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Abstract In order to inherit numerically the ergodicity of the damped stochastic nonlin-
ear Schrödinger equation with additive noise, we propose a fully discrete scheme, whose
spatial direction is based on spectral Galerkin method and temporal direction is based on
a modification of the implicit Euler scheme. We not only prove the unique ergodicity of
the numerical solutions of both spatial semi-discretization and full discretization, but also
present error estimations on invariant measures, which gives order 2 in spatial direction and
order 1

2 in temporal direction under certain hypotheses.

Keywords Stochastic Schrödinger equation · Numerical scheme · Ergodicity · Invariant
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1 Introduction

The ergodicity of stochastic differential equations (SDEs) and stochastic partial differential
equations (SPDEs) characterizes the longtime behavior of the solutions (see [5, 8, 14] and
references therein), and it is natural to construct proper numerical schemes which could
inherit the ergodicity. For ergodic SDEs with bounded or global Lipschitz coefficients,
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the ergodicity of several schemes were studied in [15]. It also gave an error estimation of
invariant measures

e(φ) =
∣
∣
∣
∣

∫

φ(y)dμ(y) −
∫

φ(y)dμ̃(y)

∣
∣
∣
∣

via the exponential decay property of the solution of Kolmogorov equation, where μ and μ̃

denote the original invariant measure and the numerical one respectively. In the local Lip-
schitz case, the ergodicity is inherited by specially constructed implicit discretizations (see
[14] and references therein). For SDEs, there are also various works related to the study of
error e(φ) by assuming the ergodicity of the schemes (see [1] and references therein). For
SPDEs, there have also been some significant results concentrating on invariant laws, e.g.,
[3] studied a semi-implicit Euler scheme in temporal direction with respect to parabolic type
SPDEs with bounded nonlinearity and space-time white noise; [4] studied a full discretiza-
tion for stochastic evolution equations with global Lipschitz nonlinearity and space-time
white noise. Invariant laws of the approximations are, in general, possibly not unique. To
our knowledge, there has been less work on constructing a fully discrete scheme to inherit
the unique ergodicity of SPDEs up to now.

In this paper, we consider an initial-boundary problem of an ergodic one-dimensional
damped stochastic nonlinear Schrödinger equation

⎧

⎪⎨

⎪⎩

du = (

i�u − αu + iλ|u|2u)dt + Q
1
2 dW

u(t, 0) = u(t, 1) = 0, t ≥ 0

u(0, x) = u0(x), x ∈ [0, 1],
(1.1)

where α > 0, λ = ±1 and the solution u is a complex valued (C-valued) random field on a
probability space (�,F , P ). The noise term involves a cylindrical Wiener process W and a
symmetric, positive, trace class operator Q such that the noise is colored in space and white
in time. The operator Q is supposed to commute with Laplacian �, and the noise has the
following Karhunen-Loeve expansion

Q
1
2 dW =

∞
∑

m=1

√
ηmem(x)dβm(t), ηm ∈ R

+ and η :=
∞
∑

m=1

ηm < ∞,

where {βm(t)}m≥1, associated to a filtration {Ft }t≥0, is a family of independent and identi-
cally distributed C-valued Wiener processes and {em}m≥1 is the eigenbasis of the Dirichlet
Laplacian. This model has many applications in statistical physics and has been studied by
many authors. For instance, it can describe the transmission of the signal along the fiber
line with signal loss (see [11, 12] and references therein). The ergodicity for Eq. 1.1 with
λ = 1 has been studied in [8] based on a coupling method, Foias-Prodi type estimates and a
priori estimates for a modified HamiltonianH = 1

2‖ · ‖21 − 1
4‖ · ‖4

L4 + c0‖ · ‖60. The authors
showed that (1.1) possesses a unique invariant measure μ assuming that the noise is non-
degenerate in the low modes, i.e., ηm > 0, m ≤ N∗ for some sufficiently large N∗. In the
same procedure, one can also show the ergodicity for the cases λ = 0 and λ = −1 by set-
tingH = 1

2‖ · ‖21 − λ
4‖ · ‖4

L4 + c0‖ · ‖60. Note that the damped term (α > 0) is necessary for
both linear and nonlinear Schrödinger equation to be ergodic.

Our work mainly focuses on the construction of a fully discrete and uniquely ergodic
numerical scheme (i.e., whose numerical solution possesses a unique invariant measure).
Moreover, the estimation of error between the original invariant measure and the numerical
one is also considered based on the weak error of solutions.
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In order to obtain a scheme whose noise remains in an explicit expression, we apply
spectral Galerkin method in spatial direction to obtain a N -dimensional SDE

duN =
(

i�uN − αuN + iλπN

(

|uN |2uN

) )

dt + πNQ
1
2 dW (1.2)

with πN being a projection operator. Here the spectral Galerkin method also ensures that the
semigroup operator is the same as the one of Eq. 1.1, which simplifies the error estimate in
spatial direction. We find a Lyapunov function by proving the uniform boundedness of uN

in L2-norm. It ensures the existence of the invariant measure of Eq. 1.2. We show that the
solution uN(t) is a strong Feller and irreducible process via the non-degeneracy of the noise
term in Eq. 1.2. Hence, uN(t) possesses a unique invariant measure μN , which implies the
ergodicity of uN(t). We would like to emphasize that the noise in the original equation do
not need to be non-degenerate. Our method is also available under the same assumption in
[8], that is ηm > 0, m < N∗ for some sufficiently large N∗. Here N and N∗ need to satisfy
the condition N < N∗ to ensure the non-degeneracy for the truncated noise and obtain
the ergodicity for numerical solutions. The error between invariant measures μN and μ is
transferred into the weak error of the solutions, which is required to be independent of time
t . Different from conservative equations, the damped term in Eqs. 1.1 and 1.2 contributes
to an exponential estimate on the difference between semigroup operators S(t) and S(t)πN ,
where S(t) is generated by the linear operator i� − α. Therefore, we achieve the time-
independent weak error of solutions directly which, together with the ergodicity of u and
uN , deduces the error between invariant measures μN and μ.

For the temporal discretization of Eq. 1.2, we propose a new scheme

uk
N − e−ατ uk−1

N =
(

i�uk
N + iλπN

(

|uk
N |2 + |e−ατ uk−1

N |2
2

uk
N

))

τ + πNQ
1
2 δWk, (1.3)

which is a modification of the implicit Euler scheme. In order to analyze the effect of the
time discretization, we investigate both the ergodicity of uk

N and the weak error between
uN and uk

N . The fully discrete scheme (1.3) is specially constructed to ensure the uniform
boundedness of uk

N in L2-, Ḣ 1- and Ḣ 2-norms, which is essential to obtain the existance of
the invariant measure as well as the time-independence of the weak error. Together with the
Brouwer fixed point theorem and properties of homogeneous Markov chains, we prove that
uk

N is uniquely ergodic. For the weak error, it is usually analyzed in a finite time interval
[0, T ] and depends on T (see e.g. [7, 9]). In our cases, however, the weak error between
uN(T ) and uM

N (T ) is required to be independent of time T and stepM . Thus, some technical
estimates are given to obtain the exponential decay of the difference between non-global
Lipschitz nonlinear terms and between S(t) and Sτ . Based on the time-independency of the
weak error of the solutions, we show that the error of invariant measures has at least the
same order as the weak error of the solutions.

This paper is organized as follows. In Section 2, some notations and definitions about
ergodicity are introduced. In Section 3, we apply spectral Galerkin method to Eq. 1.1 and
prove the ergodicity of the spatial semi-discrete scheme. The time-independent weak error
of the solutions, together with the error between invariant measures, is given. Section 4
is devoted to the proof of ergodicity of the fully discrete scheme. Moreover, we give the
approximation error of invariant measure in temporal direction via the time-independent
weak error. In Section 5, numerical experiments are given to verify the time independence
of the weak error as well as the weak order in temporal direction for the linear case. The
last section is the appendix of some proofs.
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2 Preliminaries

In this section, we present some notations and the definition of ergodicity. Moreover, we
introduce a sufficient condition for a stochastic process to be ergodic, which will be used in
our proof on ergodicity of the numerical solution.

2.1 Notations

We set the linear operator A := −i� + α, and the semigroup S(t) := e−tA = et(i�−α) is
generated by A. The mild solution of Eq. 1.1 exists globally and can be written as

u(t) = S(t)u0 + iλ
∫ t

0
S(t − s)|u(s)|2u(s)ds +

∫ t

0
S(t − s)Q

1
2 dW(s).

It is obvious that {λn}n∈N := {

i(nπ)2 + α
}

n∈N is a sequence of eigenvalues of A with

1 ≤ |λn| → +∞ and {en}n∈N := {√
2 sin nπx

}

n∈N is the associated eigenbasis of A with
Dirichlet boundary condition. Denoting L2

0(0, 1) as the space L2(0, 1) with homogenous
Dirichlet boundary condition, then {en}n∈N is an orthonormal basis of L2

0(0, 1).

Definition 1 For all s ∈ N, we define the normed linear space

Ḣ s := D(A
s
2 ) =

{

u

∣
∣
∣u =

∞
∑

n=1

(u, en)en ∈ L2
0(0, 1) s.t.

∞
∑

n=1

∣
∣(u, en)

∣
∣
2|λn|s < ∞

}

,

endowed with the s-norm

‖u‖s :=
( ∞
∑

n=1

∣
∣ (u, en)

∣
∣
2 |λn|s

) 1
2

,

where the inner product in the complex Hilbert space L2(0, 1) is defined by

(u, v) =
∫ 1

0
u(x)v(x)dx, ∀ u, v ∈ L2(0, 1).

In particular, ‖u‖0 = ‖u‖L2 ,∀ u ∈ Ḣ 0.

In the sequel, we use notations L2 := L2(0, 1) and Hs := Hs(0, 1). It’s easy to check
that the above norms satisfy ‖u‖r ≤ ‖u‖s(∀ 0 ≤ r ≤ s) and ‖u‖s

∼= ‖u‖Hs (s = 0, 1, 2) for
any u ∈ Ḣ s .

The operator norm is defined as

‖B‖L(Ḣ s ,Ḣ r ) = sup
u∈Ḣ s

‖Bu‖r

‖u‖s

, ∀ r, s ∈ N,

hence, for 0 ≤ r ≤ s,

‖S(t)‖L(Ḣ s ,Ḣ r ) = sup
u∈Ḣ s

(
∑∞

n=1

∣
∣
(

et(i�−α)u, en

) ∣
∣
2 |λn|r

) 1
2

‖u‖s

= sup
u∈Ḣ s

e−αt‖u‖r

‖u‖s

≤ e−αt .
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We need Q
1
2 to be a Hilbert-Schmidt operator from L2 to Ḣ s with norm

‖Q 1
2 ‖2HS(L2,Ḣ s )

:=
∞
∑

m=1

‖Q 1
2 em‖2s =

∞
∑

m=1

|λm|sηm < ∞.

Assumptions on s will be given below.

2.2 Ergodicity

Let Pt be the Markov transition semigroup with an invariant measure μ and V be a Hilbert
space. The Von Neumann theorem ensures that the limit

lim
T →∞

1

T

∫ T

0
Ptφ(y)dt, φ ∈ L2(V , μ)

always exists in L2(V , μ), where y denotes the initial value of the stochastic process.

Definition 2 (see e.g. [5]) If Pt has an invariant measure μ, and in addition it happens that

lim
T →∞

1

T

∫ T

0
Ptφ(y)dt =

∫

V

φdμ in L2(V , μ) (2.1)

for all φ ∈ L2(V , μ). Then Pt is said to be ergodic.

Remark 1 In the following sections, we choose Ptφ(u0) = E[φ(u(t))|u(0) = u0] for any
deterministic initial value u0, and take expectation of both sides of Eq. 2.1 to obtain

lim
T →∞

1

T

∫ T

0
E[φ(u)]dt =

∫

V

φdμ in R. (2.2)

The sufficient conditions for a stochastic process to be ergodic are stated in the following
theorem.

Theorem 2.1 (see e.g. [5]) Let F : V → [0, ∞] be a Borel function (Lyapunov function)
whose level sets

La := {x ∈ V : F(x) ≤ a}
are compact for any a > 0. Assume that there exists y ∈ V and C(y) > 0 such that

E
[

F
(

u(t; y)
)] ≤ C(y) f or all t ∈ R

+,

where u(t; y) denotes a stochastic process whose start point is y. Then u has at least one
invariant measure.

If in addition the associated semigroup Pt is strong Feller and irreducible, then u
possesses a unique invariant measure. Thus, u is ergodic.

For Eq. 1.1, it is ergodic with a unique invariant measure.

Theorem 2.2 (see [8]) There exists a unique stationary probability measure μ of {Pt }t∈R+
on H 1

0 (0, 1). Moreover, for any p ∈ N\{0}, μ satisfies
∫

H 1
0 (0,1)

‖u‖2p1 dμ < ∞.
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3 Spatial Semi-discretization

We apply spectral Galerkin method to problem (1.1) to get a spatial semi-discrete scheme
which is a finite-dimensional SDE. We show that the solution uN of Eq. 3.1 possesses a
unique invariant measure μN , which leads to the ergodicity of uN . Furthermore, we prove
that the weak error of the spatial semi-discrete scheme does not depend on the time interval,
which implies that μN converges to μ in at least the same rate.

3.1 Spectral Galerkin Method

The finite-dimensional spectral space is defined as

VN := span{em}Nm=1.

Let πN : Ḣ 0 → VN be a projection operator, which is defined as

πNu =
N
∑

m=1

(u, em)em, ∀ u =
∞
∑

m=1

(u, em)em ∈ Ḣ 0.

We use uN as an approximation to the original solution u, and the spatial semi-discrete
scheme is expressed as

⎧

⎨

⎩

duN =
(

i�uN − αuN + iλπN

(

|uN |2uN

) )

dt + πNQ
1
2 dW

uN(0, x) = πNu0(x),
(3.1)

where πNQ
1
2 dW = ∑N

m=1
√

ηmem(x)dβm(t), and the projection operator πN is bounded

‖πN‖L(Ḣ s ,L2) ≤ 1, ∀ s ∈ N.

3.2 Ergodicity of Spatial Semi-discrete Scheme

Theorem 3.1 Let uN(t, x) be the solution of Eq. 3.1, then uN possesses a unique invariant
measure, denoted by μN . Thus, uN is ergodic.

Proof Following from Theorem 2.1, we need to show three properties of uN ,“strong Feller”,
“irreducibility” and “Lyapunov condition”, in order to show the ergodicity of uN . Thus the
proof is divided into three parts as follows.

Part 1. Strong Feller. We transform (3.1) into its equivalent finite-dimensional SDE
form. Denote am(t) = (

uN(t, x), em(x)
)

and we have

uN(t, x) =
N
∑

m=1

am(t)em(x).

Applying the Itô’s formula to am(t) leads to

dam(t) =
[

−λmam(t)+
(

iλπN

(

|uN |2uN

)

, em

) ]

dt+√
ηmdβm(t), 1 ≤ m ≤ N. (3.2)

We decompose the above equation into its real and imaginary parts by denoting am =
a1m + ia2m, λm = λ1m + iλ2m and βm = β1

m + iβ2
m, where {βi

m}1≤m≤N,i=1,2 is a family
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of independent R-valued Wiener processes and the superscripts 1 and 2 mean the real and
imaginary parts of a complex number, respectively, and obtain

⎧

⎪⎨

⎪⎩

da1m =
[

− λ1ma1m + λ2ma2m + Re
(

iλπN

(

|uN |2uN

)

, em

) ]

dt + √
ηmdβ1

m(t),

da2m =
[

− λ2ma1m − λ1ma2m + Im
(

iλπN

(

|uN |2uN

)

, em

) ]

dt + √
ηmdβ2

m(t).

With notations X(t) = (a11(t), a
2
1(t), · · · , a1N(t), a2N(t))T , β = (β1

1 , β
2
1 , · · · , β1

N, β2
N)T ∈

R
2N , F = diag{�1, · · · ,�N },

�i =
( −λ1i λ2i−λ2i −λ1i

)

, G(X(t)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Re
(

iλπN

(|uN |2uN

)

, e1
)

Im
(

iλπN

(|uN |2uN

)

, e1
)

...

Re
(

iλπN

(|uN |2uN

)

, eN

)

Im
(

iλπN

(|uN |2uN

)

, eN

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

√
η1 √

η1
. . . √

ηN √
ηN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

:= (Z1
1, Z

2
1 · · · , Z1

N, Z2
N),

we get an equivalent form of Eq. 3.1

dX(t) =
[

FX(t) + G
(

X(t)
)]

dt +
N
∑

m=1

2
∑

i=1

Zi
mdβi

m := Y (X(t)) dt +
N
∑

m=1

2
∑

i=1

Zi
mdβi

m.

It is obvious that

span{Z1
1, Z

2
1, · · · , Z1

N,Z2
N } = R

2N,

which means the Hörmander’s condition holds. According to the Hörmander theorem [13],
X(t) is a strong Feller process.

Part 2. Irreducibility. By using the same notations as above, we have

dX = Y (X)dt + Zdβ, (3.3)

with X = X(t) ∈ R
2N, X(0) = y and Z being invertible. Using a similar technique as

[14], we consider the associated control problem

dX = Y (X)dt + ZdU, (3.4)

with X = X(t) and a smooth control function U ∈ C1(0, T ). For any fixed T > 0,
y ∈ R

2N and y+ ∈ R
2N , using polynomial interpolation, we derive a continuous function

(

X(t), t ∈ [0, T ]) such that X(0) = y and X(T ) = y+. Hence,

dU = Z−1(dX − Y (X)dt
)

,
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and we get the control function U such that (3.4) is satisfied with X(0) = y, X(T ) = y+
and U(0) = 0. We subtract the resulting Eqs. 3.3 and 3.4, and achieve

X(t) − X(t) =
∫ t

0
Y (X(s)) − Y (X(s))ds + Z(β(t) − U(t)), t ∈ [0, T ].

According to the properties of Brownian motion,

P

(

sup
0≤t≤T

∣
∣β(t) − U(t)

∣
∣ ≤ ε

)

> 0, ∀ ε > 0.

Note that Y is locally Lipschitz because of its continuous differentiability, and the ranges of
X(t) and X(t) (t ∈ [0, T ]) are both compact sets. Thus, it holds

P

(
∣
∣X(t) − X(t)

∣
∣≤

∫ t

0
C1

∣
∣X(s) − X(s)

∣
∣ds + C2ε, ∀ t ∈ [0, T ]

)

> 0, ∀ ε > 0

with C1 and C2 are positive constants independent of ε. Then the Grönwall’s inequality
yields

P

(
∣
∣X(t) − X(t)

∣
∣ ≤ C2(1 + eC1t )ε, ∀ t ∈ [0, T ]

)

> 0, ∀ ε > 0.

For any δ > 0, choosing t = T and ε = δ/C2(1 + eC1T ) > 0, we finally obtain

P
(

|X(T ) − y+| < δ
)

> 0.

In other words, X(T ) hits B(y+, δ) with positive probability. The irreducibility has been
proved.

The above two conditions ensure the uniqueness of the invariant measure of X(t). It
suffices to show the existence of invariant measures in the following.

Part 3. Lyapunov condition.A useful tool for proving existence of invariant measures is
provided by Lyapunov functions, which is introduced in Theorem 2.1. Itô’s formula applied
to ‖uN(t)‖20 implies that

d‖uN(t)‖20 = −2α‖uN(t)‖20dt + 2Re

∫ 1

0
uN(t)πNQ

1
2 dxdW(t) + 2

N
∑

m=1

ηmdt, (3.5)

where we have used the fact that

Re

[

iλ
∫ 1

0
πN(|uN |2uN)uNdx

]

= Re

[

iλ
∫ 1

0

(

|uN |4 − (Id − πN)(|uN |2uN)uN

)

dx

]

= −λIm
(

(Id − πN)(|uN |2uN), uN

)

= 0.

Taking expectation on both sides of Eq. 3.5, we get

d

dt
E‖uN(t)‖20 = −2αE‖uN(t)‖20 + CN,

where CN = 2
∑N

m=1 ηm ≤ 2η. It is solved as

E‖uN(t)‖20 = e−2αt
(∫ t

0
CNe2αsds + E‖uN(0)‖20

)

≤ e−2αtE‖uN(0)‖20 + C, ∀ t > 0.

On the other hand,

‖uN(t)‖20 =
∫ 1

0

∣
∣
∣

N
∑

m=1

am(t)em(x)

∣
∣
∣

2
dx = ‖X(t)‖2

l2(R2N )
.
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Define F = ‖ · ‖l2(R2N ) : R2N → [0, +∞]. The level sets of F are tight by Heine-Borel
theorem. Therefore, X(t) is ergodic. We mention that the ergodicity of X(t) is equivalent to
the existence of a random variable ξ = (ξ11 , ξ21 , · · · , ξ1N, ξ2N) such that

lim
t→∞ X(t) = ξ, i.e., lim

t→∞ ai
m(t) = ξ i

m, ∀ m = 1, · · · , N, i = 1, 2.

It leads to

lim
t→∞ uN(t) =

N
∑

m=1

(

ξ1m + iξ2m
)

em,

which shows the ergodicity of uN(t).

According to the proof of Lyapunov condition, we have the following uniform bounded-
ness for 0-norm. Moreover, 1-norm and 2-norm are also uniformly bounded, which is stated
in the following proposition. Its proof is given in Appendix “The Proof of Proposition 3.1”
for readers’ convenience. In sequel, all the constants C are independent of the end point T

of time interval and may be different from line to line.

Proposition 3.1 Assume that u0 ∈ Ḣ 1, ‖Q 1
2 ‖HS(L2,Ḣ 1) < ∞ and p ≥ 1. There exists

positive constants c0 and C = C(α, p, u0, c0,Q), such that for any t > 0,

i) E‖uN(t)‖2p0 ≤ e−2αptE‖uN(0)‖2p0 + C ≤ C,

ii) EH(uN(t))p ≤ e−αptEH(uN(0))p + C ≤ C,

where H(uN(t)) = 1
2‖∇uN(t)‖20 − λ

4‖uN(t)‖4
L4 + c0‖uN(t)‖60. In addition, if we assume

further u0 ∈ Ḣ 2 and ‖Q 1
2 ‖HS(L2,Ḣ 2) < ∞, we also have

iii) E‖uN(t)‖22 ≤ C.

Remark 2 The uniform boundedness of the original solution u can also be obtained in the
same procedure as Proposition 3.1 or [8]. As the Ḣ 2-regularity for both the original solution
and numerical solutions are essential to obtain the time-independent weak error, we need

the assumption u0 ∈ Ḣ 2 and ‖Q 1
2 ‖HS(L2,Ḣ 2) < ∞ in the error analysis.

3.3 Weak Error between Solutions u and uN

Weak convergence is established for the spatial semi-discretization (3.1) in this section
utilizing a transformation of uN(t) and the corresponding Kolmogorov equation.

Theorem 3.2 Assume that u0 ∈ Ḣ 2 and ‖Q 1
2 ‖HS(L2,Ḣ 2) < ∞. For any φ ∈ C2

b (L2), there
exists a constant C = C(u0, φ, Q) independent of T, such that for any T > 0,

∣
∣
∣
∣
E
[

φ
(

uN(T )
)] − E

[

φ
(

u(T )
)]
∣
∣
∣
∣
≤ CN−2.

Before the proof of Theorem 3.2, we give a useful lemma.
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Lemma 1 Assume that S(t) and πN are defined as before. We have the following estimation

‖S(t) − S(t)πN‖L(Ḣ s ,L2) ≤ Ce−αtN−s .

Proof For any u ∈ Ḣ s , we have

‖S(t)u − S(t)πNu‖0 = e−αt‖u − πNu‖0 = e−αt

⎛

⎝

∞
∑

n=N+1

|(u, en)|2
⎞

⎠

1
2

≤ e−αt |λN |− s
2

⎛

⎝

∞
∑

n=N+1

|λn|s |(u, en)|2
⎞

⎠

1
2

≤ Ce−αtN−s‖u‖s .

Proof of Theorem 3.2 We split the proof in three steps.

Step 1. Calculation of E [φ(u(T ))].

To eliminate the unbounded Laplacian operator, we consider the modified process
Y (t) = S(T − t)u(t), t ∈ [0, T ], which is the solution of the following SPDE

dY (t) = iλS(T − t)
[

|S(t − T )Y (t)|2S(t − T )Y (t)
]

dt + S(T − t)Q
1
2 dW

:= H(Y(t))dt + S(T − t)Q
1
2 dW.

Denote v(T − t, y) := E[φ(Y (T ))|Y (t) = y] and it follows easily
∂v(T − t, y)

∂t
= −

(

Dv(T −t, y),H(y)
)

−1

2
T r

[

(S(T −t)Q
1
2 )∗D2v(T −t, y)S(T −t)Q

1
2

]

.

Note that the mild solution of u has the expression u(T ) = S(T − t)u(t) + iλ
∫ T

t
S(T −

s)|u|2uds + ∫ T

t
S(T − s)Q

1
2 dW . Thus, we have

v(T − t, y) = E[φ(Y (T ))|Y (t) = y] = E[φ(u(T ))|u(t) = S(t − T )y]
= E

[

φ

(

y + iλ
∫ T

t

S(T − s)|u(s)|2u(s)ds +
∫ T

t

S(T − s)Q
1
2 dW

)]

.

For any h ∈ L2, similar to [7] (Lemma 5.13), we have

(Dv(T − t, y), h) = E

[(

Dφ

(

y + iλ
∫ T

t

S(T − s)|u(s)|2u(s)ds +
∫ T

t

S(T − s)Q
1
2 dW

)

, χh(t)

)]

with χh(t) = h+ iλ
∫ T

t
S(T − s)

(

2|u(s)|2χh(s) + u2(s)χh(s)
)

ds. It’s easy to obtain that

‖χh(t)‖0 ≤ ‖h‖0 + C

∫ T

t

e−α(T −s)‖u(s)‖21‖χh(s)‖0ds. (3.6)

To show the uniform boundedness of E‖χh(t)‖0, we define a family of subsets

Km :=
{

ω ∈ �

∣
∣
∣ sup
t≤s≤T

‖u(s)‖1 > m(T + 1 − t)
1
2

}

, m ∈ N
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for any t ≤ T . We claim that E
(

supt≤s≤T ‖u(s)‖21
) ≤ C + C(T − t). In fact, we can

deduce

dH(u(t)) ≤ −3

2
αH(u(t)) + Cdt + dM∗(t)

similar to Proposition 3.1 or [8], which implies

H(u(s)) ≤ e− 3
2α(s−t)H(u(t)) +

∫ s

t

Ce− 3
2α(s−r)dr +

∫ s

t

e− 3
2α(s−r)dM∗(r)

with dM∗ := 6c0‖u‖40Re
(

u,Q
1
2 dW

)

− Re
(

�u + λ|u|2u,Q
1
2 dW

)

and EH(u(t)) ≤ C.

Taking supremum and expectation, we get

E

[

sup
t≤s≤T

H(u(s))

]

≤ EH(u(t)) + C(T − t) + E

[

sup
t≤s≤T

∫ s

t

e− 3
2α(s−r)dM∗(r)

]

≤ C + C(T − t),

where in the last step we have used the Doob’s inequality for convolution integrals (see [16],
Theorem 2). This complete the proof of the claim. Then the Chebyshev’s inequality (see
e.g. [10]) yields that

P (Km) ≤ E
(

supt≤s≤T ‖u(s)‖21
)

m2(T + 1 − t)
≤ C + C(T − t)

m2(T + 1 − t)
≤ C

m2
, ∀ t ≤ T .

As
∞∑

m=1
P(Km) ≤

∞∑
m=1

C

m2 < ∞, we get P(∩∞
n=1∪∞

m=n Km) = 0 based on the Borel-Cantelli

Lemma (see e.g. [10]). It implies that there exists a constant M∗ ∈ N, for any m ≥ M∗,
‖u(t)‖1 ≤ sup

t≤s≤T

‖u(s)‖1 ≤ m(T + 1 − t)
1
2 almost surely. Then the backward Grönwall’s

inequality applied to Eq. 3.6 yields E‖χh(t)‖0 ≤ C‖h‖0 thanks to the exponential decay
factor, and it holds

|(Dv(T − t, y), h)| ≤ ‖φ‖C1
b
E‖χh(t)‖0 ≤ C‖φ‖C1

b
‖h‖0. (3.7)

Similarly, we also have
∣
∣
∣

( (

D2v(T − t, y), h
)

, h
)∣
∣
∣ ≤ C‖φ‖C2

b
‖h‖20. (3.8)

The Itô’s formula gives that

dv(T − t, Y (t)) = ∂v

∂t
(T − t, Y (t))dt +

(

Dv (T − t, Y (t)) ,H (Y (t)) dt

+S(T − t)Q
1
2 dW(t)

)

+1

2
T r

[

(S(T − t)Q
1
2 )∗D2v (T − t, Y (t)) S(T − t)Q

1
2

]

dt

=
(

Dv(T − t, Y (t)), S(T − t)Q
1
2 dW(t)

)

.

Therefore,

v(0, Y (T )) = v(T , Y (0)) +
∫ T

0

(

Dv(T − s, Y (s)), S(T − s)Q
1
2 dW(s)

)

. (3.9)
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Noticing that Y (0) = S(T )u0 and Y (T ) = u(T ), we recall v(T − t, y) =
E[φ(Y (T ))|Y (t) = y] to derive

v(0, Y (T )) = E [φ(u(T ))|Y (T ) = u(T )]

and

v(T , Y (0)) = E [φ(Y (T ))|Y (0) = S(T )u0]

= E

[

φ
(

S(T )u0 +
∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)∣
∣
∣Y (0) = S(T )u0

]

.

Take expectation of both sides of Eq. 3.9 and we have

E[φ(u(T ))] = E

[

φ
(

S(T )u0 +
∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)]

. (3.10)

Step 2. Calculation of E [φ(uN(T ))].

The mild solution of Eq. 3.1 is

uN(t) = S(t)πNu0 + iλ
∫ t

0
S(t − s)πN

(

|uN(s)|2uN(s)
)

ds +
∫ t

0
S(t − s)πNQ

1
2 dW(s).

Using similar argument as above, we consider the following stochastic process:

YN(t) = S(T − t)uN(t).

The relevant SDE is

dYN(t) = iλS(T − t)πN

[

|S(t − T )YN(t)|2S(t − T )YN(t)
]

dt + S(T − t)πNQ
1
2 dW

:= HN(YN(t))dt + S(T − t)πNQ
1
2 dW(t).

Apply Itô’s formula to t → v(T − t, YN(t)) and we get

dv(T − t, YN(t)) = ∂v

∂t
(T − t, YN(t))dt

+
(

Dv(T − t, YN(t)),HN(YN(t))dt + S(T − t)πNQ
1
2 dW(t)

)

+1

2
T r

[

(S(T − t)πNQ
1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]

dt

=
(

Dv(T − t, YN(t)), S(T − t)πNQ
1
2 dW(t)

)

+
(

Dv(T − t, YN(t)),HN (YN(t)) − H (YN(t))
)

dt

−1

2
T r

[

(S(T − t)Q
1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

]

dt

+1

2
T r

[

(S(T − t)πNQ
1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]

dt.
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Therefore,

v(0, YN(T )) = v(T , YN(0)) +
∫ T

0

(

Dv(T − s, YN(s)), S(T − s)πNQ
1
2 dW(s)

)

+
∫ T

0

(

Dv
(

T − t, YN(t)
)

, HN

(

YN(t)
) − H

(

YN(t)
))

dt

+1

2

∫ T

0
T r

[

(S(T − t)πNQ
1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]

dt

−1

2

∫ T

0
T r

[

(S(T − t)Q
1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

]

dt. (3.11)

By the construction of YN , we can check that

YN(0) = S(T )πNu0 and YN(T ) = uN(T ).

According to the representation of v, we have

v(0, YN(T )) = E [φ(Y (T ))|Y (T ) = YN(T )] = E [φ(uN(T ))|Y (T ) = YN(T )]

and

v(T , YN(0)) = E [φ(Y (T ))|Y (0) = S(T )πNu0]

= E
[

φ
(

S(T )πNu0 +
∫ T

0
H(Y(t))dt

+S(T − t)Q
1
2 dW(t)

)∣
∣
∣Y (0) = S(T )πNu0

]

.

Take expectation of the two sides of Eq. 3.11 and we get

E [φ(uN(T ))] = E

[

φ
(

S(T )πNu0 +
∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)]

+E

∫ T

0

(

Dv
(

T − t, YN(t)
)

, HN

(

YN(t)
) − H

(

YN(t)
))

dt

+1

2
E

∫ T

0

{

T r
[

(S(T − t)πNQ
1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]

−T r
[

(S(T − t)Q
1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

] }

dt. (3.12)

Step 3. Weak error of the solutions.
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Subtracting the resulting Eqs. 3.10 and 3.12 leads to

E [φ(uN(T ))] − E [φ(u(T ))]

= E

[

φ
(

S(T )πNu0 +
∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)

−φ
(

S(T )u0 +
∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)]

+E

∫ T

0

(

Dv
(

T − t, YN(t)
)

, HN

(

YN(t)
) − H

(

YN(t)
))

dt

+1

2
E

∫ T

0

{

T r
[

(S(T − t)πNQ
1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]

−T r
[

(S(T − t)Q
1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

] }

dt

:= I + II + III. (3.13)

Due to Lemma 1, terms I and II can be estimated as

|I | ≤ C ‖φ‖C1
b
E ‖S(T )u0 − S(T )πNu0‖0 ≤ Ce−αT ‖φ‖C1

b
E‖u0‖2N−2 ≤ Ce−αT N−2,

(3.14)
and

|II | ≤ CE

∫ T

0
‖φ‖C1

b
‖HN(YN(t)) − H(YN(t))‖0dt

= CE

∫ T

0
‖φ‖C1

b
‖iλS(T − t)(Id − πN)

(|uN(t)|2uN(t)
)‖0dt

≤ |λ|C
∫ T

0
e−α(T −t)‖φ‖C1

b
E
[

‖uN(t)‖21‖uN(t)‖2
]

N−2dt

≤ |λ|C
α

N−2 (3.15)

based on Lemma 1, Proposition 3.1 and the embedding H 1 ↪→ L∞ in R. In the first step of
Eq. 3.15, we have used the fact (3.7).

Let us now estimate term III . As (S(T − t)πN − S(T − t))Q
1
2 is a bounded linear

operator and so is D2v shown in Eq. 3.8, we have
∣
∣
∣
∣
T r

[

(S(T − t)πNQ
1
2 )∗D2v(T − t, YN (t))S(T − t)πNQ

1
2

]

−T r
[

(S(T − t)Q
1
2 )∗D2v(T − t, YN (t))S(T − t)Q

1
2

]
∣
∣
∣
∣

=
∣
∣
∣T r

[

((S(T − t)πN − S(T − t))Q
1
2 )∗D2v(T − t, YN (t))(S(T − t)πN + S(T − t))Q

1
2

]∣
∣
∣

≤ C‖S(T − t)πN − S(T − t)‖L(Ḣ 2,L2)‖Q
1
2 ‖HS(L2,Ḣ 2)‖φ‖C2

b
‖S(T − t)‖L(L2,L2)‖Q

1
2 ‖HS(L2,L2)

≤ Ce−α(T −t)N−2.

Hence, integrating above equation leads to

|III | ≤ C

α
N−2. (3.16)
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Plugging (3.14), (3.15) and (3.16) into (3.13), we get

∣
∣
∣
∣
E
[

φ
(

uN(T )
)] − E

[

φ
(

u(T )
)]
∣
∣
∣
∣
≤ C(e−αT + 1

α
)N−2 ≤ CN−2, (3.17)

in which, C is independent of time T .

3.4 Convergence Order between Invariant Measures μ and μN

Based on the ergodicity of stochastic processes u and uN , for any deterministic u0 ∈ Ḣ 2,
we have the following two equations

lim
T →∞

1

T

∫ T

0
Eφ

(

u(t)
)

dt =
∫

L2
φ(y)dμ(y),

lim
T →∞

1

T

∫ T

0
Eφ

(

uN(t)
)

dt =
∫

VN

φ(y)dμN(y)

for any φ ∈ C2
b (L2). Due to the time-independence of the weak error in Theorem 3.2, it

turns out for any fixed α and N ,

∣
∣
∣
∣

∫

L2
φ(y)dμ(y) −

∫

VN

φ(y)dμN(y)

∣
∣
∣
∣
=

∣
∣
∣
∣
lim

T →∞
1

T

∫ T

0
Eφ

(

u(t)
) − Eφ

(

uN(t)
)

dt

∣
∣
∣
∣

≤ lim
T →∞

1

T

∫ T

0

∣
∣Eφ

(

u(t)
) − Eφ

(

uN(t)
)∣
∣ dt ≤ lim

T →∞
1

T

∫ T

0
C(e−αt + 1

α
)N−2dt ≤ C

α
N−2,

which implies thatμN is a proper approximation ofμ. Thus, we give the following theorem.

Theorem 3.3 Assume that u0 ∈ Ḣ 2 and ‖Q 1
2 ‖HS(L2,Ḣ 3) < ∞. The error between

invariant measures μ and μN is of order 2, i.e.,

∣
∣
∣
∣

∫

L2
φ(y)dμ(y) −

∫

VN

φ(y)dμN(y)

∣
∣
∣
∣
<

C

α
N−2.

Remark 3 Although the time-independent weak error between u and uN is obtained

under the assumption ‖Q 1
2 ‖HS(L2,Ḣ 2) < ∞, it is necessary to assume in addition

‖Q 1
2 ‖HS(L2,Ḣ 3) < ∞ in order to get the unique ergodicity of u (see [8]).

4 Full Discretization

In this section, we discretize (3.1) in temporal direction by a modification of the implicit
Euler scheme to get a fully discrete scheme. We prove the ergodicity of the numerical solu-
tion uk

N of the fully discrete scheme, and get weak order 1
2 of uk

N in temporal direction.
Thus, we achieve at least the same order as the weak error for the error of invariant measure,
as a result of the time-independency of the weak error and the ergodicity of the solution.



338 C. Chen et al.

4.1 Fully Discrete Scheme

We use a modified implicit Euler scheme to approximate (3.1), and obtain the following
scheme

⎧

⎪⎪⎨

⎪⎪⎩

uk
N − e−ατ uk−1

N =
(

i�uk
N + iλπN

(

|uk
N |2 + |e−ατ uk−1

N |2
2

uk
N

))

τ + πNQ
1
2 δWk

u0N = πNu0(x),

(4.1)
where uk

N is an approximation of uN(tk), τ represents the uniform time step, tk = kτ , and
δWk = W(tk) − W(tk−1).

The well-posedness of scheme (4.1), together with the uniform boundedness of the
numerical solution, is stated in the following proposition. The time step τ is assumed to
satisfy ατ ∈ [0, 1] in sequel.

Proposition 4.1 Assume u0 ∈ Ḣ 0. For sufficiently small τ , there uniquely exists a family of
VN -valued and {Ftk }k∈N-adapted solutions {uk

N }k∈N of Eq. 4.1, which satisfies that for any
integer p ≥ 2, there exists a constant C = C(p, α, u0N) > 0, such that

E‖uk
N‖p

0 ≤ C, ∀ k ∈ N.

Proof Step 1. Existence and uniqueness of solution.
Similar to [6], we fix a family {gk}k∈N of deterministic functions in VN . We also fix

ũk−1
N ∈ VN , the existence of solution ũk

N ∈ VN of

ũk
N − e−ατ ũk−1

N = iτ�ũk
N + iλτπN

(

|ũk
N |2 + |e−ατ ũk−1

N |2
2

ũk
N

)

+ √
τgk (4.2)

can be proved by using Brouwer fixed point theorem. Indeed, multiplying (4.2) by ũ
k

N ,
integrating with respect to x and taking the real part, we get

‖ũk
N‖20 + ‖ũk

N − e−ατ ũk−1
N ‖20 − e−2ατ‖ũk−1

N ‖20
= 2

√
τRe

[
∫ 1

0
(ũ

k

N − e−ατ ũ
k−1
N )gkdx +

∫ 1

0
(e−ατ ũ

k−1
N )gkdx

]

≤ ‖ũk
N − e−ατ ũk−1

N ‖20 + e−2ατ‖ũk−1
N ‖20 + 2τ‖gk‖20,

i.e.,

‖ũk
N‖20 ≤ 2e−2ατ‖ũk−1

N ‖20 + 2τ‖gk‖20. (4.3)

Define

� : VN × VN → P(L2),

(ũk−1
N , gk) �→ {ũk

N |ũk
N are solutions of (42)},

where P(L2) is the power set of L2. Equation 4.3 implies that � is continuous, and its
graph is closed by the closed graph theorem. When the spaces are endowed with their Borel
σ -algebras, there is a measurable continuous function κ : VN × VN → L2 such that

κ(u, g) ∈ �(u, g), ∀ (u, g) ∈ VN × VN.
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Assume that uk−1
N ∈ VN is a Ftk−1 -measurable random variable, then uk

N =
κ(uk−1

N ,
πNQ

1
2 δWk√
τ

) is an L2-valued solution of Eq. 4.1. Moreover,

(1 − i�τ)uk
N = e−ατ uk−1

N + iλτπN

(

|uk
N |2 + |e−ατ uk−1

N |2
2

uk
N

)

+ πNQ
1
2 δWk ∈ VN.

Hence, uk
N is actually a VN -valued solution of Eq. 4.1.

For any given uk−1
N and sufficiently small time step τ , the solution uk

N is unique, which
can be proved in a similar procedure as [2]. This fact will be used in proving the ergodicity of
the numerical solution {uk

N }k∈N, and it can be found in Appendix “The Proof of Uniqueness
of the Solution for Eq. 4.1”.

Step 2. Boundedness of the p-moments.

The constants C below may be different, but do not depend on time.

i) p = 2. To show the boundedness, we multiply (4.1) by uk
N , integrate in [0,1] with

respect to the space variable, take expectation and take the real part,

E‖uk
N‖20 + E‖uk

N − e−ατ uk−1
N ‖20 − e−2ατ E‖uk−1

N ‖20 = 2ReE

∫ 1

0
uk

NπNQ
1
2 δWkdx

= 2ReE

∫ 1

0

(

uk
N − e−ατ uk−1

N

)

πNQ
1
2 δWkdx ≤ E‖uk

N − e−ατ uk−1
N ‖20 + E‖πNQ

1
2 δWk‖20.

It derives

E‖uk
N‖20 ≤ e−2ατ E‖uk−1

N ‖20 + Cτ ≤ e−2ατkE‖u0N‖20 + Cτ(1 + e−2ατ + · · · + e−2ατ(k−1))

≤ e−2αtk E‖u0N‖20 + Cτ

1 − e−2ατ
≤ E‖u0N‖20 + C

e−12α

for τ < 1
α
, where we have used e−2ατ < 1 − e−12ατ for τ < 1

α
.

ii) p = 4. In the case when p=2, without taking expectation, we have

‖uk
N‖20 − e−2ατ‖uk−1

N ‖20 + ‖uk
N − e−ατ uk−1

N ‖20 = 2Re

∫ 1

0
uk

NπNQ
1
2 δWkdx.

Multiply both sides by ‖uk
N‖20, take expectation and take the real part and we get

(LHS) = E‖uk
N‖40 − e−2ατE‖uk−1

N ‖20‖uk
N‖20 + E

[

‖uk
N − e−ατ uk−1

N ‖20‖uk
N‖20

]

= 1

2

(

E‖uk
N‖40 − e−4ατE‖uk−1

N ‖40
)

+ 1

2
E
(

‖uk
N‖20 − e−2ατ‖uk−1

N ‖20
)2

+E
[

‖uk
N − e−2ατ uk−1

N ‖20‖uk
N‖20

]
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and

(RHS) = 2ReE

∫ 1

0
‖uk

N‖20uk
NπNQ

1
2 δWkdx

= 2ReE

∫ 1

0

(

‖uk
N‖20

(

uk
N − e−ατ uk−1

N

))

πNQ
1
2 δWkdx

+2ReE

∫ 1

0

((‖uk
N‖20 − e−2ατ‖uk−1

N ‖20
)

e−ατ uk−1
N

)

πNQ
1
2 δWkdx

≤ E
[

‖uk
N − e−ατ uk−1

N ‖20‖uk
N‖20

]

+ E
(

‖uk
N‖20‖πNQ

1
2 δWk‖20

)

+1

4
E
(

‖uk
N‖20 − e−2ατ‖uk−1

N ‖20
)2 + 4e−2ατE‖uk−1

N πNQ
1
2 δWk‖20

≤ E
[

‖uk
N − e−ατ uk−1

N ‖20‖uk
N‖20

]

+ 1

2
E
(

‖uk
N‖20 − e−2ατ‖uk−1

N ‖20
)2 + Cτ.

Compare (LHS) with (RHS), we obtain

E‖uk
N‖40 ≤ e−4ατE‖uk−1

N ‖40 + Cτ ≤ C.

iii) p = 3. Using 1) and 2), it is easy to check that the following holds true

E‖uk
N‖30 ≤ E

‖uk
N‖20 + ‖uk

N‖40
2

≤ C.

iv) p > 4. By repeating above procedure, we complete the proof.

Before showing the weak error between uN(t) and uk
N , we need some a priori estimates

on ‖uk
N‖1 and ‖uk

N‖2.

Proposition 4.2 Assume that λ = 0 or −1, u0 ∈ Ḣ 1, u0N = πNu0 and ‖Q 1
2 ‖HS(L2,Ḣ 1) <

∞. Then for any p ≥ 1, there exists a constant C = C(α, u0, p) independent of N and tk ,
such that

EHp
k ≤ C, ∀ k ∈ N,

whereHk := ‖∇uk
N‖20 − λ

2‖uk
N‖4

L4 .

Proof The proof for λ = 0 is in the same procedure as that for λ = −1 and is much easier.
Here we only give the proof for λ = −1

uk
N − e−ατ uk−1

N =
(

i�uk
N − iπN

(

|uk
N |2 + |e−ατ uk−1

N |2
2

uk
N

))

τ + πNQ
1
2 δWk. (4.4)

i) p = 1. Multiplying (4.4) by uk
N − e−ατ uk−1

N , integrating with respect to x, taking the
imaginary part and using the fact

(

(Id − πN)v, vN

) = 0, ∀ v ∈ Ḣ 0, vN ∈ VN, we
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have

‖∇uk
N‖20 + ‖∇(uk

N − e−ατ uk−1
N )‖20 − e−2ατ‖∇uk−1

N ‖20
= −Re

∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
)

uk
N(uk

N − e−ατ uk−1
N )dx

+ 2

τ
Im

∫ 1

0
πNQ

1
2 δWk(u

k
N − e−ατ uk−1

N )dx

=: A + B.

Simple computations yield

A = −Re

[
∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
)(uk

N + e−ατ uk−1
N

2
+ uk

N − e−ατ uk−1
N

2

)

(uk
N − e−ατ uk−1

N )dx

]

≤ − 1

2
‖uk

N‖4
L4 + 1

2
e−4ατ ‖uk−1

N ‖4
L4 ≤ − 1

2
‖uk

N‖4
L4 + 1

2
e−2ατ ‖uk−1

N ‖4
L4

and

B = 2

τ
Im

[
∫ 1

0
πNQ

1
2 δWk

[

− iτ�uk
N + iτ

|uk
N |2 + |e−ατ uk−1

N |2
2

uk
N + πNQ

1
2 δWk

]

dx

]

= 2Re

[
∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(

uk
N − e−ατ uk−1

N

)

dx

]

+ 2Re

[
∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(

e−ατ uk−1
N

)

dx

]

+Re

[
∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
)

uk
N · πNQ

1
2 δWkdx

]

≤ 1

4
‖∇(uk

N − e−ατ uk−1
N )‖20 + C‖∇(πNQ

1
2 δWk)‖20 + 2Re

[
∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(

e−ατ uk−1
N

)

dx

]

+Re

[
∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
)

uk
N · πNQ

1
2 δWkdx

]

.

DenoteHk = ‖∇uk
N‖20 + 1

2‖uk
N‖4

L4 , then

EHk + 3

4
E‖∇(uk

N − e−ατ uk−1
N )‖20

≤ e−2ατEHk−1 + Cτ (4.5)

+ReE

[
∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
)

uk
N · πNQ

1
2 δWkdx

]

. (4.6)

Based on the formula

(|a|2+|b|2)a = a|a−b|2+b(a−b)2+3|b|2(a−b)+b|a−b|2+(b)2(a−b)+2|b|2b,
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the last term on the right hand side can be rewritten as

ReE

[
∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
)

uk
N · πNQ

1
2 δWkdx

]

= ReE

∫ 1

0
uk

N

∣
∣
∣u

k
N − e−ατ uk−1

N

∣
∣
∣

2
πNQ

1
2 δWkdx + ReE

∫ 1

0
e−ατ uk−1

N

(

uk
N − e−ατ uk−1

N

)2
πNQ

1
2 δWkdx

+3ReE

∫ 1

0
|e−ατ uk−1

N |2(uk
N − e−ατ uk−1

N

)

πNQ
1
2 δWkdx

+ReE

∫ 1

0
e−ατ uk−1

N

∣
∣
∣u

k
N − e−ατ uk−1

N

∣
∣
∣

2
πNQ

1
2 δWkdx

+ReE

∫ 1

0
(e−ατ uk−1

N )2(uk
N − e−ατ uk−1

N )πNQ
1
2 δWkdx + 2ReE

∫ 1

0
|e−ατ uk−1

N |2e−ατ uk−1
N πNQ

1
2 δWkdx

=: a + b + c + d + e + f.

Noting that f = 0, it suffices to estimate the other five terms

a + b + d ≤ E
[

‖uk
N‖0‖uk

N − e−ατ uk−1
N ‖2

L4‖πNQ
1
2 δWk‖L∞

+2‖e−ατ uk−1
N ‖0‖uk

N − e−ατ uk−1
N ‖2

L4‖πNQ
1
2 δWk‖L∞

]

≤ E

[(

‖uk
N‖0 + 2‖e−ατ uk−1

N ‖0
)

‖∇(uk
N − e−ατ uk−1

N )‖
1
2
0 ‖uk

N − e−ατ uk−1
N ‖

3
2
0 ‖πNQ

1
2 δWk‖L∞

]

≤ 1

4
E

[

‖∇(uk
N − e−ατ uk−1

N )‖0‖uk
N − e−ατ uk−1

N ‖0
]

+CE
[(

‖uk
N‖20 + ‖e−ατ uk−1

N ‖20
)

‖uk
N − e−ατ uk−1

N ‖20‖πNQ
1
2 δWk‖2L∞

]

≤ 1

4
E‖∇(uk

N − e−ατ uk−1
N )‖20 + CE

(

τ
1
2

(

‖uk
N‖20 + ‖e−ατ uk−1

N ‖20
)

‖uk
N − e−ατ uk−1

N ‖20
)2

+CE
(

τ− 1
2 ‖πNQ

1
2 δWk‖2L∞

)2

≤ 1

4
E‖∇(uk

N − e−ατ uk−1
N )‖20 + Cτ,

where in the last step we have used Proposition 4.1,

c + e ≤ 4E
[

‖e−ατ uk−1
N ‖2

L4‖uk
N − e−ατ uk−1

N ‖0‖πNQ
1
2 δWk‖L∞

]

≤ 1

2
E‖uk

N − e−ατ uk−1
N ‖20 + 8ητe−4ατ E‖uk−1

N ‖4
L4

≤ 1

2
E‖uk

N − e−ατ uk−1
N ‖20 + 2E

[(√
ατ

1
2 e−ατ ‖∇uk−1

N ‖0
)(

C

2
√

α
8ητ

1
2 e−3ατ ‖uk−1

N ‖30
)]

≤ 1

2
E‖uk

N − e−ατ uk−1
N ‖20 + ατe−2ατ E‖∇uk−1

N ‖20 + Cτ.

Then (4.5) turns to be

EHk ≤ (1 + ατ)e−2ατEHk−1 + Cτ ≤ e−ατEHk−1 + Cτ.

We finally obtain that

EHk ≤ C.
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ii) p = 2. From the case p = 1, by ‖ · ‖4
L4 ≤ ‖∇ · ‖0‖ · ‖30, we get

Hk − e−2ατHk−1 ≤ C‖∇(πNQ
1
2 δWk)‖20

+CRe

[
∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(

e−ατ uk−1
N

)

dx

]

+C
(

τ
1
2

(

‖uk
N‖20 + ‖e−ατ uk−1

N ‖20
)

‖uk
N − e−ατ uk−1

N ‖20
)2

+C
(

τ− 1
2 ‖πNQ

1
2 δWk‖2L∞

)2 + ατe−2ατHk−1

+Cτ−1‖uk−1
N ‖60‖πNQ

1
2 δWk‖4L∞ .

Multiplying above formula byHk , we have

H2
k + (Hk − e−2ατHk−1)

2 − e−4ατH2
k−1

≤ CHk‖∇(πNQ
1
2 δWk)‖20 + CHkRe

[
∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(

e−ατ uk−1
N

)

dx

]

+CτHk

(

‖uk
N‖20 + ‖e−ατ uk−1

N ‖20
)2‖uk

N − e−ατ uk−1
N ‖40

+CHk

(

τ− 1
2 ‖πNQ

1
2 δWk‖2L∞

)2 + ατe−2ατHkHk−1

+Cτ−1Hk‖uk−1
N ‖60‖πNQ

1
2 δWk‖4L∞

=: a′ + b′ + c′ + d ′ + e′ + f ′,

where

E[a′ + b′ + c′ + d ′] ≤ 1

4
E(Hk − e−2ατHk−1)

2 + Cτ

+Cτe−2ατ E

[

Hk−1

(

‖uk
N‖20 + ‖e−ατ uk−1

N ‖20
)2‖uk

N − e−ατ uk−1
N ‖40

]

≤ 1

4
E(Hk − e−2ατHk−1)

2 + 1

2
τe−4ατ EH2

k−1 + Cτ,

E[e′] ≤ 1

2
E

(

Hk − e−2ατHk−1

)2 + (
1

2
α2τ 2 + ατ)e−4ατEH2

k−1

≤ 1

2
E

(

Hk − e−2ατHk−1

)2 + 3

2
ατe−4ατEH2

k−1

and

E[f ′] ≤ 1

4
E

(

Hk − e−2ατHk−1

)2 + Cτ−2E
[

‖uk−1
N ‖120 ‖πNQ

1
2 δWk‖8L∞

]

+ατe−4ατEH2
k−1 + Cτ−3E

[

‖uk−1
N ‖120 ‖πNQ

1
2 δWk‖8L∞

]

≤ 1

4
E

(

Hk − e−2ατHk−1

)2 + ατe−4ατEH2
k−1 + Cτ.

Then we conclude

EH2
k ≤ (1 + 3ατ)e−4ατEH2

k−1 + Cτ ≤ e−ατEH2
k−1 + Cτ ≤ C,
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where we have used (1 + 3ατ)e−3ατ ≤ 1 for ατ < 1.

iii) For p = 2l , l ∈ N, the result can be proved by above procedure. So it also holds for
any p ∈ N.

Corollary 1 Under the assumptions in Proposition 4.2, we have

E‖uk
N − e−ατ uk−1

N ‖2p0 ≤ Cτp,

where constant C is independent of N and tk .

Proof It is easy to check this by multiplying uk
N − e−ατ uk−1

N to both sides of Eq. 4.4,
integrating with respect to x and taking expectation,

E‖uk
N − e−ατ uk−1

N ‖2p0
= E

[

τIm

∫ 1

0
∇uk

N∇(uk
N − e−ατ uk−1

N )dx + Re

∫ 1

0
πNQ

1
2 δWk

(

uk
N − e−ατ uk−1

N

)

dx

+τ

4
Im

∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
) (

uk
N + e−ατ uk−1

N

) (

uk
N − e−ατ uk−1

N

)

dx

]p

≤ CE

[

τp‖∇uk
N‖p

0 ‖∇
(

uk
N − e−ατ uk−1

N

)

‖p

0

+τp
(

‖uk
N‖2p1 + ‖uk−1

N ‖2p1
) (

‖uk
N‖2p0 + ‖uk−1

N ‖2p0
) ]

+CE‖πNQ
1
2 δWk‖2p0 + 1

2
E‖uk

N − e−ατ uk−1
N ‖2p0

≤ 1

2
E‖uk

N − e−ατ uk−1
N ‖2p0 + Cτp.

Then we complete the proof by Proposition 4.2.

Proposition 4.3 Under the assumptions λ = 0 or −1, u0 ∈ Ḣ 2 and ‖Q 1
2 ‖HS(L2,Ḣ 2) < ∞,

we also have the uniform boundedness of 2-norm as follows

E‖uk
N‖22 ≤ C, ∀ k ∈ N,

where C is also independent of N and tk .

Proof We also give the proof for λ = −1 only. Multiply (4.4) by �(uk
N − e−ατ uk−1

N ),
integrating with respect to x, and then taking the imaginary part, we obtain

‖�uk
N‖20 + ‖�(uk

N − e−ατ uk−1
N )‖20 − e−2ατ‖�uk−1

N ‖20
= Re

∫ 1

0

(

|uk
N |2 + |e−ατ uk−1

N |2
)

uk
N�(uk

N − e−ατ uk−1
N )dx

− 2

τ
Im

∫ 1

0
πNQ

1
2 δWk�(uk

N − e−ατ uk−1
N )dx

=: A′ + B ′.
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According to the uniform boundedness of any order of 0-norm and 1-norm, we have the
following estimations.

E[A′] = ReE

∫ 1

0
|uk

N |2uk
N�(uk

N − e−ατ uk−1
N )dx

+e−3ατReE

∫ 1

0
|uk−1

N |2uk−1
N �(uk

N − e−ατ uk−1
N )dx

+e−2ατReE

∫ 1

0
|uk−1

N |2(uk
N − e−ατ uk−1

N )�(uk
N − e−ατ uk−1

N )dx

= ReE

∫ 1

0
|uk

N |2uk
N�uk

Ndx − e−4ατReE

∫ 1

0
|uk−1

N |2uk−1
N �uk−1

N dx

+e−2ατReE

∫ 1

0
|uk−1

N |2(uk
N − e−ατ uk−1

N )�(uk
N − e−ατ uk−1

N )dx

+ReE

∫ 1

0
uk

N�uk
N |uk

N − e−ατ uk−1
N |2dx

+2ReE

∫ 1

0
uk

N(∇uk
N)2(uk

N − e−ατ uk−1
N )dx

+4ReE

∫ 1

0
uk

N |∇uk
N |2(uk

N − e−ατ uk−1
N )dx

+ReE

∫ 1

0
(uk

N − e−ατ uk−1
N )�uk

N

(

|uk
N |2 − |e−ατ uk−1

N |2
)

dx

=: Ak
a − e−4ατAk−1

a + Ab + Ac + Ad + Ae + Af .

We estimate above terms repectively and obtain

−e−4ατAk−1
a = −e−2ατAk−1

a + e−2ατ (1 − e−2ατ )Ak−1
a

≤ −e−2ατAk−1
a + CτE‖uk−1

N ‖41 ≤ −e−2ατAk−1
a + Cτ,

Ab ≤ e−2ατE
[

‖uk−1
N ‖2L∞‖uk

N − e−ατ uk−1
N ‖0‖�(uk

N − e−ατ uk−1
N )‖0

]

≤ 1

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + CτE‖uk−1

N ‖81 + Cτ−1E‖uk
N − e−ατ uk−1

N ‖40
≤ 1

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + Cτ,

Ac ≤ E
[

‖uk
N − e−ατ uk−1

N ‖2
L4‖uk

N‖L∞‖�uk
N‖0

]

≤ Cτ−1E
[

‖∇(uk
N − e−ατ uk−1

N )‖0‖uk
N − e−ατ uk−1

N ‖30‖uk
N‖21

]

+ 1

8
ατE‖�uk

N‖20
≤ 1

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + Cτ−5E‖uk

N − e−ατ uk−1
N ‖120

+CτE‖uk
N‖81 + 1

8
ατE‖�uk

N‖20
≤ 1

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + 1

8
ατE‖�uk

N‖20 + Cτ,
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Ad = 2ReE

∫ 1

0
uk

N(∇uk
N)2

[

− iτ�uk
N + iτπN

( |uk
N |2 + |e−ατ uk−1

N |2
2

uk
N

)

+πNQ
1
2 δWk

]

dx

≤ 1

16
ατE‖�uk

N‖20 + Cτ + 2ReE

∫ 1

0
uk

N(∇uk
N)2πNQ

1
2 δWkdx

≤ 1

16
ατE‖�uk

N‖20 + Cτ + 2ReE

∫ 1

0
(uk

N − e−ατ uk−1
N )(∇uk

N)2πNQ
1
2 δWkdx

+2ReE

∫ 1

0
e−ατ uk−1

N

(

(∇uk
N)2 − (e−ατ∇uk−1

N )2
)

πNQ
1
2 δWkdx

≤ 1

16
ατE‖�uk

N‖20 + Cτ + CE
[

‖uk
N − e−ατ uk−1

N ‖0‖∇uk
N‖2

L4‖πNQ
1
2 δWk‖L∞

]

+CE
[

‖∇(uk
N − e−ατ uk−1

N )‖0
(

‖uk−1
N ‖1‖uk

N‖1 + ‖uk−1
N ‖21

)

‖πNQ
1
2 δWk‖L∞

]

≤ 1

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + 1

8
ατE‖�uk

N‖20 + Cτ,

and

Af = ReE

∫ 1

0
(uk

N − e−ατ uk−1
N )�uk

NRe
[ (

uk
N − e−ατ uk−1

N

)

(uk
N + e−ατ uk−1

N )
]

dx

≤ E
[

‖uk
N − e−ατ uk−1

N ‖2
L4(‖uk

N‖L∞ + ‖uk−1
N ‖L∞)‖�uk

N‖0
]

≤ 1

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + 1

8
ατE‖�uk

N‖20 + Cτ,

where Ae has an same estimation as Ad and we have used that ‖∇ · ‖0 ∼= ‖ · ‖1 ≤ ‖ · ‖2 ∼=
‖� · ‖0. So we obtain

E[A′] ≤ 5

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + 1

2
ατE‖�uk

N‖20 + Cτ.

For term B ′, we have

E[B ′] = − 2

τ
ImE

∫ 1

0
�

(

πNQ
1
2 δWk

)
(

−iτ�uk
N + iπN

(

|uk
N |2 + |e−ατ uk−1

N |2
2

uk
N

)

τ + πNQ
1
2 δWk

)

dx

= 2ReE

∫ 1

0
�

(

πNQ
1
2 δWk

)

�(uk
N − e−ατ uk−1

N )dx

−ReE

∫ 1

0
�

(

πNQ
1
2 δWk

) (

|uk
N |2uk

N − |e−ατ uk−1
N |2e−ατ uk−1

N

)

dx

−ReE

∫ 1

0
�

(

πNQ
1
2 δWk

)

|e−ατ uk−1
N |2(uk

N − e−ατ uk−1
N )dx

≤ 1

6
E‖�(uk

N − e−ατ uk−1
N )‖20 + Cτ.

Denoting Kk := ‖�uk
N‖20 − Re

∫ 1
0 |uk

N |2uk
N�uk

Ndx, then E‖�uk
N‖20 ≤ EKk + C and

EKk − e−2ατEKk−1 ≤ 1

2
ατE‖�uk

N‖20 + Cτ ≤ 1

2
ατEKk + Cτ.
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Finally,

EKk ≤ (1 − 1

2
ατ)−1e−2ατEKk−1 + Cτ ≤ C,

where we have used (1 − 1
2ατ)−1e−2ατ ≤ e−ατ for ατ < 1.

4.2 Ergodicity of the Fully Discrete Scheme

To prove the ergodicity of the scheme (4.1), we will use the discrete form of Theorem 2.1.
We give some existing results before our theorem.

Assumption 1 (Minorization condition in [14]) The Markov chain (xn)n∈N with transition
kernel Pn(x,G) = P(xn ∈ G|x0 = x) satisfies, for some fixed compact set C ∈ B(Rd), the
following:

i) for some y∗ ∈ int (C) there is, for any δ > 0, a t1 = t1(δ) ∈ N such that

Pt1(x, Bδ(y
∗)) > 0 ∀x ∈ C;

ii) the transition kernel possesses a density pn(x, y), more precisely

Pn(x,G) =
∫

G

pn(x, y)dy ∀x ∈ C, G ∈ B(Rd) ∩ B(C)

and pn(x, y) is jointly continuous in (x, y) ∈ C × C.

Assumption 2 (Lyapunov condition in [14]) There is a function F : Rd → [1, ∞), with
lim|x|→∞ F(x) = ∞, real numbers θ ∈ (0, 1), and γ ∈ [0, ∞) such that

E[F(xn+1)|Fn] ≤ θF (xn) + γ.

Definition 3 We say that function F is essentially quadratic if there exist constants Ci >

0, i = 1, 2, 3, such that

C1(1 + ‖x‖2) ≤ F(x) ≤ C2(1 + ‖x‖2), |∇F(x)| ≤ C3(1 + ‖x‖).

Theorem 4.1 ([14]) Assume that a Markov chain (xn)n∈N satisfies Assumptions 1 and 2
with an essentially quadratic F , then the chain possesses a unique invariant measure.

Based on the preliminaries above and the theory of Markov chains, we prove the
following theorem.

Theorem 4.2 For all τ sufficiently small, the solution (uk
N)k∈N of scheme (4.1) has a unique

invariant measure μτ
N . Thus, it is ergodic.

Proof i) Lyapunov condition. Based on Proposition 4.1, we can take essentially quadratic
function F(·) = 1+‖·‖20 as the Lyapunov function, and the Lyapunov condition holds.



348 C. Chen et al.

ii) Minorization condition. In scheme (4.1), it gives

P k
N = e−ατ P k−1

N − τ

(

�Qk
N + λ

2
πN

( (

|P k
N |2 + |Qk

N |2 + |e−ατ P k−1
N |2 + |e−ατ Qk−1

N |2
)

Qk
N

))

+
N
∑

m=1

√
ηmemδkβ

1
m, (4.7)

Qk
N = e−ατ Qk−1

N + τ

(

�P k
N + λ

2
πN

( (

|P k
N |2 + |Qk

N |2 + |e−ατ P k−1
N |2 + |e−ατ Qk−1

N |2
)

P k
N

))

+
N
∑

m=1

√
ηmemδkβ

2
m, (4.8)

where P k
N and Qk

N denote the real and imaginary part of uk
N respectively, that is uk

N =
P k

N + iQk
N . Also, πNQ

1
2 δWk = ∑N

m=1
√

ηmem

(

δkβ
1
m + iδkβ

2
m

)

, where δkβ
1
m and δkβ

2
m

are the real and imaginary part of δWk respectively.
For any y1 = a1 + ib1, y2 = a2 + ib2 ∈ VN with ai and bi denoting the

real and imaginary part of yi (i = 1, 2) respectively, as {em}Nm=1 is a basis of VN ,

{δkβ
1
m, δkβ

2
m}Nm=1 can be uniquely determined to ensure that (P k−1

N ,Qk−1
N ) = (a1, b1)

and (P k
N , Qk

N) = (a2, b2), which implies the irreducibility of uk
N .

As stated in Proposition 4.1, the Ftk -measurable solution {uk
N }k∈N is defined

through a unique continuous function: uk
N = κ(uk−1

N ,
πNQ

1
2 δWk√
τ

), where δWk has a

C∞ density. Thus, the transition kernel P1(x,G), G ∈ B(VN) possesses a jointly
continuous density p1(x, y). Furthermore, densities pk(x, y) are achieved by the
time-homogeneous property of Markov chain {uk

N }k∈N.
With above conditions, based on Theorem 4.1, we prove that uk

N possesses a unique
invariant measure.

4.3 Weak Error between Solutions uN and uk
N

We still use modified processes to calculate the weak error of the fully discrete
scheme in temporal direction. Denote Sτ = (Id − iτ�)−1e−ατ , then scheme (4.1) is
rewritten as

uk
N = Sτ uk−1

N + iλτeατ Sτ πN

(

|uk
N |2 + |e−ατ uk−1

N |2
2

uk
N

)

+ eατ Sτ πNQ
1
2 δWk

= Sk
τ u0N + iλτeατ

k
∑

l=1

Sk+1−l
τ πN

(

|ul
N |2 + |e−ατ ul−1

N |2
2

ul
N

)

+ eατ
k

∑

l=1

Sk+1−l
τ πNQ

1
2 δWl (4.9)

Lemma 2 For any k ∈ N and sufficiently small τ , we have the following estimates,

i) ‖Sk
τ − S(t)‖L(Ḣ 2,L2) ≤ C(t + τ)

1
2 e−αt τ

1
2 , t ∈ [tk−1, tk+1],

ii) ‖Sk
τ − S(t)‖L(Ḣ 1,Ḣ 1) ≤ Ce−αt , t ∈ [tk−1, tk+1],

where the constant C = C(α) is independent of k and τ .
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Proof Step 1. If t = tk . As S(t) is the operator semigroup of equation du(t) =
(i�−α)u(t)dt, u(0) = u0 ∈ Ḣ 2, and Sτ is the corresponding discrete operator semigroup,
we have

Sk
τ u(0) = uk = e−ατ uk−1 + iτ�uk, (4.10)

S(tk)u(0) = u(tk) = e−ατ u(tk−1) +
∫ tk

tk−1

ie−α(tk−s)�u(s)ds. (4.11)

Denote ek = uk − u(tk) = (

Sk
τ − S(tk)

)

u(0) with e0 = 0, then

ek = e−ατ ek−1 + iτ�ek + i
∫ tk

tk−1

[

�u(tk) − e−α(tk−s)�u(s)
]

ds.

Multiply ek to above formula, integrate with respect to x, take the real part, and we get

1

2

[

‖ek‖20 + ‖ek − e−ατ ek−1‖20 − e−2ατ‖ek−1‖20
]

= Re

[

i
∫ 1

0

∫ tk

tk−1

�ek

∫ tk

s

ie−α(tk−r)�u(r)drdsdx

]

≤ C

∫ tk

tk−1

∫ tk

s

‖�uk − �u(tk)‖0‖�u(r)‖0drds

≤ Ce−2αtk‖�u(0)‖20τ 2,
where we have used the fact that ‖�uk‖20 ≤ e−2αtk‖�u0‖20 and ‖�u(t)‖0 ≤
Ce−αt‖�u(0)‖0. In fact, multiplying �uk − e−ατ�uk−1 to Eq. 4.10, integrating in space
and taking the imaginary part, we obtain

‖�uk‖20 ≤ e−2ατ‖�uk−1‖20 ≤ e−2αtk‖�u0‖20.
Then it’s easy to check that

‖ek‖20 ≤ e−2ατ‖ek−1‖20 + Ce−2αtk‖�u(0)‖20τ 2

leads to

‖ek‖20 ≤ Ctke
−2αtk‖�u(0)‖20τ, (4.12)

which finally yields ‖Sk
τ − S(tk)‖L(Ḣ 2,L2) ≤ Ct

1
2
k e−αtk τ

1
2 in i).

For ii), we have

‖
(

Sk
τ − S(tk)

)

u(0)‖21 =
∞
∑

n=1

∣
∣
∣e

−αtk
(

(1 + n2π2)−k − e−n2π2tk
)

(u(0), en)

∣
∣
∣

2 |λn|

≤ 4e−2αtk

∞
∑

n=1

|(u(0), en)|2 |λn| = 4e−2αtk‖u(0)‖21.
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In the following two steps, we only give the proof of i), and ii) can be proved in a same
procedure. We use the notation ‖ · ‖ = ‖ · ‖L(Ḣ 2,L2), which is an operator norm defined at
the beginning of this paper.

Step 2. If t ∈ [tk−1, tk],
‖Sk

τ − S(t)‖ ≤ ‖Sk
τ − S(tk)‖ + ‖S(tk) − S(t)‖ ≤ Ct

1
2
k e−αtk τ

1
2

+e−αt |e−α(tk−t) − 1|

≤ Ct
1
2
k e−αtk τ

1
2 + e−αt

∞
∑

n=1

1

n! (ατ)n ≤ Ct
1
2
k e−αtk τ

1
2

+e−αtατ
eατ − 1

ατ

≤ C(t + τ)
1
2 e−αt τ

1
2 .

We have used the fact that eατ −1
ατ

is uniformly bounded for ατ ∈ [0, 1].
Step 3. If t ∈ [tk, tk+1],

‖Sk
τ − S(t)‖ ≤ ‖Sk

τ − S(tk)‖ + ‖S(tk) − S(t)‖ ≤ Ct
1
2
k e−αtk τ

1
2

+e−αt |e−α(tk−t) − 1|
≤ Ct

1
2
k e−αt eα(t−tk)τ

1
2 + e−αtατ

eατ−1

ατ
≤ C(t + τ)

1
2 e−αt τ

1
2 .

We have used the fact eα(t−tk) ≤ eατ ≤ e.

Remark 4 From Eq. 4.10, we can also prove that

‖Sk
τ ‖L(L2,L2) ≤ Ce−αt ,

where k and t satisfying t ∈ [tk−1, tk+1].

Next theorem gives the time-independent weak error of the solutions for different cases.

Theorem 4.3 Assume that u0 ∈ Ḣ 2, u0N = uN(0) = πNu0 and ‖Q 1
2 ‖2HS(L2,Ḣ 2)

< ∞. For

the cases λ = 0 or −1, the weak errors are independent of time and of order 1
2 . That is, for

any φ ∈ C2
b (L2), there exists a constant C = C(u0, φ) independent of N, T and M , such

that for any T = Mτ ,
∣
∣
∣E[φ(uN(T ))] − E[φ(uM

N )]
∣
∣
∣ ≤ Cτ

1
2 .

Corollary 2 Under above assumptions, for any t ∈ [(M − 1)τ, (M + 1)τ ], it also holds
∣
∣
∣E[φ(uN(t))] − E[φ(uM

N )]
∣
∣
∣ ≤ Cτ

1
2 .

Proof Let T = Mτ . As
∣
∣
∣E[φ(uN(t))]−E[φ(uM

N )]
∣
∣
∣ =

∣
∣
∣E[φ(uN(T ))]−E[φ(uN(t))]

∣
∣
∣+

∣
∣
∣E[φ(uN(T ))]−E[φ(uM

N )]
∣
∣
∣
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and
∣
∣
∣E[φ(uN(T ))] − E[φ(uN(t))]

∣
∣
∣ ≤ ‖φ‖C1

b
E‖uN(T ) − uN(t)‖0

≤ ‖φ‖C1
b
(T − t) sup

t≥0

[

E‖uN(t)‖2 + E‖uN(t)‖0 + E‖uN(t)‖21‖uN(t)‖0
]

+‖φ‖C1
b
E‖πNQ

1
2
(

W(T ) − W(t)
)‖0 ≤ Cτ

1
2 ,

we then complete the proof according to Theorem 4.3.

Proof of Theorem 4.3 We split it into several steps.

Step 1. Calculation of E[φ(uN(T ))].
Recall the process we constructed in the proof of Theorem 3.2,

dYN(t) = HN(YN(t))dt + S(T − t)πNQ
1
2 dW(t).

Now we denote vN(T − t, y) = E[φ(YN(T ))|YN(t) = y], then

vN(0, YN(T )) = vN(T , YN(0)) +
∫ T

0

(

DvN(T − t, YN(t)), S(T − t)πNQ
1
2 dW(t)

)

,

(4.13)
where

vN(0, YN(T )) = E[φ(uN(T ))|YN(T ) = uN(T )],
vN(T , YN(0)) = E[φ(YN(T ))|YN(0) = S(T )uN(0)]
= E

[

φ

(

S(T )uN(0) +
∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)∣
∣
∣
∣
YN (4.14)

= S(T )uN(0)
]

.

The expectation of Eq. 4.13 implies,

E[φ(uN(T ))] = E

[

φ

(

S(T )uN(0) +
∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]

.

(4.15)

Step 2. Calculation of E[φ(uM
N )].

Similar to [9], we define a discrete modified process

Y k
N := SM−k

τ uk
N

= SM
τ u0N + iλτeατ

k
∑

l=1

SM+1−l
τ πN

(

|ul
N |2 + |e−ατ ul−1

N |2
2

ul
N

)

(4.16)

+eατ
k

∑

l=1

SM+1−l
τ πNQ

1
2 δWl

= SM
τ u0N + iλτeατ

k
∑

l=1

SM+1−l
τ πN

(

|Sl−M
τ Y l

N |2 + |e−ατ Sl−1−M
τ Y l−1

N |2
2

Sl−M
τ Y l

N

)

(4.17)

+eατ

k
∑

l=1

SM+1−l
τ πNQ

1
2 δWl.
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Consider the following time continuous interpolation of Y k
N , which is also VN -valued and

{Ft }t≥0-adaped,

ỸN (t) := SM
τ u0N + iλeατ

∫ t

0

M
∑

l=1

SM+1−l
τ πN

(

|Sl−M
τ Y l

N |2 + |e−ατ Sl−1−M
τ Y l−1

N |2
2

Sl−M
τ Y l

N

)

1l (s)ds

+eατ

∫ t

0

M
∑

l=1

SM+1−l
τ πNQ

1
2 1l (s)dW(s)

=: SM
τ u0N +

∫ t

0
Hτ (Y

M
N , s)ds + eατ

∫ t

0

M
∑

l=1

SM+1−l
τ πNQ

1
2 1l (s)dW(s).

In particular for t ∈ [tl−1, tl],

ỸN (t) = Y l−1
N + iλeατ SM+1−l

τ πN

( |Sl−M
τ Y l

N |2 + |e−ατ Sl−1−M
τ Y l−1

N |2
2

Sl−M
τ Y l

N

)

(t − tl−1)

+eατ SM+1−l
τ πNQ

1
2

(

W(t) − W(tl−1)
)

, (4.18)

or equivalently,

ỸN (t) = Y l
N + iλeατ SM+1−l

τ πN

( |Sl−M
τ Y l

N |2 + |e−ατ Sl−1−M
τ Y l−1

N |2
2

Sl−M
τ Y l

N

)

(t − tl )

+eατ SM+1−l
τ πNQ

1
2

(

W(t) − W(tl)
)

. (4.19)

Apply Itô’s formula to t �→ vN(T − t, ỸN (t)),

dvN(T − t, ỸN (t))

= ∂vN

∂t
(T − t, ỸN (t))dt +

(

DvN,Hτ (Y
M
N , t)dt + eατ

M
∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)dW(t)

)

+1

2
T r

⎡

⎣

(

eατ
M
∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)

)∗
D2vN

(

eατ
M
∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)

)⎤

⎦ dt

=
(

DvN,Hτ (Y
M
N , t) − HN(ỸN(t))

)

dt +
(

DvN, eατ

M
∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)dW(t)

)

+1

2

M
∑

l=1

T r
[(

eατ SM+1−l
τ πNQ

1
2

)∗
D2vN

(

eατ SM+1−l
τ πNQ

1
2

)]

1l (t)dt

−1

2

M
∑

l=1

T r
[(

S(T − t)πNQ
1
2

)∗
D2vN

(

S(T − t)πNQ
1
2

)]

1l (t)dt,

where DvN and D2vN are evaluated at (T − t, ỸN (t)).
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The same as before, integrate the formula above from 0 to T, and take expectation based
on the fact that

vN(0, ỸN (T )) = E[φ(YN(T ))|YN(T ) = ỸN (T )] = E[φ(uM
N )|YN(T ) = uM

N ],
vN(T , ỸN (0)) = E[φ(YN(T ))|YN(0) = ỸN (0)]

= E

[

φ

(

SM
τ uN(0) +

∫ T

0
HN(YN(s))ds

+
∫ T

0
S(T − s)πNQ

1
2 dW

) ∣
∣
∣
∣
YN(0) = SM

τ uN(0)

]

,

we get

E[φ(uM
N )] = E

[

φ

(

SM
τ uN(0) +

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]

+ E

∫ T

0

(

DvN, Hτ (Y
M
N , t) − HN(ỸN(t))

)

dt

+ 1

2

M
∑

l=1

E

∫ T

0
T r

[ (

eατ SM+1−l
τ πNQ

1
2

)∗
D2vN

(

eατ SM+1−l
τ πNQ

1
2

)

−
(

S(T − t)πNQ
1
2

)∗
D2vN

(

S(T − t)πNQ
1
2

) ]

1l (t)dt. (4.20)

Step 3. Weak convergence order.

Subtracting (4.15) from (4.20), we derive

E[φ(uM
N )] − E[φ(uN(T ))]

= E

[

φ

(

SM
τ uN(0) +

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)

−φ

(

S(T )uN(0) +
∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]

+E

∫ T

0

(

DvN, Hτ (Y
M
N , t) − HN(ỸN(t))

)

dt

+1

2

M
∑

l=1

E

∫ T

0
T r

[ (

eατ SM+1−l
τ πNQ

1
2

)∗
D2vN

(

eατ SM+1−l
τ πNQ

1
2

)

−
(

S(T − t)πNQ
1
2

)∗
D2vN

(

S(T − t)πNQ
1
2

) ]

1l (t)dt.

=: I + II + III.
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Now we estimate I , II , and III separately. The constants C below may be different but are
all independent of T and τ .

|I | =
∣
∣
∣
∣
E

[

φ

(

SM
τ uN(0) +

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]

−E

[

φ

(

S(T )uN(0) +
∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)] ∣
∣
∣
∣

≤ C‖φ‖C1
b
‖SM

τ uN(0) − S(T )uN(0)‖0
≤ C‖φ‖C1

b
‖SM

τ − S(T )‖L(Ḣ 2,L2)‖uN(0)‖2
≤ C(T + τ)

1
2 e−αT τ

1
2 , (4.21)

where we have used Lemma 2 and uN(0) = πNu0 ∈ Ḣ 2.
Noticing II = 0 for λ = 0, now we consider the nonlinear term II for λ = −1. By using

the notation al := Sl−M
τ Y l

N = ul
N and Eqs. 4.18 and 4.19, we can define bl in two ways,

bl := S(t − T )ỸN (t)1l (t)

= S(t − T )SM+1−l
τ ul−1

N + eατ S(t − T )SM+1−l
τ

(

iλπN

(

|e−ατ ul−1
N |2 + |ul

N |2
2

ul
N

)

(t − tl−1)

+πNQ
1
2 (W(t) − W(tl−1))

)

,

or equivalently,

bl := S(t − T )ỸN (t)1l (t)

= S(t − T )SM−l
τ ul

N + eατ S(t − T )SM+1−l
τ

(

iλπN

(

|e−ατ ul−1
N |2 + |ul

N |2
2

ul
N

)

(t − tl)

+πNQ
1
2 (W(t) − W(tl))

)

.

Hence, we have

al−1 − bl

=
(

Id − S(t − T )SM+1−l
τ

)

ul−1
N

−eατ S(t − T )SM+1−l
τ

(

iλπN

(

|e−ατ ul−1
N |2 + |ul

N |2
2

ul
N

)

(t − tl−1)

+πNQ
1
2 (W(t) − W(tl−1))

)

and

al − bl =
(

Id − S(t − T )SM−l
τ

)

ul
N

−eατ S(t − T )SM+1−l
τ

(

iλπN

(

|e−ατ ul−1
N |2 + |ul

N |2
2

ul
N

)

+πNQ
1
2 (W(t) − W(tl))

)

,
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where ‖S(t − T )SM+1−l
τ ‖L(L2,L2) ≤ C and

‖Id−S(t−T )SM−l
τ ‖L(Ḣ 2,L2) ≤ ‖S(t−T )‖L(L2,L2)‖S(T −t)−SM−l

τ ‖L(Ḣ 2,L2) ≤ C(T −t+τ)
1
2 τ

1
2

according to Lemma 2s. Thus, we have the following estimate

‖al −bl‖0 ≤ C
[

(T −t+τ)
1
2 τ

1
2 ‖ul

N‖2+τ
(

‖ul−1
N ‖21+‖ul

N‖21
)

‖ul
N‖0+‖πNQ

1
2 (W(t)−W(tl))‖0

]

.

Also, ‖al−1 − bl‖0 can be estimated in the same way. Thus, based on Eq. 3.7, we have

|II | =
∣
∣
∣
∣
E

∫ T

0

(

DvN, Hτ (Y
M
N , t) − HN(ỸN (t))

)

dt

∣
∣
∣
∣
≤ C‖φ‖C1

b

∫ T

0
E‖Hτ (YM

N , t)−HN(ỸN (t))‖0dt,

(4.22)

where

Hτ (Y
M
N , t) − HN(ỸN(t))

=
M
∑

l=1

[

eατ SM+1−l
τ πN

(

iλ
|e−ατ al−1|2 + |al |2

2
al

)

− S(T − t)πN

(

iλ|bl |2bl

)
]

1l (t)

= λ

2
i

M
∑

l=1

[

eατ
(

SM+1−l
τ − S(T − t)

)

πN

(

|e−ατ al−1|2al

)

+(e−ατ − 1)S(T − t)πN

(

|al−1|2al

)

+S(T − t)πN

(

|al−1|2al − |bl |2bl

) ]

1l (t)

+λ

2
i

M
∑

l=1

[

eατ
(

SM+1−l
τ − S(T − t)

)

πN

(

|al |2al

)

+ (eατ − 1)S(T − t)πN

(

|al |2al

)

+S(T − t)πN

(

|al |2al − |bl |2bl

) ]

1l (t)

= λ

2
i
[ M
∑

l=1

eατ
(

SM+1−l
τ − S(T − t)

)

πN

(

|e−ατ al−1|2al

)

1l (t)

+
M
∑

l=1

S(T − t)πN

(

|al−1|2 (al − bl)
)

1l (t)

+
M
∑

l=1

S(T − t)πN

(

|bl |2(al−1 − bl)
)

1l (t) +
M
∑

l=1

S(T − t)πN

(

al−1bl(al−1 − bl)
)

1l (t)

+
M
∑

l=1

(e−ατ − 1)S(T − t)πN

(

|al−1|2al

)

1l (t)

+
M
∑

l=1

eατ
(

SM+1−l
τ − S(T − t)

)

πN

(

|al |2al

)

1l (t)
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+
M
∑

l=1

S(T − t)πN

(

|al |2 (al − bl)
)

1l (t) +
M
∑

l=1

S(T − t)πN

(

|bl |2(al − bl)
)

1l (t)

+
M
∑

l=1

S(T − t)πN

(

albl(al − bl)
)

1l (t)

]

+
M
∑

l=1

(eατ − 1)S(T − t)πN

(

|al |2al

)

1l (t)

:= λ

2
i
[

II l−1
1 + II l−1

2 + II l−1
3 + II l−1

4 + II l−1
5 + II l

1 + II l
2 + II l

3 + II l
4 + II l

5

]

.

If λ = −1, thanks to the uniform estimations of 0-norm, 1-norm and 2-norm of uk
N , we

have the following estimates.
By the embedding H 1 ↪→ L∞ in R

1, we have following exponential estimates

E‖II l−1
1 ‖0 ≤ 1

2

M
∑

l=1

‖SM+1−l
τ − S(T − t)‖L(Ḣ 2,L2)E

∥
∥
∥πN

(

|e−ατ ul−1
N |2ul

N

) ∥
∥
∥
2
1l (t)

≤ C

M
∑

l=1

‖SM+1−l
τ − S(T − t)‖L(Ḣ 2,L2)E

[

‖ul−1
N ‖41 + ‖ul

N‖22
]

1l (t)

≤ C(T − t + τ)
1
2 e−α(T −t)τ

1
2 ,

E‖II l−1
2 ‖0 ≤ Ce−α(T −t)E

M
∑

l=1

‖al−1‖21‖al − bl‖01l (t)

≤ Ce−α(T −t)E

M
∑

l=1

‖ul−1
N ‖21

[

C(T − t + τ)
1
2 τ

1
2 ‖ul

N‖2

+C
[(

‖ul−1
N ‖21 + ‖ul

N‖21
)

‖ul
N‖0τ + ‖πNQ

1
2 (W(t) − W(tl))‖0

] ]

1l (t)

≤ C(T − t + 1)
1
2 e−α(T −t)τ

1
2 ,

E‖II l−1
5 ‖0 ≤ e−α(T −t)(1 − e−ατ )E

[

‖ul−1
N ‖21‖ul

N‖0
]

≤ Ce−α(T −t)τ,

and their integrals are also of order 1
2 . II l

1, II l
2 and II l

5 can also be estimated in the same

way, where we have used the fact that for any T > 0, the integral
∫ T

0 (T −t+τ)
1
2 e−α(T −t)dt

is bounded and
∑M

l=1 1l (t) = 1.
Other terms are proved in the same procedure by using the fact that

‖bl‖2L∞ ≤ C‖S(t − T )SM−l
τ ‖2L(Ḣ 1,Ḣ 1)

[‖ul
N‖41 + ‖ul−1

N ‖41 + ‖πNQ
1
2 δWl‖21]

and ‖albl‖L∞ ≤ 1
2 [‖al‖2L∞ + ‖bl‖2L∞]. Finally, we have

|II | ≤ Cτ
1
2 . (4.23)
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Next is the estimate of III , which is similar to the same part in the proof of Theorem 3.2.

III = 1

2

M
∑

l=1

E

∫ T

0
T r

[ (

eατ SM+1−l
τ πNQ

1
2

)∗
D2vN

(

eατ SM+1−l
τ πNQ

1
2

)

−
(

S(T − t)πNQ
1
2

)∗
D2vN

(

S(T − t)πNQ
1
2

) ]

1l (t)dt

= 1

2

M
∑

l=1

E

∫ T

0
T r

[ ((

eατ SM+1−l
τ − S(T − t)

)

πNQ
1
2

)∗
D2vN

((

eατ SM+1−l
τ − S(T − t)

)

πNQ
1
2

) ]

+2T r

[ ((

eατ SM+1−l
τ − S(T − t)

)

πNQ
1
2

)∗
D2vN

(

S(T − t)πNQ
1
2

) ]

1l (t)dt

= 1

2

M
∑

l=1

E

∫ T

0
T r

[

e2ατ
((

SM+1−l
τ − S(T − t)

)

πNQ
1
2

)∗
D2vN

((

SM+1−l
τ − S(T − t)

)

πNQ
1
2

)

+2e2ατ
((

SM+1−l
τ − S(T − t)

)

πNQ
1
2

)∗
D2vN

(

S(T − t)πNQ
1
2

)

+(e2ατ − 1)
(

S(T − t)πNQ
1
2

)∗
D2vN

(

S(T − t)πNQ
1
2

) ]

1l (t)dt

:= 1

2

M
∑

l=1

E

∫ T

0
(Al + 2Bl + Cl)1l (t)dt,

where Al , Bl and Cl satisfy

E|Al | ≤ C‖SM+1−l
τ − S(T − t))‖2L(Ḣ 2,L2)

‖πNQ
1
2 ‖2L(L2,Ḣ 2)

‖φ‖C2
b

≤ C(T − t + τ)e−2α(T −t)τ,

E|Bl | ≤ C‖SM+1−l
τ − S(T − t))‖L(Ḣ 2,L2)‖πNQ

1
2 ‖2L(L2,Ḣ 2)

‖φ‖C2
b
‖S(T − t)‖L(L2,L2)

≤ C(T − t + τ)
1
2 e−2α(T −t)τ

1
2

and

E|Cl | ≤ Cτ‖πNQ
1
2 ‖2L(L2,L2)

‖φ‖C2
b
‖S(T − t)‖2L(L2,L2)

≤ Ce−2α(T −t)τ.

It follows

|III | ≤ Cτ
1
2 . (4.24)

We can conclude from Eqs. 4.21, 4.23 and 4.24 that,
∣
∣
∣E [φ(uN(T ))] − E

[

φ(uM
N )

] ∣
∣
∣ ≤ Cτ

1
2 ,

where C is independent of T , M and N .

Remark 5 For the linear case (λ = 0), as the weak convergence order depends heavily on the
regularity of the solution, which depend only on the regularity of the initial value and noise,
we can achieve higher order by increasing the regularity of the initial value and the noise.

For example, the weak order turns out to be 1 if we assume u0 ∈ Ḣ 4 and ‖Q 1
2 ‖HS(L2,Ḣ 4) <

∞. However, for the nonlinear case (λ = ±1), it is too technical to obtain the uniform higher
regularity under proper assumptions, as a result, we work under the assumptions u0 ∈ Ḣ 2

and ‖Q 1
2 ‖HS(L2,Ḣ 2) < ∞ and derive order 1

2 .
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4.4 Convergence Order between Invariant Measures μN and μτ
N

Theorem 4.4 For λ = 0 or −1, assume that u0 ∈ Ḣ 2 and ‖Q 1
2 ‖HS(L2,Ḣ 2) < ∞, the error

between invariant measures μN and μτ
N is of order 1

2 , i.e.,
∣
∣
∣
∣

∫

VN

φ(y)dμN(y) −
∫

VN

φ(y)dμτ
N(y)

∣
∣
∣
∣
< Cτ

1
2 , ∀ φ ∈ C2

b (L2).

Proof By the ergodicity of stochastic processes uN and uk
N , we have

lim
T →∞

1

T

∫ T

0
Eφ

(

uN(t)
)

dt =
∫

VN

φ(y)dμN(y), (4.25)

lim
M→∞

1

M

M−1
∑

k=0

Eφ(uk
N) =

∫

VN

φ(y)dμτ
N(y) (4.26)

for any φ ∈ C2
b (L2). As the weak error is proved to be independent of step k and time t in

Theorem 4.3, it turns out that for a fixed τ ,
∣
∣
∣
∣

∫

VN

φ(y)dμN(y) −
∫

VN

φ(y)dμτ
N(y)

∣
∣
∣
∣

≤ lim
M→∞,

T =Mτ→∞

1

T

M−1
∑

k=0

∫ tk+1

tk

∣
∣
∣Eφ

(

uN(t)
) − Eφ(uk

N)

∣
∣
∣ dt ≤ Cτ

1
2 .

Remark 6 For the case λ = 1, if the 1-norm and 2-norm of uk
N is also uniformly bounded,

we can also get order 1
2 for both time-independent weak error and error between invariant

measures. If not, based on the fact ‖·‖s+1 ≤ N‖·‖s , we can get the weak error depend on N
∣
∣
∣E[φ(uN(T ))] − E[φ(uM

N )]
∣
∣
∣ ≤ CN4τ

1
2 ,

as well as the error between invariant measures.

5 Numerical Experiments

This section provides numerical experiments to test the longtime behavior of scheme
(4.1) for the case λ = 0. Based on the spatial semi-discretization in stochastic ordinary
differential equation form Eq. 3.2

dam(t) = −i(mπ)2am(t)dt − αam(t)dt + √
ηmdβm(t), 1 ≤ m ≤ N,

we derive an equivalent form of the full discretization (4.1) as

�ak − e−ατ �ak−1 = −iτπ2

⎛

⎜
⎝

1
. . .

N2

⎞

⎟
⎠ �ak +

⎛

⎜
⎝

√
η1δkβ1

...√
ηNδkβN

⎞

⎟
⎠ ,

where �ak := (ak
1 , · · · , ak

N )T is an approximation of �a(t) := (a1(t), · · · , aN(t))T and
δkβm = βm(tk) − βm(tk−1) for 1 ≤ m ≤ N . In the sequel, we take α = 1, N = 100.
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Fig. 1 The temporal averages 1
M+1

∑M
k=0 E[φ(�ak)] started from different initial values (τ = 2−6, T = 300)

Fig. 2 The weak error E[φ(�a(tk)) − φ(�ak)] for different φ and step size τ with tk = kτ ∈ [0, T ] and
T = 103
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Fig. 3 The strong and weak orders for noise in L2, Ḣ 2 and Ḣ 4, i.e., ηm = m−1,m−3,m−5. (T = 1
2 ,

τ ∈ {2−i , 5 ≤ i ≤ 9})

In Fig. 1, the temporal averages 1
M+1

∑M
k=1 E[φ(�ak)] of the fully

discrete scheme started from five different initial values initial(1) =
(1, 0, · · · , 0)T , initial(2) = (0.0003i, 0, · · · , 0)T , initial(3) =
(

sin
(

1
101π

)

, sin
(

2
101π

)

, · · · , sin
(
100
101π

))T

, initial(4) =
(
2+i
20

)

(1, 2, · · · , 100)T and

initial(5) =
(

exp
(

− i
50

)

, exp
(

− 2i
50

)

, · · · , exp
(

− 100i
50

))T

will converge to the same

value with error τ
1
2 before time T , where τ = 2−6 and T = 300. This result verifies the

ergodicity of the numerical solution: the temporal averages converge to the spatial average,
which is a constant, for almost every initial values in the whole space. We choose 500
realizations to approximate the expectations in Figs. 1 and 2, and choose 1000 realizations
in Fig. 3.

In Figs. 2 and 3, we fix the initial value u0(x) as
√
2 sin(πx), such that am(0) = (u0, em)

and �a0 = �a(0) = (1, 0, · · · , 0)T . Figure 2 displays the weak error E[φ(�a(tk)) − φ(�ak)]
over long time T = 103 for different time step sizes and test functions: (a) τ = 2−4,
φ(�a) = exp(−‖�a‖2

l2
) (b) τ = 2−6, φ(�a) = exp(−‖�a‖2

l2
), (c) τ = 2−4, φ(�a) = sin(‖�a‖l2)

and (d) τ = 2−6, φ(�a) = sin(‖�a‖l2). The reference values are generated for the time step
size τ = 2−8, and the noise is chosen in Ḣ 2, i.e., ηm = m−3. Figure 2 shows that the

weak error is independent of time interval and can be controlled by Cτ
1
2 , which coincides

with our theoretical results. Figure 3 displays both (a) the strong convergence order and
the rates of weak convergence for (b) φ(�a) = exp(−‖�a‖2

l2
) or (c) φ(�a) = sin(‖�a‖l2).

The reference values are generated for the time step size τ = 2−14. As the initial value
u0(x) = √

2 sin(πx) is regular enough, both the strong and weak convergence order depend
heavily on the regularity of the noise for the linear case. It shows in Fig. 3 that the orders
slightly increase as the noise from L2 via Ḣ 2 to Ḣ 4 (i.e., ηm from m−1 via m−3 to m−5),
which verifies Remark 5. Noticing that the orders are a little bit better than the theoretical
results, because the truncation of the noise makes the noise more regular than it should be,
which increases the orders slightly. Numerical tests also shows that the weak convergence
order is almost the same as the strong convergence order, which is similar to the statement
in [7] (Remark 5.11).
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Appendix

The Proof of Proposition 3.1

i) As it is proved in Part 3 of Theorem 3.1 that E‖uN(t)‖20 < C, we assume further that

E‖uN(t)‖2n0 < C, ∀ n = 1, · · · , p − 1. Denoting dM1 := 2Re
(

uN, πNQ
1
2 dW

)

,

then Itô’s formula and Eq. 3.5 yields

d‖uN(t)‖2p0 = p‖uN(t)‖2(p−1)
0 d‖uN(t)‖20 + 1

2
p(p − 1)‖uN(t)‖2(p−2)

0 d〈M1〉
≤ −2αp‖uN(t)‖2p0 dt + p‖uN(t)‖2(p−1)

0 dM1(t)

+2p(2p − 1)
N
∑

m=1

ηm‖uN(t)‖2(p−1)
0 dt,

where 〈·〉 denotes the quadratic variation process and in the last step we used the fact

d〈M1〉 = 4

〈

Re

N
∑

m=1

∫ 1

0
uN(s)

√
ηmem(x)dx(dβm,1 + idβm,2)

〉

= 4
N
∑

m=1

⎡

⎣

(

Re

∫ 1

0
uN(t, x)

√
ηmem(x)dx

)2

+
(

Im

∫ 1

0
uN(t, x)

√
ηmem(x)dx

)2
⎤

⎦ dt

≤ 8
N
∑

m=1

ηm‖uN(t)‖20dt.

Taking expectation on both sides of above equation, we obtain

d

dt
E‖uN(t)‖2p0 ≤ −2αpE‖uN(t)‖2p0 + 2p(2p − 1)

N
∑

m=1

ηmE‖uN(t)‖2(p−1)
0

≤ −2αpE‖uN(t)‖2p0 + C

by induction. Then multiplying e2αpt to both sides of above equation yields the result.
ii) The proof in this part is similar to the proof of Lemma 2.5 in [8]. According to the

Gagliardo-Nirenberg interpolation inequality, there exists a positive constant c0, such
that

5

8
λ‖uN(t)‖4

L4 ≤ ‖uN(t)‖4
L4 ≤ 1

4
‖∇uN(t)‖20 + 1

2
c0‖uN(t)‖60. (1)

Thus,

0 ≤ H(uN(t)) := 1

2
‖∇uN(t)‖20 − λ

4
‖uN(t)‖4

L4 + c0‖uN(t)‖60
≤ 2

3

(

‖∇uN(t)‖20 − λ‖uN(t)‖4
L4 + 2c0‖uN(t)‖60

)

. (2)
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Applying Itô’s formula toH(uN(t)), it leads to

dH(uN(t)) =
[

− α‖∇uN(t)‖20 + αλ‖uN(t)‖4
L4 − 6αc0‖uN(t)‖60

−2λ
∫ 1

0
|uN |2

N
∑

m=1

ηm|em|2dx

+
N
∑

m=1

m2ηm + 6c0‖uN(t)‖40
N
∑

m=1

ηm

+12c0‖uN(t)‖20‖πNQ
1
2 uN(t)‖20

]

dt

+6c0‖uN(t)‖40Re
(

uN, πNQ
1
2 dW

)

−Re
(

�uN(t) + λ|uN(t)|2uN(t), πNQ
1
2 dW

)

,

where we have used the fact ((Id − πN)v, vN) = 0, ∀ v ∈ Ḣ 0, vN ∈ VN . By the
following estimates

−2λ
∫ 1

0
|uN |2

N
∑

m=1

ηm|em|2dx ≤ 0,

6c0‖uN(t)‖40
N
∑

m=1

ηm + 12c0‖uN(t)‖20‖πNQ
1
2 uN(t)‖20 ≤ 4αc0‖uN(t)‖60 + C

and Eq. 1, we have

dH(uN(t)) ≤
[

− α‖∇uN(t)‖20 + αλ‖uN(t)‖4
L4 (3)

−2αc0‖uN(t)‖60 +
N
∑

m=1

m2ηm + C

]

dt

+6c0‖uN(t)‖40Re
(

uN(t), πNQ
1
2 dW(t)

)

(4)

−Re
(

�uN(t) + λ|uN(t)|2uN(t), πNQ
1
2 dW

)

≤ −3

2
αH(uN(t))dt + Cdt + dM2, (5)

where

dM2 := 6c0‖uN‖40Re
(

uN, πNQ
1
2 dW

)

− Re
(

�uN + λ|uN |2uN, πNQ
1
2 dW

)

.

Taking expectation, we derive

dEH(uN(t)) ≤ −3

2
αEH(uN(t))dt + Cdt.

Hence, by multiplying e
3
2αt to both sides of the equation above and then taking inte-

gral from 0 to t , we get the uniform boundedness for p = 1. By induction, we assume
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that the results hold for p − 1. Then, based on the following estimates (see [8])
〈

6‖uN‖40Re
(

uN, πNQ
1
2 dW

)〉2 ≤ C‖Q 1
2 ‖2HS(L2,L2)

‖uN‖100 dt,

〈

Re
(

�uN + λ|uN |2uN, πNQ
1
2 dW

)〉2 ≤ C‖Q 1
2 ‖2HS(L2,Ḣ 1)

(

‖∇uN‖20 + ‖uN‖100
)

dt

and Eq. 5, we have

dH(uN(t))p = pH(uN(t))p−1dH(uN(t)) + 1

2
p(p − 1)H(uN(t))p−2d〈M2〉

≤ −3

2
αpH(uN(t))pdt + CpH(uN(t))p−1dt + pH(uN(t))p−1dM2

+Cp(p − 1)H(uN(t))p−2
(

‖∇uN(t)‖20 + ‖uN(t)‖100
)

dt. (6)

From Eq. 1, we deduce that

H(uN(t)) ≥

⎧

⎪⎨

⎪⎩

1

2
‖∇uN(t)‖20 + c0‖uN(t)‖60, λ = 0 or − 1,

7

16
‖∇uN(t)‖20 + 7

8
c0‖uN(t)‖60, λ = 1.

As a result, the last term in Eq. 6 can be estimated as

Cp(p − 1)H(uN (t))p−2
(

‖∇uN(t)‖20 + ‖uN(t)‖100
)

≤
(

CH(uN (t)) + CH(uN (t))
5
3

)

H(uN (t))p−2 ≤ CH(uN (t))p−1 + 1

2
αpH(uN (t))p, (7)

where in the last step we used the inequality of arithmetic and geometric means

C(H(uN(t))2·H(uN(t))2·H(uN(t)))
1
3 ≤

3
4αpH(uN(t))2 + 3

4αpH(uN(t))2 + CH(uN(t))

3
.

Gethering Eqs. 6 and 7 and taking expectation, we obtain

dEH(uN(t))p ≤ −αpEH(uN(t))pdt + Cdt

by induction, which complete the proof by multiplying eαpt on both sides of above
equation.

iii) We define a functional

f (u) =
∫ 1

0
|�u|2dx + λRe

∫ 1

0
(�u)|u|2udx,

which satisfies

‖�u‖20 ≤ 2f (u) + C‖u‖61 (8)

based on the continuous embedding H 1 ↪→ L6 and
∣
∣
∣λRe

∫ 1
0 �u|u|2udx

∣
∣
∣ ≤

1
2‖�u‖20 + 1

2‖u‖6
L6 ≤ 1

2‖�u‖20 + C‖u‖61. The Itô’s formula applied to f (uN) yields

df (uN) = Df (uN)
( (

i�uN + iλ|uN |2uN − αuN

)

dt
)

+ Df (uN)
(

πNQ
1
2 dW

)

+1

2
D2f (uN)(πNQ

1
2 dW, πNQ

1
2 dW)

=: A + B + C, (9)
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where

Df (u)(ϕ) = Re

∫ 1

0

[

2�u�ϕ + 2λ(�u)uRe(uϕ) + λ(�u)|u|2ϕ

+λ(�(|u|2u))ϕ
]

dx,

D2f (u)(ϕ,ψ) = Re

∫ 1

0

[

2�ϕ�ψ + 2λ(�u)uRe(ϕψ) + 2λ(�u)ϕRe(uψ)

+2λ(�ϕ)uRe(uψ)

+2λ(�u)ψRe(ϕu) + 2λ(�ψ)uRe(uϕ) + λ(�ϕ)|u|2ψ
+λ(�ψ)|u|2ϕ

]

dx

and E[B] = 0. Now we estimate A and C respectively.

E[A] = −2αE[f (uN)]dt + ReE

∫ 1

0

[

4λi(�uN)uN |∇uN |2

+2λi(�uN)uN(∇uN)2
]

dxdt

+ReE

∫ 1

0

[

λ2i(�uN)|uN |4 − 4αλ(�uN)uN |uN |2
]

dxdt

+ReE

∫ 1

0

[

− 4αλ|uN |2|∇uN |2 − 2αλ(∇uN)2u2N

]

dxdt

=: −2αE[f (uN)]dt + A1dt + A2dt + A3dt,

where we have used the fact �(|u|2u) = 2|u|2�u+4u|∇u|2 +2u(∇u)2 +u2�u and
A1,A2 andA3 are estimated as follows.

|A1| :=
∣
∣
∣
∣
∣
ReE

∫ 1

0

[

4λi(�uN)uN |∇uN |2 + 2λi(�uN)uN(∇uN)2
]

dx

∣
∣
∣
∣
∣

≤ α

16
E‖�uN‖20 + CE

[

‖uN‖2L∞‖∇uN‖2
L4

]

≤ α

16
E‖�uN‖20 + CE

[

‖uN‖4L∞ + ‖�uN‖0‖∇uN‖30
]

≤ α

8
E‖�uN‖20 + CE

[

‖uN‖41 + ‖uN‖61
]

≤ α

8
E‖�uN‖20 + C,

where we have used the uniform boundedness of ‖uN‖2p1 for p ≥ 1 in ii), the contin-
uous embedding H 1 ↪→ L∞ for R1 and the interpolation of L4 between L2 and H 1.
Similarly, based on the continuous embedding H 1 ↪→ L6 and H 1 ↪→ L8, we have

|A2| :=
∣
∣
∣
∣
∣
ReE

∫ 1

0

[

λ2i(�uN)|uN |4 − 4αλ(�uN)uN |uN |2
]

dx

∣
∣
∣
∣
∣

≤ α

8
E‖�uN‖20 + CE[‖uN‖8

L8 + ‖uN‖6
L6 ] ≤ α

8
E‖�uN‖20 + C

and

|A3| :=
∣
∣
∣
∣
∣
ReE

∫ 1

0

[

− 4αλ|uN |2|∇uN |2 − 2αλ(∇uN)2u2N

]

dx

∣
∣
∣
∣
∣
≤ CE‖uN‖41 ≤ C.
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Thus, we obtain

E[A] ≤ −2αE[f (uN)]dt + α

4
E‖�uN‖20 + C.

The estimate of C is similar with that of A, and we derive E[C] ≤ α
4E‖�uN‖20 + C.

Taking expectation on both sides of Eq. 9 yields

dEf (uN) + 2αEf (uN)dt ≤ α

2
E‖�uN‖20dt + Cdt ≤ αEf (uN)dt + Cdt.

Multiplying both sides of above equation by eαt and taking integral from 0 to t , we
conclude the uniform boundedness of Ef (uN(t))

Ef (uN(t)) ≤ e−αtEf (uN(0)) + C

α
(1 − e−αt ),

which yields the uniform boundedness of E‖�uN‖20 based on Eq. 8. As the norm
‖uN‖2 is equivalent to ‖�uN‖0 under Dirichlet boundary condition, we complete the
proof.

The Proof of Uniqueness of the Solution for Eq. 4.1

Suppose that U and W are two solutions of the scheme, then it follows

U − W = iτ�
(

U − W
) + iλ

τ

2
πN

[(|U |2U − |W |2W ) + |e−ατ uk−1
N |2(U − W)

]

.

Multiply the equation above by U − W , integrate in space and take the real and imaginary
part respectively, we have

‖U − W‖20 ≤ τ

2
‖f (U) − f (W)‖

L
4
3
‖U − W‖L4 ,

‖∇(U − W)‖20 ≤ 1

2
‖f (U) − f (W)‖

L
4
3
‖U − W‖L4 + λ

2
‖e−ατ uk−1

N ‖2
L4‖U − W‖2

L4 ,

where f (U) := |U |2U and

‖f (U) − f (W)‖
L

4
3

=
(
∫ 1

0

∣
∣
∣|U |2U − |W |2W

∣
∣
∣

4
3
dx

) 3
4

=
(
∫ 1

0

∣
∣
∣|U |2(U − W) + |W |2(U − W) + UW(U − W)

∣
∣
∣

4
3
dx

) 3
4

≤
(
∫ 1

0

∣
∣
∣|U |2 + |W |2 + |UW |

∣
∣
∣

2
dx

) 1
2
(
∫ 1

0
|U − W |4dx

) 1
4

≤ ∥
∥|U | + |W |∥∥2

L4‖U − W‖L4 .
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Since

‖U − W‖4
L4 ≤ ‖U − W‖30‖∇(U − W)‖0

≤
( τ

2
‖f (U) − f (W)‖

L
4
3
‖U − W‖L4

) 3
2
(
1

2
‖f (U) − f (W)‖

L
4
3
‖U − W‖L4

+|λ|
2

‖e−ατ uk−1
N ‖2

L4‖U − W‖2
L4

) 1
2

≤ 1

4
τ

3
2
∥
∥|U | + |W |∥∥3

L4

(∥
∥|U | + |W |∥∥2

L4 + |λ|‖uk−1
N ‖2

L4

) 1
2 ‖U − W‖4

L4

≤ 1

4
τ

3
2

(∥
∥|U | + |W |∥∥4

L4 + |λ|∥∥|U | + |W |∥∥3
L4‖uk−1

N ‖L4

)

‖U − W‖4
L4 ,

if U �= W , then

1 ≤ 1

4
τ

3
2

(∥
∥|U | + |W |∥∥4

L4 + |λ|∥∥|U | + |W |∥∥3
L4‖uk−1

N ‖L4

)

≤ C0τ
3
2

(∥
∥|U | + |W |∥∥4

L4 + |λ|∥∥|U | + |W |∥∥6
L4 + |λ|‖uk−1

N ‖2
L4

)

.

For cases λ = 0 or −1, the L4-norm of the solutions are uniformly bounded. So C0τ
3
2 >

1, which do not hold when τ is sufficiently small. For case λ = 1, according to the fact that

∥
∥|U | + |W |∥∥6

L4 ≤ ∥
∥|U | + |W |∥∥

3
2
0

∥
∥∇(|U | + |W |)∥∥

9
2
0 ≤ N

9
2
∥
∥|U | + |W |∥∥60,

we have C0N
9
2 τ

3
2 > 1, which is also a contradiction when τ is sufficiently small.

Thus, the numerical solution for Eq. 4.1 is unique.
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3. Bréhier, C.-E.: Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven
by space-time white noise. Potential Anal. 40(1), 1–40 (2014)
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