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Abstract. Shape gradients have been widely used in numerical shape gradient descent algorithms for shape optimization.
The two types of shape gradients, i.e., the distributed one and the boundary type, are equivalent at the continuous level but
exhibit different numerical behaviors after finite element discretization. To be more specific, the boundary type shape gradient
is more popular in practice due to its concise formulation and convenience to combine with shape optimization algorithms but
has lower numerical accuracy. In this paper we provide a simple yet useful boundary correction for the normal derivatives of the
state and adjoint equations, motivated by their continuous variational forms, to increase the accuracy and possible effectiveness of
the boundary shape gradient in PDE-constrained shape optimization. We consider particularly the state equation with Dirichlet
boundary conditions and provide a preliminary error estimate for the correction. Numerical results show that the corrected boundary
type shape gradient has comparable accuracy to that of the distributed one. Moreover, we give a theoretical explanation for the
comparable numerical accuracy of the boundary type shape gradient with that of the distributed shape gradient for Neumann
boundary value problems.
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1. Introduction. Shape optimization has wide applications in various fields in computational science
and engineering [2, 3, 7, 17, 25, 27, 36, 39, 41]. For optimal shape design of complex systems, numerical
methods and techniques are useful to find “approximate” optimal shapes with the help of computer simulations
[27]. Gradient-type optimization methods are widely used shape evolution algorithms to iteratively obtain the
approximate optimal domain shapes. To perform a gradient-type algorithm in shape optimization, the so-called
shape gradient, derived from Eulerian derivative, is indispensable. Eulerian derivatives can be derived by shape
sensitivity analysis [17, 28, 34, 41], which is a classic mathematical tool in shape optimization to measure the
variations of an objective functional (called “shape functional” in shape optimization) with respect to shape
variations of some domain.

Hadamard-Zolésio structure theorem [17] shows that the shape gradient for a general shape functional
can be obtained by computing the Eulerian derivative in the form of a boundary integral assuming that the
domain is smooth enough. Most existing research works on numerical algorithms for shape optimization rely
on this structure theorem by using the boundary formulation, due to its attractive concise representation,
see e.g., [11, 16, 25]. On the discrete level this type of Eulerian derivative should be discretized by, e.g., finite
element method, which requires the according discretization of the state and (possible) adjoint partial differential
equations (PDEs).

Finite element methods [10] are among the most popular approaches for discretizing PDEs in shape op-
timization (see e.g., [26]). One main reason is that the finite element method can solve PDEs on arbitrary
domains and thus is flexible to domain changes in shape optimization. The accuracy of approximate shape
gradients could be essential for the implementation of numerical optimization algorithms as stated in [17]. It
was further pointed out in [5] that the sensitivity information needs to be very accurately computed in order
for the optimization algorithms to fully converge. Recently, it is found that the finite element approximations
of shape gradients in boundary formulations of Eulerian derivatives have unsatisfactory accuracy and low con-
vergence rate with respect to the mesh size compared to those in volume formulations, see e.g., [29] for elliptic
problems, [45] for eigenvalue problems, and [44] for Stokes flows. Numerical investigations even show that the
approximate shape gradient flow computed with the traditional boundary formulation may fail to converge to
the optimal target domain [33, 43], possibly because the poor accuracy of the approximate shape gradients does
not ensure the descent property of the gradient at the discrete level. When it comes to using distributed shape
gradients, i.e., the shape gradients associated with volume integrals of Eulerian derivatives in the context of
numerical algorithms, we also refer to [9, 32, 40].

Aiming to enhance the accuracy of the finite element approximations of boundary type shape gradients,
we propose in this paper a simple yet useful boundary correction for the normal derivatives of the state and
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adjoint equations with Dirichlet boundary conditions, motivated by their continuous variational forms. The
cost of this correction requires only to inverse a boundary mass matrix for the state and adjoint state variables,
respectively, and thus is negligible compared to the cost of shape gradient descent algorithm. We remark that
this kind of boundary equation is extensively used to approximate Dirichlet boundary control of PDEs, see e.g.,
[4, 12, 15, 21, 22]. We present preliminary a priori error estimates for the finite element approximations of the
boundary type shape gradients with the proposed boundary corrections. We find that the modified approximate
shape gradient has higher order convergence rate and accuracy than that of the classical one, and is comparable
to the distributed one when the solutions are sufficiently smooth. We believe that this kind of correction can also
be used in shape optimization of parabolic equations [40], elastic structures ([3]), Stokes flows ([44]) and other
related fields. On the other hand, compared to the Dirichlet case, it was observed in [29] that the boundary and
distributed type shape gradients exhibit similar numerical accuracy for Neumann boundary value problems. We
consider this problem and give a partial explanation for this phenomenon by a careful numerical analysis.

The remaining of this paper is organized as follows. In §2 we present a shape optimization model problem
constrained by an elliptic boundary value problem. In §3, we propose a boundary correction for the normal
derivatives of the state and adjoint equations with Dirichlet boundary conditions, and present a priori error
estimates for the finite element approximations of shape gradients with such boundary correction. The second
part of this section is devoted to an error analysis for the approximate shape gradient of boundary type for
Neumann boundary value problems. For both cases we use the “non-conforming” finite elements with polygonal
domain to approximate the curved domain. In §4 extensive numerical examples are presented to verify our
theory.

2. Shape gradients for PDE-constrained shape optimization. Let Ω be an open bounded domain
in Rn (n = 2, 3) with Lipschitz continuous boundary ∂Ω. For comparison we consider a specific example similar
to the one in [29]. We are interested in the following PDE-constrained shape functional with J(·) : Ω 7→ R

J(Ω) =

∫
Ω

j(u)dx, (2.1)

where j : R → R is C1 and we assume further that the derivative j′ is locally Lipschitz continuous (i.e.,
j′ ∈ C0,1(I) for any compact set I ⊂ R), u is the solution of the following linear elliptic state equation with
either Dirichlet or Neumann boundary condition{

−∆u+ u = f in Ω,
u = g or ∂nu = g on Γ := ∂Ω,

(2.2)

where the functions f and g are assumed to be smooth enough which will be specified later, and they are
identified with their restrictions onto Ω and ∂Ω. Here ∂n denotes the normal derivative operator with n being
the unit outward normal on the boundary.

Throughout the paper, we make the following assumptions on the data f and g, the function j(u) and the
domain Ω.

Assumption 2.1.
• Ω ⊂ Rn is a bounded domain with a C3 boundary ∂Ω.
• f ∈W 1,r(Rn) (r > n).
• g ∈W 3,r(Rn) (r > n) for the Dirichlet case and g ∈ H2(Rn) for the Neumann case.
• j(u) is C1 with its derivative j′ being locally Lipschitz continuous, i.e., j′ ∈ C0,1(I) for any compact

set I ⊂ R.
Let us briefly introduce some basic ingredients of the velocity method [17, 41] for shape calculus. Let D

(Ω ⊂ D) be a hold-all domain in Rn whose boundary ∂D is piecewise C1. Denote

V 1(D) =
{
V ∈ D1 (Rn;Rn) | 〈V ,n〉Rn = 0 on ∂D except for the singular points x̄ of ∂D,

V(x̄) = 0 for all singular points x̄
}
.

For a variable t ∈ [0, τ) with τ > 0, let a vector field V ∈ C
(
0, τ ;V 1(D)

)
and Tt(V) be the associated one-to-

one transformation from D̄ onto D̄. Let x = x(t,X) denote the solution to the system of ordinary differential
equations

dx

dt
(t,X) = V(t, x(t,X)), x(0, X) = X. (2.3)

Denote Ωt = Tt(V)(Ω). The Eulerian derivative of J(Ω) at Ω in the direction V can be expressed as the
following limit

dJ(Ω;V) := lim
t↘0

J(Ωt)− J(Ω)

t
. (2.4)
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The Eulerian derivative dJ(Ω,V) can be formulated as an integral over the volume Ω for the so-called distributed
shape gradient, as well as an integral on the boundary for the so-called boundary type shape gradient. An explicit
formula for the Eulerian derivative of the shape functional J(Ω) relies on the solution p of the following adjoint
problem {

−∆p+ p = j′(u) in Ω,
p = 0 or ∂np = 0 on Γ.

(2.5)

We summarize the known results in the following lemma dedicated to the case of Dirichlet boundary conditions.

Lemma 2.2. Let u and p be the solutions of the primal equation (2.2) and the adjoint state equation (2.5)
with Dirichlet boundary conditions, respectively. There holds

dJD(Ω, u, p;V) =

∫
Ω

(
∇u · (DV +DVT )∇p− fV · ∇p+ divV(j(u)−∇u · ∇p

− up) + (j′(u)− p)(∇g · V)−∇p · ∇(∇g · V)
)
dx.

(2.6)

The Eulerian derivative can be equivalently written as

dJD(Γ, u, p;V) =

∫
Γ

Vn

(
j(u) + ∂np∂n(u− g)

)
ds, (2.7)

where Vn := V · n.
Proof. For the proof we refer to [29], see also [25] and [27].
The distributed integral (2.6) and the boundary integral (2.7) are equivalent representations of the Eulerian

derivative dJD(Ω,V), and can be derived from each other by means of Gauss’s theorem, see [29] for the detailed
derivation. However, the formula (2.7) is more popular in the literature compared to (2.6), possibly because
the boundary type admits a representative g(Ω) in the space of distributions Dk(Γ) according to the structure
theorem, i.e., if Γ is smooth, there holds

dJD(Γ, u, p;V) = 〈g(Ω), γΓV · n〉Dk(Γ), (2.8)

where γΓV · n is the trace for the normal component of V on the boundary Γ. This implies that only normal
displacements of the boundary have an impact on the value of J(Ω). This expression comes in handy in many
numerical methods, where the values of the velocity field V on the boundary of the shape are the only ones
needed.

The next result is dedicated to the case of Neumann boundary conditions.
Lemma 2.3. [29, Remark 2.2] Let u and p be the solutions of the primal equation (2.2) and the adjoint

state equation (2.5) with Neumann boundary conditions, respectively. The Eulerian derivatives read

dJN (Ω, u, p;V) =

∫
Ω

(
(∇f · V)p+∇u · (DV +DVT )∇p+ divV(fp+ j(u)

−∇u · ∇p− up)
)
dx+

∫
Γ

(∇g · V)p+ gpdivΓVds,
(2.9)

where divΓV := divV − nTDVn denotes the tangential divergence on Γ, and

dJN (Γ, u, p;V) =

∫
Γ

Vn

(
j(u)−∇u · ∇p− up+ fp+ ∂n(gp) +Kgp

)
ds, (2.10)

where K := divn is the mean curvature of Γ.
We remark that, by using the fact that

∇u = ∇Γu+ ∂nun = ∇Γu+ gn and ∇p = ∇Γp+ ∂npn = ∇Γp on Γ,

where one defines the tangential gradient ∇Γu = P∇u with P = I − nnT and I being an identity matrix, we
can rewrite formula (2.10) as

dJN (Γ, u, p;V) =

∫
Γ

Vn

(
j(u)−∇Γu · ∇Γp− up+ fp+ ∂ngp+Kgp

)
ds. (2.11)

Below are a few remarks concerning the conditions in Assumption 2.1.
Remark 2.4. In this paper we assume that ∂Ω is C3, the reasons are as follows.
• As noted in Lemma 2.2, the smoothness assumption on Ω allows the derivation of the shape gradient

under boundary formulation that is equivalent to the volume one.
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• This assumption allows for higher regularity of the solutions to the state and adjoint equations which is
essential for the proof of improved convergence rates of boundary shape gradients.

• As pointed out in [29], for the Neumann case the shape gradient has to be corrected at the corners if the
boundary is only piecewise smooth. Taking Ω to be a 2D polygonal domain as example, formula (2.10)
has to be corrected by adding the term (cf. [29])∑

i

p(xi)g(xi)V(xi) · [[τ(xi)]], (2.12)

where the xi denote the corner points and [[τ(xi)]] is the jump of the tangential unit vector field in the
corner xi ([41, Ch. 3.8]). On the other hand, no correction has to be made to formula (2.7).

• When the boundary Γ is only piecewise smooth, the Hadamard-Zolésio structure theorem (2.8) does not
hold for the Eulerian derivatives (2.7) and (2.10) for respective Dirichlet and Neumann problems.

When Ω is only a convex polygonal/polyhedral domain, the boundary correction can still be used, but we can not
expect the same accuracy as that of the volume formulation, see Remark 3.11 for more details.

3. Discretized shape gradients for PDE-constrained shape optimization. For function spaces and
norms we are going to use the notations of [1, 10]. Now we consider the finite element approximations. Let
{Th}h>0 be a quasi-uniform and shape regular family of triangulations of domains Ωh approximating Ω. Define
Γh := ∂Ωh. For the domain with curved boundary there are two types of finite element approximations, one is
relied on the parametric finite elements (cf. [10, Section 10.4]) while the other is based on polygonal boundary
approximation (cf. [8, 30]). Here we consider the latter case so that Ωh 6= Ω, we assume further that all
boundary vertices of Γh also lie on Γ and that at most one edge or face of a simplex belongs to Γh. The latter
assumption is used to avoid trivial finite element solutions near the boundary for problems with homogeneous
Dirichlet boundary conditions. We denote by 〈·, ·〉Γ and 〈·, ·〉Γh the inner products on Γ and Γh, respectively,
associated with the norms ‖ · ‖L2(Γ) for L2(Γ) and ‖ · ‖L2(Γh) for L2(Γh) that are defined in the usual way. Let
(·, ·)h denote the inner product in L2(Ωh). Associated with Th we construct the finite element space Vh which
consists of piecewise polynomials of first order such that Vh ⊂ H1(Ωh). We denote by V 0

h := Vh ∩H1
0 (Ωh) and

Vh(Γh) the restriction of Vh to the boundary Γh. The functions in V 0
h are globally continuous. In the following,

the constants C appearing at different circumstances may be different, but are independent of h.
To deal with variational problems defined on different domains Ωh and Ω, we need to introduce some

extension operator. We define the usual Sobolev extension E : W r,p(Ω) → W r,p(Rn), with r ≥ 0, 1 ≤ p ≤ ∞,
satisfying Ev|Ω = v for v ∈W r,p(Ω) and (cf. [8, 23, 30])

‖Ev‖W r,p(Rn) ≤ C‖v‖W r,p(Ω). (3.1)

In the following, we use the same notation for a function v ∈W r,p(Ω) and its extension to Rn.

3.1. Dirichlet boundary value problem. In this subsection we consider the state equation (2.2) with
Dirichlet boundary condition. The variational formulation of (2.2) is to find u ∈ H1(Ω) such that u|Γ = g and

(∇u,∇v) + (u, v) = (f, v) ∀v ∈ H1
0 (Ω). (3.2)

On the other hand, the variational formulation of (2.5) reads: find p ∈ H1
0 (Ω) such that

(∇p,∇v) + (p, v) = (j′(u), v) ∀v ∈ H1
0 (Ω). (3.3)

Now we are in the position to formulate the finite element approximations to the state and adjoint equations.
For the state equation it is to find uh ∈ Vh such that uh|Γh = Qhg where Qh is defined later (cf. (3.21)), and

(∇uh,∇vh)h + (uh, vh)h = (f, vh)h ∀vh ∈ V 0
h . (3.4)

For the discretization of the adjoint state equation it is to find ph ∈ V 0
h such that

(∇ph,∇vh)h + (ph, vh)h = (j′(uh), vh)h ∀vh ∈ V 0
h . (3.5)

We remark that the right hand sides of (3.4) and (3.5) are usually evaluated by quadrature formulas. However, in
the current paper we do not consider the quadrature errors but we only focus on the finite element discretization
errors. Then we have the error estimates [8, Theorem 1]

‖u− uh‖L2(Ωh) + h‖u− uh‖H1(Ωh) ≤ Ch2(‖f‖L2(Ω) + ‖g‖H2(Ω)),

‖p− ph‖L2(Ωh) + h‖p− ph‖H1(Ωh) ≤ Ch2(‖j′(u)‖L2(Ω) + ‖f‖L2(Ω) + ‖g‖H2(Ω)).
(3.6)

The following stability estimates also hold

‖uh‖H1(Ωh) ≤ C(‖f‖L2(Ω) + ‖g‖H1(Ω)), ‖ph‖H1(Ωh) ≤ C(‖j′(u)‖L2(Ω) + ‖f‖L2(Ω) + ‖g‖H1(Ω)). (3.7)
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Moreover, we assume the following W 1,∞-norm error estimate

‖u− uh‖W 1,∞(Ωh) + ‖p− ph‖W 1,∞(Ωh) ≤ Ch(‖u‖W 2,∞(Ω) + ‖p‖W 2,∞(Ω)). (3.8)

Remark 3.1. The L2-norm and H1-norm error estimates (3.6) have been proved in [8, Theorem 1] in the
two-dimensional case. However, it is possible to extend the results to the three-dimensional case, because all the
necessary geometric errors for the approximation of a three-dimensional curved domain by a polygonal domain
have already been proved in [30, 31], see for instance, Section 2.2 of [30]. A different proof for the estimates
(3.6) from that of [8] can be found in [15] for both 2D and 3D curved domains.

Remark 3.2. The W 1,∞-norm error estimate (3.8) for the finite element approximation of the solution to
an elliptic equation with Dirichlet boundary condition based on boundary polygonal approximation is not precisely
available in the literature. However, we can find in [30] such an error estimate for the corresponding Neumann
boundary value problem. We expect that the methods of proof in [30] can be applied to elliptic Dirichlet problem
to derive (3.8). This is partially confirmed by a private communication with Professor Tomoya Kemmochi. In
the special case that Ω is convex so that Ωh ⊂ Ω, the equations (2.2) and (2.5) also hold in Ωh, we can expect
that the standard W 1,∞-norm error estimate (cf. [10, Chapter 8]) for elliptic Dirichlet problems implies (3.8).

Remark 3.3. Since (3.5) is not a direct Galerkin approximation to (3.3), in order to derive the error
estimates (3.6) and (3.8) involving p we have to introduce the intermediate discrete quantity ph(u) ∈ V 0

h such
that

(∇ph(u),∇vh)h + (ph(u), vh)h = (j′(u), vh)h ∀vh ∈ V 0
h .

Now ph(u) is the standard Galerkin discretization of p and the following error estimates hold

‖p− ph(u)‖L2(Ωh) + h‖p− ph(u)‖H1(Ωh) ≤ Ch2‖j′(u)‖L2(Ω),

‖p− ph(u)‖W 1,∞(Ωh) ≤ Ch‖p‖W 2,∞(Ω).

By using the triangle inequality we only need to estimate

‖ph(u)− ph‖L2(Ωh) + ‖ph(u)− ph‖H1(Ωh) ≤ C‖j′(u)− j′(uh)‖L2(Ωh) ≤ C‖j′‖C0,1(I)‖u− uh‖L2(Ωh),

‖ph(u)− ph‖W 1,∞(Ωh) ≤ C‖j′(u)− j′(uh)‖L∞(Ωh) ≤ C‖j′‖C0,1(I)‖u− uh‖L∞(Ωh),

where we used the stability (3.7) and Theorem 8.5.3 in [10]. Here I := [u, ū], u and ū are chosen such that
−∞ < u ≤ u(x), uh(x) ≤ ū < ∞ in Ωh and j′ is bounded on I, we refer to [29, pp. 468, eq. (3.20)] for more
details. Combining the above estimates we can derive the error estimates for the adjoint state equation.

With the discrete state uh and adjoint state ph at hand, the discretized boundary type Eulerian derivative
for the shape optimization problem reads

dhJ
D(Γh, uh, ph;V) =

∫
Γh

Vnh

(
j(uh) + ∂nhph(∂nhuh − ∂nhg

)
ds. (3.9)

This approach is extensively used in the literature as it is easy to implement. In [29] the authors compared
the numerical performance of two discretized shape gradients, one with a volumetric formulation while the
other with a boundary formulation. It is claimed that the volume type discrete shape gradient has better
approximation property for state equations with Dirichlet boundary condition compared to the counterpart
boundary integrals, which is then confirmed by extensive numerical examples (cf. [29, Section 4]).

Proposition 3.1. [35, Theorem 2.2.4 and 2.2.9] Let uh and ph be Ritz-Galerkin linear Lagrange finite
element approximations of the solutions u and p of (2.2) and (2.5) associated with the Dirichlet boundary
conditions. Assume that f ∈ H1(Rn), g ∈ H3(Rn), Γh = Γ, and that there holds

‖u‖W 2,q(Ω) ≤ Cq‖f‖L∞(Ω) for all 1 < q <∞,

where Cq ∼ 1
q−1 for q → 1 and Cq ∼ q for q → ∞ (cf. [20, Theorem 9.8 and 9.9]). We remark that the above

W 2,q-elliptic regularity holds if ∂Ω ∈ C1,1, f ∈ Lq(Ω) and g ∈W 2,q(Ω) (cf. [23, Theorem 2.4.2.5]). Then∣∣dJD(Γ, u, p;V)− dhJ
D(Γ, uh, ph;V)

∣∣ ≤ Ch| log h|‖V · n‖L∞(∂Ω).

Moreover, for the discrete shape gradient of the volume type we have∣∣dJD(Ω, u, p;V)− dhJ
D(Ω, uh, ph;V)

∣∣ ≤ Ch2‖V‖W 2,4(Ω).

In this paper we propose a modified discrete shape gradient on Γh:

d̃hJ
D(Γh, uh, ph;V) =

∫
Γh

Vn ◦ ah
(
j(uh) + ∂hnhph(∂hnhuh − ∂ng ◦ ah)

)
dsh, (3.10)
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where ah is defined as in (3.15), ∂hnhuh ∈ Vh(Γh) and ∂hnhph ∈ Vh(Γh) solve the following discrete variational
problems:

〈∂hnhuh, vh〉Γh = (∇uh,∇vh)h + (uh, vh)h − (f, vh)h ∀vh ∈ Vh (3.11)

and

〈∂hnhph, vh〉Γh = (∇ph,∇vh)h + (ph, vh)h − (j′(uh), vh)h ∀vh ∈ Vh. (3.12)

We remark that an additional work in the modified discrete shape gradient (3.10) is paid to the solution of two
boundary equations (3.11) and (3.12), which only requires the solution of linear systems with small numbers
of degrees of freedom are required to be solved. Moreover, the evaluation of the right-hand sides in (3.11)
and (3.12) is only performed in the neighboring elements of the boundary nodes because of the discrete state
equation (3.4) and adjoint equation (3.5).

Remark 3.4. Note that in the classical approximation (3.9) one has one order loss for the approximations
∂nhuh of ∂nu, this is because we use Optimize-then-Discretize approach ([5]) for the optimization problem,
i.e., we derive the first order optimality system and the Eulerian derivative of the objective functional at the
continuous level. Then we discretize the optimality system and define the discrete shape gradient at the discrete
level by inserting the discrete state and adjoint state. While for the modified scheme (3.10), the approximations
∂hnhuh and ∂hnhph have the same polynomial degree as that of uh and ph, thus these corrections mimick the
procedure of Discretize-then-Optimize approach by using discrete counterparts of integration by parts. Moreover,
compared to the classical discrete shape gradient (3.9) which is discontinuous when P1 Lagrange finite elements
are used for uh and ph, our modified formula is continuous on the boundary, and thus can be used for continuous
extensions in the shape optimization algorithms (cf. [11]).

Remark 3.5. Instead of the boundary polygonal approximation Ωh of Ω utilized in the present paper, we can
also use the isoparametric finite element method to solve partial differential equations posed on curved domain
(cf. [10, Section 10.4]). This is particularly useful if we try to use higher order finite element methods. In this
case, we can expect a better boundary approximation Γh to Γ than the polygonal approximation, along with a
better outward normal approximation nh to n. Therefore, we can also define the modified shape gradient (3.10)
based on the recovered solutions to (3.11) and (3.12) defined on Γh. The following analysis can be carried over
to the isoparametric finite element approximation, but a rigorous justification is still necessary.

In the following we will show in Theorem 3.10 that the modified discrete shape gradient (3.10) has improved
convergence rate compared to the classical one (3.9). The proof relies on an improved approximation property
of ∂hnhuh to ∂nu and ∂hnhph to ∂np, presented in Lemma 3.8, compared to that of ∂nhph and ∂nhuh. Also we
need to introduce an auxiliary problem (cf. eq. (3.43)) and use a duality argument to improve the convergence
rate, compared to the approach of Theorem 3.2 in [29].

Before giving the main results we present some preliminary results. Firstly, it follows that for each u ∈
H

3
2 +ε(Ω) (ε > 0) we can define the outward normal trace ∂nu ∈ L2(Γ) for a Lipschitz domain Ω (cf. [23, Theorem

1.5.1.2]). Let u ∈ H1(Ω) be the solution to the elliptic equation (2.2) with f ∈ L2(Rn) and g ∈ H2(Rn), we

conclude that u ∈ {u ∈ H1(Ω) : −∆u+u ∈ L2(Ω)} ⊂ H 3
2 +ε(Ω) for some ε ∈ (0, 1

2 ] if Ω is a Lipschitz polygonal
domain (cf. [24], Theorem 2.4.3 for the two-dimensional case and Corollary 2.6.7 for the three-dimensional
case). In addition, there holds ∂nu ∈ Hε(Γ) and this quantity satisfies (cf. [6, Theorem 3.2])

〈∂nu, v〉Γ = (∇u,∇v) + (u, v)− (f, v) ∀v ∈ H1(Ω). (3.13)

Under Assumption 2.1, we have for each f ∈ W 1,r(Ω), g ∈ W 3,r(Ω) (r > n) that u ∈ W 3,r(Ω) (cf. [15]), and

thus u ∈W 2,∞(Ω) by the Sobolev embedding theorem (cf. [1]) and ∂nu ∈ H
3
2 (Γ) by the trace theorem (cf. [23,

Section 1.5.1]).
Similarly, we have the variational problem for the outward normal derivative of the solution to the adjoint

equation

〈∂np, v〉Γ = (∇p,∇v) + (p, v)− (j′(u), v) ∀v ∈ H1(Ω). (3.14)

The above regularity results also hold for the adjoint problem under the regularity assumption that j′(u) ∈
W 1,r(Ω) (r > n).

In the following we present some results on the approximation property between Ωh and Ω. Note that with
the boundary polygonal approximation we have Ωh 6= Ω. We define the projection ah : Γh → Γ as (cf. [14],
[8, 13] for 2D and [30, 42] for 3D)

ah(x) := x+ δh(x)nh(x) for x ∈ e ⊂ Γh, (3.15)

where nh is the constant normal to Γh on e and δh(x) (which could be negative) is chosen in such a way that
ah(x) ∈ Γ (cf. Figure 3.1 for an illustration in 2D). Then it can be shown that ah is locally bijective for
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O

Γj

Γjh

x

ah(x)
δh(x)

nh(x) x

y

Γ

Γh

Ω\Ωh

Ωh\Ω

Fig. 3.1. An illustration of the mapping ah (left) and the approximation Ωh to Ω (right).

sufficiently small h and dist(Γ,Γh) ≤ Ch2, |Ω\Ωh| ≤ Ch2, |Ωh\Ω| ≤ Ch2 (cf. [8, 30]). Furthermore, for any
v ∈ L2(Γh) we have ([15, 13, 31]) ∫

Γh

vdsh =

∫
Γ

v ◦ a−1
h thds, with th =

dsh
ds

, (3.16)

where ds and dsh denote the smooth and discrete surface measures, respectively.

The above derivation implies the following error estimate (cf. [13, eq. (4.3)] for 2D and [30, eq. (2.1)], [31,
Section 8] for 3D) ∣∣∣∣ ∫

Γ

vds−
∫

Γh

v ◦ ahdsh
∣∣∣∣ ≤ Ch2

∫
Γ

|v|ds ∀v ∈ L1(Γ) (3.17)

and the stability (cf. [8, eq. (2.5)] for 2D and [31, Section 8] for 3D)

1

C
‖v‖L2(Γ) ≤ ‖v ◦ ah‖L2(Γh) ≤ C‖v‖L2(Γ) ∀v ∈ L2(Γ). (3.18)

On the other hand, we associate with Vh an analogous space Ṽh in Ω. To do so we follow the ideas of [8]
where the 2D case was considered, and extend the results to 3D. For each vh ∈ Vh we denote by ṽh : Ω̄→ R as
follows: if Ωe is the subset of Ω\Ωh bounded by the boundary face e ⊂ T ∩ Γh and the curved surface ẽ ⊂ ∂Ω,

ṽh|Ωe is defined as the linear extension of vh from T . That is, for any vh|T :=
n+1∑
i=1

vTi φ
T
i (x), where φTi denotes

the nodal basis function associated with the nodal xi of T and vTi is the nodal value of vh at xi, we define

ṽh|Ωe :=
n+1∑
i=1

vTi φ
T
i (x) for any x ∈ Ωe. Then we define

Ṽh := {ṽh : vh ∈ Vh}

and there holds (cf. [8, eq. (2.6)] and [30, Section 2.3])

‖ṽh‖H1(Ω) ≤ C‖vh‖H1(Ωh). (3.19)

On Γ we can define the discrete piecewise linear finite element space

V̂h := {vh ◦ a−1
h : vh ∈ Vh(Γh)}.

With this definition we remark that for vh ∈ Vh the identity ṽh|Γ = vh|Γh ◦ a
−1
h is not necessarily valid, but

there holds the following estimate.

Lemma 3.6. For each vh ∈ Vh let ṽh be its linear extension to Ω defined above. Then there holds

‖ṽh − vh ◦ a−1
h ‖L2(Γ) ≤ Ch

3
2 ‖∇vh‖L2(Ωh). (3.20)
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Proof. In fact, it follows from (3.18) and Taylor’s expansion that

‖ṽh − vh ◦ a−1
h ‖

2
L2(Γ) ≤ C‖ṽh ◦ ah − vh‖

2
L2(Γh)

= C
∑

e⊂Γh,e⊂∂T

∫
e

( n+1∑
i=1

vTi
(
φTi (ah(x))− φTi (x)

))2

ds

= C
∑

e⊂Γh,e⊂∂T

∫
e

( n+1∑
i=1

vTi ∇φTi (x) · (ah(x)− x)
)2

ds

≤ Ch4
∑

e⊂Γh,e⊂∂T

∫
e

∣∣∣∣ n+1∑
i=1

vTi ∇φTi
∣∣∣∣2ds

= Ch4‖∇vh‖2L2(Γh)

≤ Ch3
∑
T∈Th

∫
T

∣∣∣∣ n+1∑
i=1

vTi ∇φTi
∣∣∣∣2dx

= Ch3‖∇vh‖2L2(Ωh),

where we used the facts that |ah(x)− x| ≤ Ch2 (cf. [8, Section 2] and [30, Section 2.2]) and∫
e

∣∣∣∣ n+1∑
i=1

vTi ∇φTi
∣∣∣∣2ds ≤ Ch−1

∫
T

∣∣∣∣ n+1∑
i=1

vTi ∇φTi
∣∣∣∣2dx

when T is an element with face e, because ∇φTi is a constant on each element T .
Now we can define some projection operators. Firstly, we consider the L2-projection operatorQh : L2(Γh)→

Vh(Γh) defined by:

〈Qhv, vh〉Γh = 〈v, vh〉Γh ∀vh ∈ Vh(Γh). (3.21)

Similarly, we can define the L2-projection operator Q̂h : L2(Γ)→ V̂h such that for any v ∈ L2(Γ) there holds

〈v, ṽh〉Γ = 〈Q̂hv, ṽh〉Γ ∀ṽh ∈ V̂h. (3.22)

According to [8, eq. (2.20)] one has

‖(I − Q̂h)v‖L2(Γ) ≤ Chs|v|Hs(Γ), 0 ≤ s ≤ 2. (3.23)

Note that Qh(v ◦ah) 6= (Q̂hv)◦ah for v ∈ L2(Γ), but we have the following approximation result (cf. [8, Lemma
4])

‖Qh(v ◦ ah) ◦ a−1
h − Q̂hv‖L2(Γ) ≤ C‖Qh(v ◦ ah)− (Q̂hv) ◦ ah‖L2(Γh)

≤ Ch2‖v‖L2(Γ).
(3.24)

Remark 3.7. The error estimate (3.23) for the L2(Γ) projection Q̂h is proved in [8] for 2D case. However,
with a closer look at the proof we find that only the approximation property of the finite element space V̂h and
the stability of the projection Q̂h are used. Therefore, the extension to 3D is possible. For a slightly different
definition of the projection Q̂h in both 2D and 3D we refer to [15, eq. (3.7) and (3.8)]. Moreover, (3.24) is
also proved in [8, Lemma 4] for 2D, and the proof relies only on the mapping property (3.16) and the fact
|1− th| ≤ Ch2 which are also valid in 3D. Therefore, the estimate (3.24) holds also in the 3D case.

Converting the boundary formula (3.10) to Γ we have

d̃hJ
D(Γ, uh, ph;V) =

∫
Γ

Vn

(
j(uh ◦ a−1

h ) + ∂̂hnhph(∂̂hnhuh − ∂ng)
)
thds, (3.25)

where ∂̂hnhuh := ∂hnhuh ◦ a
−1
h and ∂̂hnhph := ∂hnhph ◦ a

−1
h , th := dsh

ds with ds and dsh denoting the smooth and
discrete surface measures, respectively (cf. (3.16)). We remark that in the above formula (3.10) we use Vn ◦ ah
instead of V · nh, because for the latter case we have one order lost when we convert the integral on Γh to that
on Γ, since one can only expect |nh ◦ a−1

h − n| ≤ Ch (cf. [13, eq. (4.1)] and [31, Section 8]).
Before proving the main result we first investigate the approximation property of ∂hnhuh to ∂nu and ∂hnhph

to ∂np.
Lemma 3.8. Let ∂nu and ∂np be the continuous outward normal derivatives defined in (3.13) and (3.14),

respectively. Let ∂hnhuh and ∂hnhph be the approximations defined in (3.11) and (3.12), respectively. Assume that

8



Assumption 2.1 holds. Then we have

‖∂nu− ∂̂hnhuh‖L2(Γ) ≤ Ch(‖u‖W 3,r(Ω) + ‖f‖H1(Ω)),

‖∂np− ∂̂hnhph‖L2(Γ) ≤ Ch(‖u‖W 3,r(Ω) + ‖f‖H1(Ω) + ‖p‖W 3,r(Ω))
(3.26)

for some r > n.

Proof. We first estimate ‖∂nu− ∂̂hnhuh‖L2(Γ). Note that by the triangle inequality

‖∂nu− ∂̂hnhuh‖L2(Γ) ≤ ‖∂nu− Q̂h∂nu‖L2(Γ) + ‖Q̂h∂nu− ∂̂hnhuh‖L2(Γ). (3.27)

Now the proof can be divided into the following steps.
Step 1: For the first term, it follows from the standard projection error estimate (3.23) that

‖∂nu− Q̂h∂nu‖L2(Γ) ≤ Ch‖∂nu‖H1(Γ) ≤ Ch‖u‖H5/2(Ω). (3.28)

Step 2: Now it remains to estimate the second term ‖Q̂h∂nu− ∂̂hnhuh‖L2(Γ). This step can be further divided
into the following several steps.

Substep 2.1: To begin with, we first derive the error equation for ∂nu − ∂̂hnhuh. For each ξh ∈ Vh(Γh) let
Shξh be an extension of ξh into Ωh such that Shξh ∈ Vh, Shξh = ξh on Γh and satisfies

(∇Shξh,∇vh)h + (Shξh, vh)h = 0 ∀vh ∈ V 0
h . (3.29)

We denote by S̊hξh ∈ Vh the extension of ξh to the interior of the domain Ωh by setting S̊hξh = 0 at the
interior nodes of the triangulation. By using the norm equivalence in finite-dimensional spaces we have for any
q ∈ [1,∞) (cf. [4, eq. (29)] and [21, Lemma 5.3]):

‖S̊hξh‖Lq(Ωh) + h‖∇S̊hξh‖Lq(Ωh) ≤ Ch
1
q ‖ξh‖Lq(Γh). (3.30)

Note that for any ξh ∈ Vh(Γh) there holds

〈∂hnhuh, ξh〉Γh = (∇uh,∇Shξh)h + (uh, Shξh)h − (f, Shξh)h

= (∇uh,∇S̊hξh)h + (uh, S̊hξh)h − (f, S̊hξh)h

by recalling the definition (3.11).
On the other hand, (3.11) is equivalent to

〈∂̂hnhuh, ṽh〉Γ = (∇uh,∇vh)h + (uh, vh)h − (f, vh)h + 〈∂̂hnhuh, ṽh − vh ◦ a
−1
h th〉Γ ∀vh ∈ Vh (3.31)

by using (3.16) and the fact that 〈∂hnhuh, vh〉Γh = 〈∂̂hnhuh, vh ◦ a
−1
h th〉Γ. Denote by vh = S̊hξh and its linear

extension by ṽh = ˜̊Shξh. Then we obtain from (3.13) and (3.31) the error equation for ∂nu− ∂̂hnhuh:

〈∂nu− ∂̂hnhuh, ṽh〉Γ =(∇u,∇ṽh) + (u, ṽh)− (f, ṽh)− 〈∂̂hnhuh, ṽh − ξh ◦ a
−1
h th〉Γ

− (∇uh,∇vh)h − (uh, vh)h + (f, vh)h

=(∇(u− uh),∇vh)h + (u− uh, vh)h − 〈∂̂hnhuh, ṽh − ξh ◦ a
−1
h th〉Γ +Mh(u, ṽh),

(3.32)

where

Mh(u, ṽh) =

∫
Ω\Ωh

(∇u · ∇ṽh + uṽh − fṽh)dx−
∫

Ωh\Ω
(∇u · ∇vh + uvh − fvh)dx.

Substep 2.2: Then, we give some estimates for the last two terms on the right-hand side of the above identity
(3.32). The remaining term (∇(u−uh),∇vh)h+ (u−uh, vh)h will be estimated in Step 3. Using |1− th| ≤ Ch2,
(3.18), Lemma 3.6 and (3.30) we have

|〈∂̂hnhuh, ṽh − vh ◦ a
−1
h th〉Γ| ≤ |〈∂̂hnhuh, ṽh − vh ◦ a

−1
h 〉Γ|+ |〈∂̂hnhuh, vh ◦ a

−1
h (1− th)〉Γ|

≤ C‖∂hnhuh‖L2(Γh)(‖ṽh ◦ ah − vh‖L2(Γh) + h2‖vh‖L2(Γh))

≤ C‖∂hnhuh‖L2(Γh)(h
3
2 ‖∇vh‖L2(Ωh) + h2‖vh‖L2(Γh))

≤ Ch‖∂hnhuh‖L2(Γh)‖vh‖L2(Γh).

(3.33)
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Now it remains to estimate Mh(u, ṽh). Using [8, Lemma 2] or [30, eq. (2.1)] we have for v ∈ H1(Ω)

‖v‖L2(Ω\Ωh) ≤ C(h‖v‖L2(Γ) + h2‖∇v‖L2(Ω)) ≤ Ch‖v‖H1(Ω). (3.34)

This combined with (3.18), (3.19), Lemma 3.6 implies that for any vh ∈ Vh,

‖ṽh‖L2(Ω\Ωh) ≤ C(h‖ṽh‖L2(Γ) + h2‖∇ṽh‖L2(Ω))

≤ C(h‖ṽh − vh ◦ a−1
h ‖L2(Γ) + h‖vh ◦ a−1

h ‖L2(Γ) + h2‖∇ṽh‖L2(Ω))

≤ C(h‖vh‖L2(Γh) + h2‖∇vh‖L2(Ωh)).

Assume that Ω̄\Ωh =
∑
i

Ω̄ih where Ωih is the curved region bounded by Γih ⊂ Γh and Γi ⊂ Γ. For the readers’

convenience, we first recall some known estimates for functions near the boundary region, presented in [8, eq.
(2.9)] for the 2D case:

‖ϕ‖2L2(Ωih) ≤ C

(
h2‖ϕ‖2L2(Γi) + h4

∥∥∥∥ ∂ϕ∂x2

∥∥∥∥2

L2(Ωih)

)
,

where to illustrate the idea a special piece Γih is chosen as Γih = {(x1, x2) : x2 = 0, 0 ≤ x1 < C1h} so that
Γi = {(x1, x2) : x2 = δh(x1) ≥ 0, 0 ≤ x1 < C1h}, see also Lemma 2 and Lemma 3 in [8] for the general case. A
similar result is presented in [30, eq. (2.1)] for 2D and 3D cases:

‖f‖Ls(Γ(δ)) ≤ C(δ1/s‖f‖Ls(Γ) + δ‖∇f‖Ls(Γ(δ))), s ∈ [1,∞],

where Γ(δ) denotes the tubular neighborhood of Γ with distance δ that is the so-called boundary skin. Now we
can derive using the above results that

‖∇ṽh‖L2(Ωih) ≤ C
(
h‖∇ṽh‖L2(Γi) + h2‖∇ṽh‖L2(Ωih)

)
,

where we used the fact that ṽh is a linear polynomial in Ωih so that ‖∇ṽh‖H1(Ωih) = ‖∇ṽh‖L2(Ωih). That is,
for h sufficiently small, the second term on the right-hand side of the above inequality can be absorbed by the
left-hand side. Then, we obtain from the fact that ∇ṽh in the curved region Ωih is exactly the same piecewise
constant vector as ∇vh in the boundary element related to Γih and (3.18)

‖∇ṽh‖L2(Ω\Ωh) ≤ Ch‖∇ṽh‖L2(Γ) = Ch
(∑

i

‖∇ṽh‖2L2(Γi)

) 1
2

≤ Ch
(∑

i

‖∇vh‖2L2(Γih)

) 1
2

= Ch‖∇vh‖L2(Γh) ≤ C‖vh‖L2(Γh),

where the standard inverse estimate has been used in the last inequality above. Recalling vh = S̊hξh, the above
estimates combined with (3.30) with q = 2 imply that∫

Ω\Ωh
(∇u · ∇ṽh + uṽh − fṽh)dx

≤ ‖∇u‖L2(Ω\Ωh)‖∇ṽh‖L2(Ω\Ωh) +
∣∣∣ ∫

Ω\Ωh
(u− f)ṽhdx

∣∣∣
≤ C|Ω\Ωh|

1
2 ‖u‖W 1,∞(Ω)‖∇ṽh‖L2(Ω\Ωh) + Ch2(‖u‖H1(Ω) + ‖f‖H1(Ω))(‖vh‖L2(Γh) + h‖∇vh‖L2(Ωh))

≤ Ch‖u‖W 1,∞(Ω)‖vh‖L2(Γh) + Ch2(‖u‖H1(Ω) + ‖f‖H1(Ω))‖vh‖L2(Γh)

≤ Ch(‖u‖W 1,∞(Ω) + h‖u‖H1(Ω) + h‖f‖H1(Ω))‖vh‖L2(Γh).

(3.35)

Similarly, using [8, Lemma 3] or [30, eq. (2.2)] we have for v ∈ H1(Ωh)

‖v‖L2(Ωh\Ω) ≤ C(h‖v‖L2(Γh) + h2‖∇v‖L2(Ωh)) ≤ Ch‖v‖H1(Ωh). (3.36)

This implies that for any vh ∈ Vh ⊂ H1(Ωh),

‖vh‖L2(Ωh\Ω) ≤ C(h‖vh‖L2(Γh) + h2‖∇vh‖L2(Ωh)).

With abuse of notation, we assume again that Ω̄h\Ω =
∑
i

Ω̄ih where Ωih is the curved region bounded by Γih ⊂ Γh

and Γi ⊂ Γ. Similar to the above estimates, it follows from [8, eq. (2.10)] or [30, eq. (2.2)] that

‖∇vh‖L2(Ωih) ≤ C
(
h‖∇vh‖L2(Γih) + h2‖∇vh‖L2(Ωih)

)
,
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therefore,

‖∇vh‖L2(Ωh\Ω) ≤ Ch‖∇vh‖L2(Γh) ≤ C‖vh‖L2(Γh).

Recalling again vh = S̊hξh and using (3.30) with q = 2, we are now ready to prove that∫
Ωh\Ω

(∇u · ∇vh + uvh − fvh)dx

≤ ‖∇u‖L2(Ωh\Ω)‖∇vh‖L2(Ωh\Ω) +
∣∣∣ ∫

Ωh\Ω
(u− f)vhdx

∣∣∣
≤ C|Ωh\Ω|

1
2 ‖u‖W 1,∞(Ωh)‖∇vh‖L2(Ωh\Ω) + Ch2(‖u‖H1(Ωh) + ‖f‖H1(Ωh))(‖vh‖L2(Γh) + h‖∇vh‖L2(Ωh))

≤ Ch‖u‖W 1,∞(Ω)‖vh‖L2(Γh) + Ch2(‖u‖H1(Ω) + ‖f‖H1(Ω))(‖vh‖L2(Γh) + h‖∇vh‖L2(Ωh))

≤ Ch(‖u‖W 1,∞(Ω) + ‖f‖H1(Ω))‖vh‖L2(Γh),

(3.37)

where we have used (3.1) because u has been continuously extended from Ω to Ωh\Ω. Combining the estimates
(3.35) and (3.37) we obtain that

Mh(u, ṽh) ≤ Ch(‖u‖W 1,∞(Ω) + ‖f‖H1(Ω))‖vh‖L2(Γh). (3.38)

Step 3: Finally, we turn to the estimate of the second term in (3.27). Let zh ∈ Vh be the solution to the
following discrete variational problem

zh|Γh = Q̂h(∂nu) ◦ ah − ∂hnhuh and (∇zh,∇vh)h + (zh, vh)h = 0 ∀vh ∈ V 0
h . (3.39)

That is, zh := Sh(Q̂h(∂nu) ◦ ah − ∂hnhuh). Further, we define z̄h := S̊h(Q̂h(∂nu) ◦ ah − ∂hnhuh) and ˜̄zh as its
linear extension to Ω.

Using the definition of Q̂h we have

‖Q̂h∂nu− ∂̂hnhuh‖
2
L2(Γ) = 〈∂nu− ∂̂hnhuh, Q̂h∂nu− ∂̂hnhuh〉Γ

= 〈∂nu− ∂̂hnhuh, ˜̄zh〉Γ + 〈∂nu− ∂̂hnhuh, Q̂h∂nu− ∂̂hnhuh − ˜̄zh〉Γ
=: I1 + I2.

For the first term I1 we use the error equation (3.32) by setting ṽh := ˜̄zh. We conclude from (3.18), (3.33),
(3.38), the L2 error estimate (3.6) and the W 1,∞ error estimate (3.8) that

〈∂nu− ∂̂hnhuh, ˜̄zh〉Γ =(∇(u− uh),∇z̄h)h + (u− uh, z̄h)h − 〈∂̂hnhuh, ˜̄zh − z̄h ◦ a−1
h th〉Γ +Mh(u, ˜̄zh)

≤‖∇(u− uh)‖L∞(Ωh)‖∇z̄h‖L1(Ωh) + ‖u− uh‖L2(Ωh)‖z̄h‖L2(Ωh)

− 〈∂̂hnhuh, ˜̄zh − z̄h ◦ a−1
h th〉Γ +Mh(u, ˜̄zh)

≤C(h‖u‖W 2,∞(Ω) + h2‖u‖H2(Ω))‖Q̂h(∂nu) ◦ ah − ∂hnhuh‖L2(Γh)

+ Ch‖∂hnhuh‖L2(Γh)‖z̄h‖L2(Γh) + Ch(‖u‖W 1,∞(Ω) + ‖f‖H1(Ω))‖z̄h‖L2(Γh)

≤Ch(‖u‖W 2,∞(Ω) + ‖∂hnhuh‖L2(Γh) + ‖f‖H1(Ω))‖Q̂h∂nu− ∂̂hnhuh‖L2(Γ),

where in the second last step we used (3.30) with q = 1 and the embedding L2(Γh) ↪→ L1(Γh). For the second
term I2 the estimates (3.18), Lemma 3.6 and (3.30) yield

〈∂nu− ∂̂hnhuh, Q̂h∂nu− ∂̂hnhuh − ˜̄zh〉Γ = 〈∂nu− ∂̂hnhuh, z̄h ◦ a
−1
h − ˜̄zh〉Γ

≤ ‖∂nu− ∂̂hnhuh‖L2(Γ)‖z̄h ◦ a−1
h − ˜̄zh‖L2(Γ)

≤ Ch 3
2 ‖∂nu− ∂̂hnhuh‖L2(Γ)‖∇z̄h‖L2(Ωh)

≤ Ch‖∂nu− ∂̂hnhuh‖L2(Γ)‖Q̂h∂nu− ∂̂hnhuh‖L2(Γ).

This implies that

‖Q̂h∂nu− ∂̂hnhuh‖L2(Γ) ≤ Ch(‖u‖W 2,∞(Ω) + ‖∂hnhuh‖L2(Γh) + ‖f‖H1(Ω) + ‖∂nu− ∂̂hnhuh‖L2(Γ))

≤ Ch(‖u‖W 2,∞(Ω) + ‖∂hnhuh‖L2(Γh) + ‖f‖H1(Ω) + ‖∂nu‖L2(Γ)).
(3.40)

Combining (3.28) and (3.40) we complete the estimate of ‖∂nu− ∂̂hnhuh‖L2(Γ).
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The estimate for ‖∂np − ∂̂hnhph‖L2(Γ) can be proved in a similar way. For any ξh ∈ Vh(Γh) we still denote

by vh = S̊hξh and its linear extension by ṽh = ˜̊Shξh. We obtain from (3.14) and (3.12) the error equation for

∂np− ∂̂hnhph:

〈∂np− ∂̂hnhph, ṽh〉Γ =(∇p,∇ṽh) + (p, ṽh)− (j′(u), ṽh)− (∇ph,∇vh)h − (ph, vh)h

+ (j′(uh), vh)h − 〈∂̂hnhph, ṽh − ξh ◦ a
−1
h th〉Γ

=(j′(uh)− j′(u), vh)h + (∇(p− ph),∇vh)h + (p− ph, vh)h

− 〈∂̂hnhph, ṽh − ξh ◦ a
−1
h th〉Γ +Nh(p, ṽh),

(3.41)

where

Nh(p, ṽh) =

∫
Ω\Ωh

(∇p · ∇ṽh + pṽh − j′(u)ṽh)dx−
∫

Ωh\Ω
(∇p · ∇vh + pvh − j′(u)vh)dx.

A similar error estimate for 〈∂̂hnhph, ṽh − ξh ◦ a
−1
h th〉Γ and Nh(p, ṽh) can be derived as in (3.33) and (3.38),

respectively. The remaining estimates are very similar as above, except for the following term which can be
estimated as

(j′(uh)− j′(u), vh)h ≤ ‖j′(u)− j′(uh)‖L2(Ωh)‖vh‖L2(Ωh)

≤ C‖j′‖C0,1(I)‖u− uh‖L2(Ωh)h
1
2 ‖ξh‖L2(Γh)

≤ Ch 5
2 ‖u‖H2(Ω)‖ξh‖L2(Γh)

(3.42)

by considering (3.6) and (3.30). Then we finish the proof.
Remark 3.9. There is another way to prove Lemma 3.8 by avoiding the W 1,∞-norm error estimate (3.8)

for finite element approximation to elliptic equation with Dirichlet boundary condition, but using instead the
W 1,∞-norm error estimate for Lagrange interpolation (cf. [15, Theorem 4.1]). In this case we use the extension
operator Sh instead of S̊h and define the error equation (3.32) in Ω.

To illustrate the main idea we follow the notations in [15, Section 3]. For each element T ∈ Th there exists
an affine and bijective mapping

FT : T̂ ⊂ Rn → T ⊂ Rn, FT (x̂) = AT x̂+ bT ,

for a fixed reference element T̂ . We denote by T̃h an exact triangulation of Ω, which can be constructed by
replacing the boundary element of Th with curved elements. For each T ∈ Th there exists a mapping ΦT ∈
C3(T̂ ,Rn) such that F̃T := FT + ΦT maps T̂ onto a curved n-simplex T̃ ∈ T̃h. Then we can define the mapping
Gh locally by Gh|T := F̃T ◦ F−1

T such that it is a homeomorphism between Ωh and Ω.
Now for any function uh ∈ Vh we extend it to Ω, denoting by ũh this extension, by composing uh with the

mapping function Gh : Ωh → Ω (cf. [15, Section 3]), i.e., ũh = uh ◦ G−1
h . Define Ṽh := {ṽh : vh ∈ Vh}. For

any ξh ∈ Vh(Γh) we denote by vh = Shξh and by ṽh its extension. Let Ih be the Lagrange interpolation operator
corresponding to Vh, we denote by Ĩh : C0(Ω̄) → Ṽh the Lagrange interpolation operator associated with Ṽh,
such that (Ĩhu) ◦Gh = Ih(u ◦Gh) on Γh (cf. [15, p. 2802]).

Analogously to the derivation of (3.32), we obtain by using the definition of Sh that

〈∂nu− ∂̂hnhuh, ṽh〉Γ =(∇u,∇ṽh) + (u, ṽh)− (f, ṽh)− 〈∂̂hnhuh, ṽh − ξh ◦G
−1
h th〉Γ

− (∇uh,∇vh)h − (uh, vh)h + (f, vh)h

=(∇u,∇ṽh) + (u, ṽh)− (f, ṽh)− 〈∂̂hnhuh, ṽh − ξh ◦G
−1
h th〉Γ

− (∇Ĩhu,∇vh)h − (Ĩhu, vh)h + (f, vh)h

=(∇(u− Ĩhu),∇ṽh) + (u− Ĩhu, ṽh)

− 〈∂̂hnhuh, ṽh − ξh ◦G
−1
h th〉Γ +Mh(Ĩhu, ṽh),

where

Mh(Ĩhu, ṽh) =

∫
Ω\Ωh

(∇Ĩhu · ∇ṽh + Ĩhuṽh − fṽh)dx−
∫

Ωh\Ω
(∇Ĩhu · ∇vh + Ĩhuvh − fvh)dx.

The last two terms can be estimated in the conventional way, cf. [15, eq. (3.4)] for the estimate of Mh(Ĩhu, ṽh)
and (3.33) for the estimate of the second last term. Following the arguments of [15, eq. (4.9)] and using the
W 1,∞-norm error estimate for the Lagrange interpolation Ĩhu, the main difference is the following estimate
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(compare with the W 1,∞(Ωh) error estimate for u− uh and the W 1,1(Ωh) error estimate for z̄h in Step 3 of the
proof of Lemma 3.8)

(∇(u− Ĩhu),∇ṽh) + (u− Ĩhu, ṽh) ≤ C
(∫

Ω

ω−1|∇(u− Ĩhu)|2
) 1

2
(∫

Ω

ω|∇ṽh|2
) 1

2

+ ‖u− Ĩhu‖L2(Ω)‖ṽh‖L2(Ω)

≤ Ch‖u‖W 2,∞(Ω)

(∫
Ω

ω−1
) 1

2 ‖ṽh‖L2(Γ) + Ch2‖ṽh‖L2(Γ)

≤ Ch
√
| log h|‖ṽh‖L2(Γ),

where ω is defined as in [15, Lemma 3.2] and we used the following estimate in [15, Lemma 3.2]∫
Ω

(‖ṽh‖2 + ω|∇ṽh|2) ≤ C‖ξh‖L2(Γh).

The above error estimate could be used in the proof of Lemma 3.8 with vh replaced by zh defined in (3.39). Then
we could expect a similar result to Lemma 3.8 with convergence order O(h

√
| log h|).

Now we are ready to prove our main result in this subsection.
Theorem 3.10. Let u and p be the continuous solutions to the state equation (2.2) and the adjoint

equation (2.5) with Dirichlet boundary conditions, while uh and ph denote the discrete solutions to (3.4) and
(3.5), respectively. Assume that Assumption 2.1 holds. Then we have

|dJD(Γ, u, p;V)− d̃hJ
D(Γ, uh, ph;V)| ≤ Ch2(‖u‖W 3,r(Ω) + ‖f‖H1(Ω) + ‖g‖H3(Ω) + ‖p‖W 3,r(Ω))

2‖Vn‖H3/2(Γ)

for some r > n.
Proof. Recalling the definitions of dJD(Γ, u, p;V) in (2.7) and d̃hJ

D(Γ, uh, ph;V) in (3.25), we have

dJD(Γ, u, p;V)− d̃hJ
D(Γ, uh, ph;V) =

∫
Γ

Vn

[
j(u)− j(uh ◦ a−1

h ) + ∂np(∂nu− ∂ng)− ∂̂hnhph(∂̂hnhuh − ∂ng)
]
ds

+

∫
Γ

Vn

[
j(uh ◦ a−1

h ) + ∂̂hnhph(∂̂hnhuh − ∂ng)
]
(1− th)ds

= : J1 + J2.

It is easy to verify that

|J2| ≤ Ch2(‖u‖H2(Ω) + ‖p‖H2(Ω) + ‖f‖L2(Ω) + ‖g‖H2(Ω))

because |1− th| ≤ Ch2. Now we estimate J1. The first and second terms of J1 can be estimated as follows by
using (3.23), the stability of Q̂h and (3.24):∫

Γ

Vn(j(u)− j(uh ◦ a−1
h ))ds ≤ ‖Vn‖L2(Γ)‖j(u)− j(uh ◦ a−1

h )‖L2(Γ)

≤ C‖Vn‖L2(Γ)‖j‖C0,1(I)‖u− uh ◦ a−1
h ‖L2(Γ)

= C‖Vn‖L2(Γ)‖j‖C0,1(I)‖g|Γ −Qh(g|Γh) ◦ a−1
h ‖L2(Γ)

≤ C‖Vn‖L2(Γ)‖j‖C0,1(I)(‖g|Γ − Q̂h(g|Γ)‖L2(Γ) + ‖Q̂h(g|Γ)− Q̂h(g|Γh ◦ a
−1
h )‖L2(Γ)

+ ‖Q̂h(g|Γh ◦ a
−1
h )−Qh(g|Γh) ◦ a−1

h ‖L2(Γ))

≤ C‖Vn‖L2(Γ)‖j‖C0,1(I)(h
2‖g‖H2(Γ) + ‖g|Γ − g|Γh ◦ a

−1
h ‖L2(Γ) + h2‖g‖H2(Γ))

≤ Ch2‖Vn‖L2(Γ)‖j‖C0,1(I)‖g‖H3(Ω),

where we used [8, Lemma 1] or [30, eq. (2.1)] in the last step to estimate ‖g|Γ − g|Γh ◦ a
−1
h ‖L2(Γ). For the

remaining terms we have

Vn

[
∂np(∂nu− ∂ng)− ∂̂hnhph(∂̂hnhuh − ∂ng)

]
=Vn

[
∂np(∂nu− ∂̂hnhuh) + (∂np− ∂̂hnhph)∂nu

− (∂np− ∂̂hnhph)∂ng − (∂np− ∂̂hnhph)(∂nu− ∂̂hnhuh)
]
.

Let w be the solution to the following problem{
−∆w + w = 0 in Ω

w = Vn∂np on Γ.
(3.43)

The variational formulation is to find w ∈ H1(Ω) and w = Vn∂np on Γ such that

(∇w,∇v) + (w, v) = 0 ∀v ∈ H1
0 (Ω), (3.44)
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while its finite element approximation can be written as: find wh ∈ Vh such that

(∇wh,∇vh)h + (wh, vh)h = 0 ∀vh ∈ V 0
h , wh = Qh(Vn∂np ◦ ah) on Γh. (3.45)

Since p ∈ H3(Ω) ∩ H1
0 (Ω), we have ∂np ∈ H

3
2 (Γ) by the trace theorem (cf. [23, Section 1.5.1]) and thus

Vn∂np ∈ H
3
2 (Γ) if V is sufficiently smooth, this implies w ∈ H2(Ω). Then it follows from Theorem 1 in [8] and

Remark 3.1 that

‖w − wh‖H1(Ωh) ≤ Chs−
1
2 ‖Vn∂np‖Hs(Γ),

1

2
≤ s ≤ 3

2
. (3.46)

Denote by w̃h the linear extension of wh to Ω. Firstly, we have

〈Vn∂np, ∂nu− ∂̂hnhuh〉Γ =〈Vn∂np− w̃h, ∂nu− ∂̂hnhuh〉Γ + 〈w̃h, ∂nu− ∂̂hnhuh〉Γ

=〈Vn∂np− w̃h, ∂nu− ∂̂hnhuh〉Γ − 〈∂̂hnhuh, w̃h − wh ◦ a
−1
h th〉Γ

+ (∇(u− uh),∇wh)h + (u− uh, wh)h +Mh(u, w̃h)

=〈Vn∂np− w̃h, ∂nu− ∂̂hnhuh〉Γ − 〈∂̂hnhuh, w̃h − wh ◦ a
−1
h th〉Γ

+ (∇(u− uh),∇(wh − w))h + (u− uh, wh − w)h + 〈u− uh, ∂nhw〉Γh
+Mh(u, w̃h) + (−∆w + w, u− uh)Ωh\Ω,

(3.47)

where (3.43) is used in the last equality by testing u − uh and integration by parts on Ωh. In fact, by using
(3.43) we have

0 = (−∆w + w, u− uh)Ωh∩Ω

= (−∆w + w, u− uh)h − (−∆w + w, u− uh)Ωh\Ω

= (∇w,∇(u− uh))h + (w, u− uh)h − 〈∂nhw, u− uh〉Γh − (−∆w + w, u− uh)Ωh\Ω

by using the fact that w, u have been extended to Ωh\Ω.
Now it remains to estimate the right-hand side of (3.47) terms by terms. An application of (3.6) and (3.46)

yields

(∇(u− uh),∇(wh − w))h + (u− uh, wh − w)h ≤ ‖u− uh‖H1(Ωh)‖w − wh‖H1(Ωh)

≤ Ch2(‖f‖L2(Ω) + ‖g‖H2(Ω))‖Vn∂np‖
H

3
2 (Γ)

.
(3.48)

On the other hand, using (3.6) we obtain

(−∆w + w, u− uh)Ωh\Ω ≤ ‖w‖H2(Ωh)‖u− uh‖L2(Ωh) ≤ Ch2‖u‖H2(Ω)‖w‖H2(Ω). (3.49)

A direct use of (3.33) gives only first order convergence for 〈∂̂hnhuh, w̃h −wh ◦ a
−1
h th〉Γ. However, proceeding as

in (3.33) and taking into account the proof of Lemma 3.6 give

|〈∂̂hnhuh, w̃h − wh ◦ a
−1
h th〉Γ| ≤ |〈∂̂hnhuh, w̃h − wh ◦ a

−1
h 〉Γ|+ |〈∂̂hnhuh, wh ◦ a

−1
h (1− th)〉Γ|

≤ C‖∂hnhuh‖L2(Γh)(‖w̃h ◦ ah − wh‖L2(Γh) + h2‖wh‖L2(Γh))

≤ C‖∂hnhuh‖L2(Γh)(h
2‖∇wh‖L2(Γh) + h2‖wh‖L2(Γh))

≤ C‖∂hnhuh‖L2(Γh)(h
2‖∇w̃h‖L2((Ω\Ωh)∪(Ωh\Ω)) + h2‖wh‖L2(Γh))

≤ Ch2‖∂hnhuh‖L2(Γh)‖wh‖H1(Ωh),

(3.50)

where we have used the third last inequality in the proof of Lemma 3.6, the trace inequality

‖∇wh‖L2(Γih) ≤ C‖∇w̃h‖
1
2

L2(Ωih)
‖∇w̃h‖

1
2

H1(Ωih)
≤ C‖∇w̃h‖L2(Ωih)

and the fact that w̃h is linear in Ωih, while in this case we assume (Ω̄\Ωh)∪ (Ω̄h\Ω) =
∑
i

Ω̄ih such that Ωih is the

curved region bounded by Γih ⊂ Γh and Γi ⊂ Γ. Similarly, a careful calculation implies

Mh(u, w̃h) =

∫
Ω\Ωh

(∇u · ∇w̃h + uw̃h − fw̃h)dx−
∫

Ωh\Ω
(∇u · ∇wh + uwh − fwh)dx

≤‖∇u‖L2(Ω\Ωh)(‖∇(w̃h − w)‖L2(Ω\Ωh) + ‖∇w‖L2(Ω\Ωh)) +
∣∣∣ ∫

Ω\Ωh
(u− f)w̃hdx

∣∣∣
+ ‖∇u‖L2(Ωh\Ω)(‖∇(wh − w)‖L2(Ωh\Ω) + ‖∇w‖L2(Ωh\Ω)) +

∣∣∣ ∫
Ωh\Ω

(u− f)whdx
∣∣∣

≤Ch|‖u‖H2(Ω)(h‖w‖H2(Ω) + h‖w‖H2(Ω)) + Ch2(‖u‖H1(Ω) + ‖f‖H1(Ω))‖w̃h‖H1(Ω)

+ Ch‖u‖H2(Ωh)(h‖w‖H2(Ω) + h‖w‖H2(Ωh)) + Ch2(‖u‖H1(Ωh) + ‖f‖H1(Ωh))‖wh‖H1(Ωh)

≤Ch2(‖u‖H2(Ω) + ‖f‖H1(Ω))‖w‖H2(Ω),

(3.51)
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where we have used (3.46), and the facts that for w ∈ H1(Ω), v ∈ H1(Ωh) there hold (cf. [13, eq. (5.16)], [8,
Lemma 2 and Lemma 3] and [30, eq. (2.1) and (2.2)])

‖w‖L2(Ω\Ωh) ≤ Ch‖w‖H1(Ω), ‖v‖L2(Ωh\Ω) ≤ Ch‖v‖H1(Ωh).

Furthermore, by using Lemma 3.6, (3.23), (3.24) and Lemma 3.8 we have

〈Vn∂np− w̃h, ∂nu− ∂̂hnhuh〉Γ =〈Vn∂np− Q̂h(Vn∂np), ∂nu− ∂̂hnhuh〉Γ

+ 〈Q̂h(Vn∂np)−Qh(Vn∂np ◦ ah) ◦ a−1
h , ∂nu− ∂̂hnhuh〉Γ

+ 〈wh ◦ a−1
h − w̃h, ∂nu− ∂̂hnhuh〉Γ

≤Ch2‖Vn∂np‖H1(Γ)(‖u‖W 3,r(Ω) + ‖f‖H1(Ω)).

(3.52)

It remains to estimate 〈u− uh, ∂nhw〉Γh . We conclude from (3.23) and (3.24) that

〈u− uh, ∂nhw〉Γh ≤ ‖g|Γh −Qh(g|Γh)‖L2(Γh)‖∂nhw‖L2(Γh)

≤ C‖g|Γh ◦ a
−1
h −Qh(g|Γh) ◦ a−1

h ‖L2(Γ)‖w‖H2(Ω)

≤ C(‖g|Γh ◦ a
−1
h − Q̂h(g|Γh ◦ a

−1
h )‖L2(Γ) + ‖Q̂h(g|Γh ◦ a

−1
h )−Qh(g|Γh) ◦ a−1

h ‖L2(Γ))‖w‖H2(Ω)

≤ Ch2‖g‖H2(Γ)‖w‖H2(Ω)

≤ Ch2‖g‖H3(Ω)‖Vn∂np‖
H

3
2 (Γ)

,

(3.53)
where we used the fact that u|Γh = g|Γh and uh|Γh = Qh(g|Γh) because we assumed in Assumption 2.1 that the
Dirichlet boundary condition g is defined in Rn. Thus, combining the above estimates we arrive at

〈Vn∂np, ∂nu− ∂̂hnhuh〉Γ ≤ Ch
2‖Vn∂np‖

H
3
2 (Γ)

(‖u‖W 3,r(Ω) + ‖f‖H1(Ω) + ‖g‖H3(Ω)).

Similarly, we can prove

〈Vn∂nu, ∂np− ∂̂hnhph〉Γ ≤ Ch
2‖Vn∂nu‖

H
3
2 (Γ)

(‖u‖W 3,r(Ω) + ‖f‖H1(Ω) + ‖g‖H3(Ω) + ‖p‖W 3,r(Ω))

and

〈Vn∂ng, ∂np− ∂̂hnhph〉Γ ≤ Ch
2‖Vn∂ng‖

H
3
2 (Γ)

(‖u‖W 3,r(Ω) + ‖f‖H1(Ω) + ‖g‖H3(Ω) + ‖p‖W 3,r(Ω)).

Moreover,

〈Vn(∂nu− ∂̂hnhuh), ∂np− ∂̂hnhph〉Γ ≤ ‖Vn‖L∞(Γ)‖∂np− ∂̂hnhph‖L2(Γ)‖∂nu− ∂̂hnhuh‖L2(Γ)

≤ Ch2‖Vn‖
H

3
2 (Γ)

(‖u‖W 3,r(Ω) + ‖f‖H1(Ω) + ‖g‖H3(Ω) + ‖p‖W 3,r(Ω))
2.

Combining the above results we have |J1| ≤ Ch2, this together with |J2| ≤ Ch2 gives the result.
In the following we discuss the possible extension of the results in Theorem 3.10 to the convex polygonal

domains.
Remark 3.11. First we recall the regularity results of the solution to the elliptic equations (2.2) with

Dirichlet boundary conditions. Let Ω be a convex polygonal domain with Lipschitz boundary Γ and f, g be
smooth enough in R2. We denote by π

3 ≤ ω1 < π the largest interior angle of Γ, and by

sΩ =
2

2−min{2, πω1
}
> 2, rΩ = 1 + π/ω1 ∈ (2, 4]

the exponents giving the maximal regularity to the solution of (2.2) in W 2,s(Ω) for s < sΩ ([23, Theorem 4.4.3.7])
and Hr(Ω) for r < rΩ ([23, Theorem 5.1.1.4]) if f and g are smooth enough. In the case n = 3, sΩ and rΩ

have more complicated expressions depending on interior angles of both edges and corners of the polyhedron; see
[18, Corollary 3.9 and Section 4.c]. The above regularity also applies to the adjoint state equation (2.5) if j′(u)
is sufficiently smooth.

In particular, the formulas (3.13) and (3.14) are well-defined. In fact, taking the state u as an example, if
Ω is a convex polygonal domain and g = 0 we have u ∈ W 2,s(Ω) ∩ H1

0 (Ω) and thus ∂nu ∈ W 1−1/s,s(Γ) (We
refer to [12, Theorem 3.4] where u ∈ H1

0 (Ω) plays a crucial role in deriving ∂nu ∈ W 1−1/s,s(Γ)). If g 6= 0 we
may need some compatibility condition for g to derive ∂nu ∈W 1−1/s,s(Γ).

We remark that the proof for the improved convergence rate of the discrete shape gradients of boundary type
by using the corrected outward normal derivatives relies on the L2- and H1-norm error estimates (3.6), the
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W 1,∞-norm error estimate (3.8), the first order convergence of the outward norm derivative approximations in

Lemma 3.8, the regularity Vn∂np,Vn∂nu,Vn∂ng ∈ H
3
2 (Γ) which in turn ensures the H2(Ω) regularity for the

solution w to problem (3.43) and the error estimates (3.46).
Specifically, (3.6) can be achieved for a convex polygonal domain, while the W 2,∞ regularity for u and p

imposes restriction to the maximal interior angle ω1, i.e., ω1 ∈ [π3 ,
π
2 ). Further, if u, p ∈ H3(Ω) ∩H1

0 (Ω) and

g = 0 we can expect Vn∂np,Vn∂nu ∈ H
3
2−ε(Γ), because Vn∂np,Vn∂nu are piecewise H

3
2 on Γ and ∂np and

∂nu vanish at the corners. For the approximation of the outward normal derivative in general polygonal domain
we can only expect ([12])

‖∂nu− ∂hnuh‖L2(Γ) ≤ Ch1− 1
s ‖u‖W 2,s(Ω).

However, the above error estimate can be improved to be O(h1−ε) for any ε > 0 if the maximum angle of Ω is
smaller than 2π

3 (cf. [4, Figure 1 and Theorem 4.1]). Furthermore, the order can be improved to be O(h1.5−ε)
(cf. [4, Figure 1 and Theorem 4.1]) if the maximum angle of Ω is smaller than π

2 and the mesh satisfies the
super-convergence property, i.e., is of O(h2σ) (cf. [15]).

In conclusion, it seems that we can not prove second order convergence for the modified shape gradient in
a general polygonal domain. However, in the case that f, g are smooth enough and ω1 ∈ [π3 ,

π
2 ) we can expect

almost second order convergence rate. The first example (Example 1) in Section 4 shows this optimal second
order convergence rate, while the third example (Example 3) shows a better result than that we expect.

3.2. Neumann boundary value problem. In this subsection we consider the Neumann boundary value
problem. For the state equation (2.2) with Neumann boundary condition, the weak formulation is to find
u ∈ H1(Ω) such that

(∇u,∇v) + (u, v) = (f, v) + 〈g, v〉Γ ∀v ∈ H1(Ω). (3.54)

The finite element approximation of (3.54) reads: find uh ∈ Vh ⊂ H1(Ωh) such that

(∇uh,∇vh)h + (uh, vh)h = (f, vh)h + 〈g, vh〉Γh ∀vh ∈ Vh. (3.55)

Similarly, the variational weak formulation of (2.5) is to find p ∈ H1(Ω) such that

(∇p,∇v) + (p, v) = (j′(u), v) ∀v ∈ H1(Ω), (3.56)

while its finite element approximation reads: find ph ∈ Vh ⊂ H1(Ωh) such that

(∇ph,∇vh)h + (ph, vh)h = (j′(uh), vh)h ∀vh ∈ Vh. (3.57)

To use known results in the literature we use a slightly different lifting operator (cf. [19, 30]) from that
used in Section 3.1. As an embedded, compact hypersurface in Rn, Γ is orientable with a unit normal field n
pointing to the outside of the domain Ω and hence can be represented by the zero level set of the signed distance
function d such that (cf. [17])

|d(x)| = dist(x,Γ) and n(x) =
∇d(x)

‖∇d(x)‖
for x ∈ Γ.

Furthermore, one can find a neighborhood U ⊂ Rn of Γ, such that d is also of class C3 on U and the projection
a : Γh → Γ is well defined by

a(x) := x− d(x)∇d(x), x ∈ Γh

such that ∇d(x) = n(a(x)), and a can be extended as a mapping from U to Γ. Then one can show that
‖d‖L∞(Γh) ≤ Ch2 and ‖1 − δh‖L∞(Γh) ≤ Ch2 (cf. [19, Lemma 4.1]) where δh denotes the quotient between
the smooth and discrete surface measures ds and dsh, i.e., δhdsh = ds. The main difference between the
projection mapping a(x) defined in this subsection with the one ah(x) defined in (3.15) lies in the normal
directions. Specifically, in the definition (3.15) the projection ah(x) is along the normal direction of Γh, while
the projection a(x) used in this subsection is along the normal direction of Γ.

For any function vh defined on Γh we can define the lifting vlh on Γ as vlh(a(x)) = vh(x). Similarly, for any
function v defined on Γ we can define the inverse lifting v−l on Γh as v−l(x) = v(a(x)) = v ◦ a(x). Then there
holds (v−l)l = v. On Γh we define for vh ∈ Vh(Γh) the tangential operator ∇Γhvh := ∇vh − (∇vh · nh)nh =
Ph∇vh, where (Ph)i,k = δik −nh,inh,k, i, k = 1, 2. From the definition of vlh we have ∇vh = (P − dH)∇(vlh) ◦ a
with Pi,k = δi,k − nink and Hi,k = ∂xixkd = ∂xkni = ∂xink. Using the property PH = HP = H we obtain (cf.
[19, Lemma 4.2])

∇Γhvh(x) = Ph(x)(I− d(x)H(x))P (x)∇vlh(a(x)) = Ph(x)(I− d(x)H(x))∇Γv
l
h(a(x)) on Γh. (3.58)
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Then one has the following stabilities for the lifting operator (cf. [19, Lemma 4.2]):

1

C
‖v‖L2(Γh) ≤ ‖vl‖L2(Γ) ≤ C‖v‖L2(Γh),

1

C
‖∇Γhv‖L2(Γh) ≤ ‖∇Γv

l‖L2(Γ) ≤ C‖∇Γhv‖L2(Γh).

(3.59)

Now we are ready to define the approximate shape gradient to (2.11):

dhJ
N (Γh, uh, ph;V) =

∫
Γh

Vn ◦ a
(
j(uh)−∇Γhuh · ∇Γhph − uhph + (f + ∂ng ◦ a+K ◦ ag)ph

)
dsh, (3.60)

where ∇Γh denotes the tangential gradient on Γh.
Remark 3.12. The definition (3.60) involves the mapping a between Γh and Γ, which is not trivial to

compute explicitly. In the special case of implicitly defined domain (cf. [19, Sections 7 and 8]), the boundary Γ
is the zero level set of the signed distance function d and thus the mapping a can be explicitly computed. In the
general case, we usually compute the integral (3.60) by using quadrature formula, thus we only need to evaluate
a(x) at finite many points which is obviously possible when the representation of Γ is available by recalling that
∇d(x) = n(a(x)).

It was numerically observed in [29] that the approximate shape gradient in the boundary formulation of the
Eulerian derivative for the Neumann boundary value problem has the same convergence rate and accuracy as
that for the volume formulation on convex polygon or smooth domain having C2 boundary. For such domains,
however, the theoretical analysis therein shows that the discrete boundary formulation has lower convergence
rate than the volumetric formulation when the data is smooth. In this subsection, we prove that the boundary
shape gradient has nearly the same convergence rate as in the volume case for the Neumann boundary value
problem, when the solution is sufficiently regular.

Converting (3.60) to Γ we have (cf. [19, Lemma 4.7])

d̃hJ
N (Γ, uh, ph;V)

=

∫
Γ

Vn

(
j(ulh)− Ph(I− dH)∇Γu

l
h · Ph(I− dH)∇Γp

l
h − ulhplh + (f + ∂ng +Kg)plh

) 1

δh
ds

=

∫
Γ

Vn

(
j(ulh)−∇Γu

l
h · ∇Γp

l
h − ulhplh + (f + ∂ng +Kg)plh

)
ds

+

∫
Γ

Vn(I−Bh)∇Γu
l
h · ∇Γp

l
hds+

∫
Γ

Vn(
1

δh
− 1)

(
j(ulh)− ulhplh + (f + ∂ng +Kg)plh

)
ds,

where (cf. [19, P. 317, proof of Lemma 4.7])

Bh =
1

δh
(I− dH)PPhP (I− dH) =

1

δh
P (I− dH)Ph(I− dH)P

since P is a projection.
Theorem 3.13. Let u and p be the continuous solutions to the state equation (3.54) and adjoint equation

(3.56) with Neumann boundary conditions, while uh and ph denote the discrete solutions to (3.55) and (3.57),
respectively. Assume that Assumption 2.1 holds and u, p ∈W 3,r(Ω) for some r > n, we have

|dJN (Γ, u, p;V)− d̃hJ
N (Γ, uh, ph;V)| ≤Ch2| log h|‖Vn‖W 1,∞(Γ)(‖u‖W 2,∞(Ω)

+ ‖p‖W 2,∞(Ω))(‖u‖W 2,∞(Ω) + ‖f‖H1(Ω) + ‖g‖H2(Ω)).
(3.61)

Proof. From the definition we have

dJN (Γ, u, p;V)− d̃hJ
N (Γ, uh, ph;V)

=

∫
Γ

Vn

(
(j(u)− j(ulh))− (up− ulhplh) + (f + ∂ng +Kg)(p− plh)

)
ds

−
∫

Γ

Vn(∇Γu · ∇Γp−∇Γu
l
h · ∇Γp

l
h)ds−

∫
Γ

Vn(I−Bh)∇Γu
l
h · ∇Γp

l
hds

−
∫

Γ

Vn

(
1

δh
− 1

)(
j(ulh)− ulhplh + (f + ∂ng +Kg)plh

)
ds.

(3.62)

Now it remains to estimate the right-hand side. First, it follows from Lemma 4.7 in [19] that∫
Γ

Vn(I−Bh)∇Γu
l
h · ∇Γp

l
hds =

∫
Γ

Vn(P −Bh)∇Γu
l
h · ∇Γp

l
hds

≤ Ch2‖Vn‖L∞(Γ)‖u‖W 1,∞(Ω)‖p‖W 1,∞(Ω),

(3.63)
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where we used the fact that |P −Bh| ≤ Ch2 on Γ. Second, using ‖1− δh‖L∞(Γh) ≤ Ch2 and the stability results
(3.59) one can derive∫

Γ

Vn

(
1

δh
− 1

)(
j(ulh)− ulhplh + (f + ∂ng +Kg)plh

)
ds ≤Ch2‖Vn‖L∞(Γ)

(
‖u‖H1(Ω) + (‖u‖H1(Ω)

+ ‖f‖H1(Ω) + ‖g‖H2(Ω))‖p‖H1(Ω)

)
.

(3.64)

Note that for our case of C3 domain Ω and sufficiently smooth data f and g, we have the W 2,∞(Ω) regularity
for the solutions u and p to the state and adjoint equations. Denote by ũ, p̃ their continuous extensions to Rn
satisfying (3.1), we thus have ũ, p̃ ∈ W 2,∞(Ωh). In the following we will derive the estimates for ‖u− ũl‖L2(Γ)

and ‖p− p̃l‖L2(Γ).
It follows from (3.59) and [30, eq. (2.1) with p = 2] that

‖u− ũl‖L2(Γ) ≤ C‖u−l − ũ‖L2(Γh) ≤ Ch‖∇ũ‖L2(U) ≤ Ch(h‖∇ũ‖L2(Γ) + h2‖∇2ũ‖L2(U)), (3.65)

which together with (3.1), (3.59) and the L∞-norm error estimate [30, Theorem 3.1] gives

‖u− ulh‖L2(Γ) ≤ ‖u− ũl‖L2(Γ) + ‖ũl − ulh‖L2(Γ)

≤ Ch2‖u‖H2(Ω) + C‖ũ− uh‖L2(Γh)

≤ Ch2‖u‖H2(Ω) + C‖ũ− uh‖L∞(Ωh)

≤ Ch2‖u‖H2(Ω) + Ch2| log h|‖u‖W 2,∞(Ω)

≤ Ch2| log h|‖u‖W 2,∞(Ω).

(3.66)

As for the adjoint state variable p, we can proceed similarly as above

‖p− plh‖L2(Γ) ≤ ‖p− p̃l‖L2(Γ) + ‖p̃l − plh‖L2(Γ)

≤ Ch2‖p‖H2(Ω) + C‖p̃− ph‖L2(Γh)

≤ Ch2‖p‖H2(Ω) + C‖p̃− ph(u)‖L2(Γh) + C‖ph(u)− ph‖L2(Γh)

≤ Ch2‖p‖H2(Ω) + C‖p̃− ph(u)‖L∞(Ωh) + C‖j′‖C0,1(I)‖ũ− uh‖L2(Ωh)

≤ Ch2‖p‖H2(Ω) + C‖p̃− ph(u)‖L∞(Ωh) + C‖ũ− uh‖L∞(Ωh)

≤ Ch2| log h|(‖u‖W 2,∞(Ω) + ‖p‖W 2,∞(Ω)),

(3.67)

where ph(u) ∈ Vh is defined similarly as in Remark 3.3, and I is also defined as in Remark 3.3.
Then we have ∫

Γ

Vn|j(u)− j(ulh)|ds ≤C‖Vn‖L∞(Γ)‖j‖C0,1(I)‖u− ulh‖L1(Γ)

≤C‖Vn‖L∞(Γ)‖j‖C0,1(I)‖u− ulh‖L2(Γ)

≤Ch2| log h|‖Vn‖L∞(Γ)‖j‖C0,1(I)‖u‖W 2,∞(Ω).

Moreover, it holds∫
Γ

Vn(up− ulhplh)ds

=

∫
Γ

Vn(p(u− ulh) + u(p− plh)− (u− ulh)(p− plh))ds

≤‖Vn‖L∞(Γ)(‖p‖L2(Γ)‖u− ulh‖L2(Γ) + ‖u‖L2(Γ)‖p− plh‖L2(Γ) + ‖u− ulh‖L2(Γ)‖p− plh‖L2(Γ))

≤Ch2| log h|‖Vn‖L∞(Γ)‖u‖W 2,∞(Ω)(‖u‖W 2,∞(Ω) + ‖p‖W 2,∞(Ω))

and∫
Γ

Vn(f +Kg)(p− plh)ds ≤ ‖Vn‖L∞(Γ)‖f +Kg‖L2(Γ)‖p− plh‖L2(Γ)

≤ Ch2| log h|‖Vn‖L∞(Γ)(‖u‖W 2,∞(Ω) + ‖p‖W 2,∞(Ω))(‖f‖H1(Ω) + ‖g‖H2(Ω)).

(3.68)

By the tangential Green’s formula [19, Theorem 2.14]∫
Γ

(w divΓ v +∇Γw · v)ds =

∫
Γ

Kwv · nds (3.69)
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for a function w ∈ H1(Γ) and vector v ∈ H1(Γ)n, we have∫
Γ

Vn(∇Γu · ∇Γp−∇Γu
l
h · ∇Γp

l
h)ds

=

∫
Γ

Vn

(
∇Γu · ∇Γ(p− plh) +∇Γp · ∇Γ(u− ulh)−∇Γ(u− ulh) · ∇Γ(p− plh)

)
ds

=−
∫

Γ

divΓ(Vn∇Γu)(p− plh)ds−
∫

Γ

divΓ(Vn∇Γp)(u− ulh)ds

−
∫

Γ

Vn∇Γ(u− ulh) · ∇Γ(p− plh)ds.

(3.70)

Then, we estimate the three terms on the right-hand side. First, using (3.67) we have∫
Γ

divΓ(Vn∇Γu)(p− plh)ds ≤ ‖divΓ(Vn∇Γu)‖L2(Γ)‖p− plh‖L2(Γ)

≤ Ch2| log h|‖Vn‖W 1,∞(Γ)‖u‖H5/2(Ω)(‖u‖W 2,∞(Ω) + ‖p‖W 2,∞(Ω)).

(3.71)

Similarly, it follows from (3.66) that∫
Γ

divΓ(Vn∇Γp)(u− ulh)ds ≤ ‖divΓ(Vn∇Γp)‖L2(Γ)‖u− ulh‖L2(Γ)

≤ Ch2| log h|‖Vn‖W 1,∞(Γ)‖p‖H5/2(Ω)‖u‖W 2,∞(Ω).

(3.72)

Furthermore, it follows from the triangle inequality, the definition of ∇Γhv, the stability results (3.1) and (3.59),
the estimate (3.65) and an W 1,∞ error estimate (cf. [30, Theorem 3.1]) that

‖∇Γ(u− ulh)‖L2(Γ) ≤ ‖∇Γ(u− ũl)‖L2(Γ) + ‖∇Γ(ũl − ulh)‖L2(Γ)

≤ C‖∇Γh(u−l − ũ)‖L2(Γh) + C‖∇Γh(ũ− uh)‖L2(Γh)

≤ C‖∇(u−l − ũ)‖L2(Γh) + C‖ũ− uh‖W 1,∞(Ωh)

≤ Ch‖∇2ũ‖L2(U) + Ch‖u‖W 2,∞(Ω)

≤ Ch‖u‖W 2,∞(Ω).

(3.73)

A similar argument as above and proceeding as in the estimate of ‖p− plh‖L2(Γ) yield

‖∇Γ(p− plh)‖L2(Γ) ≤ Ch(‖u‖W 2,∞(Ω) + ‖p‖W 2,∞(Ω)). (3.74)

Finally, we have∫
Γ

Vn∇Γ(u− ulh) · ∇Γ(p− plh)ds ≤ C‖Vn‖L∞(Γ)‖∇Γ(u− ulh)‖L2(Γ)‖∇Γ(p− plh)‖L2(Γ)

≤ Ch2‖Vn‖L∞(Γ)‖u‖W 2,∞(Ω)(‖u‖W 2,∞(Ω) + ‖p‖W 2,∞(Ω)).

(3.75)

Combining the above estimates we finish the proof.
The above error estimates indicate that when the solutions are sufficiently smooth, we can expect almost

second order convergence for the approximate boundary formulation of the shape gradient for Neumann bound-
ary value problems. This partially confirms the numerical observations in [29], whereas the theoretical analysis
therein fails to prove this convergence rate.

4. Numerical results. In this section we present some numerical results to verify the convergence rate
of finite element approximations to shape gradients with boundary corrections.

We numerically verify the theoretical results in Theorem 3.10. The shape gradient for shape functional is a
linear continuous operator on H3/2(Rn;Rn) and belongs to its dual space in either the volume or the boundary
type Eulerian derivative. It is challenging to compute numerically the continuous infinite-dimensional operator
norm for the approximate shape gradients. This norm can be approximately replaced by a tractable one on
a finite-dimensional subspace. More precisely, given a positive integer γ as in [29], we consider an approxi-
mate operator norm on a finite-dimensional space consisting of vector fields in Pγ(Rn;Rn)(⊂ H3/2(Rn;Rn)),
whose components are multivariate polynomials of degree up to γ. Based on the equivalence of norms over
finite-dimensional spaces, we replace the H3/2-norm with a more tractable H1-norm. Finally, we compute the
approximate dual norms

E :=

(
max

06=V∈Pγ(Rn;Rn)

|dJD(Γ, u, p;V)− d̃hJ
D(Γ, uh, ph;V)|2

‖V‖2H1(Ω)

)1/2

. (4.1)
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We take a global basis {Vi}qi=1 of vector fields in Pγ(Rn;Rn), where q = nCnγ+n with Cnγ+n denoting the
combination coefficient. More precisely, we choose

{Vi}qi=1 =
{

[Πn
i=1x

βi
i , 0, · · · , 0], · · · , [0, · · · , 0,Πn

i=1x
βi
i ]
}∑n

i=1 βi≤γ
,

where βi (i = 1, · · · , n) are non-negative integers. We denote the Gramian matrix associated with the H1(Ω)
inner product by K = [(Vi,Vk)H1(Ω)]

q
i,k=1 ∈ Rq×q. The errors (4.1) can be obtained by

E :=
(
wTK−1w

)1/2
, (4.2)

where

w := [dJD(Γ, u, p;Vi)− d̃hJ
D(Γ, uh, ph;Vi)]

q
i=1.

In the following examples we set ud = 0 and use the cost functional J(Ω) = 1
2

∫
Ω
u2dx, so that j(u) := 1

2u
2.

We construct Example 1 with

u(x1, x2) = cos
(π

2
x1

)
cos
(π

2
x2

)
, f =

(1

2
π2 + 1

)
cos
(π

2
x1

)
cos
(π

2
x2

)
on Ω = (−1, 1)2 and set g accordingly. The adjoint state has exact solution

p(x1, x2) =
1

2π2 + 4
cos
(π

2
x1

)
cos
(π

2
x2

)
.

In the following, we use a numerical solution on a very fine mesh as reference for computing numerical
errors. In Example 2, we set Ω to be a disk of radius

√
π centered at the origin. We choose

u(x1, x2) = cos(x1) cos(x2), f = 3 cos(x1) cos(x2)

and set inhomogeneous Dirichlet boundary condition g = cos(x1) cos(x2). In this example with a curved
computational domain, the vector field Vn was not composed with ah when using the formula (3.10), however,
we still observe second order convergence. In Example 3, we choose Ω to be an irregular convex polygon
intersected by four lines: x1 = 0, x2 = 0, x2 = −

√
3x1 +

√
3, and x2 = (

√
3− 2)x1 + 1, such that the maximum

interior angle is larger than 90◦. We set

f = e−x
2
1x2 cos(x1) sin(x2)

and g = 0. Both solutions to the state and adjoint equation are unknown. In Example 4, we choose a domain
that does not guarantee H2-regularity of the state problem. We set a L-shaped domain with a reentrant
corner Ω = (−1, 1)2 \ {[0, 1) × (−1, 0]}. The source function is, in polar coordinates, f(x) = r2/3 sin(2θ/3)
with r =

√
x2

1 + x2
2 and θ being the polar angle. Choose g = 0. In Fig. 4.1, we show the finite element

approximations of the state equations for domains associated with the three examples.
For Examples 1-3, we see from Fig. 4.2 that the errors committed by shape gradients with boundary

correction converge quadratically, while the errors of those without boundary correction converge linearly. When
the domain is nonconvex, so that the solution is not sufficiently regular (not in H2(Ω)) as for Example 4, Fig.
4.2 (the third subplot) shows that the shape gradient with boundary correction converges faster than the classical
one, but with a rate less than 2, this is in agreement with that of the volume one (cf. [29]). The parameter γ
has no obvious effect on convergence as shown in Fig. 4.3.
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158, Birkhäuser Verlag, Basel, 2009.

[10] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn., Springer, New York, 2008.
[11] M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces and

Free boundaries, 5(2003), pp. 301-329.
[12] E. Casas and J.P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear

elliptic equations, SIAM J. Control Optim., 45(2006), pp. 1586-1611.
[13] E. Casas and J. Sokolowski, Approximation of boundary control problems on curved domains, SIAM J. Control Optim.,

48(2010), pp. 3746-3780.
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Fig. 4.2. The convergence history of approximate shape gradients with γ = 3.
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