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Basic ldeas

To an extent, constructing algorithm ~ “Art of Balance”

@ Optimization algorithms are “always” iterative
e Total cost = (number of iterations)x (cost/iter)

@ 2 objectives above

It's more difficult to analyze iteration complexity.
A good iteration complexity # fast algorithm

ADM Idea: lower per-iteration complexity

Approach:
— “EATEE, BT — Sun-Tzu (400 BC)
— “Divide and Conquer” — Julius Caesar (100-44 BC)
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Convex program with the 2-separability structure

min fi(x) + fo(y), st. Ax+ By =b, xe X, y € Y J
XY S ———r

f(x.y)

Augmented Lagrangian (AL): penalty 8 > 0

LaleyX) = Flx,y) = N (Ax+ By = b) + 5+ By — bfF |

Classic AL Multipler Method (ALM): step v € (0, 2)

(xKL yk 1)« arg T g {L’A(x,y,)\k) xeX,ye y}
N 2k 7/8 (AXk+1 4 Byk+1 _ b)

Hestines-69, Powell-69, Rockafellar-73

(It does not explicitly use 2-separability) EQS
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Classic Alternating Direction Method (327 [F]1%)

Replace joint minimization by alternating minimization once:

minL4 ~ (minL4) & (minL4)
8% X y

(AL)ADM: step v € (0,1.618)

X1« argmin, {La(x, v \) i x € X}
yk s argming, {LA(x" 1y, N ) 1y €V}
AL Nk ,.YB (AXk+1 + Byk+1 _ b)

It does use 2-separability: (“EATIEHL", “EATH)
@ x-subproblem:
min (<) + 5 1A% — ()P

@ y-subproblem: -

| 8 &
myln h(y) + EHB}/ — ()7 RIC
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ADM overview (1)

ADM as we know today

@ Glowinski-Marocco-75 and
Gabay-Mercier-76

o Glowinski at el. 81-89, Gabay-83...

Connections before Aug. Lagrangian

@ Douglas, Peaceman, Rachford
(middle 1950's)

@ operator splittings for PDE
(a.k.a. ADI methods)
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ADM overview (I1)

After PDE, subsequent studies in optimization

@ variational inequality, proximal-point, Bregman, ...
(Eckstein-Bertsekas-92 ...... )

@ inexact ADM (He-Liao-Han-Yang-02 ...... )
@ Tseng-91, Fukushima-92, ...
e proximal-like, Bregman (Chen and Teboulle-93)

ADM had been used in optimization to some extent, but not
as widely used to be called “main-stream” algorithm
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ADM overview (I11)

Recent Revival in Signal/Image/Data Processing
@ (1-norm, total variation (TV) minimization

@ convex, non-smooth, simple structures

Splitting + alternating:
e Wang-Yang-Yin-Z-2008, FTVd (TV code)
(split + quadratic penalty, 2007)
(split + quadratic penalty + multiplier in code, 2008)
@ Goldstein-Osher-2008, split Bregman
(split + quadratic penalty + Bregman, earlier in 2008)

o ADM /;-solver for 8 models: YALL1. Yang-Z-2010

Googled “split Bregman": “found 16,300 results”.
Turns out that hot split Bregman = cool ALM ‘Qf
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ADM Global Convergence

e.g., “Augmented Lagrangian methods ..." Fortin-Glowinski-83

Assumptions required by current theory:
@ convexity over the entire domain
@ separability for exactly 2 blocks, no more

@ exact or high-accuracy minimization for each block

Strength:
o differentiability not required

@ side-constraints allowed: x € X,y € Y

But
@ why not 3 or more blocks?
@ very rough minimization?

@ rate of convergence?
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Some Recent Applications

From PDE to:
Signal /Image Processing

Sparse Optimization

&8
@
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TV-minimization in Image Processing
TV/L? deconvolution model (Rudin-Osher-Fatemi-92):
min > || Dul] + gHKU — f]] (sum all pixels)
Splitting:
; _ I 2w — Do
min {Zuw,u + Sk — £ w; = D,u,V:}.

Augmented Lagrangian function £ 4(w, u, \):

B 7
Z (IIW:'H — A/ (w; — Dju) + §||w; — Djul)® ) + EIIKU — |

i

Closed formulas for minimizing w.r.t. w (shrinkage) and u (FFT)
(almost linear-time per iteration)
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Shrinkage (or Soft Thresholding)

Solution to a simple optimization problem:

. d 2
x(v, =arg min || x|| + <X —V
(v, ) = arg min, x| + 5 }x — v| J

where || - || is the Euclidean norm in RY, v # 0 and z > 0.

x(v, p) = max (HVH - %’0> H_ZH J

This formula was used at least 30 years ago.
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Multiplier helps: Penalty vs.

SNR history (dB)

Iteration Number

ADM

Function values

10°

53

10

10°2

10
Iteration Number

Matlab package FTVd (Wang-Yang-Yin-Z, 07~09):
http://www.caam.rice.edu/~optimization/L1/ftvd/

(v1-3 use Quadratic penalty, v4 applies ADM.

Orders of magnitude faster than PDE-based methods.

Key: “splitting-alternating” takes advantage of the structure.

Use of multiplier brings further speedup.
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http://www.caam.rice.edu/~optimization/L1/ftvd/

Example: Cross-channel blur + Gaussian noise
FTVd: min, TV (u) + po|Ku — £||2, sizes 5122 and 2562

onginal

Blurry&Noisy. SNK: 8.01dB F1vd: SNR: 19.54d8B, t = 16.86s

Blurry&Noisy. SNR: 6.70dB FTVd: SNR: 18.49dB, t = 4.29s

(computation by Junfeng Yang)

14/39



¢1-minimization in Compressive Sensing

Signal acquisition/compression: A € R™*" (m < n)
b~ Ax* € R" ]

where x* € R" is sparse or compressible under a orthogonal
transformation W. /1 norm is used as the surrogate of sparsity.

8 signal recovery models: A € R™*" (m < n)
Q min||Vx|1, st. Ax=b (x>0)
@ min ||Wx|1, s.t. [Ax —b|2 < (x>0)
@ min[Wxlls + ullAx — BB (x = 0)
Q@ min [ x| + ullAx — by (x > 0)

Can we solve these 8 model by < 30 lines of 1 Matlab code?

YALL1 using ADM. B
@
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¢1-minimization in Compressive Sensing (I1)

Sparse signal recovery model: A € R™*" (m < n)

min {||x||l; : Ax = b} L& max{b'y:ATy€[-1,1]"} J

Add splitting z to “free” ATy from the unit box:
max{b'y: ATy =z €[-1,1]"} J

ADM (1 of variants in Yang-Z-09): AAT = | (common in CS)
y « A(z—x)+b/s
z P[_l,l]n(ATy + x)
x — x—7(z—=ATy)

RIC
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Numerical Comparison

ADM solver package YALL1: http://yalll.blogs.rice.edu/
Compared codes: SPGL1, NESTA, SpaRSA, FPC, FISTA, CGD

min: 0.20, p/m: 0.20,

——PADM
~=—DADM
——SPGLL
——NESTA

Relative Error
=
5

LY

10° 10! 10°
Iteration

m/n: 0.30, p/m: 0.20, : 1.0e-004

Relative Error

Iteration

(noisy measurements, average of 50 runs)

of convergence in reducing error ||x* — x*||.

Nonasymptotically, ADMs showed the fastest speedJ



http://yall1.blogs.rice.edu/

Single Parameter

In theory, 8 > 0 = convergence
How to choose the penalty parameter in practice?

In YALL1: Make the subproblems scalar scale invariant

@ Scale A to “unit” size

@ Scale b accordingly.

o 3=m/|bl:.

Optimal choice is still an open theoretical question.
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Signal Reconstruction with Group Sparsity

Group-sparse signal x = (x1; == ; Xs),x € R". >3 1 ni=n

S
minz |Ixil]|2 s.t. Ax = b. J

i=1

Introduce splitting y € R”,

S
rw; lyill2 s:t. y =x, Ax=b. J

ADM (Deng-Yin-Z-10):

y <« shrink(x + A1,1/5) (group-wise)
x « (I+ATA™M(y =) +AT(b+ X))
(A1, A2) < (A1, A2) =y — x, Ax — b)

(A
Easy if AAT = I; else take a steepest descent step in x (say). \12
RI
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Multi-Signal Reconstruction with Joint Sparsity

Recover a set of jointly sparse signals X = [x; --- xp] € R™*P

n
. T .
min El e/ X]|| s.t. Ajx;j = b, Vj.
=

v

Assume A; = A for simplicity. Introduce splitting Z € RP*",

i Zeil| st. Z=X", AX = B.
m)gni;\l eill s :

ADM (Deng-Yin-Z-10):
Z < shrink(X" 4+ A1,1/8) (column-wise)
X — (I+ATAHZ-N)T+AT(B+AL))
(A1, A2) — (A1, A2) —v(Z - XT,AX — B)

Easy if AAT = [; else take a steepest descent step in X.
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Extensions to Non-convex Territories
(as long as convexity exists in each direction)

Low-Rank/Sparse Matrix Models
Non-separable functions

More than 2 blocks

LAY
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Matrix Fitting Models (I): Completion

Find low-rank Z to fit data {M; : (i,j) € Q} |

Nuclear-norm minimization is good, but SVDs are expensive.
Non-convex model (Wen-Yin-Z-09): find X € R™*k Y ¢ Rkxn

in |[XY = Z||% s.t. Z— M) =
Jmin, | 12 s.t. Po(Z —M)=0 J
An SOR scheme:
Z — wZ+(1-wXY
X « qr(zy")
Y « X'Z
Z — XY +Pq(M—XY)

1 small QR (m x k).

No SVD. w dynamically adjusted.

(A
Much faster than nuclear-norm codes (when it is applicable) @
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Nonlinear GS vs SOR

—+—S0R: k=12,
-4 -SOR: k=20
-0-GS: k=12
* GS:k=20

normalized residual

0 50 100 150 200 250 300 350 400
iteration

(a) n=1000, r=10, SR = 0.08

10
10" ——SOR: k=12
- ¢ -SOR: k=20

3 -0-G8: k=12
3 107 « GS:k=20
2
o
3
8
£ 107
2

107

107

0 20 40 60 80 100 120

iteration

(b) n=1000, r=10, SR=0.15

Alternating minimization, but no multiplier for storage reason

Is non-convexity a problem for global optimization of this problem?

— “Yes" in theory
— “Not really” in practice

RICE
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Matrix Fitting Models (I1): Separation
Given data {Dj; : (i,j) € Q},
Find low-rank Z so that difference Pq(Z — D) is sparse )

Non-convex Model (Shen-Wen-Z-10): U € R™*k v ¢ Rkxn

Jhin, [Pa(Z = D)l st Z~UV =0 J
ADM scheme:
U « ar((Z-A/B)VT)
V «— U(Z-NMA/B)
‘7:)§2c ( LZT) — ‘7:’g2c ( Uv + /\///ff)
Pa(Z) <« Pq(shrink(---)+ D)
AN — AN—~B(Z-UV)

(A

— 1 small QR. No SVD. Faster. @
— non-convex, 3 blocks. nonlinear constraint. convergence? RIC
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Nonnegative Matrix Factorization (Z-09)

Given A € R™" find X, Y € R™k (k < n),
min | XYT — A% st. X, Y >0 J

Splitting:
min [ XY — A st X =U,Y = U, U, Uz >0 |
ADM scheme:
X « (AY 48U —M))YTY +8N7T
YT — (X'X+8DYXTA+B(Ur — A))
(U, Us) — Po(X+A,Y +Ay)
(A1, A2) <+ (A1, A2) —4(X — UL, Y — Us)

— cost/iter: 2 (k x k) linear systems plus matrix arithmetics
— better performance than Matlab built-in function “nnmf”
— non-convex, non-separable, 3 blocks: convergence?



Theoretical Convergence Results

A general setting
Local R-linear convergence

Global convergence for linear constraints

(Liu-Yang-Z, work in progress)



General Setting: Problem

Consider
min f(x) s.t. c(x) =0 J

where f : R” — R and ¢ : R” — R™(m < n) are C?-mappings.
Augmented Lagrangian:

Lal,) 2 0f(0 =y el + 510 |

Augmented saddle point system:

ViLla(x,y) = 0,
c(x) = }

RICE
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Splitting and lteration Scheme

G :R" xR" — R" is a splitting of F: R" — R" if
G(x,x) = F(x), Vx € R". |
eg,ifA=L—R, G(x,x) 2 Lx — Rx = Ax = F(x).

Let G(x, x, y) be a splitting of V,L,(x,y) on x )

Augmented saddle point system becomes
G(x,x,y) = 0
c(x) =

A general Split (gSS) Scheme for Saddle-point Systems:

LA
y \i§
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Block Jacobi for Square System F(x) =0

Partition the system and variable into s < n consistent blocks:
F:(F17F27"' an), X:(X1;X27"' 7XS) J

Block Jacobi iteration: given xX, for i =1,2,...,s
k+1 k k k ky _
Xi < Fi(X17"'7XI'717X"7XI'+17"'7XS)_0
or xK1 « G(x,x¥)=0 )
where
Fi(xi,z2,...,2s)
G(x,z)=| Fi(z1,.- X, Zit1,- -, 2Zs)
Fs(Zl,... ,XS) ig

RICE
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Block Gauss-Seidel for Square System F(x) =0

Block GS iteration: given x¥, for i =1,2,...,s

XKt F;(X{(Jrl,...,xikfll,x,-,x,-kﬂ,...,xsk):0
or xKt1 « G(x,x")=0 )
where
Fl(Xluz27"‘7zS)
G(x,z)=| Fi(x1, -, XisZi41, -, 2Zs)
Fs(x1,...,xs)

(SOR can be similarly defined.)

RIC
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Splitting for Gradient Descent: F(x) = Vf(x)
Gradient descent method (with a constant step size):
XKL = xk — aF (x4,

or xK1 « G(x,x¥)=0 ]

G(x,z) = éx - (éz - F(z)> . J

— gradient descent iterations can be done block-wise
— block GS, SOR and gradient descent can be mixed
(e.g., Ist block: GS; 2nd block: gradient descent)

where

RIC
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Assumptions

Let 9;G(x, x, y) be the partial Jacobian of the splitting G
w.r.t. the i-th argument, and 9;G* £ 9;G(x*, x*, y*) where

x* is a minimizer and y* the associated multiplier.

Assumption 1. (2nd-order Sufficiency)
f,c €C?, and a > 0 is chosen so that

V)%Ea(x*,y*) =0 J

Assumption 2. (Requirement on splitting)
01G is nonsingular in a neighborhood of (x*, x*, y*), and

p([:6170:6%) <1 |

(e.g., for gradient descent: [0,G*]710,G* = | — aV?f(x*))

R
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Assumptions are Reasonable

Al. 2nd-order sufficiency guarantees that o > 0 exists so that
a [V2(x*) = 3 97 V26 (x*)] + A(x*) TA(x*) = 0 )
where A(x) = dc(x). Note

ViLa(x,y) = G(x,x,y) = V2L:=0G"+0,G* -0 |

A2. Any convergent linear splitting for matrices = 0 leads to a
corresponding nonlinear splitting G satisfying

p ([81G*]_182G*) <1 J

Hence, A2 is satisfied by block GS (i.e., ADM), SOR, gradient

descent (with appropriate o) and their mixtures. -
@
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The Error System

Recall gSS:

XKL G(X,Xk,yk)ZOJ

YR R (xR

Using Implicit Function Theorem, we derive an error system
et = M*(r)e + o(|ek])) |

where ek £ (xk, y*) — (x*, y*),

_ —[81G*]_182G* [81G*]—1A*T :| J

M) = a6 1006 | — 7 A [5G AT

Key Lemma. (Z-2010) Under Assumptions 1-2, there exists > 0
such that p(M*(7)) < 1 for all 7 € (0,2n).

A
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Convergence: 7 € (0,27)

Theorem [Local convergence].

There exists an open neighborhood U of a KKT point (x*, y*)
such that for any (x%, %) € U, the sequence {(x*,y*)} generated
by gSS stays in U and converges to (x*, y*).

Theorem [R-linear rate].
The asymptotic convergence rate of gSS is R-linear with R-factor

p(M*(7)), i.e.,

limsup [|(x*, y¥) = (x*, y)I* = p(M* (7).

k—o00

— These follow from the Key Lemma and Ortega-Rockoff-70.

Corollary [quadratic case].

If f is quadratic and c is affine, then U = R"” x R™ and the

convergence is globally Q-linear with Q-factor p(M*(7)). i\@
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Global Convergence: Linear Constraints

mXin f(x1, -+, Xxp), s.t. ZA,’X,‘ =b
1st-order optimality or saddle point system:

Vf(x) = Aly
Ax—b = 0

Augmented saddle point system:
VFf(x)+BAT(Ax—b) = A'y
y—TB(Ax=b) =y

Splittings (F(x) = G(x, x)) can be applied to the 1st equation.

@ Block Jacobi type give block diagonal split
@ ADM: a block Gauss-Seidel type split

A
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Global Convergence (preliminary)

min f(Xl,--- ,Xp), s.t. ZA,'X,' =b

f is separable if f(x1, -+ ,xp) = >.% fi(x;). In this case, the
Hessian is block diagonal.

Block Jacobi scheme:
If f € C? is separable, and each

V2fi() + BAT Ai = el,
V2L, is uniformly block diagonally dominant, then the block
Jacobi scheme converges to a KKT point.

It can be extended to more general settings (GS, ...) under further
assumptions (still under scrutiny).

The number of blocks can be arbitrary without modification —
Other multi-block extensions exist with convexity and algorithm @
modifications (He and Yuan et al). RICE
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Summary: ADM ~ Splitting + Alternating

A simple yet effective approach to exploiting structures:
@ bypasses non-differentiability
@ enables very cheap iterations
@ has at least an R-linear rate

@ great versatility, good efficiency

Many issues remain. Convergence theory needs more work.
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