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Abstract

We present a program for computing symmetric quadrature rules on triangles and

tetrahedra. A set of rules are obtained by using this program. Quadrature rules up to

order 21 on triangles and up to order 14 on tetrahedra have been obtained which are useful

for use in finite element computations. All rules presented here have positive weights with

points lying within the integration domain.
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1. Introduction

In finite element computations, numerical integration is widely used for computing integrals

of functions or bilinear forms. For triangular meshes numerical integrations on line segments,

triangles, and tetrahedra are needed. In contrast to quadrilaterals or hexahedra on which

quadrature formulas can be naturally derived from tensor products of one-dimensional Gauss

quadrature rules, high-order non-tensor product quadrature rules on triangles and tetrahedra

are difficult to construct. In fact, many of the non-tensor product rules published in finite

element textbooks contain either negative weights or points outside of the integration domain,

which are undesirable for numerical computations. As a result, it is a common practice in many

finite element packages to use quadrature rules associated with tensor products of one of the

Gauss-Jacobi rules; these rules are unsymmetric and generally require (as many as twice in

three-dimensions) more function evaluations.

There have been many studies searching for quadrature rules on triangles and tetrahedra,

both numerically and analytically. The problem of finding quadrature rules generally leads to a

problem of finding the zeros or minima of high-order multi-variate polynomials, which is known

to be extremely difficult. Many methods have been developed for computing quadrature rules;

we refer the reader to [1, 2, 3, 4, 5, 6, 7, 8, 9] and the references therein.

In this paper, we present a program for computing symmetric quadrature rules on triangles

and tetrahedra and a set of quadrature rules obtained using this program. The underlying

algorithm turns the problem of computing quadrature rules into nonlinear least square solution

of systems of polynomial equations, and makes use of MINPACK [10] which is a publicly

available well known minimization package. All rules presented here are fully symmetric and

have positive weights with quadrature points lying within the integration domain. We believe

that at least some of the rules presented in this paper are new. We prefer symmetric rules

* Received February 17, 2008 / accepted April 18, 2008 /



90 L.B. ZHANG, T. CUI AND H. LIU

on triangles and tetrahedra because they are naturally related to the geometric symmetry of

the integration domain and can be represented in a compact form using symmetry orbits, and

more importantly, the symmetry of the quadrature points may be exploited, together with the

symmetry of finite element basis functions, to reduce the computational cost in the calculation

of mass and stiffness matrices.

After this short introduction, the rest of the paper is organized as follows. In Section 2 we

give a brief description on quadrature rules and define some notations used. In Section 3 we

present our program and the underlying numerical algorithm for computing quadrature rules.

In Section 4 we report the quadrature rules found using this program. In the final section we

give some concluding remarks.

2. Notations

Let T be a d-dimensional simplex, here d = 2 (triangle) or 3 (tetrahedron). A quadrature

rule R on T is defined as a set of point and weight pairs: R = {(pi, wi) | i = 1, · · · , n}, such

that for any function f(x) defined on a domain containing T and the points pi, its integral on

T can be approximated by: ∫
T

f(x)dx ≈ |T |

n∑
i=1

f(pi)wi, (2.1)

where n ∈ N is the number of points, pi are the quadrature points, wi are the associated weights,

|T | denotes the area (d = 2) or volume (d = 3) of T .

A quadrature rule is said to be of (algebraic) order p if (2.1) is exact for all polynomials of

degree not exceeding p. It is clear that if a quadrature rule is of order 0, then the sum of the

weights must be equal to 1.

When dealing with a simplex it is often convenient to use barycentric coordinates. Let vi,

i = 1, · · · , d+1, be the vertices of T . Then the barycentric coordinates (ξ1, · · · , ξd+1) of a point

p with respect to T is determined by:

p =
d+1∑
i=1

ξivi and
d+1∑
i=1

ξi = 1.

Barycentric coordinates are invariant under affine transformations and p ∈ T if and only if all

its barycentric coordinates lie in the interval (0, 1).

A quadrature rule R is said to be symmetric if it is invariant under permutations of the

barycentric coordinates. More precisely, let (ξ1, · · · , ξd+1) be a quadrature point of R associated

with weight w, then for any permutation i1, · · · , id+1 of the indices 1, · · · , d + 1, the point

(ξi1 , · · · , ξid+1
) is also a quadrature point of R associated with the same weight. For a symmetric

quadrature rule, the set of quadrature points can be naturally divided into symmetry orbits,

with each orbit containing all the points generated by permuting the barycentric coordinates of

a single point. The symmetry orbits can be classified into a number of permutation stars, which

are summarized in Tables 2.1 and 2.2, in which the notations for the permutation stars are from

[11] which have the advantage of easily distinguishing stars on triangles and on tetrahedra.

3. The Numerical Algorithm

Denote by P
(p) the set of polynomials of degree less than or equal to p. The problem of

finding an n-point quadrature rule of order p consists of finding the quadrature points pi and
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Table 2.1: Permutation stars on a triangle.

permutation star barycentric coordinates # of points

S3(
1
3 ) (1

3 , 1
3 , 1

3 ) 1

S21(a) (a, a, 1 − 2a) 3

S111(a, b) (a, b, 1 − a − b) 6

Table 2.2: Permutation stars on a tetrahedron.

permutation star barycentric coordinates # of points

S4(
1
4 ) (1

4 , 1
4 , 1

4 , 1
4 ) 1

S31(a) (a, a, a, 1 − 3a) 4

S22(a) (a, a, 1
2 − a, 1

2 − a) 6

S211(a, b) (a, a, b, 1 − 2a − b) 12

S1111(a, b, c) (a, b, c, 1 − a − b − c) 24

weights wi, i = 1, · · · , n, such that

|T |
n∑

i=1

f(pi)wi =

∫
T

f(x)dx, ∀f(x) ∈ P
(p), (3.1)

where T is a triangle or a tetrahedron. Eq. (3.1) can be regarded as a system of algebraic

equations with pi and wi as unknowns, which can be solved using various numerical or analytical

methods.

For symmetric quadrature rules, the set of n points is divided into symmetry orbits. Let

us first consider the case of triangles. Suppose we can decompose n as n = n1 + 3n2 + 6n3,

where n1 = 0 or 1, n2 ≥ 0, n3 ≥ 0. Then the set of n points can be divided into n1 S1 orbit,

n2 S21 orbits, and n3 S111 orbits. S1 corresponds to a fixed point which is the barycenter of

the triangle, points in S21 are determined by a single unknown abscissae, and points in S111

are determined by two unknown abscissas. For each symmetry orbit the weights are the same.

Thus the total number of unknowns in (3.1) is reduced to n2 + 2n3 unknown abscissas and

n1 + n2 + n3 unknown weights. The symmetry can also be exploited to reduce the number of

trial polynomials (number of equations) in (3.1) (see, e.g., [9]). In our case, we use monomials

of the form xk1

1 xk2

2 with k1 ≤ k2 and k1 + k2 ≤ p. Without loss of generality, we choose T to

be the standard triangle {(x1, x2) | 0 ≤ x1 ≤ 1, 0 ≤ x1 + x2 ≤ 1}. Using the formula

∫
T

xk1

1 xk2

2 =
k1! k2!

(2 + k1 + k2)!
,

we get a system of algebraic equations whose unknowns are n2 + 2n3 independent abscissas

and n1 + n2 + n3 weights. This system is turned into a nonlinear least square problem which

is solved by calling the MINPACK routine lmder1 or lmdif1 [10]. Both routines can find local

minima of nonlinear least square problems but the solution found depends heavily on the initial

guess. The difference between lmder1 and lmdif1 is that the former requires the analytical

Jacobian at each iteration, while the latter computes Jacobians using finite differences.

In the solution process, the n1 + n2 + n3 weights can be regarded either as independent

unknowns (in this case, we are solving a nonlinear least square problem with n1 + 2n2 + 3n3

unknowns), or as dependent on the abscissas (in this case, we are solving a nonlinear least

square problem with n2+2n3 unknowns in which a linear least square problem with n1+n2+n3
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unknowns is solved for computing the weights at each function evaluation of the nonlinear least

square problem).

The case of tetrahedra is similar. The points are divided into n1 S4 orbit, n2 S31 orbits,

n3 S22 orbits, n4 S211 orbits, and n5 S1111 orbits, with n1 + 4n2 + 6n3 + 12n4 + 24n5 = n,

where n1 = 0 or 1, nk ≥ 0, k = 2, 3, 4, 5. There are n2 + n3 + 2n4 + 3n5 unknown abscissas and

n1 + n2 + n3 + n4 + n5 unknown weights, and for the standard tetrahedron T = {(x1, x2, x3) |

0 ≤ x1 ≤ 1, 0 ≤ x1 + x2 ≤ 1, 0 ≤ x1 + x2 + x3 ≤ 1}, we have:

∫
T

xk1

1 xk2

2 xk3

3 =
k1! k2! k3!

(3 + k1 + k2 + k3)!
.

The actual algorithm used for computing quadrature rules is described in Algorithm 3.1, in

which a “good” solution means a solution with zero residual, positive weights, and points lying

inside the domain T̄ . To speed up the search for a “good” solution, the algorithm is parallelized

by computing with different initial guesses on different processes, and all processes exit once a

“good” solution is found by any process.

Algorithm 3.1. Algorithm for computing an n-point order p quadrature rule.

for each decomposition n = n1 + 3n2 + 6n3 (2d) or n = n1 + 4n2 + 6n3 + 12n4 + 24n5

(3d) do

repeat

(1) randomly choose an initial guess.

(2) find a least square solution to (3.1) subject to the given decomposition.

(3) if the solution is “good” then stop.

until maximum number of initial guesses tried.

end for

The probability to find a “good” solution with Algorithm 3.1 depends heavily on the way

the initial guesses are chosen. An approach similar to [2] is used in our code which controls

distribution of the initial guesses according to the extremal measure. Numerical comparison

confirmed that this approach does reduce the average number of initial guesses tried before a

“good” solution is found.

We have implemented Algorithm 3.1 in a C program. The source code can be freely

downloaded at http://lsec.cc.ac.cn/phg/download/quadrule.tar.bz2. For convenience

of users, a copy of necessary MINPACK files is included in the distribution. The program

can use either lmder1 or lmdif1, and with the weights as either dependent or independent

variables, its behaviour can be easily changed by modifying some macro definitions at the top

of the source file. It is possible to modify the program to compute other kinds of quadrature

rules, such as rules with specific weight functions or on other types of integration domains.

4. Quadrature Rules

In this section we present the quadrature rules obtained by using the program described in

Section 3. In the actual computations the weights were treated as dependent variables. The

routine lmdif1 was used because it seems to much more likely find a “good” solution than

the routine lmder1, though the latter is much faster. The computations were performed using
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double precision, and the results were post-processed by applying a few Newton iterations to

them using a program written in GNU bc [12] to bring their precision to 34 digits.

The numbers of points for the quadrature rules found are listed in Tables 4.1 and 4.2, they

are either smaller than, equal to, or comparable to the numbers of points of the quadrature

rules available in the literature.

Table 4.1: Numbers of points for the quadrature rules on triangles.

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

# points 1 3 6 6 7 12 15 16 19 25 28 33 37 46 52 55 61 72 73 88 91

Table 4.2: Numbers of points for the quadrature rules on tetrahedra.

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14

# points 1 4 8 14 14 24 36 46 61 81 109 140 171 236

In Sections 4.1 and 4.2 some sample rules are listed. An electronic form of the complete

list of rules, including orders 1–21 on triangles and orders 1–14 on tetrahedra, which is suitable

for use in C or C++ codes, can be found in the file src/quad.c in the source distribution

of the parallel adaptive finite element toolbox PHG [13] which is distributed under the GNU

Lesser General Public License. The macros for defining the rules can be found in the file

include/quad.h. In fact, the quadrature rules listed here were automatically extracted from

src/quad.c using a Bash script.

4.1. Quadrature rules on triangles

16-point order 8 rule on triangle

Orbit Abscissas Weight

S3 .3333333333333333333333333333333333 .1443156076777871682510911104890646

S21 .1705693077517602066222935014914645 .1032173705347182502817915502921290

S21 .0505472283170309754584235505965989 .0324584976231980803109259283417806

S21 .4592925882927231560288155144941693 .0950916342672846247938961043885843

S111 .2631128296346381134217857862846436 .0272303141744349942648446900739089

.0083947774099576053372138345392944

46-point order 14 rule on triangle

Orbit Abscissas Weight

S3 .3333333333333333333333333333333333 .0585962852260285941278938063477560

S21 .0099797608064584324152935295820524 .0017351512297252675680618638808094

S21 .4799778935211883898105528650883899 .0261637825586145217778288591819783

S21 .1538119591769669000000000000000000 .0039197292424018290965208275701454

S21 .0740234771169878100000000000000000 .0122473597569408660972869899262505

S21 .1303546825033300000000000000000000 .0281996285032579601073663071515657

S21 .2306172260266531342996053700983831 .0508870871859594852960348275454540

S21 .4223320834191478241144087137913939 .0504534399016035991910208971341189

S111 .7862373859346610033296221140330900 .0170636442122334512900253993849472

.1906163600319009042461432828653034

S111 .6305521436606074416224090755688129 .0096834664255066004075209630934194

.3623231377435471446183267343597729

S111 .6265773298563063142335123137534265 .0363857559284850056220113277642717

.2907712058836674150248168174816732
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S111 .9142099849296254122399670993850469 .0069646633735184124253997225042413

.0711657108777507625475924502924336

88-point order 20 rule on triangle

Orbit Abscissas Weight

S3 .3333333333333333333333333333333333 .0125376079944966565735856367723948

S21 .2158743059329919731902545438401828 .0274718698764242137484535496073598

S21 .0753767665297472780972854309459163 .0097652722770514230413646914294237

S21 .0103008281372217921136862160096969 .0013984195353918235239233631597867

S21 .4936022112987001655119208321450536 .0092921026251851826304282034030330

S21 .4615509381069252967410487102915180 .0165778760323669253260236250351840

S111 .3286214064242369933034974609509133 .0206677623486650769614219700129729

.4293405702582103752139588004663984

S111 .2604803617865687564195930170811535 .0208222355211545073068785561993297

.1015775342809694461687550061961797

S111 .1370742358464553000000000000000000 .0095686384198490606888758450458320

.7100659730011301599879040745464079

S111 .1467269458722997843041609884874530 .0244527709689724638856439207024089

.4985454776784148493896226967076119

S111 .0269989777425532900000000000000000 .0031557306306305340038264003207296

.0491867226725820016197037125775872

S111 .0618717859336170268417124700122339 .0121367963653212969370133090807574

.7796601465405693953603506190768108

S111 .0477243674276219962083526801042934 .0149664801438864490365249118515707

.3704915391495476369201496202567388

S111 .1206005151863643799672337870400794 .0063275933217777395693240327504398

.8633469487547526484979879960925217

S111 .0026971477967097876716489145012827 .0013425603120636958849798512981433

.0561949381877455029878923019865887

S111 .0030156332779423626572762598234710 .0027760769163475540677293561558015

.2086750067484213509575944630613577

S111 .0299053757884570188069287738643386 .0107398444741849415551734474479517

.7211512409120340910281041502050941

S111 .0067566542224609885399458175192278 .0053678057381874532052474100212697

.6400554419405418899040536682721647

4.2. Quadrature rules on tetrahedra

46-point order 8 rule on tetrahedron

Orbit Abscissas Weight

S31 .0396754230703899012650713295393895 .0063971477799023213214514203351730

S31 .3144878006980963137841605626971483 .0401904480209661724881611584798178

S31 .1019866930627033000000000000000000 .0243079755047703211748691087719226

S31 .1842036969491915122759464173489092 .0548588924136974404669241239903914

S22 .0634362877545398924051412387018983 .0357196122340991824649509689966176

S211 .0216901620677280048026624826249302 .0071831906978525394094511052198038

.7199319220394659358894349533527348

S211 .2044800806367957142413355748727453 .0163721819453191175409381397561191

.5805771901288092241753981713906204

236-point order 14 rule on tetrahedron

Orbit Abscissas Weight

S31 .3272533625238485639093096692685289 .0040651136652707670436208836835636

S31 .0447613044666850808837942096478842 .0022145385334455781437599569500071
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S31 .0861403311024363536537208740298857 .0058134382678884505495373338821455

S31 .2087626425004322968265357083976176 .0196255433858357215975623333961715

S31 .0141049738029209600635879152102928 .0003875737905908214364538721248394

S211 .1021653241807768123476692526982584 .0116429719721770369855213401005552

.5739463675943338202814002893460107

S211 .4075700516600107157213295651301783 .0052890429882817131317736883052856

.0922278701390201300000000000000000

S211 .0156640007402803585557586709578084 .0018310854163600559376697823488069

.7012810959589440327139967673208426

S211 .2254963562525029053780724154201103 .0082496473772146452067449669173660

.4769063974420887115860583354107011

S1111 .3905984281281458000000000000000000 .0030099245347082451376888748208987

.2013590544123922168123077327235092

.0161122880710300298578026931548371

S1111 .1061350679989021455556139029848079 .0008047165617367534636261808760312

.0327358186817269284944004077912660

.0035979076537271666907971523385925

S1111 .5636383731697743896896816630648502 .0029850412588493071187655692883922

.2302920722300657454502526874135652

.1907199341743551862712487790637898

S1111 .3676255095325860844092206775991167 .0056896002418760766963361477811973

.2078851380230044950717102125250735

.3312104885193449000000000000000000

S1111 .7192323689817295295023401840796991 .0041590865878545715670013980182613

.1763279118019329762157993033636973

.0207602362571310090754973440611644

S1111 .5278249952152987298409240075817276 .0007282389204572724356136429745654

.4372890892203418165526238760841918

.0092201651856641949463177554949220

S1111 .5483674544948190728994910505607746 .0054326500769958248216242340651926

.3447815506171641228703671870920331

.0867217283322215394629438740085828

5. Conclusion

We have presented a program for computing symmetric quadrature rules on triangles and

tetrahedra. It is expected that these rules are useful for users developing finite element codes.

The computations were done on the teracluster LSSC-II of the State Key Laboratory of Scientific

and Engineering Computing, Chinese Academy of Sciences. For quadrature rules of modest

orders (< 10), the program works quite well and can find solutions quickly, but it tends to

be slower when the order becomes higher because the number of possible decompositions into

symmetry orbits to try and the size of the system of polynomial equations to solve become

large. For orders above 20 it is almost impossible to distinguish local and global minima of the

nonlinear least square problems due to roundoff errors. During numerical computations many

rules which have fewer points than those reported here, but have either negative weights or

points outside of the integration domain, have been found and discarded. Through numerical

computations we found that the way the initial guesses are chosen is essential for the efficiency

and robustness of the algorithm, which is considered to be a possible future study subject.

Acknowledgments. The research is partially supported by the 973 Program under the grant

2005CB321702 and by China NSF under the grants 10531080 and 60873177.



96 L.B. ZHANG, T. CUI AND H. LIU

References

[1] H. Li, J. Sun and Y. Xu, Discrete fourier analysis, cubature and interpolation on a hexagon and

a triangle, SIAM J. Numer. Anal., to appear.

[2] M.A. Taylor, B.A. Wingate and L.P. Bos, A cardinal function algorithm for computing multivari-

ate quadrature points, SIAM J. Numer. Anal., 45:1 (2007), 193–205.

[3] R. Cools, An encyclopaedia of cubature formulas, J. Complex., 19:3 (2003), 445–453.

[4] S. Heo and Y. Xu, Constructing fully symmetric cubature formulae for the sphere, Math. Comput.,

70:233 (2001), 269–279.

[5] P. Hammer and A. Stroud, Numerical integration over simplexes, Mathematical Tables and Aids

to Computation, 10 (1956), 137–139.

[6] A. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, N.J.,

1971.

[7] A. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N.J.,

1966.

[8] P. Solin, K. Segeth and I. Dolezel, Higher-Order Finite Element Methods, Chapman and Hall/CRC

Press, 2003.

[9] S. Wandzura and H. Xiao, Symmetric quadrature rules on a triangle, Comput. Math. Appl.,

45 (2003), 1829–1840.

[10] J. More, B. Garbow and K. Hillstrom, MINPACK, http://www.netlib.org:80/minpack/.

[11] C.A. Felippa, A compendium of FEM integration rules for finite element work, Eng. Computation,

21 (2004), 867–890.

[12] P.A. Nelson, GNU bc, http://www.gnu.org/software/bc/.

[13] L.B. Zhang, Parallel Hierarchical Grid, http://lsec.cc.ac.cn/phg/index en.htm/.


