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I. Stochastic complementarity problems
Nonlinear complementarity problem (NCP): Given F : Rn → Rn,

x ≥ 0, F (x) ≥ 0, xT F (x) = 0.

The NCP can be reformulated as a system of nonlinear equations

Φ(x, F (x)) =









φ(x1, F1(x))
...

φ(xn, Fn(x))









= 0

or a minimization problem

min
x∈Rn

‖Φ(x, F (x))‖2

by using an NCP function φ, e.g.

φ(xi, Fi(x)) = min(xi, Fi(x)).
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NCP functions

A function φ : R2 → R is called an NCP-function if

φ(a, b) = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.

Example of NCP functions

φNR(a, b) = min(a, b) natural residual
φFB(a, b) = a + b −

√
a2 + b2 Fischer-Burmeister function

φCCK(a, b) = λφFB(a, b) + (1 − λ)a+b+ penalized FB function

Smoothing Newton methods and semismooth Newton methods are
efficient to solve the NCP via the nonsmooth equations Φ(x, F (x)) = 0

or minimization problem min ‖Φ(x, F (x))‖2.

Cottle-Pang-Stone (1992), Facchinei-Pang (2000), Ferris-Pang (1997), Ralph (1994),

B.Chen-Harker (1997), C.Chen-Mangasarian (1996), Chen-Qi-Sun (1998), Chen-Ye

(1999), B.Chen-Chen-Kanzwo (2000), Luo-Tseng(1997), Yamashita-Fukushima (1997),

Qi-Sun (1993), Fukushima (2001), Han-Xiu-Qi (2006), Hu-Huang-J.Chen (2009), et al.
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Deterministic formulation using NCP function
Stochastic NCP: Given F : Ξ × Rn → Rn, find x ∈ Rn such that

x ≥ 0, F (ξ, x) ≥ 0, xT F (ξ, x) = 0, for ξ ∈ Ξ.

Expected value (EV) formulation
Gürkan-Özge-Robinson(1999), Ruszczynski-Shapiro(2003),
Jiang-Xu(2008)

x ≥ 0, E[F (ξ, x)] ≥ 0, xT E[F (ξ, x)] = 0

⇔ min
x∈Rn

‖Φ(x, E[F (ξ, x)])‖2

Expected residual minimization (ERM) formulation
Chen-Fukushima(2005)

min
x≥0

E[‖Φ(x, F (ξ, x))‖2]
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ERM formulation for NCP
Expected residual minimization (ERM) formulation

min
x≥0

ϕ(x) := E[‖min(x, F (ξ, x))‖2] (ERM)

Chen-Fukushima(MOR 2005)

Smoothing algorithms for solving ERM
Chen-Zhang-Fukushima(MP 2009, one of the top 8 most cited
articles published in MP in 2009-2010)
Zhang-Chen(SIOPT 2009).

Applications in traffic assignment
Zhang-Chen-Sumalee (TRB 2011)

Math. Programming with stochastic equilibrium constraints
Lin-Chen-Fukushima (MP 2009)

Error bounds

E[dist(x − X∗
ξ )] ≤ αE[‖min(x, F (ξ, x))‖2]

Chen-Xiang (MP 2006, 2011, SIOPT 2007).Expected Residual Minimization for Stochastic Variational Inequalities 5/21



II. Stochastic variational inequalities
Variational inequalities (VI): Given a closed and convex set X and a
continuous function F : Rn → Rn, find x ∈ X such that

(y − x)T F (x) ≥ 0, ∀y ∈ X.

The VI can be reformulated as a minimization problem by using a
residual function f :

(i) f(x) ≥ 0, ∀x ∈ D ⊇ X.

(ii) f(x∗) = 0 ⇔ x∗ solves the VI.

Projection function

min
x∈Rn

f(x) := ‖x − ProjX(x − F (x))‖2

Gap function

min
x∈X

f(x) := max
y∈X

(x − y)T F (x).
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A residual function of stochastic VI
Stochastic VI
Given F : Ξ × Rn → Rn, Xξ ⊂ Rn and Ξ ⊆ RL, a set representing
future states of knowledge, find x ∈ Xξ such that

(y − x)T F (ξ, x) ≥ 0, ∀y ∈ Xξ, ξ ∈ Ξ.

Definition of a residual function Chen-Wets-Zhang(2011)
Let D ⊆ Rn be a closed and convex set. f : Ξ × D → R+ is a residual
function of the stochastic VI, if the following conditions hold,

(i) For any x ∈ D, prob{ f(ξ, x) ≥ 0} = 1.

(ii) ∃ u : Ξ × D → Rn such that for any x ∈ D and almost every ξ ∈ Ξ,
f(ξ, x) = 0 if and only if u(ξ, x) solves the VI(Xξ, F (ξ, ·)).

Example: Projection function

f(ξ, x) := ‖x − ProjXξ
(x − F (ξ, x))‖2

with D = Rn and u(ξ, x) = x.
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Stochastic VI with linear constraints

Given F : Ξ × Rn → Rn, Xξ ⊂ Rn and Ξ ⊆ RL, find x ∈ Xξ such that

(y − x)T F (ξ, x) ≥ 0, ∀y ∈ Xξ, ξ ∈ Ξ.

Xξ = {x|Ax = bξ, x ≥ 0}

Gap function for a fixed ξ

f(ξ, x) := max
y∈Xξ

(x − y)T F (ξ, x)

= xT F (ξ, x) + max{−yT F (ξ, x) | Ay = bξ, y ≥ 0}
= xT F (ξ, x) + min{zT bξ | AT z + F (ξ, x) ≥ 0}.

A residual function of stochastic VI Chen-Wets-Zhang(2011)

f(ξ, x) = u(ξ, x)T F (ξ, u(ξ, x)) + min{zT bξ | AT z + F (ξ, u(ξ, x)) ≥ 0}

where u(ξ, x) = x + A†(bξ − Ax), A† = AT (AAT )−1.
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Stochastic VI using a residual function

f(ξ, x) = u(ξ, x)T F (ξ, u(ξ, x)) + Q(ξ, u(ξ, x))

u(ξ, x) = x + A†(bξ − Ax) is ‘recourse’ solution (projection of x on Xξ).

Q(ξ, u(ξ, x)) = min{ zT bξ | AT z + F (ξ, u(ξ, x)) ≥ 0}
= max{−yT F (ξ, u(ξ, x)) | y ∈ Xξ}.

Let D = {x|(A†A − I)x ≤ c}, ci ≤ minξ∈Ξ(A†bξ)i. Then we have
Au(ξ, x) = bξ, u(ξ, x) ≥ 0 for x ∈ D ⇒ u(ξ, x) ∈ Xξ, for x ∈ D.

f(ξ, x) = u(ξ, x)T F (ξ, u(ξ, x)) + Q(ξ, u(ξ, x))

= u(ξ, x)T F (ξ, u(ξ, x)) − y(ξ, x)T F (ξ, u(ξ, x))

= max{(u(ξ, x) − y)T F (ξ, u(ξ, x)) | y ∈ Xξ}
≥ 0.

Hence, we obtain prob{f(ξ, x) ≥ 0} = 1. Moreover, f(ξ, x) = 0 if and
only if u(ξ, x) solves the VI(Xξ, F (ξ, ·)) a.s Expected Residual Minimization for Stochastic Variational Inequalities 9/21



ERM formulation vs EV formulation
Expected residual minimization (ERM) formulation

min
x∈D

E[f(ξ, x)] = E[u(ξ, x)T F (ξ, u(ξ, x)) + Q(ξ, u(ξ, x))]

x is the first level decision, u(ξ, x) is the recourse variable.
u(ξ, x) is feasible but not necessarily optimal, i.e.

u(ξ, x) ∈ Xξ but f(ξ, x) ≥ 0.

The cost function f(ξ, x) measures the loss at the event ξ and
decision x. The ERM formulation minimizes the expected values
of the loss for all possible occurrences due to failure of the
equilibrium.

Expected value (EV) formulation
Find x ∈ X̄ = {x |Ax = E[bξ], x ≥ 0} such that

(y − x)T E[F (ξ, x)] ≥ 0, ∀y ∈ X̄
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III: Smoothing sample average approximation

Definition 1: Let ϕ : Rn → R be locally Lipschitz. We call
ϕ̃ : Rn × R+ → R a smoothing function of ϕ, if ϕ̃(·, µ) is
continuously differentiable in Rn for any fixed µ > 0, and for any
x ∈ Rn,

lim
z→x,µ↓0

ϕ̃(z, µ) = ϕ(x).

Subdifferential associated with ϕ̃

Gϕ̃(x) = {v : ∇xϕ̃(xν , µν) → v, for xν → x, µν ↓ 0 }.

Rockafellar and Wets (1998): Gϕ̃(x) is nonempty and bounded,

∂ϕ(x) = co{ lim
xi→ x

xi∈Dϕ

∇ϕ(xi)} ⊆ coGϕ̃(x).

In our problems: ∂ϕ(x) = coGϕ̃
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Smoothing sample average approximation(SSAA)
Xiaojun Chen, Roger J-B Wets and Yanfang Zhang (2011)

ERM min
x∈D

ϕ(x) = E[f(ξ, x)] (1)

smoothing ERM min
x∈D

ϕµ(x) = E[f(ξ, x, µ)] (2)

SSAA − ERM min
x∈D

ΦN
µ (x) :=

1

N

N
∑

i=1

f̃(ξi, x, µ), (3)

where f̃ : Ξ × Rn × R+ → R+ is a smoothing approximation of f .

x̄ is called a stationary point of (3) if

ΦN
µ (x̄; z − x̄) ≥ 0, ∀z ∈ D.
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Assumptions and Properties

A1. Xξ = {x|Ax = bξ, x ≥ 0} is bounded (applications O.K.)

A2. bξ and F (ξ, x) are bounded for x ∈ Xξ and ξ ∈ Ξ, a.s. (standard)

P1 Relatively complete recourse
recourse variable u(ξ, x) is bounded and

max{−yT F (ξ, u(ξ, x)) | y ∈ Xξ }

has a solution a.s.

P2 f(ξ, ·) is global Lipschitz a.s.

P3 E[f(ξ, ·)] is globally Lipschitz on D ⊇ Xξ, and semismooth.
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Convergence of SSAA
Xiaojun Chen, Roger J-B Wets and Yanfang Zhang (2011)

Let SN
µ and T N

µ be the sets of solutions and stationary points of (3),
respectively.

Under assumptions (A1)-(A2), if the sample is iid, then the following
hold.

(1.1) Any sequence {xN
µ ∈ SN

µ } has a cluster point as N → ∞ and
µ ↓ 0 a.s.

(1.2) Any cluster point of {xN
µ ∈ SN

µ } is an optimal solution of the
ERM (1) a.s.

(2.1) Any sequence {xN
µ ∈ T N

µ } has a cluster point as N → ∞ and
µ ↓ 0 a.s.

(2.2) Any cluster point of {xN
µ ∈ T N

µ } is a stationary point of the ERM
(1) a.s.
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IV Traffic equilibrium assignment
Nguyen and Dupuis Network with random OD demand bξ

random link capacities (affecting travel time F (ξ, ·))
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Sioux Falls network

1

654

7

3

16

2

9 8

19

17

101112 18

1514

20

22

21

23

2413

3

11

1

7

4

15

6

145

9 12

8

37

35

38

33

36

10 31

2313

27

40

25 26

21

48

16 19

2

29

22 47

20

17

55

18 54

50

24

34

41

28 43

30
52

53 56
57

42

45

32
51 49

71

72
70

46 67
59 61

66
75

7673 69 65
62
64

63
68

39
74

44

6058

24 nodes, 76 links, 528 OD pairs, 1179 paths

Expected Residual Minimization for Stochastic Variational Inequalities 16/21



Wardrop’s user equilibrium
Wardrop’s user equilibrium At the equilibrium point no traveler
can change his route to reduce his travel cost.

For one scenario ξ ∈ Ξ, the static Wardrop’s user equilibrium is
equivalent to NCP: Find x, such that

x ≥ 0, F (ξ, x) ≥ 0, xT F (ξ, x) = 0,

where y : a path flow pattern, v : a travel cost vector.

x =

(

y

v

)

, F (ξ, x) =

(

G(ξ, y) − AT v

Ay − bξ

)

.

VI: Find x ∈ Xξ, such that
(y − x)T G(ξ, x) ≥ 0, ∀y ∈ Xξ = {x|Ax = bξ, x ≥ 0}

G : path travel cost function
A : Origin-Destination(OD) route incidence matrix
b : demand on each OD-pair

Expected Residual Minimization for Stochastic Variational Inequalities 17/21



Smoothing algorithms

Choose a smoothing function ϕ̃(x, µ) and an algorithm for smooth
problems

Use ϕ̃(xk, µk) and its gradient ∇ϕ̃(xk, µk) at each step of the
algorithm

Update the smoothing parameter µk at each step. The updating
scheme plays a key role in convergence analysis of the smoothing
method.

Challeges:

1 How to choose a smoothing function and an algorithm for the
problem ?

2 How to update the smoothing parameter µk ?

We develop efficient smoothing projected gradient method and
smoothing conjugate gradient method.
We prove global convergence of these methods to a stationary point.
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Smoothing gradient method

Step 1. Choose constants σ, ρ ∈ (0, 1), and an initial point x0. Set k = 0.

Step 2. Compute the gradient

gk = ∇ϕ̃(xk, µk).

Step 3. Compute the step size νk by the Armijo line search, where
νk = max{ρ0, ρ1, · · · } and ρi satisfies

ϕ̃(xk − ρigk, µk) ≤ ϕ̃(xk, µk) − σρigT
k gk.

Set xk+1 = xk − νkgk.

Step 4. If ‖∇ϕ̃(xk+1, µk)‖ ≥ nµk, then set µk+1 = µk; otherwise, choose
µk+1 = σµk.

Smoothing conjugate gradient method Chen-Zhou (SIIMS 2010).

Expected Residual Minimization for Stochastic Variational Inequalities 19/21



Nguyen and Dupuis Newtwork (β = 0.9, ε = 3.3E3)

xEV xERM

prob{f(ξ, x) ≤ ε} 0.508 0.952

N = 103 E[f(ξ, x)] 3.498E3 2.938E3

µ = 10−4 α∗ 7.935E3 3.226E3

CVaR(x, α∗) 8.154E3 3.333E3

prob{f(ξ, x) ≤ ε} 0.510 0.908

N = 5 ∗ 103 E[f(ξ, x)] 3.498E3 2.983E3

µ = 10−5 α∗ 7.918E3 3.286E3

CVaR(x, α∗) 8.121E3 3.403E3

prob{f(ξ, x) ≤ ε} 0.509 0.927

N = 104 E[f(ξ, x)] 3.505E3 2.976E3

µ = 10−6 α∗ 7.978E3 3.253E3

CVaR(x, α∗) 8.168E3 3.359E3

α∗(x) ∈ argmin
α∈R

CVaR(x, α) := α +
1

1 − β
E{[f(ξ, x) − α]+}.
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