define the discrete variational normal derivatives ∂hnuh and ∂hnph which
are better approximations to ∂nu and ∂np compared to ∂nuh and ∂nph. Moreover, ∂hnuh and ∂hnph appearing in
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(2.12) are solved in the space Vh(∂Ω), the trace of a continuous finite element space. Thus, they are piecewise
linear and continuous along the boundary ∂Ω. This is in contrast to the piecewise constant and discontinuous
approximations ∂nuh and ∂nph. On the other hand, since j(·, ·) in (2.12) is continuous with respect to the two
arguments and uh is continuous, so j(·, uh) is continuous. Therefore, the integrand

(
j(·, uh) + ∂hnph(∂hnuh − ∂ng)

)
is continuous.

Furthermore, as pointed out in [17], the additional work in the modified discrete shape gradient is very little.
In fact, only the linear systems with small numbers of Dofs are required to be solved, while the evaluation of the
right-hand side in (2.13) and (2.14) is only performed in the neighboring elements of the boundary nodes because
of the discrete state (2.10) and adjoint (2.11).

2.2. Gradient recovery for elliptic Neumann boundary value problems. In this subsection we con-
sider the elliptic Neumann boundary value problem{

−∆u+ u = f in Ω,
∂nu = g on ∂Ω,

(2.18)

where f ∈ H1(Rd) and g ∈ H2(Rd). Here, f and g are identified with their restrictions onto Ω and ∂Ω, respectively.
The variational formulation of (2.18) is to find u ∈ H1(Ω) such that

(∇u,∇v) + (u, v) = (f, v) + 〈g, v〉∂Ω ∀v ∈ H1(Ω). (2.19)

On the other hand, the variational formulation for the adjoint state equation reads: Find p ∈ H1(Ω) such that

(∇p,∇v) + (p, v) = (j′u(·, u), v) ∀v ∈ H1(Ω). (2.20)

Then, p satisfies in the distribution sense that{
−∆p+ p = j′u(·, u) in Ω,

∂np = 0 on ∂Ω.
(2.21)

If Ω is C2, with the help of the above adjoint equation we can calculate the Eulerian derivative for the Neumann
problem (cf. [24]):

dJN (Ω;V) =

∫
∂Ω

Vn

(
j(·, u)−∇u · ∇p− up+ fp+ ∂n(gp) +Kgp

)
ds, (2.22)

where K := div n is the mean curvature.
Now we are in the position to formulate the finite element approximations to the state and adjoint equations.

For the state equation it is to find uh ∈ Vh such that

(∇uh,∇vh) + (uh, vh) = (f, vh) + 〈g, vh〉∂Ω ∀vh ∈ Vh. (2.23)

For the discretization of the adjoint state equation it is to find ph ∈ Vh such that

(∇ph,∇vh) + (ph, vh) = (j′u(·, uh), vh) ∀vh ∈ Vh. (2.24)

Then we can formulate the discrete shape gradient for shape optimization of the Neumann boundary value problem:

dhJ
N (Ω;V) =

∫
∂Ω

Vn

(
j(·, uh)−∇uh · ∇ph − uhph + fph + ∂n(gph) +Kgph

)
ds. (2.25)

One can prove that the above boundary formula (2.25) admits nearly second-order convergence rate (in fact,
O(h2| log h|)) for finite-element discretization in case that the solutions have sufficient regularity (cf. [17, Theorem
3.13]). However, the integrand in the above formula (2.25) is not globally continuous along the boundary ∂Ω,
which may result in difficulty in certain shape optimization algorithms. For example, the direct extension of shape
gradient (Hadamard flow and Stefan-like flow) (cf. [11]) and the narrow-band level set method ([12]) require the
continuity of the shape gradient which is obviously not satisfied by (2.25).

In the current paper, we propose to enhance the above boundary formula by a gradient recovery technique. It
has been proved that under certain mesh conditions the recovered gradient can admit higher order accuracy than
that of the classical gradient (cf. [44, 48]). Although we can not expect that the modified formula achieves higher
order finite-element convergence in general cases, it is globally continuous along the boundary. More importantly,
and will be seen later, the computation of the modified formula is very cheap and the corresponding module of
gradient recovery is already included in many commercial software of numerical simulations.

Now we illustrate the main idea of gradient recovery by using the state equation (2.18) as an example (cf.
[44, 48] for more details). Let uh ∈ Vh be the discrete solution of the state equation. We are aiming to construct
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a vector Gh(uh) ∈ V dh :=
d∏
i=1

Vh with Gh : Vh → V dh the recovery operator. For each mesh grid point z, let Φz be

the vectorial nodal basis function and define

Gh(uh) :=
∑
z∈Th

Gh(uh)(z)Φz. (2.26)

The essential part for the above reconstruction is to obtain the nodal values Gh(uh)(z) for each grid point z.
There are many ways for the construction of the recovery operator Gh, including the local averaging technique,
the local L2-projection, the least-squares methods, etc. Taking the local averaging method as an example, we can
define Gh(uh)(z) as

Gh(uh)(z) :=
1

mz

∑
z∈K, K∈ωz

∇uh(z)|K , (2.27)

where mz is the number of elements sharing z as a vertex, ωz denotes the element patch consisting of elements
with z as a vertex. One can also use the weighted local averaging technique to extend the above ideas. For
the local least-squares method, Zienkiewicz-Zhu type recovery (cf. [48]) is the most popular one, which sets
Gh(uh)(z) = σz(z) such that

E(σz) = min
w∈V dz

E(w) :=
∑
K∈ωz

∥∥∥∥ ∫
K

wdx−
∫
K

∇uhdx

∥∥∥∥2

, (2.28)

where V dz denotes the local vectorial finite element space in ωz. When z ∈ ∂Ω, a few extra neighboring elements
should be added to ωz such that ωz contains more than three elements. For the regular mesh and suitable choice
of ωz one can show that Gh(uh) exists for any ∇uh ∈ L2(Ω). For our purpose, we do not need to reconstruct
Gh(uh)(z) for each vertex, but only the boundary vertex because we are only interested in the values on the
boundary ∂Ω.

A similar gradient recovery is performed for the adjoint equation to obtain Gh(ph) ∈ V dh . Now the modified
shape gradient reads:

d̃hJ
N (Ω;V) =

∫
∂Ω

Vn

(
j(·, uh)−Gh(uh) ·Gh(ph)− uhph + fph + ∂ngph + gGh(ph) · n +Kgph

)
ds. (2.29)

It is obvious that the integrand in the above formula (2.29) is continuous along the boundary if ∂Ω is C2 for
g|∂Ω 6≡ 0 (C1 for g|∂Ω ≡ 0) and parametric finite elements are used for the discretization of the state and adjoint
state equations. In fact, similar to (2.12), j(·, uh) in (2.29) is continuous and the finite element solutions uh and
ph in a continuous finite element space are also continuous. On the other hand, Gh(uh) ∈ V dh and Gh(ph) ∈ V dh
are continuous from the construction. In conclusion, the integrand in (2.29) is continuous.

If we do not use the parametric finite element method, then the integrand of the discrete shape gradient
formula defined over the approximate boundary ∂Ωh has to be composed with the mapping operator between
∂Ω and ∂Ωh to ensure the continuity, we refer to [17, Eq. (3.10) and (3.60)] for a similar definition. We remark
that the above gradient recovery technique can also be used for distributed shape gradient if we are looking for a
continuous discrete shape gradient.

Remark 2.1. We remark that the above improved discrete boundary type shape gradient formulae are defined
in the form of parametric finite elements, as done in [24]. The counterparts without parametric finite elements for
curved boundary were defined in [17, Eq. (3.10) and (3.60)] based on boundary polygonal approximations, where
the a priori error estimates were also given. If we use non-parametric finite elements without curved boundary,
say, polygonal domains, we can not expect the similar convergence rate as in the curved boundary case, although we
still have the continuity of the outward normal derivatives under certain conditions (cf. [17, Remark 3.11]). We
refer to [17, Remark 3.11] for more detailed discussions on the related convergence behaviors . However, numerical
results in [17, Example 1 and Example 3] showed better convergence rates than what we expected.

3. Applications to shape optimizations with Dirichlet boundary conditions. In this section we
consider the applications of the improved boundary formulae for Dirichlet problems presented in Section 2 to
different shape optimization problems, including the eigenvalue optimization, the interface identification, and the
shape design in fluid flows.

3.1. Laplace eigenvalue optimization. We consider the Laplace eigenvalue problem with homogeneous
Dirichlet boundary condition: {

−∆u = λu in Ω,
u = 0 on ∂Ω.

(3.1)
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The variational formulation of problem (3.1) is to find λ ∈ R+, 0 6= u ∈ H1
0 (Ω) such that

(∇u,∇v) = λ(u, v) ∀v ∈ H1
0 (Ω). (3.2)

It is well-known that there exists a sequence of eigenpairs (λ`, u`) with

0 < λ1 6 λ2 6 · · ·λ` 6 · · · <∞,

where each eigenvalue is repeated according to its multiplicity and eigenfunctions are normalized by (ui, uj) = δij
(i, j > 1) with δij being the Kronecker delta. The eigenvalue λ` can be characterized by the Rayleigh quotient,
i.e., the Courant-Fischer formula

λ` = min
S`⊂H

1
0(Ω)

subspace of dim `

max
06=v∈S`

∫
Ω
|∇v|2dx∫
Ω
v2dx

.

The finite-dimensional weak form of (3.1) is to find λh ∈ R+, 0 6= uh ∈ V 0
h such that

(∇uh,∇vh) = λh(uh, vh) ∀vh ∈ V 0
h . (3.3)

It is well-known that there exists a sequence of eigenpairs (λ`,h, u`,h) for (3.3) with

0 < λ1,h 6 λ2,h 6 · · ·λ`,h 6 · · · <∞,

where each eigenvalue is repeated according to its multiplicity and the eigenfunctions are normalized by (ui,h, uj,h) =
δij (i, j > 1).

We consider the following eigenvalue shape optimization problem subject to a volume constraint:

min
Vol(Ω)=C

λ`(Ω), (3.4)

where Vol(Ω) denotes the volume of Ω and C > 0 is a prescribed number. Problem (3.4) is well understood for ` = 1
or 2 (cf. [23]). Many theoretical problems are still open for higher eigenvalues (see, e.g., [4, 32] for the numerical
simulations). Eigenvalue optimization has fundamental applications in, e.g., the structural mechanics [5]. By
homothety [23], which means that the eigenvalues of the Laplacian operator are invariant to rigid transformations
of the domain, the original model (3.4) is equivalent to the unconstrained optimization problem [4, 32]

min
Ω

Vol(Ω)
2
dλ`(Ω). (3.5)

The boundary formulation of the Eulerian derivative of problem (3.5) with JD(Ω) = Vol(Ω)
2
dλ`(Ω) writes (cf.

[23, 47])

dJD(Ω;V) =

∫
∂Ω

[
2

d
λ`Vol(Ω)

2
d−1 −Vol(Ω)

2
d (∂nu`)

2

]
Vn ds (3.6)

with the corresponding discrete version (cf. [47])

dhJ
D(Ω;V) =

∫
∂Ω

[
2

d
λ`,hVol(Ω)

2
d−1 −Vol(Ω)

2
d (∂nu`,h)

2

]
Vn ds. (3.7)

Now we introduce the improved boundary type shape gradients. As an improved approximation to ∂nu
compared to ∂nuh, the discrete variational outward normal derivative solves the following equation on the `-th
eigenpair: Find ∂hnu`,h ∈ Vh(∂Ω) such that

〈∂hnu`,h, vh〉∂Ω = (∇u`,h,∇vh)− λ`,h(u`,h, vh) ∀vh ∈ Vh, (3.8)

which is a discrete counterpart of the continuous one:

〈∂nu`, v〉∂Ω = (∇u`,∇v)− λ`(u`, v) ∀v ∈ H1(Ω). (3.9)

Now the improved boundary type shape gradient is given by

d̃hJ
D(Ω;V) =

∫
∂Ω

[
2

d
λ`,hVol(Ω)

2
d−1 −Vol(Ω)

2
d

(
∂hnu`,h

)2]Vn ds. (3.10)
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3.2. Stokes eigenvalue optimization. Let Ω ⊆ Rd be a bounded open domain with boundary of class C2.
We consider the following Stokes eigenvalue problem:

−∆u+∇w = λu in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(3.11)

where u = (u1, · · · , ud)T : Ω→ Rd denotes the velocity field and w : Ω 7→ R is the pressure. The weak formulation
of (3.11) writes: Find (λ,u, w) ∈ R+ ×H1

0(Ω)× L2
0(Ω) such that for ∀(v, q) ∈ H1

0(Ω)× L2
0(Ω) there holds

∫
Ω

Du : Dvdx−
∫

Ω

div vwdx = λ

∫
Ω

u · vdx,∫
Ω

divuqdx = 0,

(3.12)

where L2
0(Ω) := {v ∈ L2(Ω)|

∫
Ω
vdx = 0}. It is well known that problem (3.12) admits a sequence of positive

eigenvalues 0 < λ1 6 λ2 6 · · · 6 λ` ≤ · · · tending to infinity as ` → ∞. The eigen-velocities {u`}`>1 ⊂ H1
0(Ω)

and the eigen-pressures {w`}`>1 ⊂ L2(Ω) may be taken so that {u`}`>1 constitutes an orthonormal basis of
H(Ω) := {v ∈ L2(Ω) : ∇ · v = 0 in Ω, v = 0 on ∂Ω}.

We consider the Stokes eigenvalue optimization problem

min
Vol(Ω)=C

λ`(Ω), (3.13)

where ` = 1, 2, · · · [14, 34]. As shown in [27] the two-dimensional Stokes eigenvalue problem is equivalent to the
eigenvalue problem of the clamped buckling plate [3]. To the best of authors’ knowledge the numerical methods
for (3.13) are not available in the literature. The volume-constraint can be dealt with the augmented Lagrangian
method. Introduce a Lagrangian functional:

L(Ω, l, β) := λ` + l(Vol(Ω)− C) +
1

2
β(Vol(Ω)− C)2, (3.14)

where l > 0 denotes the Lagrange multiplier and β > 0 is a penalty parameter. When λ` is shape differentiable
and simple, we have the following first order optimality condition{

L′(Ω, l, β;V) := λ′(Ω,V) + (l + β(Vol(Ω)− C))Vol(Ω)′(Ω;V) = 0,

Vol(Ω)− C = 0,
(3.15)

where the subscript ` is omitted for notational brevity and

λ′(Ω,V) = −
∫
∂Ω

‖Dun‖2Vnds

by [34, p. 1008] and [14, Lemma 2.8]. The boundary type Eulerian derivative is given by

dJD(Ω;V) = L′(Ω, l, β;V) =

∫
∂Ω

[
l + β(Vol(Ω)− C)− ‖Dun‖2

]
Vnds. (3.16)

Let Vh ×Wh ⊂ H1(Ω) × L2(Ω) be the stable pair of finite element space for the Stokes equation which can
be chosen as the Taylor-Hood element or the MINI element, etc. Let Vh(∂Ω) be the trace of Vh on the boundary
∂Ω and V0

h := Vh ∩H1
0(Ω). The discretization of (3.12) reads: Find (λh,uh, wh) ∈ R+ ×V0

h ×Wh such that
∫

Ω

Duh : Dvhdx−
∫

Ω

div vhwhdx = λh

∫
Ω

uh · vhdx ∀vh ∈ V0
h,∫

Ω

divuhqhdx = 0 ∀qh ∈Wh.

(3.17)

There exists a sequence of positive eigenvalues 0 < λ1,h 6 λ2,h 6 · · · 6 λ`,h 6 · · · and discrete eigenvelocities
{u`,h}`>1 and discrete eigenpressures {w`,h}`>1. We omit ` for brevity below.

The variational formulation for the stress force on the boundary reads: Find Dh
nuh ∈ Vh(∂Ω) such that

〈Dh
nuh, th〉∂Ω = (Duh,Dth) + (∇wh, th)− (λhuh, th) ∀th ∈ Vh. (3.18)

Then we have the improved boundary type shape gradient

d̃hJ
D(Ω;V) =

∫
∂Ω

[
l + β(Vol(Ω)− C)− ‖Dh

nuh‖2
]
Vnds, (3.19)

which is an improvement over the classical one

dhJ
D(Ω;V) =

∫
∂Ω

[
l + β(Vol(Ω)− C)− ‖Duhn‖2

]
Vnds. (3.20)

8



Ω1

∂Ω

Ω = Ω̄1 ∪ Ω2

Ω2

Γ

n

Fig. 3.1. An illustration of the interface problem.

3.3. Interface identification. In this subsection we consider the interface identification problem associated
with the elliptic interface equation 

−∇ · (σ∇u) = f in Ω = Ω̄1 ∪ Ω2,

JuK = 0 on Γ,
s
σ
∂u

∂n

{
= 0 on Γ,

u = 0 on ∂Ω,

(3.21)

where σ = σ(x) is a piecewise constant function

σ =

{
σ1 in Ω1,

σ2 in Ω2,

with σ1 and σ2 (σ1 6= σ2) being given positive constants, and J·K denotes the jump of a quantity across the interface
Γ := ∂Ω1 ∩ ∂Ω2 of subdomains Ω1 and Ω2. Moreover, we assume that Ω1 ⊂⊂ Ω and Γ = ∂Ω1 (see Figure 3.1 for
an illustration). Consider the objective functional

J(Ω) =

∫
Ω

j(u)dx. (3.22)

Our aim is to identify the interface Γ. Then we have the Eulerian derivative (cf. [35])

dJD(Ω;V) =

∫
Γ

J2σ∂nu∂np− σ∇u · ∇pKVnds, (3.23)

which can also be written as (cf. [2, Theorem 4.9])

dJD(Ω;V) = −
∫

Γ

(σ1 − σ2)∇Γu · ∇ΓpVnds+
( 1

σ1
− 1

σ2

)∫
Γ

(σ1∂nu
1)(σ1∂np

1)Vnds (3.24)

because of the homogeneous Neumann jump condition, where u1 := u|Ω1
and p1 := p|Ω1

, and p satisfies the adjoint
equation 

−∇ · (σ∇p) = j′(u) in Ω = Ω̄1 ∪ Ω2,

JpK = 0 on Γ,
s
σ
∂p

∂n

{
= 0 on Γ,

p = 0 on ∂Ω.

(3.25)

We refer to [39, 40] for a parabolic interface problem which our ideas can also be applied.
On the discrete level, we need to discretize the state and adjoint equations. Let V 0

h ⊂ H1
0 (Ω) be a piecewise

linear and continuous finite element space defined as above. We solve uh, ph ∈ V 0
h such that

(σ∇uh,∇vh) =

∫
Ω

fvhdx ∀vh ∈ V 0
h , (3.26)

(σ∇ph,∇vh) =

∫
Ω

j′(uh)vhdx ∀vh ∈ V 0
h . (3.27)
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→

1

Fig. 3.2. An illustration of the geometric setting for problem (3.32) and Example 5.6.

Then we can compute the discrete variational normal derivatives ∂hnu
1
h, ∂

h
np

1
h ∈ Vh(Γ) such that

〈σ1∂
h
nu

1
h, vh〉Γ =

∫
Ω1

σ1∇u1
h∇vhdx−

∫
Ω1

fvhdx ∀vh ∈ Vh(Ω1), (3.28)

〈σ1∂
h
np

1
h, vh〉Γ =

∫
Ω1

σ1∇p1
h∇vhdx−

∫
Ω1

j′(u1
h)vhdx ∀vh ∈ Vh(Ω1), (3.29)

where Vh(Γ) and Vh(Ω1) denote the restriction of Vh to Γ and Ω1, respectively.
Now we can formulate the following discrete Eulerian derivative

d̃hJ
D(Ω;V) = −

∫
Γ

(σ1 − σ2)∇Γuh · ∇ΓphVnds+

(
1

σ1
− 1

σ2

)∫
Γ

(σ1∂
h
nu

1
h)(σ1∂

h
np

1
h)Vnds. (3.30)

This is an improvement over the classical discrete formula

dhJ
D(Ω;V) = −

∫
Γ

(σ1 − σ2)∇Γuh · ∇ΓphVnds+

(
1

σ1
− 1

σ2

)∫
Γ

(σ1∂nu
1
h)(σ1∂np

1
h)Vnds, (3.31)

where the classical formula is believed to be less accurate compared to the distributed one (cf. [35]).

3.4. Shape optimization of Stokes flows. In this subsection we consider the shape optimization of viscous
incompressible fluid flows. Assume that the flow is stationary and the inertial force is negligible. Given f ∈
H−1(Ω), the Stokes equation consists of seeking the velocity function u ∈ H1

∗(Ω) := {v ∈ H1(Ω)|v = 0 on Γ ∪
Γw, v = u0 on Γin} and the pressure function w ∈ L2

0(Ω) such that

− µ∆u+∇w = f in Ω,

div u = 0 in Ω,

u = 0 on Γ ∪ Γw,

u = u0 on Γin,

(µDu− pI)n = 0 on Γout,

(3.32)

where µ > 0 denotes the viscosity coefficient and ∂Ω = Γ ∪ Γw ∪ Γin ∪ Γout. Consider the shape design for drag
minimization (see Fig. 3.2) or energy dissipation of fluids (cf. [30])

min
Vol(Ω)=C

J(Ω) = µ

∫
Ω

‖Du‖2dx,

where the constant C > 0 is prescribed. For the shape inverse problem (cf. [29, 43, 46]), we formulate it with a
cost functional of output least-squares type

min
Ω

J(Ω) =
1

2

∫
Ω

‖u− ud‖2dx,

where the observation ud is given.
The boundary formulations of the Eulerian derivatives for drag minimization and inverse problems are given

(see, e.g., [30, 46] for the derivations)

dJD(Ω;V) =

∫
Γ

(
l + β(Vol(Ω)− C)− µ ‖Dun‖2

)
Vn ds (3.33)

and

dJD(Ω;V) =

∫
Γ

(
1

2
‖u− ud‖2 + µ(Dun) · (Dvn)

)
Vn ds, (3.34)
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respectively, where l > 0 denotes the Lagrange multiplier for the volume constraint and β > 0 is the penalization
parameter for the augmented Lagrangian formulation (cf. (3.14)), and (v, r) is the solution of the adjoint problem

−µ∆v +∇r = u− ud in Ω,

div v = 0 in Ω,

v = 0 on Γ ∪ Γw ∪ Γin,

(µDv − rI)n = 0 on Γout.

(3.35)

Let Vh ×Wh ⊂ H1(Ω) × L2
0(Ω) be the stable finite element spaces for solving Stokes equations defined in

Section 3.2. We define V̂h and V̆h as follows. For any vh ∈ V̂h we assume that vh = 0 on Γ ∪ Γw ∪ Γin, while
for any uh ∈ V̆h let uh = 0 on Γ ∪ Γw and uh = uh0 on Γin with uh0 an approximation to u0. Let uh ∈ V̆h

and vh ∈ V̂h be the solutions to the state equation (3.32) and the adjoint (3.35), respectively. The corresponding
discrete shape gradients of boundary type are given respectively by

dhJ
D(Ω;V) =

∫
Γ

(
l + β(Vol(Ω)− C)− µ ‖Duhn‖2

)
Vnds (3.36)

and

dhJ
D(Ω;V) =

∫
Γ

(
1

2
‖uh − ud‖2 + µ(Duhn) · (Dvhn)

)
Vnds. (3.37)

Now we introduce the improved shape gradient of boundary type for the Stokes flow. Let Vh(Γ) be the trace
of Vh on the boundary Γ. The variational formulation for the discrete variational outward normal derivatives
reads: Find Dh

nuh ∈ Vh(Γ) such that

µ〈Dh
nuh, th〉Γ = µ(Duh,Dth) + (∇wh, th)− (f , th) ∀th ∈ Vh. (3.38)

For the shape inverse problem, the variational normal derivative for the adjoint equation reads: Find Dh
nvh ∈ Vh(Γ)

such that

µ〈Dh
nvh, th〉Γ = µ(∇vh,∇th) + (∇rh, th)− (uh − ud, th) ∀th ∈ Vh. (3.39)

For the drag minimization problem, no adjoint problem is introduced. With the above preparations, the improved
shape gradients read:

d̃hJ
D(Ω;V) =

∫
Γ

(
l + β(Vol(Ω)− C)− µ‖Dh

nuh‖2
)
Vn ds (3.40)

for the drag-minimization problem and

d̃hJ
D(Ω;V) =

∫
Γ

(
1

2
‖uh − ud‖2 + µ(Dh

nuh) · (Dh
nvh)

)
Vn ds (3.41)

for the shape inverse problem.

3.5. Shape optimization of Navier-Stokes flows. In this subsection we consider the shape optimization
governed by the Navier-Stokes equations. We use a similar setting as in the above subsection, including the
objective functionals for respectively the drag-minimization problem and the shape inverse problem. By shape
sensitivity analysis, we have the following boundary Eulerian derivative for the drag/energy minimization problem
[30]

dJD(Ω;V) = µ

∫
∂Ω

((Dun) · (Dvn)− ‖Dun‖2)Vnds, (3.42)

in which (u, w) satisfies the Navier-Stokes equation
− µ∆u+ (u · ∇)u+∇w = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω

(3.43)

and (v, r) satisfies the adjoint state
− µ∆v −Dvu+ DuTv +∇r = −2µ∆u in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

(3.44)
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where homogeneous Dirichlet boundary conditions have been used for simplicity in the above formulations. Let
uh ∈ V0

h and vh ∈ V0
h be the solutions to the state equation (3.43) and the adjoint problem (3.44), respectively,

where V0
h is defined as in Section 3.2. The classical discrete shape gradient is given by

dhJ
D(Ω;V) = µ

∫
∂Ω

((Duhn) · (Dvhn)− ‖Duhn‖2)Vnds. (3.45)

Define the discrete variational outward normal derivative for the state equation: Find Dh
nuh ∈ Vh(∂Ω) such

that

µ〈Dh
nuh, th〉∂Ω = µ(Duh,Dth) + (uh ·Duh, th) + (∇wh, th)− (f , th) ∀th ∈ Vh. (3.46)

The discrete variational outward normal derivative for the adjoint equation reads: Find Dh
nvh ∈ Vh(∂Ω) such that

µ〈Dh
nvh, th〉∂Ω = µ(Dvh,Dth)− (Dvhuh, th) + (DuT

hvh, th) + (∇rh, th)− (2µDuh,Dth) ∀th ∈ Vh. (3.47)

With above preparations we are ready to give the improved shape gradient formula

d̃hJ
D(Ω;V) = µ

∫
∂Ω

((Dh
nuh) · (Dh

nvh)− ‖Dh
nuh‖2)Vnds. (3.48)

Remark 3.1. For the additional computational complexity of the modified boundary formula, we need to solve
one (for self-adjoint optimization problems) or two additional boundary equations after obtaining the discrete state
and possible adjoint state. This is not a big burden even when the state equation is nonlinear because, on the
one hand, the boundary equation needs only be solved once when the state is solved with satisfactory accuracy by
using nonlinear iterations, i.e., no nonlinear iterations are required for the boundary equations; on the other hand,
the boundary equation has relatively smaller number of degrees of freedom compared to the state or adjoint state
equations that are posed on the whole computational domain.

4. Accuracy test for the improved boundary type shape gradients. In this section we present some
numerical results to verify the convergence rates of finite element approximations to our modified boundary type
shape gradients, including the accuracy and continuity improved formulae for Dirichlet problems and the continuity
preserving formulae for Neumann problems.

4.1. Accuracy enhancement for Dirichlet boundary value problems. The shape gradient of the shape
functional is a linear continuous operator on H3/2(Rd;Rd) and belongs to its dual space in the boundary type
Eulerian derivative. The continuous infinite-dimensional operator norm for the approximate shape gradients is
difficult to compute numerically and we follow the ideas of [24] to approximate it by a tractable one on a finite-
dimensional subspace. Let γ be an arbitrary positive integer as in [24]. We consider an approximate operator
norm on a finite-dimensional space consisting of vector fields in Pγ,γ(Rd;Rd)(⊂ H3/2(Rd;Rd)), whose components
are multivariate polynomials of degree up to γ. Based on the equivalence of norms over finite-dimensional spaces,
we replace the H3/2-norm with a more tractable H1-norm. Finally, we compute the approximate dual norm as

E :=

(
max

0 6=V∈Pγ,γ(Rd;Rd)

|dJD(Ω;V)− d̃hJ
D(Ω;V)|2

‖V‖2H1(Ω)

)1/2

. (4.1)

We take a global basis {Vi}νi=1 of vector fields in Pγ,γ(Rd;Rd), where ν = dCdγ+d with Cdγ+d denoting the combi-
nation coefficient. More precisely, we choose

{Vi}νi=1 =
{

[Πd
i=1x

βi
i , 0, · · · , 0], · · · , [0, · · · , 0,Πd

i=1x
βi
i ]
}∑d

i=1 βi≤γ
,

where βi (i = 1, · · · , d) is a non-negative integer (see [46, p. 141] for more details). Choose γ = 2 and 3.
As the enhanced numerical accuracy of the improved boundary shape gradients has been verified in [17]

for elliptic equations, we consider in this subsection the shape optimizations of Laplace eigenvalue problem and
Stokes/Navier-Stokes flow.

Example 4.1. In the first example we consider the error accuracy test for the Laplace eigenvalue problem
(3.2). We first set Ω = (0, 1)2, where the first eigen-pair (λ1, u1) = (2π2, 2 sin(πx1) sin(πx2)). Then we choose Ω
to be an irregular wedge, on which the analytic eigenpair is not available and we take the approximated eigenpair
on a very fine mesh as the reference.

Both Fig. 4.1 and Fig. 4.2 show that the improved shape gradients have second-order convergence rate for
the problem settings in Example 4.1, while the classical shape gradients have only first-order convergence rate
for both regular and irregular domains. We expect that the convergence analysis in [17] can be adapted to the
Laplacian eigenvalue problems.

Example 4.2. Consider the drag minimization problem for Stokes and Navier-Stokes flows as presented in
Section 3.4 and 3.5. Set Ω = (0, 1)2 and µ = 1. For Stokes flow, the problem has an analytic solution u = [u1, u2]T
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with u1 = (sin(πx1))2 sin(πx2) cos(πx2), u2 = −(sin(πx2))2 sin(πx1) cos(πx1) and p = sin(2πx1) sin(2πx2). For
the Navier-Stokes flow, the exact solutions are unknown. The approximate reference solutions are computed on a
very fine mesh with the MINI finite element discretization. Newton’s method is used for the linearization of the
Navier-Stokes equation.

We can observe from Fig. 4.3 second-order convergence rate for the improved shape gradients, while the
classical formula has only first-order convergence rate. The rigorous proof for this second-order convergence seems
to be not straightforward compared to the elliptic problem in [17].
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Fig. 4.1. Convergence history of the approximate shape gradient for the first Laplace eigenvalue optimization on a square in
Example 4.1.
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Fig. 4.2. Convergence history of the approximate shape gradient for Laplace eigenvalue optimization on a wedge-shaped domain
(left) for Example 4.1 with γ = 2: ` = 1 (middle) and ` = 3 (right).
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Fig. 4.3. Convergence history of the approximate shape gradients of drag minimization for Stokes flow (left) and Navier-Stokes
flow (right) in Example 4.2.

4.2. Continuity preserving for Neumann boundary value problems. In this subsection we test the
accuracy of the modified boundary shape gradient for Neumann boundary value problem (2.18). We consider the
gradient recovery by using either local averaging (2.27) or superconvergent patch recovery (SPR) (2.28). We show
that the modified formula has the same second-order convergence rate and slightly smaller errors compared to the
classical formula. The illustration of the benefits of continuity preserving formulae over the discontinuous ones in
shape optimization algorithms is delicate and rely on the choice of specific algorithms, this is not presented in this
paper and will be exploited elsewhere. Consider J(Ω) =

∫
Ω
u2dx. In the following three examples, each domain is

triangulated with a quasi-uniform/uniform mesh as illustrated in Fig. 4.4.
Example 4.3. Set Ω = (−1, 1)2, f = x2

1 + x2
2 and g = 0.

Example 4.4. Set a L-shaped domain Ω = (−1, 1)2\(−1, 0]2. Set f = sin(0.5πx1) sin(0.5πx2) and g = 0.
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Example 4.5. Set Ω = (−1, 1)2. Choose f = (1 + 0.5π2) sin(0.5πx1) sin(0.5πx2) and g = 0 such that
u = sin(0.5πx1) sin(0.5πx2), while the adjoint state is given by p = 2 sin(0.5πx1) sin(0.5πx2)/(2 + π2).

Our numerical tests show very similar results for the approximate shape gradients with either local averaging
method or SPR, so we only present parts of the numerical results. The left and right plots of Fig. 4.5 show that
the approximate shape gradients with SPR have the same second-order convergence rate as the classical formula
without gradient recovery for Example 4.3 and Example 4.5 on the square domain. For Example 4.4, the middle
plot of Fig. 4.5 further shows that the approximate shape gradients with and without gradient recovery have
nearly the same convergence rate of O(h1.5), since the solution has limited regularity on the nonconvex L-shaped
domain. Moreover, we observe for all three examples that the gradient-recovered shape gradients have slightly
smaller errors.

Fig. 4.4. Illustration of the computational domains and meshes for Examples 4.3-4.5 (from left to right).
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Fig. 4.5. Comparisons on the convergence history of the approximate shape gradient with local averaging and SPR for Examples
4.3-4.5 (from left to right).

5. Numerical experiments for shape optimization problems. To demonstrate the performance of the
improved shape gradient for Dirichlet problems, we use a gradient descent algorithm to solve numerically the
shape optimization models including the elliptic boundary value problem, the Laplace and Stokes eigenvalue
optimization, the shape design in fluid flows and the interface identification. We apply improved shape gradients
in both the traditional mesh moving algorithm (cf. [38, 45]) and the Fourier boundary parametrization method
[7, 33, 43]. We propose two corresponding numerical algorithms below. Though both algorithms are based on the
modified boundary shape gradient formula, they differ in the boundary representation and boundary variations
for deformations. More specifically, a H1 shape gradient flow is used in Algorithm 1 to increase smoothness of
the deformation field and realize the moving of the boundary by the movement of mesh grids of the domain.
In Algorithm 2, the Fourier boundary parametrization method is used to represent the boundary and we are
led to a finite dimensional optimization problem. The boundary variations and domain deformations are thus
realized through the update of the Fourier coefficients. No gradient flow is required in Algorithm 2, however, a
quasi-uniform mesh generation is required for each of the new domain.

5.1. Mesh moving based shape gradient algorithm. In the mesh moving algorithm we need to find
the descent direction of mesh points by using the shape gradients. The smoothness of a descent direction can be
enhanced by solving a shape gradient flow (see e.g., [28, 39, 45]). The H1-type shape gradient flow associated with
the boundary Eulerian derivative is to find θ ∈ H1(Ω) such that

∫
Ω

(Dθ : Dξ + θ · ξ)dx = −dJD(Ω; ξ) ∀ξ ∈ H1(Ω), (5.1)

14



where Dθ : Dξ =
∑d
i,j=1 ∂jθi∂jξi. Let Sh ⊂ H1(Ω) be a linear and continuous finite element space. The finite-

dimensional approximation of (5.1) with improved boundary shape gradient is to find θh ∈ Sh such that∫
Ω

(Dθh : Dξ + θh · ξ)dx = −d̃hJ
D(Ω; ξ) ∀ξ ∈ Sh. (5.2)

The gradient flow system involves the vectorial field θh whose numerical computations are demanding, especially in
three-dimensions. Here we introduce a new decomposition scheme which decomposes the d-dimensional vectorial
problem (5.2) into d scalar problems to reduce the computational cost. More precisely, we can solve in parallel
the variational problems: find θh,i ∈ Vh such that∫

Ω

(∇θh,i · ∇η + θh,iη)dx = −d̃hJ
D(Ω; ξi) ∀η ∈ Vh (5.3)

for i = 1, 2, . . . , d, where ξi = [0, . . . , η, . . . , 0]T with all components being 0 except the ith being η. Set θh =
[θh,1, θh,2, . . . , θh,d]

T. In practice, we will not use parallel solvers considering that d is only 2 and 3. The d linear
systems of scalar gradient flows after the Galerkin finite element discretization share the same stiffness and mass
matrices and thus can be assembled and decomposed (Cholesky decomposition in 2D) only once. For d = 2,
therefore, the computational costs of the second scalar linear system by a direct solver are much less than that of
the first one. For d = 3, we can solve them by using a more efficient preconditioned conjugate gradient method.

A step size δ > 0 chosen at each iteration influences the efficiency of algorithms with or without boundary
correction. Line-search strategies can be used to determine a suitable step size at each iteration. For simplicity
when comparing the two algorithms, however, we choose a maximal constant step such that the objective decreases.
Moreover, we find that the step size depending on the current mesh size should be chosen to prevent the transformed
simplex from having negative area after deformation.

During the shape evolution, the domain size and the shapes of some simplex in the mesh may change signif-
icantly, which may deteriorate the mesh qualities such as the quasi-uniformness and shape-regularity. The poor
quality of meshes may affect the accuracy of finite element approximations of the shape gradients. This probably
leads to negative effects on the convergence of deformation algorithms. To overcome this problem, we adopt a re-
meshing strategy when a new domain is formed by moving mesh grids. The computational cost of re-meshing can
be ignored comparing with solving finite element equations. We present the shape gradient optimization method
in the form of Algorithm 1. The algorithm is stopped by setting a fixed number of iteration or by the criterion

|J(Ωk)− J(Ωk+1)|
J(Ωk)

< ε,

where Ωk denotes the domain of kth iteration and ε > 0 is a prescribed error tolerance. For eigenvalue optimization
below, we denote by m the multiplicity of eigenvalue and adopt a strategy used in [4, 45] by considering the average
Eulerian derivative of a multiple eigenvalue associated with all corresponding eigenfunctions.

Algorithm 1: Shape gradient descent method with improved boundary formula

Choose an initial domain and set δ;
while the iteration does not stop do

Solve the state problem;
Solve possible the adjoint problem;
Solve the discrete outward normal derivatives of the state and adjoint;
Solve the shape gradient flow;
Deformation;
while reversed triangle/tetrahedron occurs do

δ ← δ/2;
Deformation;

end
remeshing;

end

All numerical results below are obtained by using FreeFEM [25] on a laptop with Intel(R) Core(TM) i7-8750H
CPU@2.20GHz and 24GB RAM.

5.1.1. Elliptic boundary value problem. In this subsection we consider the following shape optimization
problem of elliptic equations:

min
Ω
J(Ω) =

1

2

∫
Ω

(u− ud)2dx,
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where ud is a given observation data and u is the solution of (2.2) satisfying Dirichlet boundary condition.

Example 5.1. Choose the target (optimal) domain as a unit disk: {(x1, x2)|x2
1 + x2

2 < 1}. We set ud =
1 − x2

1 − x2
2 such that f = 5 − x2

1 − x2
2 and g = 0. Set δ = 1. First, we choose a square (−0.8, 0.8)2 as the

initial guess. In the first row of Fig. 5.1, we see that the shape gradient algorithm with improved boundary
formula converges to the target optimal domain from the initial square. Second, we choose a L-shaped domain
Ω = (−1.5, 0.5)2 \ {[−0.5, 0.5)× (−1.5,−0.5]} as the initial guess. We can see from the second row of Fig. 5.1 that
the algorithm with improved boundary formula converges to the target optimal domain again. For comparisons as
shown in Fig. 5.2 (the first and second plots), the algorithm with classical boundary formula converges to the disk
from the initial square, but fails to converge from the initial L-shaped domain even with re-meshing. Re-meshing
ensures the improvement of mesh quality that is beneficial for deformations. The necessity of re-meshing step is
demonstrated especially at corners, where the meshes deteriorate frequently during evolution. From Fig. 5.2 (the
third and fourth plots) we observe that the algorithm with improved boundary formula but without re-meshing can
converge to the disk from the initial square. However, it fails to converge from the initial L-shaped domain, which
demonstrates the necessity of adopting re-meshing strategy. Fig. 5.3 shows that the shape gradient algorithm with
improved boundary formula converges more efficiently and effectively than the algorithm with classical boundary
formula.

Example 5.2. Choose the target domain to be a square (−1, 1)2. Set ud = (1 − x2
1)(1 − x2

2) such that
f = 4− 2x2

1 − 2x2
2. Fig. 5.4 shows that both the initial disk and L-shaped domain converge to the target square

by our algorithm. However, we find that the algorithm by using the classical boundary formula converges from
the initial disk to the square, but fails to converge from the initial L-shaped domain. Fig. 5.5 shows that the
classical and the present algorithms without re-meshing both converge to the optimal domain from the initial disk.
However, the classical algorithm fails to converge to the target square from the initial L-shaped domain even with
re-meshing. Fig. 5.6 shows the convergence history of the objective functional for this example with two types of
initial domains.
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Fig. 5.1. Deformations from the initial domains (left) to the optimal disk (right) for Example 5.1 by Algorithm 1: initial square
(first row) and initial L-shaped domain (second row).
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Fig. 5.2. Final shapes by shape gradient algorithm with the classical formula: initial square (first) and initial L-shaped domain
(second); and final shapes by Algorithm 1 without re-meshing: initial square (third) and initial L-shaped domain (fourth) for Example
5.1.

We compare the numerical performance of our proposed decomposed shape gradient flow (5.3) of the (scalar)
elliptic operator (“Elliptic+Decomposition” in Table 5.1) with that of the H1 deformation gradient flow associated
with the linear elasticity operator (“Elasticity” in Table 5.1, see, e.g., [26, 40]). Choose the penalty parameter
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Fig. 5.3. Comparisons on the convergence history of the objective functional between algorithms with the improved and the
classical boundary formulae: initial square (left) and initial L-shaped domain (right) for Example 5.1.
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Fig. 5.4. Deformations from the initial domain (left) to the optimal square (right) for Example 5.2 by Algorithm 1: initial square
(first row) and initial L-shaped domain (second row).

α in [26, Eq. (15)] to be 1. Set the Lamé parameters µ and λ in [40, Eq. (5.2)] to be 1 and 0.5, respectively.
Both gradient flows can increase the smoothness of the deformation field and make the objective value decrease.
A key feature of the difference is that the elastic shape gradient flow cannot be decomposed into d separate scalar
type elliptic problems. Besides, the gradient flow with the inner product based on conformal transformations and
the symmetric part of the gradient (CT-H(sym)) [26] (“CT-H(sym)” in Table 5.1) also cannot be decomposed.
Moreover, the CT technique [26] is limited to 2D.

In Fig. 5.7, we present the numerical results for Example 5.1 and Example 5.2 by using the same Algorithm
1 (500 iterations for the optimization loop) except that the gradient flow is replaced by four types of elastic shape
gradient flows with different Eulerian derivatives and inner products: (1) boundary formula (“Boundary” in Table
5.1), (2) improved boundary formula (“Improved Boundary” in Table 5.1), (3) distributed shape gradient (“Vol-
ume” in Table 5.1), (4) distributed shape gradient and inner product based on CT-H(sym) [26]. The comparisons
on final results show similar effectiveness of all the four gradient flows with the proposed gradient flow (5.3). For
comparisons of computational costs among different gradient flows, Table 5.1 shows that although remeshing is
required, the proposed decomposed H1 gradient flow with the improved boundary formula is the fastest due to the
efficient solving of the scalar gradient flows. Under the same inner product (either H1 or elastic type), additional
computational efforts are expected for the improved boundary formula compared with the standard boundary
formula. For elastic gradient flows, the improved boundary formula is faster than the volume formulation. For
boundary/improved boundary formulae, the H1 gradient flow even without scalar decomposition is more efficient
than the elastic type.

5.1.2. Laplacian eigenvalue optimization. In this subsection we consider Laplacian eigenvalue optimiza-
tion.

Example 5.3. Consider the unconstrained volume formulation (3.5) for minimizing the first eigenvalue. Both
2D and 3D cases are presented to show the effectiveness of the improved boundary formula. For 2D, we choose
a L-shaped domain Ω = (−1.5, 0.5)2 \ {[−0.5, 0.5) × (−1.5,−0.5]} as the initial guess. For 3D, we choose a cube
(−1, 1)3 removed by [−1, 0]3 as the initial domain. From Fig. 5.8 we see that the shape gradient algorithm with
improved boundary formula converges to the target optimal domain from the initial L-shaped domain. Fig. 5.9
shows that the shape gradient algorithm with improved boundary formula converges efficiently. We refer to Table
5.2 and Fig. 5.10 for the computed results on the optimal objectives, the optimal shapes and convergence histories
for different eigenvalues.
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Fig. 5.5. Comparisons of final shapes by the shape gradient algorithms for Example 5.2: from the initial disk with improved
formula (left) or with the classical formula (middle), both without re-meshing; from the L-shaped domain with re-meshing and the
classical formula (right).
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Fig. 5.7. Comparisons of final shapes from the initial square (first row) and initial disk (second row) by different shape gradient
algorithms for Example 5.1 and Example 5.2, respectively: elastic gradient flow with classical boundary formula, elastic gradient flow
with the improved boundary formula, elastic gradient flow with the distributed Eulerian derivative, and the CT-H(sym) flow with the
distributed Eulerian derivative (from left to right).

Formula type Example 5.1 Example 5.2
Elliptic+Boundary 32.15 56.01
Elliptic+Improved Boundary 44.06 78.11
Elliptic+Decomposition+Improved Boundary 28.21 69.95
CT-H(sym)+Improved Boundary 44.88 78.19
Elasticity+Boundary 44.36 70.51
Elasticity+Improved Boundary 51.62 88.6
Elasticity+Volume 53.86 103.4
CT-H(sym)+Volume 41.78 74.85

Table 5.1
Comparisons on computational costs (seconds) for Example 5.1 and Example 5.2 by Algorithm 1 among different shape gradient

formulae: 778 and 1493 nodes for the initial square and initial disk, respectively.
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We compare in Table 5.3 the numerical performance of the proposed improved boundary formula combined
with the decomposed shape gradient flow (5.3) of scalar type with that of other types of shape gradient flows,
all of which can increase the smoothness of the deformation field and make the objective value decrease. For
fair comparisons, we fix the number of total iterations as the same, say 100. Choose the same initial square and
initial cube for 2D and 3D, respectively. The computational times are collected by using the same Algorithm 1
except that the gradient flow is different. Table 5.3 shows for optimizing eigenvalues in 2D that the proposed
shape gradient flow based on the improved boundary formula and decomposition is the fastest. The gradient flow
(without decomposition) with improved boundary formula is faster than that with the volume Eulerian derivative
(see [45] for numerical results of optimal domains, which coincide with those in Table 5.2). Assume the usage of
the improved boundary formula, the more complicated elastic gradient flow is slower than the elliptic type gradient
flow; while considering that no remeshing is needed, the gradient flow with CT-H(sym) as the inner product [26] is
faster than the vectorial H1 gradient flow; lastly, the vectorial H1 gradient flow is faster than the elastic type. For
3D cases, Table 5.3 demonstrates that the improved boundary formula is faster than the volume type, although
slower than the standard boundary type formula.
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Fig. 5.8. Deformations from the L-shaped domain to the optimal disk and ball for Example 5.3 by Algorithm 1: 2D (first row)
and 3D (second row).
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Fig. 5.9. Convergence history of λ1 by Algorithm 1 for Example 5.3: 2D (left) and 3D cases (right).

5.1.3. Shape design of fluid flows. In this subsection we consider the optimal design of fluid flows.
Example 5.4. Consider the minimization of the energy dissipation in fluid flows with applications in, e.g., vascular

design of blood flows (see Fig. 5.11). We consider both the Stokes and Navier-Stokes flows and choose a L-shaped domain
(see Fig. 5.12) as the initial design. We choose a velocity (0.2 − 0.8x2

2, 0)T on the left boundary (inflow) and impose a
traction-free condition on the right down boundary (outflow). Non-slip Dirichlet boundary conditions are imposed on other
boundaries. Set β = 1, ε = 0.001 and C = 3 in Algorithm 1. For both the Stokes and Navier-Stokes flows, we see from
Fig. 5.12 that Algorithm 1 converges to the target optimal domain. For the Stokes case, Fig. 5.12 shows that the same
algorithm except the gradient flow is replaced by the volumetric CT-H(sym) type [26] leads to quasi-uniform mesh-based
domain deformations without remeshing. Fig. 5.13 shows that the shape gradient algorithm with improved boundary
formula converges efficiently with a final objective slightly smaller than that obtained by using the classical boundary
formula. The convergence history of the objective value by the distributed CT-H(sym) gradient flow [26] is plotted with
the same number of total iterations being used as the proposed algorithm with improved boundary formulae. The volume
errors reduce as the iteration numbers increase for both algorithms.

Example 5.5. Consider the inverse problem for Stokes flow with homogeneous Dirichlet boundary conditions. Set the
target domain as an annulus

{(x1, x2) | x1 = r cos θ, x2 = r sin θ, θ ∈ [0, 2π], r ∈ (r1, r2)} .
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`
2D 3D

m λ` Optimal shape m λ` Optimal shape

3 2 46.158

Iteration:  199 Objective: 46.1575 Multiple: 2 Volume: 1.0127 Num of Eig: 3

2 49.1844

4 2 65.1573 3 52.5879

5 2 78.744

Iteration:  199 Objective: 78.744 Multiple: 2 Volume: 1.02091 Num of Eig: 5

3 65.2021

6 3 89.8317

Iteration:  199 Objective: 89.8317 Multiple: 1 Volume: 1.0235 Num of Eig: 6

3 77.0325

7 3 107.762

Iteration:  199 Objective: 107.762 Multiple: 2 Volume: 1.0558 Num of Eig: 7

3 82.1911

8 3 121.459 4 86.812

9 3 134.284

Iteration:  199 Objective: 134.284 Multiple: 3 Volume: 1.06451 Num of Eig: 9

5 89.5896

10 4 143.622 6 93.0313

2主

Table 5.2
Numerical results for Example 5.3 on the Laplace eigenvalue optimization.

Formula type λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

2D: 4435 vertices for the initial square
Elliptic+Volume 46.56 46.70 45.46 47.44 46.65 47.46 43.24 45.53 47.78 47.05
Elliptic+Boundary 36.82 36.24 36.32 38.63 36.93 39.58 37.80 39.12 38.48 37.06
Elliptic+Improved Boundary 40.07 38.46 39.42 40.50 39.36 39.74 40.97 43.67 41.35 39.74
Elliptic+Decomposition
+Improved Boundary 36.13 33.62 34.76 33.85 33.13 33.58 31.98 35.69 35.78 35.66
CT-H(sym)+Improved Boundary 37.38 37.29 36.65 37.45 37.00 37.27 38.06 38.31 38.05 37.88
Elasticity+Improved Boundary 42.18 41.03 42.88 42.52 43.65 43.73 42.59 43.04 42.62 43.56

3D: 9261 vertices for the initial cube
Elliptic+Volume 1141 1130 1149 1151 1146 1152 1129 1134 1137 1117
Elliptic+Boundary 834.6 828.2 836.7 827.3 836.6 839.7 826.1 823.6 839.2 841.3
Elliptic+Improved Boundary 871.3 875.5 866.4 861.3 874.7 866.7 869.6 868.2 885.2 882.6

Table 5.3
Comparisons on computational costs (seconds) for Example 5.3 by Algorithm 1 among different shape gradient formulae.

20



0 50 100
iter

40

45

50

ob
j

2

0 50 100
iter

46

48

50

ob
j

3

0 50 100
iter

70

75

80

ob
j

4

0 50 100
iter

80

90

100

ob
j

5

0 50 100
iter

90

95

100

ob
j

6

0 50 100
iter

110

115

120

125

ob
j

7

0 50 100
iter

124

126

128

ob
j

8

0 50 100
iter

140

150

160

ob
j

9

0 50 100
iter

140

150

160

ob
j

10

Fig. 5.10. Convergence histories of the Laplace eigenvalues by Algorithm 1 for Example 5.3 (2D and ` = 2, 3, · · · , 10).
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Fig. 5.11. Illustration of the geometric setting for the energy dissipation minimization of fluid flows in Example 5.4.

Choose ε = 10−5 in Algorithm 1 and the viscosity coefficient µ = 0.01. Let

ud =
[
−x2(r2 − r2

1)(r2 − r2
2), x1(r2 − r2

1)(r2 − r2
2)
]T
,

where r2 = ‖x‖2 = x2
1 + x2

2. Choose r1 = 0.25 and r2 = 1. The inner boundary is the unknown part to be identified,
while the outer boundary is fixed. We use the rectangle (−0.5, 0.5) × (−0.4, 0.4) as the initial guess. In Fig. 5.14, we see
that the shape gradient algorithm with improved boundary formula converges to the target domain from the square. Fig.
5.15 shows that the shape gradient algorithm with improved boundary formula converges efficiently. However, the shape
gradient algorithm with classical boundary formula fails to converge to the optimal shape, possibly because the inaccurate
calculation of the descent direction at the sharp corners caused by low accuracy of the shape gradient leads to errors for
grid moving.

Example 5.6. Consider the drag minimization of Stokes and Navier-Stokes flows on the exterior of a 2D obstacle as
shown in Fig. 3.2. Boundary conditions are the same as in (3.32) with u0 = ((0.5−x2)(0.5+x2), 0)T. Set β = 10, ε = 10−3

and C = 1.95. Fig. 5.16 shows that the optimal shape of Stokes flow by Algorithm 1 agrees well with that obtained by the
volumetric CT-H(sym) gradient flow [26]. See Fig. 5.17 for the optimal shape of the Navier-Stokes flow. We also refer to
Fig. 5.18 for the convergence histories of the objective functional and the volume error.

Using the same total iteration number of the optimization loop, the comparisons made in Table 5.4 on computational
costs of the Stokes case show that although the proposed algorithm using a vectorial gradient flow with improved boundary
formulae is slower, the proposed algorithm with the scalar gradient flow is faster than the algorithm using the volumetric
CT-H(sym) gradient flow [26]. Scalar decompositions can save significant computational efforts for solving the proposed
gradient flow, while scalar decompositions cannot be done for the gradient flow of [26].

Example 5.7. Consider the drag minimization on the exterior of a 3D obstacle with Algorithm 1. Let u0 = (1, 0, 0)T.
Choose C = 1.966. Set β = 5, β = 2.5 for the Stokes case and the Navier-Stokes case, respectively. In this example we fix
the total iteration number. In Fig. 5.19 we present the initial domain and the optimal domains for both the Stokes and
Navier-Stokes cases, while the convergence histories of the objective functional and the volume error can be found in Fig.
5.20.
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Fig. 5.12. Deformations from the initial L-shaped domain to the optimal domain for Example 5.4 with the improved formula
(first row: proposed Algorithm 1 for Stokes flow; second row: Algorithm 1 with volumetric CT-H(sym) gradient flow for Stokes flow;
third row: proposed Algorithm 1 for Navier-Stokes flow).
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5.1.4. Interface identification. In this subsection we consider the interface identification problem.
Example 5.8. For the elliptic interface problem with σ1 = 1 and σ2 = 0.1, we assume that Ω = (−1, 1)2, Ω1 ⊂⊂ Ω2

and Γ = ∂Ω1 (cf. Fig. 3.1), and consider the inverse problem

min
Ω

J(Ω) =
1

2

∫
Ω

(u− ud)2dx.

Set f = χΩ∗ with Ω∗ being a disk of radius 0.5 and centered at (0,0). The observed function ud is obtained by solving
the state equation on Ω∗. Set ε = 10−4 in Algorithm 1. We see from Fig. 5.21 that the shape gradient algorithm with
improved boundary formula converges to the target optimal domain from the square, while the algorithm with classical
boundary formula falls into the local minimum thus fails to converge to the optimal shape. Fig. 5.22 shows that the
shape gradient algorithm with improved boundary formula converges more efficiently than the algorithm with the classical
boundary formula, and reaches a smaller objective value.

5.1.5. Stokes eigenvalue optimization. In this subsection we consider the Stokes eigenvalue optimizations.
Example 5.9. Set C = 1 and the initial shape to be a unit square (2D) or a unit cube (3D). In 2D, we set β = 10,

β = 20, and β = 50 for ` = 1, 2, 3, ` = 4, 5, 6, 7, and ` = 8, 9, 10, respectively. For 3D, set β = 100 for all `. We refer to
Table 5.9 (right) for the computed eigenvalues and the corresponding eigen-velocities by using the moving grid method (cf.
[3] for comparisons). The convergence histories of the different eigenvalues in 2D are presented in Fig. 5.23. We refer to
Table 5.6 for the optimal eigenvalues and the corresponding new optimal shapes in 3D. To the best of our knowledge, the
optimal shapes of Stokes eigenvalue problems in 3D were not reported in the literature. Table 5.5 shows that the improved
boundary formula is faster than the volume type and is expected to be slower than the standard boundary type formula.

5.2. Fourier parametrization based shape optimization algorithm. In this subsection we consider the
shape optimization algorithm based on the boundary parametrization. In such case, we are led to finite-dimensional
optimization problems so that the classical gradient descent algorithms can be used for boundary evolution. Let us first
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Formula type Example 5.4 Example 5.6
Improved Boundary 12.693 30.264
Improved Boundary+Decomposition 10.898 27.502
CT-H(sym)+Volume [26] 12.217 37.512

Table 5.4
Comparisons on computational costs (seconds) for the Stokes case of Example 5.4 and Example 5.6 by Algorithm 1 among

different shape gradient formulae: 374 and 4556 nodes for the initial L-shape domain and initial rectangle removed by a round disk,
respectively.
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Fig. 5.14. Deformations from an inner square to a circle for Example 5.5 by Algorithm 1.

introduce the Fourier boundary parametrization method [7, 33]. We will consider the class of star-shaped domains in plane.
Let Ω be C2 and consider the boundary parametrization

Ω = {r(cos θ, sin θ) : θ ∈ [0, 2π), 0 6 r < ρ(θ)} ,

where ρ(θ) is a function. The boundary ∂Ω can be parameterized as

∂Ω = {ρ(θ)(cos θ, sin θ), θ ∈ [0, 2π)}. (5.4)

For non star-shaped domains, other kinds of parametrization for curve boundaries such as splines or NURBS could be used.
By Fourier series expansion for ρ(θ), we have

ρ(θ) := a0 +

∞∑
n=1

an cos(nθ) +

∞∑
n=1

bn sin(nθ), (5.5)

which can be approximated by truncated Fourier series:

ρ(θ) ≈ ρN (θ) := a0 +

N∑
n=1

an cos(nθ) +

N∑
n=1

bn sin(nθ), (5.6)

where the expansion coefficients an and bn are to be determined. Then each vector of Fourier coefficients (a0, a1, · · · , aN , b1,
b2, · · · , bN ) defines the boundary of a domain. The optimization problem can be solved by searching for an optimal coefficient
vector. Then we can obtain formulae for the derivatives of the shape functional in terms of Fourier coefficients. The shape
optimization algorithm based on the Fourier parametrization is given in Algorithm 2, where it stops by setting a prescribed
iteration number. In the following we take the Dirichlet Laplacian and Stokes eigenvalue optimization as examples. Choose
the truncation number N = 20 and a fixed step size 0.001 to update the coefficients.

Algorithm 2: Fourier parametrization based shape optimization algorithm

Choose initial Fourier coefficients for ∂Ω;
while the iteration does not stop do

Mesh generation;
Solve the state problem;
Solve the possible adjoint problem;
Calculate the outward normal derivatives of the state and adjoint state;
Update the Fourier coefficients;
k ← k + 1;

end

5.2.1. Laplace eigenvalue optimization. For problem (3.5), the Eulerian derivative of J(Ω) = Vol(Ω)λ` is

dJ(Ω;V) =

∫
∂Ω

[
λ` −Vol(Ω) (∂nu`)

2 ]Vnds. (5.7)
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Fig. 5.15. Comparisons on the convergence history of the shape functional between the shape gradient algorithms with improved
and classical boundary formulae for Example 5.5.

Fig. 5.16. The initial domain (left), the optimal shape with Algorithm 1 (middle), and the optimal shape by the algorithm with
a volumetric CT-H(sym) gradient flow [26] (right) for the Stokes case of Example 5.6 : µ = 0.01.

On ∂Ω, we have by the Fourier parametrization that x = ρN (θ)r, where x = (x1, x2) and r = [cos θ, sin θ]T = x
|x| . For

boundary variations from ∂Ω to ∂Ωt due to perturbations of the coefficient a0, we denote xt = ρN,t(θ)r on ∂Ωt, where

ρN,t(θ) := a0 + t+

N∑
n=1

an cos(nθ) +

N∑
n=1

bn sin(nθ).

The variations of coefficients induce shape variations of a domain. Denote

Ωt = {rr : θ ∈ [0, 2π), 0 6 r < ρN,t(θ)}.

Then

V =
d

dt
xt

∣∣∣∣
t=0

=
d

dt
ρN,t(θ)

∣∣∣∣
t=0

r = r.

Then (5.7) implies that the sensitivity of J with respect to a0:

∂J

∂a0
= lim

t↘0

J (Ωt)− J(Ω)

t
= dJ(Ω;V) =

∫
∂Ω

ϑLr · nds, (5.8)

where ϑL = λ` −Vol(Ω) (∂nu`)
2. A similar procedure applied to the coefficients ai or bi (i = 1, · · · , N), we have

∂J

∂an
=

∫
∂Ω

ϑ cosnθr · nds, n = 1, 2, · · · , N,

∂J

∂bn
=

∫
∂Ω

ϑ sinnθr · nds, n = 1, 2, · · · , N,
(5.9)

where θ = arctan x2
x1

.
On the discrete level, the boundary correction (3.8) is used for the outward normal derivative of the eigenfunction ul

on ∂Ω. The discrete formula can be obtained by replacing λ` and ∂nu` in (5.8)-(5.9) by λ`,h and ∂h
nu`,h, respectively. In

Table 5.7 and Fig. 5.24, we present the computed optimal Laplace eigenvalues, the optimal shapes, and the corresponding
convergence histories of different eigenvalues. A comparison with Table 5.2 shows the similar results. In Table 5.8, we
compare the computational costs with the standard and improved boundary formulae.

5.2.2. Stokes eigenvalue optimization. For problem (3.13), the Eulerian derivative of the Lagrangian is (3.16).
By using a quite similar derivation procedure as in Section 5.2.1, we obtain the following discrete formulae:

∂L
∂a0

=

∫
∂Ω

ϑSr · nds,

∂L
∂an

=

∫
∂Ω

ϑS cosnθr · nds, n = 1, 2, · · · , N,

∂L
∂bn

=

∫
∂Ω

ϑS sinnθr · nds, n = 1, 2, · · · , N,

where ϑS = l + β(Vol(Ω) − C) − ‖Dh
nuh‖2 with the modified boundary formula (3.18) being used. The numerical results

on optimal shapes are summarized in Table 5.9 (left), where a comparison with the results obtained by moving grid based
shape optimization algorithm can be performed.
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Fig. 5.17. The optimal shape of the Navier-Stokes case with µ = 0.1 for Example 5.6 with Algorithm 1.
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Fig. 5.18. Convergence histories of the objective (left) and the volume error (right) for Example 5.6 with Algorithm 1.

6. Conclusion. The continuity property of the discrete boundary shape gradient is helpful in certain shape optimiza-
tion algorithms and provides certain flexibility compared to the previous widely-used discontinuous ones and the distributed
shape gradients in the literature. We have proposed modified continuous shape gradient formulae of boundary type based
on the discrete variational outward normal derivatives for various shape optimizations of Dirichlet problems, including the
eigenvalue optimization, the optimal design in fluid flows, and the interface identification problems. Numerical accuracy
was verified in different shape optimization problems and numerical performance was investigated in several popular shape
optimization algorithms. Moreover, a continuous approximate shape gradient of boundary type for Neumann problems has
been proposed by using gradient recovery techniques. The proposed two modified boundary type shape gradients can also
be used in topology optimizations in combination with, e.g., the level set method, which will be reported elsewhere.

Acknowledgements. The authors would like to thank two anonymous referees for their careful reading of the
manuscript and many valuable suggestions, which helped to improve the presentation and quality of this paper greatly.

REFERENCES

[1] G. Allaire and A. Henrot, On some recent advances in shape optimization, C. R. Acad. Sci. Paris, Ser. II, 329 (2001), pp. 383-396.

[2] G. Allaire, C. Dapogny, and F. Jouve, Shape and topology optimization, in Geometric partial differential equations, part II, A.
Bonito and R. Nochetto eds., pp. 1-132, Handbook of Numerical Analysis, vol. 22, Elsevier, 2021.

[3] P. Antunes, Optimal bilaplacian eigenvalues, SIAM J. Control Optim., 52 (2014), pp. 2250-2260.

[4] P.R.S. Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians, J. Optim.
Theory Appl., 154 (2012), pp. 235-257.

[5] M.P. Bendsøe and O. Sigmund, Topology Optimization. Theory, Methods and Applications, Springer-Verlag, Berlin, 2003.

[6] M. Berggren, A unified discrete-continuous sensitivity analysis method for shape optimization. In: Applied and Numerical Partial
Differential Equations, pp. 25-39, Springer, New York, 2010.

[7] B. Bogosel, Shape Optimization and Spectral Problems, PhD Thesis, 2015.

[8] C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich, A continuous adjoint approach to shape optimization for Navier-
Stokes flow, Optimal control of coupled systems of partial differential equations, pp. 35-56, Internat. Ser. Numer. Math., 158,
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Fig. 5.21. The initial design (left), the optimal shape by classical boundary shape gradient (middle) and the optimal shape using
improved boundary formula (right) for Example 5.8.
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Fig. 5.23. Convergence histories of the Stokes eigenvalue optimization by using Algorithm 1 for Example 5.9 in 2D (` =
2, 3, . . . , 10).
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`
2D

m λ` Optimal shape Velocity field

1 1 46.163

Vec Value
0
0.0418215
0.083643
0.125465
0.167286
0.209108
0.250929
0.292751
0.334572
0.376394
0.418215
0.460037
0.501858
0.54368
0.585501
0.627323
0.669144
0.710966
0.752787
0.794609

2 1 73.282

Vec Value
0
0.0601279
0.120256
0.180384
0.240511
0.300639
0.360767
0.420895
0.481023
0.541151
0.601279
0.661407
0.721534
0.781662
0.84179
0.901918
0.962046
1.02217
1.0823
1.14243

3 2 83.028

Vec Value
0
0.0678143
0.135629
0.203443
0.271257
0.339071
0.406886
0.4747
0.542514
0.610328
0.678143
0.745957
0.813771
0.881586
0.9494
1.01721
1.08503
1.15284
1.22066
1.28847

4 1 110.392

Vec Value
0
0.053096
0.106192
0.159288
0.212384
0.26548
0.318576
0.371672
0.424768
0.477864
0.53096
0.584056
0.637152
0.690248
0.743344
0.79644
0.849536
0.902632
0.955728
1.00882

5 2 125.484

Vec Value
0
0.0488288
0.0976576
0.146486
0.195315
0.244144
0.292973
0.341801
0.39063
0.439459
0.488288
0.537117
0.585945
0.634774
0.683603
0.732432
0.781261
0.830089
0.878918
0.927747

6 3 143.017

Vec Value
0
0.0527499
0.1055
0.15825
0.211
0.26375
0.3165
0.36925
0.422
0.474749
0.527499
0.580249
0.632999
0.685749
0.738499
0.791249
0.843999
0.896749
0.949499
1.00225

7 2 168.234

Vec Value
0
0.0660044
0.132009
0.198013
0.264018
0.330022
0.396026
0.462031
0.528035
0.59404
0.660044
0.726049
0.792053
0.858057
0.924062
0.990066
1.05607
1.12207
1.18808
1.25408

8 3 175.602

Vec Value
0
0.0675252
0.13505
0.202576
0.270101
0.337626
0.405151
0.472677
0.540202
0.607727
0.675252
0.742778
0.810303
0.877828
0.945353
1.01288
1.0804
1.14793
1.21545
1.28298

9 3 195.846

Vec Value
0
0.0687678
0.137536
0.206303
0.275071
0.343839
0.412607
0.481375
0.550143
0.61891
0.687678
0.756446
0.825214
0.893982
0.96275
1.03152
1.10029
1.16905
1.23782
1.30659

10 4 208.881

Vec Value
0
0.0654315
0.130863
0.196294
0.261726
0.327157
0.392589
0.45802
0.523452
0.588883
0.654315
0.719746
0.785178
0.850609
0.916041
0.981472
1.0469
1.11234
1.17777
1.2432

`
2D

m λ` Optimal shape Velocity field

1 1 46.537

Vec Value
0
0.076529
0.153058
0.229587
0.306116
0.382645
0.459174
0.535703
0.612232
0.688761
0.76529
0.841819
0.918348
0.994877
1.07141
1.14793
1.22446
1.30099
1.37752
1.45405

2 1 74.049

Vec Value
0
0.111015
0.222029
0.333044
0.444059
0.555073
0.666088
0.777103
0.888118
0.999132
1.11015
1.22116
1.33218
1.44319
1.55421
1.66522
1.77624
1.88725
1.99826
2.10928

3 2 84.169

Vec Value
0
0.124685
0.24937
0.374055
0.49874
0.623425
0.74811
0.872795
0.99748
1.12217
1.24685
1.37154
1.49622
1.62091
1.74559
1.87028
1.99496
2.11965
2.24433
2.36902

4 1 112.578

Vec Value
0
0.102592
0.205184
0.307776
0.410368
0.512959
0.615551
0.718143
0.820735
0.923327
1.02592
1.12851
1.2311
1.33369
1.43629
1.53888
1.64147
1.74406
1.84665
1.94925

5 2 127.541

Vec Value
0
0.103049
0.206098
0.309147
0.412197
0.515246
0.618295
0.721344
0.824393
0.927442
1.03049
1.13354
1.23659
1.33964
1.44269
1.54574
1.64879
1.75184
1.85488
1.95793

6 3 146.560

Vec Value
0
0.123824
0.247648
0.371472
0.495295
0.619119
0.742943
0.866767
0.990591
1.11441
1.23824
1.36206
1.48589
1.60971
1.73353
1.85736
1.98118
2.10501
2.22883
2.35265

7 2 171.605

Vec Value
0
0.129623
0.259247
0.38887
0.518493
0.648116
0.77774
0.907363
1.03699
1.16661
1.29623
1.42586
1.55548
1.6851
1.81473
1.94435
2.07397
2.2036
2.33322
2.46284

8 3 178.011

Vec Value
0
0.105988
0.211976
0.317964
0.423953
0.529941
0.635929
0.741917
0.847905
0.953893
1.05988
1.16587
1.27186
1.37785
1.48383
1.58982
1.69581
1.8018
1.90779
2.01377

9 3 197.237

Vec Value
0
0.135209
0.270418
0.405627
0.540836
0.676046
0.811255
0.946464
1.08167
1.21688
1.35209
1.4873
1.62251
1.75772
1.89293
2.02814
2.16335
2.29855
2.43376
2.56897

10 4 212.702

Vec Value
0
0.132573
0.265147
0.39772
0.530294
0.662867
0.795441
0.928014
1.06059
1.19316
1.32573
1.45831
1.59088
1.72345
1.85603
1.9886
2.12117
2.25375
2.38632
2.5189

Table 5.9
Numerical results on the Stokes eigenvalue optimization in 2D with the Fourier parametrization (left) and moving grid (right)

based algorithms.
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