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Abstract

PHG (Parallel Hierarchical Grid) is a scalable paral-
lel adaptive finite element toolbox under active develop-
ment at the State Key Laboratory of Scientific and Engineer-
ing Computing, Chinese Academy of Sciences. This paper
demonstrates its application to adaptive finite element com-
putations of electromagnetic problems. Two examples on
solving the time harmonic Maxwell’s equations are shown.
Results of some large scale adaptive finite element simula-
tions with up to 1 billion degrees of freedom and using up
to 2048 CPUs are presented.

1. Introduction

Ever since the pioneering work of Babuška and Rhein-
boldt [1], the adaptive finite element method (AFEM)
based on a posteriori error estimates has become a cen-
tral theme in scientific and engineering computing. The
AFEM is very efficient for problems with local singu-
larities since it produces ”quasi-optimal” meshes for the
given problem by using reliable and efficient error esti-
mates [4, 6, 14]. For steady state problems, the AFEM
based on a posteriori error estimates is characterized by
the solve→estimate→mark→refine loop and is described
by the following algorithm.

Algorithm: Starting from an initial mesh T0, let Th = T0.

1. Solve the problem (1)-(2) on Th.

2. Compute the local error estimate η̂T for each element
T ∈ Th and the global error estimate E . If E is smaller
than the prescribed tolerance then stop.
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3. Mark the elements whose local error estimate is large.

4. Refine the mesh Th by dividing the marked elements
and possibly some other elements, in order to maintain
conformity of the mesh, into smaller elements.
Goto step 1.

It is well-known that the solutions of the time harmonic
Maxwell’s equations generally have very strong singulari-
ties, thus the AFEM is well suited for solving these prob-
lems. A framwork of the AFEM based on a posteriori error
estimates for the time harmonic Maxwell’s equations was
presented in [6]. Extensive numerical experiments in [6] in-
dicated that the AFEM based on the a posteriori error esti-
mates has the very desirable quasi-optimality property: the
energy error decays like N−1/3, where N is the number
of degrees of freedom, for the Nédéléc lowest order edge
element [9, 15], which has gain widespread popularity in
numerical electromagnetic field computations by finite ele-
ment methods [2, 3].

Unfortunately, parallel implementation of the AFEM on
distributed memory parallel computers is very difficult be-
cause of the complexities of the mesh management and load
balance issues. Also, highly efficient numerical methods
for solving the linear system resulting from finite element
discretization are required. For facilitating implementing
the AFEM, we have developed the toolbox PHG, Parallel
Hierarchical Grid [13]. The motivation of this toolbox is
to support the research on AFEM algorithms and develop-
ment of AFEM codes. PHG deals with conforming tetrahe-
dral meshes and uses bisection for adaptive mesh refinement
and MPI for message passing[10]. Using an object oriented
design, the details of complex mesh management and par-
allelism are hidden from users. PHG provides supports for
adaptive finite element computations, such as finite element
bases (including the Nédéléc edge elements for electromag-
netic computations), numerical quadrature, and basic oper-
ations with finite element functions. For building, assem-



bling, and solving linear systems and eigenvalue problems
resulting from finite element discretization, an unified linear
algebra module for manipulating distributed sparse matri-
ces stored in compressed sparse rows (CSR) and distributed
vectors is provided, based on linear solvers including PCG
and GMRES are built. Load balancing is achieved through
mesh repartitioning and redistribution. PHG also provides
optional interfaces to many well known open source linear
solvers and eigen solvers, such as PETSc[12], HYPRE[8],
MUMPS[17], and PARPACK[16].

In this paper, we demonstrate the application of PHG to
electromagnetic computations with two examples in which
3D time harmonic Maxwell’s equations are solved. The lay-
out of the paper is organized as follows. In section 2, we
present the numerical algorithm and the a posteriori error
estimates for the time harmonic Maxwell’s equations. In
section 3, we give numerical results obtained with two prob-
lems. The first one is the so-called “screen problem”, and
the second one is an eddy current model with voltage exci-
tations for complicated three dimensional structures. In the
last section, section 4, some concluding remarks are given.

2. Time-harmonic Maxwell’s equations and
adaptive finite element computation

The general form of time harmonic Maxwell’s equations
we focus on in this paper is as follows:

∇× (
1
µ
∇×E)− k2E = f in Ω, (1)

E× n = g on ∂Ω, (2)

where Ω is a bounded domain with Lipschitz boundary, E,
f , and g are vector functions from R3 to R3 or C 3, E is the
solution to compute, f and g are known functions, and n is
the unit outer normal of the boundary.

We introduce some notations here. Th denotes a regular
tetrahedral triangulations of Ω. Fh and Eh denote respec-
tively the set of faces and the set of edges not lying on ∂Ω.
For any face F ∈ Fh, assuming F = T1 ∩ T2, T1, T2 ∈ Th

and the unit normal ν pointing from T2 to T1, we denote the
jump of a function ϕ across F by [[ϕ]]F := ϕ|T1 − ϕ|T2 .

The Nédéléc lowest order finite element is used to dis-
cretize equations (1)-(2). Details of the finite element dis-
cretization for this problem can be found in P. Monk et al.
[11]. Let Eh be the finite element solution of (1)-(2) on Th.
The local a posteriori error estimate η̂T for the solution Eh

over an element T ∈ Th is computed by (see e.g. Chen et
al. [6]):

η̂2
T := η2

T +
∑

F∈Fh∩T

η2
F , (3)

where

η2
T = h2

T (‖f + k2Eh −∇× 1
µ
∇×Eh‖20,T

+‖∇ · (f + k2Eh)||20,T ),

η2
F = hF (‖[[ 1

µ
(∇×Eh)× ν]]‖20,F

+‖[[(f + k2Eh) · ν]]‖20,F .

Here hT and hF are respectively the diameter of the element
T and the face F .

The finite element discretization of problem (1)-(2) and
the computations of the a posteriori error estimate (3) can
be conveniently implemented based on PHG, resulting in
an efficient parallel adaptive finite element code for solving
the time harmonic Maxwell’s equations.

3. Numerical examples

In this section we demonstrate our parallel adaptive fi-
nite element code for solving the time harmonic Maxwell’s
equations with two examples.

3.1. The screen problem

In this example, all functions and parameters have real
values. The computational domain Ω = Ω0\Σ, where Ω0 =
[−1, 1]3, and (the screen) Σ = [− 1

2 , 1
2 ] × 0 × [− 1

2 , 1
2 ], as

shown in Figure 1. The other parameters are f = (1, 1, 1),
k2 = 1, and g = (0, 0, 0).

Figure 1. The screen problem.

The solution of this problem exhibits strong singularities
near the edges and the corners of the screen. Thus this ex-
ample can be used to check the performance of the adaptive
strategy, as well as the correctness and robustness of our
code.

Since −k2 is negative, the linear system of equations re-
sulting from the finite element discretization is symmetric
indefinite. It is solved by a PCG method in which the pre-
conditioning matrix is the finite element discretization of



the same problem with k2 set to −1. The precondition-
ing matrix is symmetric positive definite and is solved by
a PCG method using the very efficient Hiptmair-Xu aux-
iliary space preconditioner [7] (the AMS preconditioner).
The actual implementation of the AMS preconditioner used
in this computation is from Hypre-2.2.0b [8], which uses
the algebraic multigrid solver BoomerAMG, also available
in Hypre, for solving the Poisson equations in the auxiliary
spaces. In the computations, the preconditioning system
is solved “exactly” to a prescribed tolerance in each outer
PCG iteration.

The computations were performed on a home made mas-
sively parallel computer. Figure 2 shows the numbers of
PCG iterations required to reduce the initial residual by a
factor of 10−10 on 2048 CPUs, in which the number of de-
grees of freedom grows from 10K to 1G (one billion). The
iteration numbers are stable with increasing mesh size for
both adaptive and uniform mesh refinements, except some
oscillations of the iteration numbers with adaptive mesh re-
finements.

Figure 3 is the log-log plot of the a posteriori error in-
dicator with respect to the number of degrees of freedom.
It shows the quasi-optimality of the adaptive method: the
error decays as O(N−1/3) with adaptively refined meshes,
where N denotes the number of degrees of freedom, which
is not true with uniformly refined meshes.

Firgure 4 shows a sample mesh on the plane y = 0 gen-
erated by the adaptive method. We observe that the adaptive
mesh captures the singularities of the solution quite well.
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Figure 2. Number of PCG iterations on 2048
CPUs (the screen problem).

Table 1 lists the wall-clock time spent in different parts
of the finite element solution procedure for a fixed problem
size with 21,805,534 degrees of freedom. For this problem
size our code scales well up to 256-512 CPUs.

Table2 lists the wall-clock time for the case in which the
average number of elements is fixed to 393,216, and the
global mesh size increases proportionally with the number
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Figure 3. Log-log plot of the a posteriori error
indicator with respect to the number of de-
grees of freedom (the screen problem).

Figure 4. The adaptive mesh on the plane y =
0 (the screen problem)

of CPUs, using uniform mesh refinements. It is an indica-
tion on the scalability of our code.

3.2. The eddy current problem

The second example comes from the eddy current prob-
lem of circult/field coupling which has direct applications in
circuit design. The dimensionless form of the A− φ model
of the problem is given by:

{
∇×∇×A + is2ωµσA = −sσµ∇φ0 in Ω,
A× n = 0 on ∂Ω,

(4)

where s is the dimensionless factor. Please refer to [5] for
details about the formulation of this problem. Note that here
A is a complex valued function.



# of Setup
CPUs linear system PC Solve

32 13.391 16.911 1839.0
64 7.0697 8.8474 872.02

128 3.3057 4.3237 398.52
256 1.7918 2.6003 231.26
512 0.9112 1.9709 177.75

1024 0.4461 2.7106 217.94
2048 0.2425 5.5601 344.31
4096 0.1210 15.107 565.93

Table 1. Wall-clock time (seconds) spent in
different parts of the finite element solver
on a fixed mesh containing 18,333,752 ele-
ments/21,805,534 DOFs (the screen problem)

# of # of Setup
CPUs elements linear system PC Solve

32 12,582,912 10.338 11.096 902.45
64 25,165,824 9.7286 10.593 1138.9

128 50,331,648 9.7098 12.543 1023.9
256 100,663,296 9.7551 14.767 1130.9
512 201,326,592 9.9193 19.113 1563.9

1024 402,653,184 9.7997 30.252 1491.3
2048 805,306,368 10.180 53.440 2455.6

Table 2. Wall-clock time (seconds) spent in
different parts of the finite element solver
by fixing the average number of elements in
each process to 393,216 (the screen prob-
lem).

The computational domain Ω = Ωc ∪ Ωnc = [0, 5]3,
where Ωc is an L-shaped conductor, and the surround of the
conductor Ωnc = Ω\Ωc is air. The computational domain is
shown in Figure 5. The other parameters are: σ = 5.8×107

in Ωc and 0 in Ωnc, µ = µ0 = 4π × 10−7, ω = 2π × 1010,
s = 10−6, φ0 is any function satisfying φ0|S1 = 1 and
φ0|S2 = 0, where S1 = 0× [2, 3]× [2, 3] and S2 = [2, 3]×
0× [2, 3] are the two ports of the conductor (it can be shown
that the quantities of physical interests depend only on the
values of φ0 at the ports).

By separating the real and the imaginary parts, the linear
system resulting from finite element discretization can be
written in the following form:

(
K −M
−M −K

)(
Are

Aim

)
=

(
f
0

)
, (5)

where K is the stiffness matrix and M the mass matrix, Are

is the real part of the solution and Aim the imaginary part.

Figure 5. The conductor and the computa-
tional domain (the eddy current problem).

This system is singular because σ = 0 in Ωnc. It is solved
directly by a preconditioned GMRES or MINRES method
with the preconditioning matrix chosen as:

(
K + M 0

0 K + M

)−1

. (6)

The preconditioning matrix K + M is symmetric semidef-
inite and corresponds to the finite element discretization of
the following problem:

{
∇×∇×A + s2ωσµA = f in Ω,
A× n = 0 on ∂Ω,

(7)

It can be efficiently solved by a PCG method using the AMS
preconditioner.

Let Ah be the finite element solution of (4) on Th. The
local a posteriori error estimate over an element T ∈ Th,
which is a little different from the previous example, is
given by (see [5]):

η̂T :=


η2

T +
∑

F∈Fh,F⊂Ωnc,F⊂∂T

‖J‖2L2(F )




1/2

, (8)

J := h
1/2
F [[(Ah −∇φh) · ν]]F ,

η2
T := h2

T ‖ − sσµ(∇φ0 + isωAh) ‖2L2(T )

+ h2
T ‖ sµσ∇ · (∇φ0 + isωAh) ‖2L2(T )

+
∑

F∈F,F⊂∂T

(
hF ‖ [[ν ×∇×Ah]]F ‖2L2(F )

+ hF ‖ [[sσµ(∇φ0 + isωAh) · ν]]F ‖2L2(F )

)
,

where φh is a function satisfying:




∇φh = 0 in Ωc,
φh|Ωnc

∈ Vh(Ωnc),∀vh ∈ Vh(Ωnc),
(∇φh,∇vh)Ωnc

= (Ah,∇vh)Ωnc
in Ωnc.

(9)



Here Vh(Ωnc) denotes the H1 conforming linear finite ele-
ment over Ωnc.

The computations were performed on 64 CPUs of the
cluster LSSC-II in the State Key Laboratory of Scientific
and Engineering Computing of Chinese Academy of Sci-
ences. LSSC-II is built of 512 Intel Pentium IV 2.0 GHz
CPUs on 256 nodes. Each node has 1GB of memory and
all nodes are connected by Myrinet2000 network. The pre-
conditioned GMRES method was used and in each GMRES
iteration the preconditioning system was solved by perform-
ing only a few (typically 3-5) PCG/AMS iterations such that
the residual of the preconditioning system was reduced by
a factor of 0.01.

Figure 6 is the log-log plot of the a posteriori error es-
timate with respect to the number of degrees of freedom,
showing the quasi-optimality of the adaptive meshes. Fig-
ure 7 shows a sample adaptive mesh on the plane z = 0.25.
The adaptive meshes capture the singularity of the solution
very well.
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Figure 6. Log-log plot of the a posteriori er-
ror estimate with respect to the number of de-
grees of freedom (the eddy current problem).

Table 3 lists the relative error of the resistance RR, the
inductance RL, and the number of the GMRES iterations
and the time required to reduce the initial residual by a fac-
tor of 10−10 in solving the linear system of equations on
adaptively refined meshes. Table 4 shows the results on
uniform refined meshes. The relative error of the resistance
RR is defined as RR=|R − R̂|/|R̂|, where R̂ is the resis-
tance obtained at the last adaptive refinement step which
we take as the ”exact” solution. The relative error of the
inductance RL is defined similarly. We observe that for
the resistance, the numerical result obtained on an adaptive
mesh with 41,752 degrees of freedom is similar to the re-
sult obtained on an uniform mesh with 1,821,040 degrees
of freedom. This demonstrates the efficiency of the adap-
tive algorithm.

The fourth column of the tables shows the numbers of

Figure 7. The adaptive mesh on the plane
z = 0.25 with 3338028 degrees of freedom
(the eddy current problem).

GMRES iterations performed in order to reduce the resid-
ual by a factor of 10−10. The stable iteration numbers in Ta-
bles 3 and Tables 4 indicate that the preconditioner is nearly
optimal.

4. Conclusion

We have presented some simulations for the time har-
monic Maxwell’s equations with our parallel adaptive finite
element code implemented by using the parallel adaptive
finite element toolbox PHG. The results show that applica-
tion of PHG to the numerical solution of the time harmonic
Maxwell’s equations is successful. The resulting code is ro-
bust, efficient, scalable, and is capable of solving large scale
problems in adaptive finite element computations with up to
1 billion degrees of freedom using thousands of CPUs.
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