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Abstract In order to inherit numerically the ergodicity of the damped stochastic nonlin-
ear Schrodinger equation with additive noise, we propose a fully discrete scheme, whose
spatial direction is based on spectral Galerkin method and temporal direction is based on
a modification of the implicit Euler scheme. We not only prove the unique ergodicity of
the numerical solutions of both spatial semi-discretization and full discretization, but also
present error estimations on invariant measures, which gives order 2 in spatial direction and
order % in temporal direction under certain hypotheses.
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1 Introduction

The ergodicity of stochastic differential equations (SDEs) and stochastic partial differential
equations (SPDEs) characterizes the longtime behavior of the solutions (see [5, 8, 14] and
references therein), and it is natural to construct proper numerical schemes which could
inherit the ergodicity. For ergodic SDEs with bounded or global Lipschitz coefficients,
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the ergodicity of several schemes were studied in [15]. It also gave an error estimation of
invariant measures

e(9) = /dJ(y)dM(y) - / ¢(y)dl7«(y)‘
via the exponential decay property of the solution of Kolmogorov equation, where u and [t
denote the original invariant measure and the numerical one respectively. In the local Lip-
schitz case, the ergodicity is inherited by specially constructed implicit discretizations (see
[14] and references therein). For SDEs, there are also various works related to the study of
error e(¢) by assuming the ergodicity of the schemes (see [1] and references therein). For
SPDEs, there have also been some significant results concentrating on invariant laws, e.g.,
[3] studied a semi-implicit Euler scheme in temporal direction with respect to parabolic type
SPDEs with bounded nonlinearity and space-time white noise; [4] studied a full discretiza-
tion for stochastic evolution equations with global Lipschitz nonlinearity and space-time
white noise. Invariant laws of the approximations are, in general, possibly not unique. To
our knowledge, there has been less work on constructing a fully discrete scheme to inherit
the unique ergodicity of SPDEs up to now.

In this paper, we consider an initial-boundary problem of an ergodic one-dimensional
damped stochastic nonlinear Schrodinger equation

du = (iAu —ou+ ik|u|2u)dt + Q%dW
u,0)=u(,1)=0,t>0 (1.1)
u(0,x) = uo(x), x € [0, 1],

where o > 0, A = %1 and the solution u is a complex valued (C-valued) random field on a
probability space (€2, F, P). The noise term involves a cylindrical Wiener process W and a
symmetric, positive, trace class operator Q such that the noise is colored in space and white
in time. The operator Q is supposed to commute with Laplacian A, and the noise has the
following Karhunen-Loeve expansion

00 oo
Q1AW = Y fiimen (W)dfn(®), 1n € RY and n:=Y " nn < o0,

m=1 m=1

where {8, ()} m>1, associated to a filtration {F;};>0, is a family of independent and identi-
cally distributed C-valued Wiener processes and {e;, },»>1 is the eigenbasis of the Dirichlet
Laplacian. This model has many applications in statistical physics and has been studied by
many authors. For instance, it can describe the transmission of the signal along the fiber
line with signal loss (see [11, 12] and references therein). The ergodicity for Eq. 1.1 with
A = 1 has been studied in [8] based on a coupling method, Foias-Prodi type estimates and a
priori estimates for a modified Hamiltonian H = %II . II% - %II . IIi4 + coll - ||8. The authors
showed that (1.1) possesses a unique invariant measure p assuming that the noise is non-
degenerate in the low modes, i.e., n,, > 0, m < N, for some sufficiently large N,. In the
same procedure, one can also show the ergodicity for the cases A = 0 and A = —1 by set-
ting H = %II . II% — %II . IIi4 + coll - ||8. Note that the damped term (o > 0) is necessary for
both linear and nonlinear Schrodinger equation to be ergodic.

Our work mainly focuses on the construction of a fully discrete and uniquely ergodic
numerical scheme (i.e., whose numerical solution possesses a unique invariant measure).
Moreover, the estimation of error between the original invariant measure and the numerical
one is also considered based on the weak error of solutions.
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In order to obtain a scheme whose noise remains in an explicit expression, we apply
spectral Galerkin method in spatial direction to obtain a N-dimensional SDE

duy = (iAuN — quy +irry (|uN|2uN) )d: AN Q2dW (1.2)

with 7y being a projection operator. Here the spectral Galerkin method also ensures that the
semigroup operator is the same as the one of Eq. 1.1, which simplifies the error estimate in
spatial direction. We find a Lyapunov function by proving the uniform boundedness of uy
in L2-norm. It ensures the existence of the invariant measure of Eq. 1.2. We show that the
solution u y (¢) is a strong Feller and irreducible process via the non-degeneracy of the noise
term in Eq. 1.2. Hence, u y () possesses a unique invariant measure py, which implies the
ergodicity of uy (¢). We would like to emphasize that the noise in the original equation do
not need to be non-degenerate. Our method is also available under the same assumption in
[8], that is n,, > 0, m < N, for some sufficiently large N.. Here N and N, need to satisfy
the condition N < N, to ensure the non-degeneracy for the truncated noise and obtain
the ergodicity for numerical solutions. The error between invariant measures py and p is
transferred into the weak error of the solutions, which is required to be independent of time
t. Different from conservative equations, the damped term in Egs. 1.1 and 1.2 contributes
to an exponential estimate on the difference between semigroup operators S(z) and S(t)my,
where S(¢) is generated by the linear operator iA — «. Therefore, we achieve the time-
independent weak error of solutions directly which, together with the ergodicity of u and
uy, deduces the error between invariant measures uy and .
For the temporal discretization of Eq. 1.2, we propose a new scheme

Kk —ar k-1 ( koo s (|“11€v|2"‘|eM”]/{vq'2 k)) !

uy —e “uy = |iAuy +iiny 5 uy ||t +an025W, (1.3)
which is a modification of the implicit Euler scheme. In order to analyze the effect of the
time discretization, we investigate both the ergodicity of u’l‘v and the weak error between
up and ull‘v The fully discrete scheme (1.3) is specially constructed to ensure the uniform
boundedness of u’,‘\, in L2-, H!- and H?-norms, which is essential to obtain the existance of
the invariant measure as well as the time-independence of the weak error. Together with the
Brouwer fixed point theorem and properties of homogeneous Markov chains, we prove that
”/1(\/ is uniquely ergodic. For the weak error, it is usually analyzed in a finite time interval
[0, T] and depends on T (see e.g. [7, 9]). In our cases, however, the weak error between
un(T) and u% (T) is required to be independent of time 7 and step M. Thus, some technical
estimates are given to obtain the exponential decay of the difference between non-global
Lipschitz nonlinear terms and between S(¢) and S;. Based on the time-independency of the
weak error of the solutions, we show that the error of invariant measures has at least the
same order as the weak error of the solutions.

This paper is organized as follows. In Section 2, some notations and definitions about
ergodicity are introduced. In Section 3, we apply spectral Galerkin method to Eq. 1.1 and
prove the ergodicity of the spatial semi-discrete scheme. The time-independent weak error
of the solutions, together with the error between invariant measures, is given. Section 4
is devoted to the proof of ergodicity of the fully discrete scheme. Moreover, we give the
approximation error of invariant measure in temporal direction via the time-independent
weak error. In Section 5, numerical experiments are given to verify the time independence
of the weak error as well as the weak order in temporal direction for the linear case. The
last section is the appendix of some proofs.
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2 Preliminaries

In this section, we present some notations and the definition of ergodicity. Moreover, we
introduce a sufficient condition for a stochastic process to be ergodic, which will be used in
our proof on ergodicity of the numerical solution.

2.1 Notations

We set the linear operator A := —iA + «, and the semigroup S(t) := e "4 = /1A~ jg
generated by A. The mild solution of Eq. 1.1 exists globally and can be written as

t t
u(t) = Suog +ik/ St — s)|u(s)|2u(s)ds + / St — s)Q%dW(s).
0 0

It is obvious that {A,},en = {i(rm)2 + a}neN is a sequence of eigenvalues of A with
1 < [An] = 400 and {es}nen = {+/2sin nix}, o is the associated eigenbasis of A with

Dirichlet boundary condition. Denoting L%(O, 1) as the space L2(0, 1) with homogenous
Dirichlet boundary condition, then {e, }, <N is an orthonormal basis of Lé(O, 1).

Definition 1 For all s € N, we define the normed linear space

[e.¢] o0
w=Y G enen € L3O, V5.t Y [, e[l < ool

n=1 n=1

H = D(A) = [u

endowed with the s-norm

1

0 2
luells := (Z | @en) | mrf) :

n=1

where the inner product in the complex Hilbert space L2 (0, 1) is defined by
1
(u,v) = / u(x)v(x)dx, Yu,v € L*(0, 1).
0

In particular, ||ullo = |lull;2,Yu € HO.

In the sequel, we use notations L? = L%0,1) and H® := H*(0, 1). It’s easy to check
that the above norms satisfy |[ull; < [lu|ls(V0 < r < s) and [luls = |lullgs(s = 0, 1, 2) for
any u € H*.

The operator norm is defined as

| Bull,
||B||L(H"‘.H’): sup , Vr,s eN,
ey STPTR
hence, for0 < r <,
2 3
o) t(iA—a) r
(Z,,=] | (e w,en) [ |2l ) e ull,
||S([)||[;(H.\',Hr) = sup B TR
o lulls o lulls
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We need Q% to be a Hilbert-Schmidt operator from L2 to H* with norm

oo o0
L2 . 1 2 s
102 15 502 sy = D 192 €mlly = Y 1m "1t < 0.
m=1 m=1

Assumptions on s will be given below.
2.2 Ergodicity

Let P; be the Markov transition semigroup with an invariant measure u and V be a Hilbert
space. The Von Neumann theorem ensures that the limit

1 T
lim Pp(y)dt, ¢ € L*(V,p)
0

T—o0

always exists in L2(V, 1), where y denotes the initial value of the stochastic process.

Definition 2 (see e.g. [S]) If P; has an invariant measure p, and in addition it happens that

1 T
lim —/ P (y)dt = / ¢du in L*(V,w) 2.1
T—oo T 0 1%
forall ¢ € L2(V, ). Then P, is said to be ergodic.

Remark 1 In the following sections, we choose P;¢ (ug) = E[¢p(u(t))|u(0) = ug] for any
deterministic initial value 1, and take expectation of both sides of Eq. 2.1 to obtain

T
lim l/ E[d)(u)]dt:f ¢du in R. (2.2)
T—oo T 0 74

The sufficient conditions for a stochastic process to be ergodic are stated in the following
theorem.

Theorem 2.1 (see e.g. [5]) Let F : V — [0, oo] be a Borel function (Lyapunov function)
whose level sets

L, ={xeV:Fkx)<a}
are compact for any a > 0. Assume that there exists y € V and C(y) > 0 such that

E[F(u(t;y))] <C(y) for all 1t € RY,

where u(t; y) denotes a stochastic process whose start point is y. Then u has at least one
invariant measure.

If in addition the associated semigroup P; is strong Feller and irreducible, then u
possesses a unique invariant measure. Thus, u is ergodic.

For Eq. 1.1, it is ergodic with a unique invariant measure.

Theorem 2.2 (see [8]) There exists a unique stationary probability measure (. of { Pt};cr+
on HOl (0, 1). Moreover, for any p € N\{0}, u satisfies

2
f 1 lull}"du < oo.
HL0,1)

oM
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3 Spatial Semi-discretization

We apply spectral Galerkin method to problem (1.1) to get a spatial semi-discrete scheme
which is a finite-dimensional SDE. We show that the solution uy of Eq. 3.1 possesses a
unique invariant measure 4y, which leads to the ergodicity of u . Furthermore, we prove
that the weak error of the spatial semi-discrete scheme does not depend on the time interval,
which implies that py converges to w in at least the same rate.

3.1 Spectral Galerkin Method

The finite-dimensional spectral space is defined as
Vy == span{em}f:{:l.

Let 7y : HO — Vy be a projection operator, which is defined as

N 00
aNu =Y (U em)em. Yu =Y (u,en)en € H'.

m=1 m=1

We use uy as an approximation to the original solution u, and the spatial semi-discrete
scheme is expressed as

duN:(iAuN—auN—l-i)»nN (|MN|2MN>)dt+JTNQ%dW a1

un (0, x) = wyuo(x),
where Ty Q%dW = ZZ:] A/ Mmem (x)dBp (t), and the projection operator 7y is bounded
I7nllzegs 2y =1 Vs €N
3.2 Ergodicity of Spatial Semi-discrete Scheme

Theorem 3.1 Let up (¢, x) be the solution of Eq. 3.1, then uy possesses a unique invariant
measure, denoted by . Thus, uy is ergodic.

Proof Following from Theorem 2.1, we need to show three properties of u y,““strong Feller”,
“irreducibility” and “Lyapunov condition”, in order to show the ergodicity of uy. Thus the
proof is divided into three parts as follows.

Part 1. Strong Feller. We transform (3.1) into its equivalent finite-dimensional SDE
form. Denote a, (1) = (un (7, x), e, (x)) and we have

N
un (6, X) =Y ap()en(x).

m=1

Applying the Itd’s formula to a,, () leads to

dap (1) = [—kmam(t)+<iAnN (|uN|2uN) , em) ]d:+mdﬂm(t), l<m<N. (32

We decompose the above equation into its real and imaginary parts by denoting a,, =
a,ln + iai, A = )L,ln + ik,zn and 8, = ,3,11 + iﬁi, where {B;,}1<m<n,i=1,2 is a family
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Approximation of Invariant Measure for Damped SNLS 329

of independent R-valued Wiener processes and the superscripts 1 and 2 mean the real and
imaginary parts of a complex number, respectively, and obtain

da,ln = [ - A}na}n + )Lfnai + Re (iAnN (|uN|2uN) , em) ]dt + ./r)mdﬁ,}l(t),

da,zn = [ — )»,zna,L — )L,lnai +Im (ian (luN|2uN) , em) ]dt + «/nmdﬁ,%l(t).

With notations X (t) = (a} (1), aX(1), -+ ,ay @), a ()T, B = (Bl B, -, BN, BT €
RN F =diag{A,---, AN},

Re (ikmv (|uN|2uN) ) 81)
Im (irmy (JunPuy) . er)

-2l a2
A= (_A% —A})’ G(X(1) =

Re (i)utN (|uN|2uN) , €N)
Im (iAnN (|uN|2uN) ) 6’N)

and

NI
NI

. - 1 2 1 2
7 = .. .—(Z 9Z1"'5ZstN)7

NG
NG

we get an equivalent form of Eq. 3.1

N 2 N 2

dX(t) = [FX(t) + G(X(t))]dt + >N Zhap, =Y (X0)dt+ Y Y ZLdBj,.

m=1i=1 m=1i=1
It is obvious that
span{Z{, 23+ . Zy. Zy} = R*N,

which means the Hérmander’s condition holds. According to the Hormander theorem [13],
X (¢) is a strong Feller process.
Part 2. Irreducibility. By using the same notations as above, we have

dX =Y(X)dt + Zdp, (3.3)

with X = X (1) € R?M, X(0) = y and Z being invertible. Using a similar technique as
[14], we consider the associated control problem

dX = Y(X)dt + ZdU, 3.4)
with X = X(¢) and a smooth control function U € C'(0, T). For any fixed T > 0,
y € R?Y and yT e R?V, using polynomial interpolation, we derive a continuous function

(X(1), 1 €0, T1) such that X(0) = y and X(7) = y*. Hence,

dU = 271 (dX — Y(X)d1),
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and we get the control function U such that (3.4) is satisfied with X(0) = y, X(T) = y*
and U (0) = 0. We subtract the resulting Eqs. 3.3 and 3.4, and achieve

t

X(@) - X(@) = / Y(X(s)) — Y(X(s))ds + Z(B(t) — U(1)), t€[0,T].
0

According to the properties of Brownian motion,

P( sup |,3(t)— U(t)| < e) >0, Ve > 0.

0<t<T

Note that Y is locally Lipschitz because of its continuous differentiability, and the ranges of
X(t) and X (¢) (¢t € [0, T]) are both compact sets. Thus, it holds

t
P<|X(t)—Y(r)|5/c1|X(s)—Y(s)|ds+cze, vielo, T]) >0, Ve>0
0

with C1 and C; are positive constants independent of €. Then the Gronwall’s inequality
yields

P<|X(t) —X(®)| = C(1+e“e, Vielo, T]) >0, Ve>0.
For any 8 > 0, choosing t = T and € = §/C(1 + ¢“1T) > 0, we finally obtain
P<|X(T) —yt < 5) 0.

In other words, X (T) hits B(y™, §) with positive probability. The irreducibility has been
proved.

The above two conditions ensure the uniqueness of the invariant measure of X (¢). It
suffices to show the existence of invariant measures in the following.

Part 3. Lyapunov condition. A useful tool for proving existence of invariant measures is
provided by Lyapunov functions, which is introduced in Theorem 2.1. It&’s formula applied
to |luy(t) ||g implies that

1 N
dlluy O3 = —2alluy ®)|I3dr + 2Refo ity ()y QT dxdW () + 2 > nmdt,  (3.5)

m=1

where we have used the fact that
1 1
Re [ik/ nN(|uN|2uN)uNdx:| = Re [ik/ (|uN|4 —(Id - nN)(|uN|2uN)ﬁN) dx:|
0 0

= —AIm ((Id — JTN)(|uN|2uN), MN) =0.

Taking expectation on both sides of Eq. 3.5, we get
d 2 _ 2
th||uN(t)||0 = —2aEllun@®lly + Cw,
where Cy = 2 anvzl Nm < 2n. It is solved as
t
Ellun 0 = e ( / Cye™ds + ElunO)I) < e Elluy O +C. Y1 > 0.
0

On the other hand,

1, N 2
ey @13 = [ 3 an@en 0] dx = 1X 01 oy

m=1
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Define F = || - [lpmeny : R*N — [0, +00]. The level sets of F are tight by Heine-Borel
theorem. Therefore, X (¢) is ergodic. We mention that the ergodicity of X (¢) is equivalent to
the existence of a random variable & = (“g‘l], 512, cee g}v, 51%,) such that

lim X(t) =&, ie., lima (1)=&, ¥Ym=1,---,N,i=1,2.

1—>00 —>00
It leads to

N
. 1 g2
tl—l>rgo un(t) = Z (Em + l€m> €m,
m=1

which shows the ergodicity of uy (7). O

According to the proof of Lyapunov condition, we have the following uniform bounded-
ness for O-norm. Moreover, 1-norm and 2-norm are also uniformly bounded, which is stated
in the following proposition. Its proof is given in Appendix “The Proof of Proposition 3.1”
for readers’ convenience. In sequel, all the constants C are independent of the end point T
of time interval and may be different from line to line.

ogs . 1 .
Proposition 3.1 Assume that uy € H', | Q2 ”?—LS(LZ gy < 00 and p > 1. There exists
positive constants co and C = C(«a, p, ug, co, Q), such that for any t > 0,

i) Ellun®IZ < e P Elluy )| +C < C,
i) EMun()? <e " EHuy0)” +C < C,

where H(uy (1)) = 3 Vun@©)|2 - Glun Ol + collun @)§. In addition, if we assume

further ug € H? and IIQ% ||HS(L2,H2) < 00, we also have
i) Elluy 03 < C.
Remark 2 The uniform boundedness of the original solution u can also be obtained in the

same procedure as Proposition 3.1 or [8]. As the H>-regularity for both the original solution
and numerical solutions are essential to obtain the time-independent weak error, we need

. . 1 . .
the assumption ug € H?and | Q2 ||7_LS(L2’H2) < 00 in the error analysis.
3.3 Weak Error between Solutions z and uy

Weak convergence is established for the spatial semi-discretization (3.1) in this section
utilizing a transformation of u y (#) and the corresponding Kolmogorov equation.

Theorem 3.2 Assume that ug € H?* and || Q% IIHS(Lzﬁz) < o0. Forany ¢ € C,%(Lz), there
exists a constant C = C(ug, ¢, Q) independent of T, such that for any T > 0,

<CNZ

’E[¢(uN<T>)] ~ E[¢p(un))]

Before the proof of Theorem 3.2, we give a useful lemma.
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Lemma 1 Assume that S(t) and 7ty are defined as before. We have the following estimation

”S(t) - S(I)T[N”L'(H‘,Lz) < Ce_atN_s.

Proof For any u € H*, we have

o0

I1S@u = S@Wmyullo = e u —myulo =e*" | Y |, el
n=N+1
1
00 2
<e PN D] Il e ] < CeT NS Juls.
n=N-+1

Proof of Theorem 3.2 We split the proof in three steps.
Step 1. Calculation of E [¢ (u(T))].

To eliminate the unbounded Laplacian operator, we consider the modified process
Y(t) = S(T —t)u(t),t € [0, T], which is the solution of the following SPDE

dYy () = iAS(T — t)[|S(t — )Y (1)*S(r — T)Y(t)]dt + S(T — t)Q%dW

= HY(1))dt + S(T —1)Q2dW.
Denote v(T — ¢, y) := E[¢(Y(T))|Y (¢) = y] and it follows easily
ov(T —t,y) .
ot
Note that the mild solution of u has the expression u(T) = S(T — t)u(t) + ir ftTS(T —
s)ulPuds + [T S(T — 5)Q2dW. Thus, we have
(T —t,y) = E[p(Y(T)IY (1) = y] = El¢pu(T))|u(r) = St —T)y]

T T
- E[¢> (y+ik/ S(T—s)lu(s)|2u(s)ds+/ S(T —s)Q%dW)].
t t

1 1is2 1
—(Dv(T—t,y), H(y))—ETr[(S(T—t)QZ) D v(T—t,y)S(T—t)QZ].

Forany h € L2, similar to [7] (Lemma 5.13), we have
T T
(DW(T —t,y),h) = E [(ng (y +iA/ S(T — $)|u(s))Pu(s)ds +/ S(T — s)Q%dW> , Xh(t)>]
t t
with x" (1) = h+ir [T S(T —s) (2|u(s)|2)(h(s) + u2(s)xh(s)) ds. It's easy to obtain that
T
Ix"®llo < llnllo + C / e T Nu() 111 x" () llods. (3.6)
t

To show the uniform boundedness of E|| x" (r)|lg, we define a family of subsets

sup u()ll; >m(T+1—t)5}, meN

t<s<T

Ky = [weQ
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Approximation of Invariant Measure for Damped SNLS 333

for any + < T. We claim that E (sup, ;-7 [lu(s)||I3) < C + C(T — t). In fact, we can
deduce

dH@u(t)) < —;a?{(u(t)) + Cdt + dM, (1)

similar to Proposition 3.1 or [8], which implies

H(u(s)) Eeiga(sft)’}'[(u(l))-l-/ﬂ Cefga(sfr)dr—}-/Ae*%a(sfr)dM*(r)

t t

with dM, = 6colul|§Re (u, Q2dW) = Re (Au -+ ilulu, Q3dW ) and EH(u(®) < C.
Taking supremum and expectation, we get

A

t<s<T t<s<T Jt

E|: sup 'H(u(s)):| < EHu@®)+C(T —1) +E|: sup /Se_ga(s_r)dM*(r):|

IA

C+C(T -1,

where in the last step we have used the Doob’s inequality for convolution integrals (see [16],
Theorem 2). This complete the proof of the claim. Then the Chebyshev’s inequality (see
e.g. [10]) yields that

E 2 _
P(Kp) < (S0P <7 I LT =D _C et
m2(T +1—1) m2(T +1—1t) ~— m?
o0 o
As Y P(Km) < Y, % < 00, we get P(N° UX_ K,,) = 0based on the Borel-Cantelli

m=1 m=1
Lemma (see e.g. [10]). It implies that there exists a constant M, € N, for any m > M,,

lu@®ll1 < sup |lu(s)h <m(T +1— t)% almost surely. Then the backward Gronwall’s
t<s<T

inequality applied to Eq. 3.6 yields E|| x"®Ollo < Clihllo thanks to the exponential decay
factor, and it holds

[(Du(T —1,y), h)| < ||¢||C;E||Xh(f)||0 = Cligllc; iz lo- (3.7

Similarly, we also have

(P20 =130 1) . 1)| = Cliglicz 13 (3.8)

The It6’s formula gives that
dv(T —1,Y(t)) = %(T —1,Y()dt + (Dv (T —t,Y(@®),HY@)dt
+S(T = DQEW D))

+%Tr [(S(T — 02 D*u(T —1,Y (1)) S(T — t)Q%] dt

(DU(T —1,Y (), S(T — t)Q%dW(t)> .

Therefore,

T
v(0, Y(T)) = v(T, Y(0)) +/ (DU(T — 5, Y(s)), S(T —s)Q%dW(s)). (3.9)
0
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Noticing that Y(0) = S(T)up and Y(T) = u(T), we recall v(T — t,y) =
E[¢p(Y(T)|Y (t) = y] to derive

v(0,Y(T)) = E¢p@(T)HIY(T) = u(T)]
and

v(T, Y(0))

E[p(Y(T)IY(0) = S(T)uo)

T 1
E [qs(S(T)uo +/O H(Y(t))dt + S(T — t)Qde(t)) ‘Y(O) - S(T)uo] :

Take expectation of both sides of Eq. 3.9 and we have

T
El¢w(T)] = E [qb(S(T)uo +/0 H(Y (1))dt + S(T — t)Q%dW(t))j| . (3.10)

Step 2. Calculation of E [¢p (uy(T))].
The mild solution of Eq. 3.1 is

t

t
un () = S(6) N0 +ixf S(t — s)7w (|uN(s)|2uN(s)) ds +/ S(t — )TN Q2 dW (s).
0 0

Using similar argument as above, we consider the following stochastic process:
Yn() = S(T —tun(t).
The relevant SDE is
dYn(@) = IAS(T — t)nN[|S(t —T)Yn®)?S(t — T)YN(t)]dt + S(T — t)nNQ%dW
‘= Hy(Yn(0)dt + S(T — )y QZdW (1).

Apply Itd’s formula to t — v(T — ¢, Yy (¢)) and we get

dv(T —t,YN(@)) = %(T —t, Yy(@))dt
+ (DU(T —t,Yn@), Hv(YN(®))dt + S(T — )7y Q%dW(t))
+%Tr[(S(T — N Q) DR(T — 1, Yy (6)S(T — r)nNQ%]dz
- (Dv(T — 1, YD), S(T — )y Q%dW(r)>
+(DU(T —t,YN(@), Hy YN () — H (YN(f)))df
1 Lok 2 1
—ETr[(S(T — Q3 D*(T — 1, Yy (1))S(T — t)Qz]dt

—l—%Tr[(S(T — N Q) DR(T — 1, Yy (6)S(T — t)nNQ%]dz.
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Therefore,

T
v(0, Yy(T)) = (T, Yy(0)) + / (DT = 5. Yn (), ST = )TN Q2AW(s))
0

T
+/0 (Do(T = 1. Yw ), Hy (Yw(®) = H(¥x(0)) )dr
17 L o 1
+5/ Tr [(S(T — N0 D2u(T — 1, YN (1) S(T — t)nNQZ]dt
0
e L2 1
—5/0 Tr [(S(T—z)QZ) D>u(T —1, YN(t))S(T—t)QZ]dt. 3.11)
By the construction of Yy, we can check that
YN@O) = S(T)nyug and YnN(T) =un(T).
According to the representation of v, we have
v(0,YN(T) = E¢Y(TNIY(T) =YnN(T)] = E[¢un(T)IY(T)=Yn(T)]
and

v(T, Yn(0))

E[p(Y(T)HIY(0) = S(T)myuo]

T
E[qb(S(T)nNuo—i-/ H(Y (1))dt
0

+S(T — t)Q%dW(t)) ‘Y(O) - S(T)nNuo].

Take expectation of the two sides of Eq. 3.11 and we get

T
Epun(T)] = E [¢(S<T)nNuo+ /0 H(Y (1))dt + S(T —r)Q%dW(z))]
T
+E/0 (DU(T — 1, Yn (), Hy (Yn () — H(YN(I)))dt
T 1
+%E/ {Tr [(S(T — DN 02 D*(T — 1, Yn (1) S(T — t)nNQf]
0

—Tr [(S(T — )0V D*(T — 1, Yy (1)S(T — z)Q%] }dt. (3.12)

Step 3. Weak error of the solutions.
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Subtracting the resulting Eqs. 3.10 and 3.12 leads to
E¢pun(T)]— E[¢u(T))]
T
- E[¢<S(T)n,vuo + / H(Y(1))dt + S(T — t)Q%dW(t))
0

T
—¢(S(T)uo + / H(Y(0))dt + S(T — t)Q%dW(t)>]
0
T
+E/0 (Do(T =1, Yy ), Hy (Yn ) = H(Yn(®) )ds
1 T 1y o 1
+5E/0 {Tr [(S(T — )N 02 D> (T — 1, Yy (1)) S(T —t)nNQZ]

—Tr [(S(T — Q) D*(T —1, Yn(1)S(T — t)Q%] }dt
=1+ II+1I1. (3.13)
Due to Lemma 1, terms / and I/ can be estimated as

111 = ClIglicy EIS(Tuo = S(Mmyuollg < Ce™ i pllcy ElluollaN ™2 < Ce TN 2,

(3.14)
and
T
111 < CE [ 161eyl v (0 0) = HC O lods
T
= CE [ 101y 05T = )1 = ) 0 Py 0) ot
T
< IC [ e Ty o ey O I ]V
< |,x|£1v—2 (3.15)
o

based on Lemma 1, Proposition 3.1 and the embedding H' <> L in R. In the first step of
Eq. 3.15, we have used the fact (3.7).

Let us now estimate term ///. As (S(T — t)ay — S(T — t))Q% is a bounded linear
operator and so is D?v shown in Eq. 3.8, we have

Tr [(S(T — N 02 D2u(T — 1, Yy (1) S(T — z)nNQ%]

—Tr [(S(T — QDT — 1, Yy () S(T — z)Q%] ‘

Tr [((S(T — )N — S(T = 1))03)* D>o(T — 1, Yn(0))(S(T — )7y + S(T — z))Q%]

IA

1 1
CIST =Dy = ST =Dl 2, 1) 122 s, a 1012 IS(T = Dll 2,192 s, 2)
< Ce®T=DN2,

Hence, integrating above equation leads to

c
|[[11] < =N2. (3.16)
o
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Plugging (3.14), (3.15) and (3.16) into (3.13), we get
—aT 1 -2 -2
‘E[qb(uN(T))] - E[d)(u(T))]‘ =CEe "+ INT=CNT BD)

in which, C is independent of time 7. O
3.4 Convergence Order between Invariant Measures x and u y

Based on the ergodicity of stochastic processes u and uy, for any deterministic ug € H?,
we have the following two equations

1 T
lim —f E¢>(u(t))dt:/ ¢dup(y),
o0 0 L2

1 T
iim 7 [ Esun®)ar = [ s0)duney)
0 VN

for any ¢ € Cg(Lz). Due to the time-independence of the weak error in Theorem 3.2, it
turns out for any fixed o and N,

1 T
‘/ dMdu(y) —/ d)(y)duzv(y)‘ = | lim */ E¢(u(r)) — Ed(un(t))dt
L? Vy T—oo T 0

o1 T S B P P GR
ngimm?f() |E¢(u(t))—E¢(uN(t))|dt§T1me?£ C(e +;)N dtsEN ,

which implies that j is a proper approximation of u. Thus, we give the following theorem.

. 1
Theorem 3.3 Assume that uy € H?* and ||Q7||H$(Lz a3 < oo The error between
invariant measures | and [y is of order 2, i.e.,

C
< N2
o

' / SN (y) — / 6 (dun ()
12 Vy

Remark 3 Although the time-independent weak error between u and up is obtained

. 1 .o . ...
under the assumption | Q2 ||H$(L2 g2y < 00, it is necessary to assume in addition

| Q% ||7-LS(L2,H3) < oo in order to get the unique ergodicity of u (see [8]).

4 Full Discretization

In this section, we discretize (3.1) in temporal direction by a modification of the implicit
Euler scheme to get a fully discrete scheme. We prove the ergodicity of the numerical solu-
tion u’,‘\, of the fully discrete scheme, and get weak order % of ”]1{\1 in temporal direction.
Thus, we achieve at least the same order as the weak error for the error of invariant measure,
as a result of the time-independency of the weak error and the ergodicity of the solution.
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4.1 Fully Discrete Scheme

We use a modified implicit Euler scheme to approximate (3.1), and obtain the following
scheme

' i ' | |2+|eark1|2
uy —e “Tuy = (iAuly +irny ‘N 5 T+71NQ25Wk

ul = myuo(x),

4.1)
where ull‘v is an approximation of uy (#¢), T represents the uniform time step, #x = kt, and
Wi = W(ty) — W(tg—1).

The well-posedness of scheme (4.1), together with the uniform boundedness of the
numerical solution, is stated in the following proposition. The time step t is assumed to
satisfy ot € [0, 1] in sequel.

Proposition 4.1 Assume ug € HO. For sufficiently small T, there uniquely exists a family of
Vi -valued and {F; }ren-adapted solutions {MI;V}kEN of Eq. 4.1, which satisfies that for any
integer p > 2, there exists a constant C = C(p, «, ”(1)\/) > 0, such that

Eluk P <, YkeN,

Proof Step 1. Existence and uniqueness of solution.
Similar to [6], we fix a family {gi}ren of deterministic functions in V. We also fix
k le Vy, the existence of solution u]]‘\, € Vy of

~k — ~k 1
a2 el
2

u]]‘\, e_atﬁll‘v_l = iIAﬁI]‘V +irtmy <

) + /T8 (4.2)

—=k
can be proved by using Brouwer fixed point theorem. Indeed, multiplying (4.2) by i,
integrating with respect to x and taking the real part, we get

~k 2 ~k —at ~k—12 —2 ~k—1
i 11§ + ity — el 115 — e~ iy 113

L =kl
2J/TRe (uN —e iy )grdx + (6 Uy )gkdx
0

k! —2at y ~k—1
llitly — e iy 11§ + e > llitly

IA

15+ 27 llgx 13-
ie.,
il 1§ < 2e7 2 iy 11§ + 27 ll gl 4.3)
Define
A:Vy x Vy — P,

(1211‘\,_1, gr) — {ﬁlj\,mlj\, are solutions of (42)},

where P(L?) is the power set of L%. Equation 4.3 implies that A is continuous, and its
graph is closed by the closed graph theorem. When the spaces are endowed with their Borel
o -algebras, there is a measurable continuous function « : Vy x Vy — L? such that

k(u,8) € A(u, g), Y (u,g) € Vy x Vy.
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Assume that u]]‘\fl € Vy is a F,_ -measurable random variable, then u’j\, =

1
K(ull‘\,_l, Lj?‘sw") is an L2-valued solution of Eq. 4.1. Moreover,

W Sy Wy el
(I —iAtuy = e *Tuy +irtmy 2 +71NQ28W1(EVN

Hence, u’,‘v is actually a Vjy-valued solution of Eq. 4.1.

For any given u',‘\,_l and sufficiently small time step 7, the solution u’,‘v is unique, which

can be proved in a similar procedure as [2]. This fact will be used in proving the ergodicity of
the numerical solution {lev}keN, and it can be found in Appendix “The Proof of Uniqueness
of the Solution for Eq. 4.1”.

Step 2. Boundedness of the p-moments.
The constants C below may be different, but do not depend on time.

i) p = 2. To show the boundedness, we multiply (4.1) by @k > integrate in [0,1] with
respect to the space variable, take expectation and take the real part,

1
ENldb I3 + Elluk; — e @Tub M3 — e 22T Efub 2 = 2ReE/ u’;,nNQ%awkdx
1
= 2ReE/0 (@, — e ak ey Q26 Widx < Efluky — e @ik 12 + Ellmy Q28 Wi |2,

It derives

E||ul]<v||(2) < 72arE”u ||O+C‘L' <672o¢tkE”uN”0+CT(1+672a1’+.”+672a1’(k71))

IA

e E|ul 13+ = < Ellul 11} +

—2at —

—12q

fort < é, where we have used 7297 < 1 — e 127 for T < é

ii) p = 4. In the case when p=2, without taking expectation, we have
k2 2 k 1 ! k ]
Iy 1§ — e Ny IG + lluly — e7" I5 = 2Ref Uy Q28Widx.
0

Multiply both sides by ||u’}‘V ||%, take expectation and take the real part and we get

(LHS) = Eluly I = ™7 Euly W3y 13 + B[k, — el i3k 13 ]
1 _ 1 _
= S (B — e Bl 1) + 5 B (e — e 13
+E[ kg — el 3k 1]
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and

(RHS) = 2ReE/ ||uN|| uNJTNQZBWkdx

1
2ReE/ (||u’;v 13 (%, — e—‘”ﬂ’;;l)) 7y Q2 8Widx
0

1
+2ReE / ((uu@n%— e 2T |lulyI5) e Tty 1)nNQ%swkdx

IA

E[ Iy = emmuly 3y 13] + £ (1 10w @25 W)

1 _ _ _ -
4B 1 — e 1 1) + 4o BNy ey 02 WA 13

IA

B[y — el B 13] + 5 E (W — el 3) +
Compare (LHS) with (RHS), we obtain
Eluy g < e * Elufy ' |I§+ Ct < C.
iii) p = 3. Using 1) and 2), it is easy to check that the following holds true

k 12 k 4
K, 12 + k)
Elluk 3 < E-0 N0 5 N0 < ¢,

iv) p > 4. By repeating above procedure, we complete the proof.

Before showing the weak error between u y (#) and ull‘v, we need some a priori estimates
k k
on [[uy [l and [|uy 2.

. 1
Proposition 4.2 Assume that > = 0 or —1, ug € H', u([)v = nnug and || Q2 |lyy g2, 1y <
oo. Then for any p > 1, there exists a constant C = C(«, ug, p) independent of N and ty,
such that

EH, <C,VkeN,

where Hy := || Vuly 1§ — 5 llul 117,
Proof The proof for A = 0 is in the same procedure as that for A = —1 and is much easier.
Here we only give the proof for A = —1
2 —aty, k 12
u + |e
uk, — ekt = (iAu’;, —imy (' | '2 | )) T+ ANQIW. (44)

—at7k—1

i) p = 1. Multiplying (4.4) by E]/‘V — e %"y, integrating with respect to x, taking the
imaginary part and using the fact ((Id — wy)v, vy) =0, Yv € H, vy € Vy, we
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have
k 2 k — k—1y2 —2 k—1)2
Vuyllg + 1IV@y — e *Tuly g —e T IVuy I
1
- —Re/ (|u’;v|2+ le™ T ul 1|2 )u’j\,(ﬁll‘v — e Tk Ndx
0

2 1
+71m/ TN QI SW @k — etk Y dx
T 0

=: A+ B.

Simple computations yield

! k —ar k-1 k —at k-1
uy +e u ut —e
A = —Re |:/ (\u’;\,\2+|[azu1;v71|2>< N 5 N Uy 5 Un )(ullcv_earulzcvl)dxi|
0
< —| k H4 +l 74atH ” < _l” k H4 _,’_l —2arH k—1”4
=75 Unlip4 26 Uy 2 uyllya 2e u'y
and

— k 1
R
2

1 1
:2Re[f0 V(nNQ%SWw-V(ﬁkN—e-“fuxl)dx]JrzRe[/o V(ﬂNQ%SWk)'V(e_‘”ﬁ];fl)dx}

2 1 _—
B=ZIm [/ nNQ%aWk[—nAuNﬂr N+nNQ28Wk]dx:|
T 0

[ 1
+Re / (\u’j\,lz + e % u II(V l\z)ﬁ’;\, . nNQ%(SWkdx
0

IA

1 1
21V = e Ul DIE + CIIVGry @2 5Wi I + 2Re U V(nNQ%SWk)-v(e*“uﬁ;')dx}
0

1
+Re / (\u],‘\,lzﬂ—le"” k=12 )uN nNszSWAdx
0

Denote Hy,

IVl 15 + 311k, 1134, then

3 _
EHk+ZE||V(u§V— k2

e PTEH 1 +Ct 4.5

IA

1
+ReE f (b P+ e ul P )i - v Qo Wedx | 46)
0

Based on the formula
(la|>*+1b)*)a = ala—b)* +b@—b)*>+3|b|>@—b)+bla—b|>+ (b)*(a—b)+2|b|?D,
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the last term on the right hand side can be rewritten as
1
ReE fo (\u’,‘\,\z + e % u 1,“\, l\z)uN rrNQuSWkdx

1
= ReE/ w
0

1
+3ReE/0 e uk T Pk — et )y 03 SWidx

_ —1)? 1 b 1 —ar—k—1\2 1
u/,‘v —e ‘"ull‘v 1‘ JTNQZ(;WkdX-‘rReE'/(; e aru’,‘\, 1(u’[‘v —e ‘”ull‘v 1) 7N Q2 8Widx

! k—1]| k —1]? !
+ReE/ e Ty ‘uN —e “Tuy } N Q28Widx
0

1 1
+ReE/ (e~ @k 2wk, — e uky ])nNQZBWkdx+2ReE/ le™ T uk 1 Pk, 75 0 Wedx
0

= a+b+c+d+e+f.

Noting that f = 0, it suffices to estimate the other five terms

a+b+d < E[lukllollaly — e uly 12y 03 6Will i

—ar ko —at k-1 1
+2[le™*" ol — el 4H7TNQ25W1<IIL°°]

IA

1
k - k—1 k - k=112 1,k — k 1
E|:(HMNH0+2H€ “Tuy IIU)HV(MN R H e ||7TNQ23W1<HL°°:|

IA

1 _
ZE[Ivady — e mulTHloldy — e ul 1o

— — — 1
+CE [ (a1 + e aly 1) Iy — e~ a7 10w 03 6 Wil |

IA

1 -~ _ _ 2

ZEHV(u’;V e k12 4 CE (rZ(Ilu’;,I%HIe Ty ke 1||0)\|uN Tk 1||0)
_1 1 2 \?

YCE (r znnNstWkan)

1 .
< ZE\|v<u§v e Tuk T HI3 + Cr,

where in the last step we have used Proposition 4.1,

cte < 4E [l ul 2y — e ul ol 0 SWello |
1
< S Elluy — ™y G + Snre ™ T Elluy
< DEuy — el G 4 28 (Varte = ivuly o) ( 5oz 8nr b Il 13
<3 5 f
1
< §E||u’;, — e Tk T2 - are 2T E VU2 4 C
Then (4.5) turns to be
EHi < (1 +at)e ™ EH; 1 +Ct <e " EH;_1 +Cr.
We finally obtain that

EHy <C.
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ii) p=2 Fromthecase p=1,by | -[I7, < IV lloll - I, we get
_ 1
Hi—e ™ My < CIV(an Q28Wi)|§
1
+CRe [/ Yty Q2 8Wy) - V(e_””ull‘\,_l)dx:|
0

1 _ _ 2
+C (27 (ko 1 + ey 1E ) ks — =7 1)
+C (r—%unNQ%aWkniw) +are M,

+Ct M uly ||o||7TNQ28Wk||Loc
Multiplying above formula by Hj, we have
le + (Hk _ e—ZWTHk71)2 _ 6—4011’7_[,%_1

1
CHLIIV (ry Q28W) 13 + CHyRe U V(my Q18Wy) - V(e_muljvl)dx:|
0

=<
2
+Co i (I 13 + e ul ™ IF) Ty — el
2
FCH, (r*%nnNQ%aWanLoo) Fate X H Hy
eI e 1Sl Q2 S Wil
:nz+H+c+J+e+f,
where

Eld +b +c +d]

IA

1
JEG— e TH 1)+ Cr

2
+Cre‘2”E[Hk71(nu®n%+||e‘“fu§‘v”||%) ludky — e=muly ‘||0]

1 1
ZE('Hk — 672‘”7‘[1{71)2 + fre74‘”E’Hi_l +Crt,

<
- 2
/ 1 —2ut 2 1 2.2 —4at 2
El¢] < 5E(Hk—e Hk_l) + (et +am)e MTEH]
1 _2 203 2
< EE (’Hk —e ‘”"kal) —I—Eare “TEH;_,
and
_ 1
E[f1 < - (Hk_e 2Ty 1) +Ct2E [llu i ||7TNQ25Wk||8Loo]

1
+one*40”153'-1k,l +CcE [||u’,‘v—1 ||(‘)2||nNQ75Wk||§w]
2 2 4 2
-FE (Hk —e ‘”/Hk_1) + ate O”E,Hk71 + Crt.
Then we conclude

EH} < (1+3at)e ™™ EH; | +Ct <e ™ EH} | +Ct<C,
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where we have used (1 4+ 3a1)e 3% < 1 forat < 1.

iti) For p = 2!, I € N, the result can be proved by above procedure. So it also holds for
any p € N.

O

Corollary 1 Under the assumptions in Proposition 4.2, we have
k —at, k—1)2p P
Eluy —e “Tuy |l;” < Ct?,

where constant C is independent of N and ty.

Proof 1t is easy to check this by multiplying ﬁ’l‘v — e“”ﬁll‘v_l to both sides of Eq. 4.4,
integrating with respect to x and taking expectation,

k_marykol
Elluk, — e ul M Ig"

1
= E[rlm /0 VUV @y — e~y Ddx + Re /0 mn Q18w (i — e oml ) dx

1 P
+£Im/ <|u/]<V|2+ le Ty 11(\7 1| )(ullc\l +e Ty II(V 1) (ﬁllcv _e—arfk l)dxi|
0

< CE[r”||Vu’;V||5||V(u’;V—e “wul ) 1
2
e (e e e N (A A e )]
1 2 1 _
+CElmy Q28Wellg” + S Elluy — ™" uly” hie?
l k _ —at k—1)2p p
< 2E||uN e “tuy g +Cth.
Then we complete the proof by Proposition 4.2. O

. 1
Proposition 4.3 Under the assumptions ». = 0 or —1, ug € H* and || Q2 3522, 52y < ©0,
we also have the uniform boundedness of 2-norm as follows

Elluk|5 <C, Yk eN,
where C is also independent of N and ty.

Proof We also give the proof for A = —1 only. Multiply (4.4) by AG@, — e~@ak "),
integrating with respect to x, and then taking the imaginary part, we obtain
AU IIF + 1Ay — e Tuy DG — e > Auy 15

1
= Re/ (|u’1‘\,|2 + |e7‘”u]f\,_] |2> uk; A@, — efwﬁ],‘v_l)dx
0

2 1
—fIm/ TN QWi A, — e ) dx
T 0

=: A +PB.
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According to the uniform boundedness of any order of 0-norm and 1-norm, we have the
following estimations.

E[A] = ReE/ |k, Pk, AN, — ek dx
+e*3‘"ReE/O kP A, — e Tl dx
-I—e_z‘”ReE/(;] |”11<v_1|2(”]1<v — e_mu];\,_l)A(ﬁ],‘\, — e‘”ﬁll‘\,—l)dx

= ReE/01|u/1‘v|2u/1‘vAuI;\,dx — e_4arReE/ |u |2 ﬁ];\,fldx
+e2”ReE/01|u’;,—‘ Pl — e Tuly HAa@y — e iy dx
+ReE/(;1u'1‘\,Au§,|ulfv — e_mull‘v_l|2dx
1

+2ReEf0 ak (Vuk )2 @, — e wk dx
—|—4ReE/01u]]{v|Vuljv|2(ulf\, — e mk Ndx

1
+ReE/O ik — e~k AT, (|u’;v|2 — ek ! |2) dx

= Ak — e T AR LA A AL+ A+ A

a

We estimate above terms repectively and obtain
_e—4arAl;—1 — _e—2atA1;—l + e—ZaI(l _ e—2at)A1;—l

< —e TA L CTE|u ] < —e 7T AN 4 O,

Ap < e TE [nu"N“niwnu’;v — e Uk ol A, — 67“7u®_1)||0]
1 - - - - —
< 6EIIA(u’;V—e T2 CrE kTS + Co T E N, — etk
1
< —E|lA@)y — e *Tuly IG5+ Cr,

)

k — k 1
Ac < E [y — e uk 2,y o A o

- . - 1
= Cr B [IVady — el Dlolluly — e uly Ik 17 ] + Sar BN A}

IA

1 _ _ _ —

6E||A(u’[<v_ ot k- 1)||0—1-Cr SE|uk — ‘”uf\, Hig2
1

+CTE |y |If + gatEll Aufy I}

1
oer||AuN||O+C‘L'

1 k_marykol
< ¢ElA(y —e™ )G+ g
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1 k2 —at, k=12
u + |e u
Ay = 2ReE/O ﬁN(Vu],‘V)Z[—iTAﬁI,‘V +i‘L'7'[N<| I | N | 7")

2 N
+nNQ%aWk]dx
1 1 [ 1
< 16arE||AuN||O+Ct+2ReE/ wk (Vuk )2y Q78 Widx
< ionE||Au’< |2+ Ct +2ReE (ﬁk — e mk (Vi) 025W;d
= 76 Nllo ) N N) TN kax

+2ReE/ Tk ‘((WN) (—“’vu’;v”)z)nNQ%aWkdx
0

1 - - 1

< ot Bl AUy I3+t + CE Iy — el ol Vi 12 Iy 0 Wil 1 |
ko _ ot k 1 3

+CE IVl - o (I ek 1+ ™ 1) N @26 Wil |

IA

1 _ 1
gEIIA(u’fv— Tk 1)||0+8owE||AuN||o+Cr

and

1
Af = ReE/0 W, — e uks 1)AuNRe[< —ef‘”u]}‘\,_l) @, +e7“Tﬁll‘\j_1)]dx

IA

k — k 1 k
E [y = el 2l e + o)l Au o

1
8arE||AuN||0—|—C1:

IA

1 _
EEIIA(M’,‘V— “r ko3 +

where A, has an same estimation as Ay and we have used that [V - |lo Z |- 1 < |- |2 =
IIA - |lo- So we obtain

5 1
E[A'] < 8E||A<u’;v —e Tk h13 + 2arE||AuN||0+Cr
For term B’, we have

, 2 ! 1 T A e i T
E[B] = —ZImE A(nNQzaWk) —iv A, +imy (N, Ty Q2 5Wi | dx
T 0
1 1
= 2ReE/ A (nNQfaWk) A@ — e~ 7k ydx
0
1
,RQE/ A(”NQ%SWk> (|”]1€v|zﬁ’fv*\€_m ko1 2mar k- 1>dx
0
1 1
—ReE/ A (mv Q3w )l Tl Py — emm ik dx
0
1
EEHA(u]]‘V e T uk )2 4 C

Denoting Ky := [|Auk, |13 — Refollu]]‘\,lzu]]‘\,Aﬁljvdx, then E||Auk |13 < EKy + C and

1 1
EKy — e ®TEK;_ < EonEnAu’;vng +Ct < SatEK + Cr.
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Finally,

1
EK, < (- Ear)*le’z‘”EICk_l +Cr <C,

where we have used (1 — %ar)"e‘z‘” <e *Tforat < 1. O
4.2 Ergodicity of the Fully Discrete Scheme

To prove the ergodicity of the scheme (4.1), we will use the discrete form of Theorem 2.1.
We give some existing results before our theorem.

Assumption 1 (Minorization condition in [14]) The Markov chain (x,),eN with transition

kernel P, (x, G) = P(x, € G|xo = x) satisfies, for some fixed compact set C € B(R?), the
following:

i) for some y* € int(C) there is, forany § > 0, at; = 1;(8) € N such that
Py (x, Bs(y")) >0 Vx €C;

ii) the transition kernel possesses a density p,(x, y), more precisely
PG = [ putridy V2 €C. G e B NBE)
G

and p, (x,y) is jointly continuous in (x, y) € C x C.

Assumption 2 (Lyapunov condition in [14]) There is a function F : RY — [1, 00), with
limjx |00 F(x) = 00, real numbers 6 € (0, 1), and y € [0, 00) such that

E[F (xp+ )1 Fpl < OF (xn) + .

Definition 3 We say that function F is essentially quadratic if there exist constants C; >
0, i =1, 2, 3, such that

Ci(1+x*) < F(x) < C(1 + [Ix]1?), IVFx)| < C3(1+ |IxID)

Theorem 4.1 ([14]) Assume that a Markov chain (xp),eN satisfies Assumptions 1 and 2
with an essentially quadratic F, then the chain possesses a unique invariant measure.

Based on the preliminaries above and the theory of Markov chains, we prove the
following theorem.

Theorem 4.2 For all t sufficiently small, the solution (u/;\/)keN of scheme (4.1) has a unique
invariant measure [13;. Thus, it is ergodic.

Proof 1) Lyapunov condition. Based on Proposition 4.1, we can take essentially quadratic
function F(-) = 14| ||(2) as the Lyapunov function, and the Lyapunov condition holds.
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ii)

Minorization condition. In scheme (4.1), it gives
_ _ . A _ _ _ _
Py =Py ‘—r(AQx+5nN((|Pm2+|Q’;V|2+|e PN 1O ) Q"N)>

N
Y Simemdi,- 47

m=1

_ A _ - _ _
Oy = oy +r<Ava+EnN((|P£|2+|Q§V|2+|e PP 1T OR) va))

N
+ Z 2V 77mem§k1331s (4.8)

m=1
where P/’f, and Q’,‘V denote the real and imaginary part of u'j\, respectively, that is u’j\, =
Py +iQ%. Also, TNQISWE =Y N Vmem (8kBL, +18kB2), where 8,8, and 8, B2
are the real and imaginary part of § Wy, respectively.

For any y; = a1 +1iby, yo = ap + iby € Vy with @; and b; denoting the
real and imaginary part of y; (i = 1, 2) respectively, as {em}fr\::l is a basis of Vy,
{cSk,B,L, 8;{,331 }ZZI can be uniquely determined to ensure that (Pllffl, Qlj\fl) = (a1, by)
and (Pk, Q’;V) = (ay, by), which implies the irreducibility of u’jv.

As stated in Proposition 4.1, the J; -measurable solution {lev}keN is defined

1
. . . — 2
through a unique continuous function: u’/‘v = K(ulfv g M\/?BWI{)’ where W has a

C® density. Thus, the transition kernel Pj(x, G), G € B(Vy) possesses a jointly
continuous density pip(x, y). Furthermore, densities pi(x, y) are achieved by the
time-homogeneous property of Markov chain {M]fv}keN-

With above conditions, based on Theorem 4.1, we prove that ull‘\, possesses a unique

invariant measure. O

4.3 Weak Error between Solutions uy and u’l‘\,

We still use modified processes to calculate the weak error of the fully discrete
scheme in temporal direction. Denote S; = (Id — itA)~'e™®7, then scheme (4.1) is
rewritten as

k2 —at k=12
[up =+ le ™ uy | 1
N T N K ) e TS, i QIS Wy

o

uy = S,u];fl +irTe* S;my ( 5 N

k IMI |2+\e"”u171\2 k .
= Skl +inee™ Y SE iy (il |+ e Y Sy 0rsw (49)
=1 2 =1

Lemma 2 For any k € N and sufficiently small t, we have the following estimates,

wh

. 1 1
DUISE = SOl pge g2y < CU+D)2e™ T2, 1 € [t tis1],
i) 1S5 = SO gy < Ce™ 1 € it tia1 ],

ere the constant C = C(«) is independent of k and .
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Proof Stepl. If t = . A§ S(¢) is the operator semigroup of equation du(t) =
AA—a)u(t)dt, u(0) = u® € H?, and S; is the corresponding discrete operator semigroup,
we have

k k — k— . k
S*u(0) = uf = e uf ! 4 irAut, (4.10)
173
St)u0) = u(ty) = e *“u(tr_) +/ ie =) Ay(s)ds.  (4.11)
tk—1
Denote e; = uk — u(t) = (S¥ — S(t)) u(0) with g = 0, then
1k
ep =e “Tep_ +itAe; + i/ [Au(tk) - e_o‘(t"_s)Au(s)]ds.

Ix—1

Multiply e to above formula, integrate with respect to x, take the real part, and we get

1
2 - 2 -2 2
5 [exlld + llex — =113 — e ey 13]

1 7 tx
= Re i/ / AEk/ ie %) Au(r)drdsdx
0 Jtp— K

17 Ik
c / / 1A — Au()lloll Aur)lodrds
tk—1 VS

IA

IA

Ce 2% || Au(0) |32,

where we have used the fact that ||Auk||% < e’z""kHAuOH% and ||[Au()]o =<

Ce=' || Au(0)]|o. In fact, multiplying Aw* — ¢=*" Au*~! to Eq. 4.10, integrating in spac;
and taking the imaginary part, we obtain
1AM G < e Au* MG < e AuC.
Then it’s easy to check that
lex 1§ < ™2 llex—11I3 + Ce™* | Au(0) 37>
leads to

lexlld < Cte™ % || Au(0) |13, 4.12)

1
which finally yields ||S’rC =Sl zg2.12) = Ctk2 e*""kr% ini).
For ii), we have

2
[An]

I (55 = S@w0) uol} = > 7o (1 22 ™ = e ) @(0), )
n=1

o0
< 47N T (W(0), en)|? [l = de T |u(O)]7.

n=1
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In the following two steps, we only give the proof of i), and ii) can be proved in a same
procedure. We use the notation || - || = || - || ;g2 12, Which is an operator norm defined at
the beginning of this paper.

Step 2. Ifr € [tx—1, t],

L e L
IS5 — SOOIl < I1S¥ — S| + 1St) — S| < Ctle “ke2
+e—0l1|e—0é(lk—t) _ 1|
3 —at L —at o 1 n 3 —atp L
< Ctie T2 +e Za(at) <Cte T2
n=1
e’ — 1
+e Yar
ot
< Clt+1)e ¥l

e“T—1
at

We have used the fact that

is uniformly bounded for at € [0, 1].

Step 3. Ift € [t, tit1],

L 1
ISE = Sl < 1S = S@I + 1S() = S| < Crle 2

+e*0{[|efa(fk7t) _ 1|
1 1 at—1
< Ctkzefatea(tftk)rj + €7atOlT
ot

<C+1)2e 70,

We have used the fact e*¢ %) < 27 < ¢,

Remark 4 From Eq. 4.10, we can also prove that
1S5 £ 2,02y < Ce™™,

where k and ¢ satisfying ¢ € [tx—1, tx+1].

Next theorem gives the time-independent weak error of the solutions for different cases.

%—lS(LZ,HZ)
the cases A = 0 or —1, the weak errors are independent of time and of order % That is, for
any ¢ € Ci (L?), there exists a constant C = C(uy, @) independent of N, T and M, such
that forany T = Mr,

. 1
Theorem 4.3 Assume that ug € H?, ”?v =un(0) = anyugand | Q2| < oo. For

|Elp@n ()] = Elg ()] = €3

Corollary 2 Under above assumptions, for any t € [(M — 1)t, (M + 1)t], it also holds
1
|Elg@n )] - Elp@ih]] < crt.

Proof LetT = Mt. As

Elg ()1~ El¢ (uh)]| = | L@ Gun (1)1 - El (un ()] +| El (un (T)1 = Elg k)]
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and
El¢un(T))] - E[¢(MN(I))]‘ = gl Ellun(T) — un@®llo
= ol (T —1) sup [EIIMN(t)Ilz + Ellun(®)llo + E””NU)“%””N(I)”O]
=
1 1
+|I¢>|ch1EII7TNQ7(W(T) —W®)lo < Cr2,
we then complete the proof according to Theorem 4.3. O

Proof of Theorem 4.3 We split it into several steps.
Step 1. Calculation of E[¢p(un(T))].
Recall the process we constructed in the proof of Theorem 3.2,
dYyN(t) = Hy(Yn())dt + S(T — t)n Q%dW(t).
Now we denote vy (T —t,y) = E[¢(Yn(T))|Yn(t) = y], then

T 1
UMQMGV=WWRM@D+A(me—LMOMﬂT—meMWm)
(4.13)
where

uN (0, YN (T)) = E[p(un (THIYN(T) = un(T)],
uN (T, Yn(0) = E[¢(YN(T)IYN(0) = S(T)un(0)]

T T
—E [4; <S(T)uN(0) +/ Hy (Yy(s))ds +f S(T —s)nNgidWN Yy (4.14)
0 0

= S(Mun(©)].
The expectation of Eq. 4.13 implies,

T T
Elpun(T)]=E [qb (S(T)MN(O) +/O Hy (Yn(s))ds +/O S(T — S)”NQ%dW>:| :

(4.15)
Step 2. Calculation of E[¢ (uAN’I )]
Similar to [9], we define a discrete modified process
Y}i, = Sf” 7ku]1‘\,
k 12 —at,, =12
= SMUY 4 ircett Y SMH Ly, (Wu’,v) (4.16)
=1

k
+eT Z Si”“‘lnNQ%aWz
=1

k
= S rince” Z SMA=l gy
I=1

Sl—Myl 2+ efoaSIfl—Myl—l 2
(' Yyl 5 r v | sEMyl ) @17

k
+e7 Y SMH 028w,
=1
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Consider the following time continuous interpolation of Yllf,, which is also Vy-valued and
{F1}i>0-adaped,

. M
Yn() = Sﬁwu%—i—i)»e“r/ ZS%+171ﬂN

[—M vyl |2 — [—1-M yl—1,2
(lST YL12 4 et st Y
05

5 si-M Y,{,) 1,(s)ds

t M
re [132 ¥y b )W s
0 =1

t t M
= Sﬁ”u?er/O HI(Y%,s)ds+e°”/o 3 SMH Ay 03 1 (5)d W ().
=1

In particular for ¢t € [f,_1, #],

|S.l[_MY}[\,|2+ ‘e—otrS.l[—l—MYIIV—1|2
2

+e TSy 03 (W) - W(nn)), 4.18)

v = vt +ixeafs;”+1*’n,v< SH%{,)(: —1_1)

or equivalently,
— — —1- —1
|S.l[ MY[[\,|2+|€ otTS.l[lMYIIV |2
2

T SMFI g 03 (W(z) - W(tl)). (4.19)

Yn@) = Y+ ixe“’s%l*’n;v( SQ*MY]{,)(z —1)

Apply Itd’s formula to t — vy (T — 1, Yy (1)),

dun(T —t, Yy (1))
M
3 i
- %(T — 1, Tn())dt + (DvN, He (Y 0)dt + &7 Y sMH -1y 03 ll(t)dW(t)>
=1

M * M
1
5T (WZSQ“”nNth(t)) D?vy (e“sty“’nNQ%l,(t)) dt

=1 =1

M
= (DUN, Ho (Y1) — HN(?N(z))) dt + (DUN, Ty SMHI-lny 03 ll(t)dW(t))
=1

+

N =
M=

*
Tr [(e“fsﬁ‘”‘—’nNQ%) D%vy (emsﬁ‘”‘—’nNQ%)] 1 (0)dt

N
I

ol =
M=

Tr [(S(T — Dy Q%)* D?uy (S(T - t)nNQ%)] 1,(t)dt,

-
I

1

where Dvy and D?vy are evaluated at (T —1t, f’N (1)).
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The same as before, integrate the formula above from O to T, and take expectation based
on the fact that

un (0, YN (T)) = Elgp(Yn(T)IYN(T) = Yn(T)] = El¢p i) YN (T) = udl],
uN (T, YN (0) = E[¢(Yn(T))|Yn(0) = Yn(0)]

T
E[(j) (Si”uNmH / Hy (Y ()ds
0

T
+/ S(T — s)nNQ%dW>
0

Yn(0) = S¥ uN(O)] ,

we get

El¢ ]

T T
E[gb (S?/IMN(O)—i—/ HN(YN(s))ds+/ S(T—s)nNQ%dW)]
0 0

T
+ E/ (DUN, H (Y, 1) — HN(?N(I))) dt

(=)

1 T *
+ 5ZE/ Tr[(e“fsﬁ‘“l—‘nNQ%) D?uy (e“fsﬁ‘“l—’nNQ%)
0
=1

- (S(T - t)nNQ%)* Duy (S(T _ r)nNQ%) ] 1,()dr. (4.20)

Step 3. Weak convergence order.
Subtracting (4.15) from (4.20), we derive

E[¢pui)] — El¢un(T))]
T T
= E[qs (Sﬁ"uN(O)Jr/ HN(YN(s))ds—l—/ S(T—s)nNQ%dW>
0 0

T

—¢ (S(T)MN(O) + /THN(YN(S))dS +/ S(T — S)ﬂNQ%dW> }
. 0 0
+E/0 (DUN, Ho(YM . 1) — Hy(Ty (z))) dr
1 ¢ r L\ * 1
+5 ;E/O Tr|: (emsi+1=ay 03) Doy (e M1y 07)

- (S(T - t)nNQ%)* Dy (S(T - t)nNQ%)]ll(t)dt.
— I II+1I1.
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Now we estimate /, /1, and 111 separately. The constants C below may be different but are
all independent of T and 7.

7]

T T
‘E[qb (S?/IMN(O)-F/ HN(YN(s))ds—i-/ S(T—s)nNQ%dWﬂ
0 0

T T
—E [d’ (S(T)MN(O) +/ Hy (Yn(s))ds +/ S(r _S)”NQ%dW>i| ‘
0 0

Cllgllcy 157 un (0) = STy (O)lo
< ClIplicp 152" = S gzz, 1) lun )12

1

C(T +1)7e 773, 4.21)

A IA

IA

where we have used Lemma 2 and ux (0) = wyug € H2.
Noticing /1 = 0 for A = 0, now we consider the nonlinear term // for A = —1. By using
the notation q; := Si_MY]lv = ulN and Egs. 4.18 and 4.19, we can define b; in two ways,

b= St —T)YNMHL @)

e“”ulil 2+ u[ 2
= S(t_T)Sﬁ”“*’u’,v‘l+e“f5(t—T)S§”+1*’(imN (' N2| Iy uby ) ¢ = 1-1)

N QT (W (D) — W(ll—l))>,

or equivalently,

by = S(t —T)Yn(0)1;(r)

e—arul—l 2+ ub 12
= S(t—T)S,M*lu’N+e°”S(t—T)SQ”‘*’(iAnN (' N2| ey | by )t — 1)

iy QT (W) — W(n))).

Hence, we have
aj—1 — b
M+1-1Y  I-1
= (1d = sa=T)s¥ ) uly

e—arulfl 2+ ul 2
—e*TS(t — T)SM+1-! (ian (' Nzl | uly ) (¢t —1-1)

+ay Q2 (W) = W(t-1)
and

ar—br = (1d =S¢ - s uly

e—arul*l 2+ wb 12
—e*TS(t — T)SM+H1 (imN (' N2| ey uly

+n QT (WD) = W),
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where [|S(t — T)SM 11| ;2 12 < C and
M—I M~ 1.1
1d—St=T)S" |l o212y < USU=D) 12,2 IST =) =8P 4212 < C(T—t47) 272
according to Lemma 2s. Thus, we have the following estimate
B B 11y =12 ol 2\l 3 _
llar=billo = C{(T—t+) 272 Jluyllo 4 luy N7 +1uy 17 ) Iy llo+ Ny Q2 (W @) = W) lo |-
Also, ||la;—1 — bi]|o can be estimated in the same way. Thus, based on Eq. 3.7, we have

T
< cnqbuq;f0 E|Hr (Yy . 1)= Hy (Y (1))lod!.
(4.22)

T
11| = ’E/ (DUN, H (YM 1y — HN(YN(t))) dt
0

where

H (YN, 1) — Hy(Yn (1))

M —at 2 2
-y [e“fSrM“—’nN (ik le a,,12|  Jail a,> — S(T = Hymy (ik|b1|2bl>:| 1)
=1

M
A
= Eil_zl [eaf (S.iw-i_l_l _ S(T _ t))JTN (|€_ata[71|2a]>

e = DS = Dy (jar-1 Par)

+S(T = Dy (jar-1 Par - Ibllzbl)]lz(t)

M
A, M+1-1 2 2
+3i 12_1 [e‘" (ST —S(T — t))nN (|a,| a,) T — D)S(T — Dy (|a,| a,)

+S(T =Dy (jarPar — 161 ) ] o)

M
A, M+1-1 — 2
= §1|: E_ e (ST — S(T — t))mv (|e “Ta;_| al) 1;(2)

M

+ 3 ST = o (lar1 (@ = b) ) 1i0)

=1

M M
+ 32 ST = o (i@ = b)) 1) + Y ST = O (ar-1bi@im = b)) 1)

=1 =1

M

+ @ = ST = oy (la-i P ) 1)
=1
M

+ e (sH = s =) (larPar) 1)

=1
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M M
+ 32 ST = 0 (lanl (@ = b ) 1) + D2 ST = D (1buP @ — b)) 11 1)
I=1 =1

M M
+ 30 ST = Dy (aby @ — b)) ll(t)] + D = ST = Dl ) 1)
=1

=1

N>

i[II]”l i T e e 1+ Ilé].

If A = —1, thanks to the uniform estimations of 0-norm, 1-norm and 2-norm of ull‘\,, we
have the following estimates.
By the embedding H! < L> in R!, we have following exponential estimates

A

M
_ 1 _ ot I
ENI{ o = 5 D ISHHT = ST =Dl e g E | (1e7muly Puy ) | 1o
=1

M
< CY USHF — S(T = Oll g2 E [y 1T+ ey 13| 1)
( )
=1

< C(T—t+1)2e T3

M
ENL o < Ce T EY  Jlar-1lillar — billoli (1)
=1
M 1 1
< Ce*W*’)EZ||u’N‘1||%[C<T—r+r>m||u§v||z
=1

+C [ (a1 + 1y 13 Dy o + e @3 (W (1) = W@ o ] 110)

< C(T —t+ Die@TDg3,

IA

ENI5 o < e (1 - e“”)E[Huév‘ 1||%||»/N||o} < Ce@T=Ng,

and their integrals are also of order % I If, 1 Ié and / 15[ can also be estimated in the same
way, where we have used the fact that for any 7 > 0, the integral fOT (T—t+7) 2eaT=0 gy

is bounded and 37, 1;(1) = 1.
Other terms are proved in the same procedure by using the fact that

- — 1
IbillFee < CISGE = TOSET, 1 oy Ly I+ lluly I + e @28 W3]
and [|la;by|| 1 < 3l + [11]1% 1. Finally, we have

11| < Ct2. (4.23)
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Next is the estimate of 171, which is similar to the same part in the proof of Theorem 3.2.
g r 1\ * 1
1 = 3 3 E/ Tr[ (gafsﬁ‘”‘*’nNQf) D2uy (e“fsﬁ‘f“*lmvgf)

=1 0

- (S(T - z)va%)* Doy (S(T - z)nNQ%) } 1)

-5y E/OTTr[ ((ems¥1 — s — ) mw0F) " DPu (&4 — 57— 1) nNQ%)}

+2Tr|: ((e“sy“*’ ST — z)) nNQ%)* D’uy (S(T - z)nNQ%) ]wm

_ %ZE]OTT’[‘?ZM ((Syﬂ_/ _S(T - t)) ﬂNQ%)* Doy ((syﬂ_l ~S(T - t)) ﬂNQIf>

1=

#2627 (M1 = ST =) iy 07

" D2uy (S(T - t)va%)
—‘,—(82(” -1 (S(T _ f)JTNQ%)* DZUN (S(T — f)TfNQ%> ]ll(l)dt
N

=3 Z Ef (A1 + 2B + C)1;(ndt,

=1 70

where A;, B; and Cj satisfy

E|A;|

IA

_ 1 _ _
CISFH = ST = D7 a1 18 Q211 12 o 19l 2 < C(T — 1+ 1)e 24T,

E|B|

IA

_ 1
CISIHT = ST = )l 2o, 12 1N @2 I 2o 1912 1S(T = Dl 2z 12

C(T —t 4+ 1)1 20T0r3

IA

and
1 _ _
E|Cl| < Ctllay Q2 72 12 1012 IS(T = D172 12y < Ce T 0.

It follows
111] < Ct3. (4.24)

We can conclude from Eqs. 4.21, 4.23 and 4.24 that,

1

El¢un()] - E [p@l)] | = c73,
where C is independent of 7, M and N. O

Remark 5 For the linear case (A = 0), as the weak convergence order depends heavily on the
regularity of the solution, which depend only on the regularity of the initial value and noise,
we can achieve higher order by increasing the regularity of the initial value and the noise.
For example, the weak order turns out to be 1 if we assume uq € H*and || Q% “’HS(LZ a4y <
o0. However, for the nonlinear case (A = =1), it is too technical to obtain the uniform ’higher
regularity under proper assumptions, as a result, we work under the assumptions ug € H?>

and || Q2 [l3ys5(12, g2y < o© and derive order 1.
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4.4 Convergence Order between Invariant Measures uy and u},

. 1
Theorem 4.4 For > = 0 or —1, assume that ug € H? and || Q2 L2, 52y < 00 the error

, , T o 1 .
between invariant measures uy and [y is of order 3, ie.,

‘ /V 6 ()N () — /V $0)duy ()| < Cet. Vo e CAL?).

Proof By the ergodicity of stochastic processes uy and u’]‘v, we have

1 T
tim 7 [ Esan®)dr = [ o0)dune, @25)
T—oo T Jo Va
1 M-1
. k T
Jim,_ 55 2 E8Gh) = [, sy 4.26)

for any ¢ € Cﬁ (L?). As the weak error is proved to be independent of step k and time ¢ in
Theorem 4.3, it turns out that for a fixed 7,

/V¢(y)duzv(y)—/v d)(y)dufv(y)'

1 M=l g
< lim — E
M—oo, T P
k=0 “ '

T=Mt—0c0

E¢(un (1) — E¢(u]1‘v)‘dt <Cr12.

O

Remark 6 For the case A = 1, if the 1-norm and 2-norm of ull‘v is also uniformly bounded,

we can also get order % for both time-independent weak error and error between invariant
measures. If not, based on the fact || - ||s+1 < N||-||s, we can get the weak error depend on N

E[¢un(T)] — Elp @] < CN*z2,

as well as the error between invariant measures.

5 Numerical Experiments

This section provides numerical experiments to test the longtime behavior of scheme
(4.1) for the case A = 0. Based on the spatial semi-discretization in stochastic ordinary
differential equation form Eq. 3.2

day (t) = —i(mm)*an ()dt — ety ()dt + /Tmdn(t), 1<m <N,

we derive an equivalent form of the full discretization (4.1) as

1 NOTLIY!
ak —emom gkl = —jra? ak + ,
N? VINSkBN
where @¢ := (a¥,---,ak)T is an approximation of a(r) := (ai(t), -~ ,an ()" and

8k Bm = Bm(tx) — Bm(tx—1) for 1 < m < N.In the sequel, we take « = 1, N = 100.
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12 210° =2% 10 210 7=2
—initial(1) —initial(1)
L —— Initial(2) ——initial(2)
initial(3) 8 initial(3)
b ——Initial(4) ——initial(d)
—— initial(5) ——Initial(5)
6
: %T‘N__
2t
¢ o
3
20 5‘0 100 150 200 250 .ZO 50 100 150 ESO 250 J‘JO

t

(a) ¢(@) = exp(—||a@l})

1

(b) ¢(a@) = sin(||]2)

Fig.1 The temporal averages ﬁ Z,ICW:O El¢ (@%)] started from different initial values (z = 27°, T = 300)
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t

(d) ¢(@) = sin(||lsz), 7 =27°

Fig. 2 The weak error E[¢(a(t)) — ¢(Zik)] for different ¢ and step size v with #x = kt € [0, T] and

T=10°
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Strong Order Weak Order Weak Order
— ...‘.,,.,;,0_3‘: of 5 Sy iy 6,;,;,“'2 iy —— ...6;“."“.“%
. | —orderos| | f " Order 0.6 || f ——Order 06| |
Order 1.0/ | { % “ Order 1.0 | I % 2 Order 1.0/ |
B ; o | N et |
el i [ e || f e ne® ||

i
(a) Strong Order (b) ¢(a@) = exp(—|lall%) (¢) ¢(@) = sin(||@l];2)

Fig. 3 The strong and weak orders for noise in L2, H? and H4, i€, Nm = m~1, m_3, m=S. (T =
Te{27i,5<i<9)

In Fig. 1, the temporal averages ﬁZ,’yz 1 E[¢p@*)] of the fully
discrete scheme started from five different initial values initial(1) =

1,0,---,07, initial (2) = (0 0003i,0,---,0)7,  initial(3) =
(sin (77) sin () .+ ,sin(}g‘fn)) : initia1(4) = (2+')(1 2,---,100)7 and
initial(5) = (exp ( 50) exp (—%) S, exp( 1;)(())1)) will converge to the same

value with error r% before time T, where T = 276 and T = 300. This result verifies the
ergodicity of the numerical solution: the temporal averages converge to the spatial average,
which is a constant, for almost every initial values in the whole space. We choose 500
realizations to approximate the expectations in Figs. 1 and 2, and choose 1000 realizations
in Fig. 3.

In Figs. 2 and 3, we fix the initial value uo(x) as V2 sin(rx), such that a,, (0) = (ug, e;)
and a° = a0) = (1,0,---,0)7. Figure 2 displays the weak error E[¢ (d(t)) — ¢>(ak)]
over long time T = 103 for different time step sizes and test functions: (a) v = 274,
¢(@) = exp(—all}) (b) T =27, ¢(a) = exp(—[al}), () T = 274, ¢ (@) = sin(|la2)
and (d) 7 = 27° qb(a) = sin(||d@||;2). The reference values are generated for the time step
size T = 273, and the noise is chosen in H2, i.e., Nm = Flgure 2 shows that the
weak error is independent of time interval and can be controlled by Ct 3 , which coincides
with our theoretical results. Figure 3 displays both (a) the strong convergence order and
the rates of weak convergence for (b) ¢(a) = exp(—||a|| ) or (¢) ¢(a@) = sin(|la|l;2)-
The reference values are generated for the time step size T = 274, As the initial value
uo(x) = +/2sin(rrx) is regular enough, both the strong and weak convergence order depend
heavily on the regularity of the noise for the linear case. It shows in Fig. 3 that the orders
slightly increase as the noise from L? via H? to H* (i.e., n;; from m~! viam™3 to m=),
which verifies Remark 5. Noticing that the orders are a little bit better than the theoretical
results, because the truncation of the noise makes the noise more regular than it should be,
which increases the orders slightly. Numerical tests also shows that the weak convergence
order is almost the same as the strong convergence order, which is similar to the statement
in [7] (Remark 5.11).
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proofs of ergodicity of the schemes. Also, we are very grateful to Prof. Arnulf Jentzen, Prof. Xiaojie Wang
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Appendix
The Proof of Proposition 3.1

i) Asitis proved in Part 3 of Theorem 3.1 that E|luy (¢) ||é < C, we assume further that
Elluy®)|?" < C, ¥n=1,---, p— 1. Denoting dM; := 2Re (uN,nNQ%dW),
then Itd’s formula and Eq. 3.5 yields

_ 1 _
dluy O = plun@le? Vdlluy @))% + 3PP~ Dllun @) Ie" > d(M;)

2 2(p—
—2aplluy Ol dt + plluy ®llg" " dM; (1)
N
2(p—1
+2p2p = 1) Y amllun @15 Vdr,

m=1

IA

where (-) denotes the quadratic variation process and in the last step we used the fact

d{My)

N oo
4<Re > /0 N (5)/Tmem (X)dx(dBn. 1 +idﬂm,z>>

m=1

N | 2 | 2
43 |:<Re/ uN(t,x)mem(x)dx> + <[m/ uN(t,x)mem(x)dx) }zz
el 0 0

N
< 8 nullunligdr.
m=1

Taking expectation on both sides of above equation, we obtain

N
d 2 2 2p—1
TENunOl" < ~2epElun 01" +2p@p = 1) Y mmElun 0l
m=1

—2apElluy) +C

IA

by induction. Then multiplying ¢2*”* to both sides of above equation yields the result.

ii) The proof in this part is similar to the proof of Lemma 2.5 in [8]. According to the
Gagliardo-Nirenberg interpolation inequality, there exists a positive constant cg, such
that

5 4 g _ 1 2 1 6
8)\||”N(t)||L4 S lun®lijs < 4||VMN(f)||o + ZCO””N(f)”o- (D
Thus,

0=<Hun®) :

1 2 A 4 6
§||VMN(f)||o - ZH”N(Z)HU + collun @)y
2
3

IA

(IVan I = Mlun O34 + 2colun 1) . @)
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Applying It6’s formula to H (ux (1)), it leads to

dHuy(t) = [—a||VuN(r>||%+ax||uN(t)||i4 — 6accollun (O
—2A/ junl? an|em| dx

+ Z m2n + 6collun (1 Z Mo

m=1 m=1

1
+12co||uN(t)||é||nNquN<t)||3]dr

1
+6colun )I§Re (un, Ty Q2dW)

—Re (AuN(t) + Mun @) Pun @), nNQ%dW) ,

where we have used the fact ((Id — ny)v,vy) = 0, Vv € HY vy € Vy. By the
following estimates

1 N
20 [ Y nalenPx <0
0
m=1

N
1
6eollun g Y nm + 12¢olluy O lrn QZun (DI < decollun (D)[§ + C

m=1

and Eq. 1, we have

dH(uy () < [— || Vuy ()5 + erllun ()54 3)
N
~2acoluy 1§+ 3 mn, + C]dt
m=1
+6colun )l Re (un (1), Ty Q2AW (1)) @

—Re (A @)+ My (0 Pun (1), 7x 01 W )
< —%a?—[(u;v(t))dt + Cdt +dM>, (3)

where
dM; = 6collun [§Re (un, Ty Q2dW) = Re (Auy + hu Puy, 7x Q2dW).

Taking expectation, we derive
3
dEH@un((@)) < —E(xE’H(uN(t))dt + Cd:t.

Hence, by multiplying e%"" to both sides of the equation above and then taking inte-
gral from O to ¢, we get the uniform boundedness for p = 1. By induction, we assume
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that the results hold for p — 1. Then, based on the following estimates (see [8])

(6l I Re (s mv @ 2aw )

A

clos? 10,/
”Q ”HS(LZ,LZ)HMN”O z,

IA

1 2 1
(Re (Aun + My Pu, ox 02aW)) = CUQH 12510 ry (IVun I+ luen 13”) de

and Eq. 5, we have

1
dH@un0))” = pHun @) dHun @) + FPr - DH(un ()P ~*d(My)

IA

—;apH(uN(t))”dt + CpHun®)Pdt + pHuy ()P~ dM,

+Cp(p = DHan )2 (IVun I + lux ) dr.— ©)

From Eq. 1, we deduce that

1
N VunOIIF + collun IS, 2 =0o0r — 1,
Hun(®) = 1 % ;
2 6
TeIVan OIG + geolun @I, & =1,

As a result, the last term in Eq. 6 can be estimated as

Cp(p = DRy )2 (IVuy O + lux @11
3 -2 1] p
= (CHEN @) + CHuN )T ) Huy @)™ = CHun @)™ + JapHay )", (7)

where in the last step we used the inequality of arithmetic and geometric means

SapHun(1)? + apH(uy (0))? + CHun 1))

C(Hun ()2 Hun (0)Huy (1) < 2

Gethering Eqs. 6 and 7 and taking expectation, we obtain
dEHun®))? < —apEHuy))Pdt + Cdt

by induction, which complete the proof by multiplying e*’ on both sides of above
equation.
iii) We define a functional

1 1
f(u):f |Au|2dx+ARe/ (AW |u)?udx,
0 0

which satisfies
I Aull3 < 2f @) + Clull 8)

based on the continuous embedding H' < L% and })\RefolAﬁ|u|2udx’ <

sIAuld + 51ulbs < 31 Aulf + Cllull§. The 1t6’s formula applied to f (uy) yields
: . 2 1
dfun) = Df n)( (iduy +idlunPuy — auy ) dr) + Df wy) (v Q2dW)
1
+5D7 fun) Ty Q2 AW, iy Q2d W)

= A+B+C, &)
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where

1
Df(u)(g) = Re/ [2Am¢ 1 2M(ADuRe(@p) + A(AD)|ul?¢
0
(A () [dx,

1
D> f(u)(p, V) = Re/ [ZAEAw + 20 (AW uRe(@yr) + 20 (Au)pRe(uyyr)
0

+20(A@)uRe (@)
+2X (AW Y Re(@u) + 2A(AV)uRe(@g) + L(AD)|u|*y

+3(AT) g |dx
and E[B] = 0. Now we estimate .4 and C respectively.
1
ELA] = —2E[f(un))dt + ReE/ [4Ai(AﬁN)uN|VuN|2
0
+22(ATN) N (Vi N)Z]dxdt

1
+ReE/ [Azi(AﬁN)|uN|4 - 4aA(AﬁN)uN|uN|2]dxdt
0

1
+ReE/ [ — darluy P Vuy|? — 2aA(VuN)25%V]dxdt
0

=: 20E[f(un)ldt + Aidt + Ardt + Azdt,

where we have used the fact A(|u|?u) = 2|u|?Au+4u|Vu|? + 2u(Vu)? + u? A and
Ay, A; and Aj are estimated as follows.

1
A = ReE/ [4Ai(AEN)uN|VuN|2+2Ai(AﬁN)EN(VuN)2]dx
0

o
< Bl Aun + CE [lun o Vun |2
o 2 4 3
< Tl Aun} + CE [lun It + 1 Auyllol Vun
« 2 4 6
< SENAunI3+ CE [l + lun ]
o 2
< SElsunl}+C,

where we have used the uniform boundedness of ||u Ipr for p > 1inii), the contin-
uous embedding H' <> L™ for R! and the interpolation of L* between L? and H'.
Similarly, based on the continuous embedding H' < L% and H' < L8, we have

1
| Ay = ReE/ [kzi(AﬁN)le“—4ak(AﬁN)uN|uN|2]dx
0
o 2 8 6 o 2
< §E||AMN||0 + CEllunllys + llunlijel < §E||AMN||0 +C
and
1
|A;] = ReE/ [—4ax|uN|2|wN|2 — 2aA(VuN)2ﬁ§v]dx < CElluy|* < C.

0
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Thus, we obtain

ELA] < —20E[f(uy)ldr + %EHAuNII% +C.

The estimate of C is similar with that of A, and we derive E[C] < E||Auy II% +C.
Taking expectation on both sides of Eq. 9 yields

dEf(un) +20Ef(uy)dt < %EHAuNH%dl‘ + Cdt < aEf(uy)dt + Cdt.

Multiplying both sides of above equation by e*’ and taking integral from O to ¢, we
conclude the uniform boundedness of E f (uy ()

C
Ef(un(t) < e “Ef(uyn(0)) + —(1- oo,

which yields the uniform boundedness of E| Au N||(2) based on Eq. 8. As the norm
llun |2 is equivalent to || Auy|lo under Dirichlet boundary condition, we complete the
proof.

O
The Proof of Uniqueness of the Solution for Eq. 4.1

Suppose that U and W are two solutions of the scheme, then it follows
. T 2 2 —at k=12
U—W_nA(U—W)erEnN (IUIPU = [WIPW) + e~ Tuly [2(U = W) |.

Multiply the equation above by U — W, integrate in space and take the real and imaginary
part respectively, we have

2 T
IU =Wl = S1£W) = fWI 41U = Wiizs,

1 A _
IVW = WG < SIFW) = FONI 31U = Wilgs + Zlle™ T 741U = Wi,

where f(U) := |U|*U and

IF @) = fFWIl 4

1
[ fwev - wew
0
1 2
/ ’\U|2+|W|2+|UW\‘ dx
0

3
4 4
3a'x)

3
4 4 1
de) = (/ )|U|2(U—W)+|W|2(U—W)+UW(ﬁ—W)
0
1

1 7
(/0 U — W|4dx> < 101+ W7V = Wile.

o=

IA
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Since
v - WII‘£4 < U= WIIVU - W)l

3
2 (1
(@) = rami 41U =wi)* <§||f(U) —FOWI 51U = Wil

1

IA

[ 2
+ 5 le Ty U = Wiz

1 3 1
2o T+ Wl (01 W+ 3l 22) o = wiid,

IA
-

3

= 372 (W1 1wl + BN+ Wl ) 10 = Wi,

~

o3 (w1 + 1w + BT+ Wl 1)
ot 3 (101 + W3 + AU+ W G+ 31112 )

For cases A = 0 or —1, the L*-norm of the solutions are uniformly bounded. So C()T% >

1, which do not hold when 7 is sufficiently small. For case A = 1, according to the fact that
6 3 3 3 6

U1+ Wi, < [lUl+ WI|g [VAUT+1WD|§ < N2 1]+ W],

we have Co N 3 T% > 1, which is also a contradiction when t is sufficiently small.
Thus, the numerical solution for Eq. 4.1 is unique. O
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