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e Motivation:
Data uncertainty in linear inequalities-Robust LO
Data uncertainty in linear inequalities
Ellipsoidal uncertainty set = norm constraint
Eigen- and singular value optimization problems
Relaxing integer variables

Conic Linear Optimization (CLO):
General Convex Cones
Second Order Conic Optimization (SOCO)
Semidefinite Optimization (SDO)

e Interior Point Algorithms for SOCO and SDO:
e MISOCO: Mixed Integer Second Order Conic Optimization

Sisyphus got stuck with a suboptimal solution;

don’t let it happen to you! http://www.optimize.com




Robust Linear Optimization
Classic — Polyhedral (scenario) approach

Let (aj,b;) be uncertain, it is com-

(P) min Ly ing from a polyhedral set (e.g. con-
T _ vex combination of "scenario” data
S.t. a; T — bj >0 \V/] DOiﬂtS)I

The inequality aJT:U > b

n;

i ' must be true for all possi-
DA =1,X2>0
=1

n; i

=l )
J

b, =\ v ble values of (aj, —b;):

J a[”l/. ) €T J . .
D R >0 forall Y XN=1,) >0 Infinitely many
i=1 \ —0j 1 i=1 constraints!

Finally the problem stays linear as: J
(RP) min clx

s.t. [aj.]Tx—bj. >0 for i=1,...,n; Vg

Disadvantages: — Huge number of linear inequalities

— Polyhedral uncertainty set not realistic.

iff [a}]'z—0b,>0 for i=1,...

y TV




Robust Linear Optimization

Let (aj,b;) be uncertain, it is coming

: T
(P) min c T from an ellipsoid (e.g. level set of a
S.t. a]T;I; —b; >0 VY j distribution):
The inequality a?a; > b
a; al kT must be true for all possi-
= J +PuluelRY, v'u<l - _
—b; —b? ble values of (a;,—b;):
T
a? T T iff x
+ Pu >0 Vu i wu<1 W (0217204 min ¢ (Pu)” >0
—b? 1 J J ufu<l 1

>0
2

[a,?]Ta: — b? — HPT

This is a nondifferentiable norm constraint: (See second order cones)

-

017, _ 10

< [a;]"z —b;.
2

Single nonlinear, norm-constraint!




Eigenvalue Optimization

Given n x n symmetric matrices Aq,..., Am.
Problem: Find a nonnegative combination of the matrices that has
the maximal smallest eigenvalue.

( m )
> Ajy; — Ml is positive semidefinite
Solution: max< A | ;=1

’inO i=1,...,m

\ /

Problem: Find a nonnegative combination of the matrices that has the

smallest maximal eigenvalue.
( m )

A — ) Aw; is positive semidefinite

Solution: min ¢ A ‘ 1 ’

Yy >0 1=1,...,m

\ /

The semidefiteness constraint is not differentiable, not easy to calcu-
late when formulated by explicit functions, e.g., min-eigenvalue, deter-
minant (of minors). See Semidefinite Optimization.




Relaxing Binary Variables

Given zi,...,z, binary, i.e., {0,1} variables with other, e.g., linear constraints.
Problem: Find convex, continuous relaxations of the binary constraints.
Old solution: Let 0 < z; <1 for all 2 =1,...,n and use branch and bound, branch
and cut schemes.

_ 2211

New opportunity to get tighter relaxations: Let x; = 5 for all
i=1,...,n. Thus gives z; as a {—1,1} variable. Now

n = fo =zlz = Tr(z’z) = Tr(zz!) = Tr(X),
i=1

where X = z2’ is a rank-1 positive semidefinite matrix with diag(X) = e.
Thus, for z; € {—1,1} Vi we may use the relaxation:

X;; =1 Ve and X is positive semidefinite

The semidefiteness constraint is not differentiable, not easy to calculate when for-
mulated by explicit functions, e.g., min-eigenvalue, determinant (of minors). See
Semidefinite Optimization.




Stability of Optimal Power Flow

Min.

S.t.

Sy =—(CEpy— TP,
Fpp(0,V.Qc, P, Py) = 0

Umin(pr) > Ocp f
0< P, <P,

Smax

0< Py < Py
L;(0,V) < I,

rzJ'IHE),X

L.(5.V) <1,

‘”m"ix

Qi < Qo < Qe
I/min S V S ‘/max

The stability of the Power Flow
IS ensured by a lower bound on
the singular value of the Jacobian
pr of the power flow equations:

omin(Jpy) 2 Ocpy
equivalently

Amin(*]pfjg}) 2 Ocpf

by substitution

X —Jppd f =0
and
X —ogprl 1s positive semidefinite
Again a semidefinite constraint!
One may want maximize o, .




New/Old Convex Optimization Problems
Cone Linear Optimization Problems

Primal-dual pair of CLO problems is given as

(P) min 'z (D) max by
st. Az —b €(Cq s.t. ¢c— Aly c C3

x €Co y €C7,
where b,y € IR™, ¢,z € IR", A . m x n matrix, C1,Co are convex cones
and Cf = {s € R" : zl's > 0, Vx € C;} are the dual cones for i = 1, 2.

These are solvable efficiently (in polynomial time) by using
Interior Point Methods. LO is based on polyhedral cones.
Be careful! Perfect duality, strict complementarity lost.
Are all convex cones good???
NOT




— New Convex Optimization Problems —
Second Order Conic Optimization (SOCO)

The second order cone in IR" is defined as

n
E z? < 1
=2

The name “ice cream cone” is coming from the
3-dimensional shape of the cone.

Sy =<K ze€R" ! ||zoy| =

The second order cone is self-dual: (S5)* = S5.

Optimization problems, where cones C; and C» are

polyhedral or products of second order cones, are

second order cone optimization (SOCQO) problems.
Significance

Norm minimization, robust optimization,

quadratic, and thus portfolio optimization .

The ice-cream cone I




SOCO — Optimality

The primal-dual SOCO problem is defined as

(SP) min c'x (SD) max bly
s.t. Axr =0b, st. ATy+s =c
v € xh_, Sy s exh sy,
' = (DT, ..., ()T, ..., (")T) € R"; and sT = ((sH)T,...,(sHT,...,(s5)T) € IR".
Optimality:
Ar=0b, zx¢€ X§:18§j, Aly+s=¢, sc€ X?zngj

(2))s) =0 alos! =0 < Arr(a?)s! = Arr(s/)z? =0 Vj

( UL U2 ... Up \
ulv Uz U1
Uov = and Arr(u) =

ULV2:m + V1UDY,

Here we have used the notation:




Notes on SOCO

Convex (conic) optimization problem with " vectors”
Vector calculus not associative

Duality gap may exists (next page)

Strong duality with interior point (Slater) condition

Second order cones cannot be " combined’ into larger second order

cones, i.e., S5t x 852 # 831+”2
Generalization of LO: 83 = ]Rﬁ_

Rotated cone ||zo:p||2 < zoz1, xg,x1 > O
i x 21\ 2 ro — 1)\ 2
S 22 < ( 0+ 1) B ( 0 1)
i=2 2 2

Efficiently solvable by IPMs.
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SOCO: Duality gap example

Primal Problem Dual Problem

(SD) max O-y
(SP) min 5

S.t. Y+ sq =0
st. x1—x3 =0,
O-y+so =1
\/xg + a3 <y
—y—+s3 =0
V5 +s3 <s1
Primal Optimal solutions: Dual problem is infeasible!!

r1 =x3 > 0; xo =0

Slater not satisfied — Zero duality gap may not hold

11



— New Convex Optimization Problems —
Semidefinite Optimization — 1

The semidefinite cone in IR™*" is defined as
S"={XeR" : X =X"2"X2>0Vz e R"}

i.e. the matrices X are symmetric and positive
semidefinite, denoted as X > 0. The semidefi-
nite cone is self-dual: (8")* = S".

Optimization problems where the cones (C;

and C» are either polyhedral, second order or

semidefinite cones are called semidefinite opti-
mization (SDO) problems.

3 random 3D eross-sections of Ei
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— New Convex Optimization Problems —
Semidefinite Optimization

Let A;, 1 =1,--- ,nand C, X be nxn symmetric real matrices, b,y € IR™
and let Tr(-) denote the trace of a matrix.

The primal-dual SDO problem is defined as

(SP) min  Tr(CX) (SD) max by

m
st. Tr(A4;X)—b, >0,Vi st C—> Ay =0

1=1
X =0 y >0.

Optimality: Tr(CX) — by =Tr(XS) =0 XS =0
Significance

Robust optimization, eigenvalue and singular value optimization
Linear matrix inequalities, trust design

Convex relaxation of nonconvex/integer problems

13



Notes on SDO

Convex (conic) optimization problem with " matrices”
Matrix calculus not commutative

Product of symmetric matrices is not smmetric
Duality gap may exists

Strong duality with interior point (Slater) condition

Semidefinite cones can be " combined” into larger semidefinite cones,
ie., S"1 x S"2 C SNt

Generalization of LO: S = ]R}F — diagonal matrices

Not proper generalization of SOCO: z € S5 & Arr(z) € S”,
— BUT arrow-head structure cannot be preserved

Efficiently solvable by IPMs.

14



Linear Optimization v/s Conic LO

LO Conic LO
linear objective linear objective
linear equality constraints linear equality constraints

linear inequality constraints conic inequality constraints

perfect duality perfect duality only with IPC
strictly complementary opt.sol. maximally complementary opt.sol.
Euclidean linear algebra matrix and Jordan algebra

ls=0c2s=0 l's=0<20s=0 (SOCO)

Tr(XS) =0 XS =0 (SDO)
Tr(XS) = 0 & X25X2 = §2XS52 = 0
~ < (PXPT):(PTSP~Y)Y(PXPT): = ul

~ < (PSPT):(PTXP 1) (PSPT): = ul

15



Solvability of CLO problems — Use IPMs

Classic Linear Optimization

Large scale LO problems are solved efficiently.
High performance packages, like (CPLEX, GuRoBi, XPRESS-MP, MOSEK) offer

simplex and interior point solvers as well.
Problems solved with 107 variables.

SOCO and SDO

Polynomial solvability established.

Traditional software is unable to handle conic constraints.

Specialized software is developed. (SeDuMi, SDPA, SDPT3, CSDP, DSDP, SDP-
pack, MOSEK etc.)

SOCO: MOSEK - commercial

SDO: SDPA, CSDP, DSDP

LO-SOCO-SDO: SeDuMi, SDPTS3

SOCO: Problems solved with O(10°) variables.

SDO: solved with O(10%) dimensional matrices.

http://sedumi.ie.lehigh.edu
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T he Primal—Dual LO Problems,
Central Path

The primal-dual LO problems is given as:

min ¢!z max bTy

Axr = b, x>0, ATy—I—Szc, s > 0,

where c,z,s € R", b,y € R™, A € R™*" rank(A) = m.

Optimality conditions and the central path are given as:

Ar = b, x>0, Ar = b, = >0,
Aly+s = ¢, 520, Aly+s = ¢, 520,
rs = 0, rs = ue,
where e = (1,..., 1) e R™.

We assume that the Interior Point Condition holds.

17



Primal-Dual Search-directions for LO

The central path and the Classical Newton direction:

Az = b7 L Z 07 ADAx = O,
Aly4+s = ¢, s>0, AlAy+As = 0,
rs = Le. sAx +xrxAs = pe—xs
Scaled Newton direction: Proximity Functions:
- no(p2 — 1
Ape = 0, V(v) = Z < : 5~ log vz-)
ATAy_I_pS — O7 ’1/1:1
—1)2
pr+ps = v i—w V(v) = EHU_U [

where A = %AV‘lX, V = diag (v), X = diag (z) with

_ |z s [ _ UA:B  vAs
vV .— E— — , Ps .— 5 .

18



The Newton System for SDO

T
(SP) min Tr(CX) (SD) max - "y
st. Tr(A;X) =b,, Vi st. Y Ay +S5 =C
1=1
X =0 s -~ 0.

1 1 1 1 1
The Newton System for the NT-direction: P=S"2(52XS52) 2S5 2

m ™m
Y Ayi+S =C  S=0 > ALy +AS =0
Tr(XS) =0 ~& XS = ul XAS+AXS=ul — XS

e AX +XASS T =p5"1_Xx
Hp(-) is a symmetrization: Hp(XAS 4+ AXS) =pul — Hp(XS)

19



The Newton System for SOCO

(SOP) min clz (SOD) max bl'y
s.t. Ax =0b, s.t. ATy +s =c
z € xk_8) s exk_s)

The Nel/vtoln S;{ste{ﬂ fc1>r the NT-direction in arrow-head formulation:
P=5"2(582X82)"25"2

Az =b, Vi z€xk_18)’ AAz = O,
ATy+s =¢,  sexh_ 8} ATAy+ As = 0,
2 os) =0~ 2l os) = pel 2l o AsT + Axd os) = ped —ados)

o Hp(x) o As? + Azl os)) = ped — Hp(z? 0 s7)
Hp(-) is a symmetrization operator.

20



Primal-Dual Interior Point Methods with
small and large updates

Input:
A proximity parameter T; an accuracy parameter € > O;
an update parameter 0 < 6 < 1; a variable damping factor «;

(2°,5°), u =1 s.t. v <.
begin
xr = xo; S 1= SO; n = ,LLO;
while nu > € do

begin
pi=(1-0)u
while W(v) > 7 do
begin

Calculate Ax, As;
Do line search for V(v(a));

r . =x+ aAzx;
s = s+ aAs;
end
end
end

21



Complexity of IPMs for LO
Method Practice | Large update | Small update
6 adaptive 1—-1/100 1/4/n
Iter. bound | max 100 | O(¥log g) OV log %)
Performance | Efficient Efficient Very poor

" Almost” constant (< 100) number of iterations in practice!

CLO Y = cost/iteration
LO 7#£ of variables

SOCO | # of second order cones | O(n3)+update
SDO dimension of matrix X | O(n?m?3) dense

22



Several IPM Solvers for CLO Problems

What made this major advance possible?
Advances in Computers and Software

Computers Software component/Algorithms
e processor speed e presolve
e Mmemory LINEAR ALGEBRA
e disk space sparse factorizations
e floating point arithmetic symmetric square root
e architecture (cash ...) IPMs, predictor-corrector
dense and sparse versions

SeDuMi, SDPT3 SDPA-xxx tuned to all three cones

CSDP, DSDP tuned to SDO only

MOSEK, CPLEX are commercial solves for SOCO .

Parallel implementations exist — coming.

MODELING languages — YALMIP (Lofberg); CVx (Boyd/Grant).

23



Further notes

Norm and convex quadratic (including portfolio) optimization prob’s
can be solved with almost the same efficiency as LO.

Efficient tools to eigenvalue, singular value optimization, LMI’s

CLO based approximation algorithms for nonconvex and combina-
torial optimization problems.

Lots of activity in exploring special structure of conic problems and
developing modeling systems that support conic formulation

First HPC-massively parallel implementations
Cheap first order methods for very large scale SDO problems.
Warm start and decomposition/cutting plane algorithms.

http://sedumi.ie.lehigh.edu
Now: Adding logarithmic objective.

24



Introduction Disjunctive Conic Cuts for MISOCO Formulation of a Disjunctive Conic Cut Conclusions and Future Work

Disjunctive Conic Cuts for
Mixed Integer Second Order Cone
Optimization (MISOCO)
Tamas Terlaky

Joint work with:
Pietro Belotti, Julio C. Géez, Imre Polik, Ted Ralphs

With thanks for the AFOSR Award #: FA9550-10-1-0404

LEHIGH : o
v oy, A ISE -7



__Introduction _ Disjunctive Conic Cuts for MISOCO _ Formulation of a Disjunctive Conic Cut _ Conclusions and Future Work
CONTENTS

Introduction

Disjunctive Conic Cuts for MISOCO

Formulation of a Disjunctive Conic Cut

Conclusions and Future Work



Introduction

Disjunctive Conic Cuts for MISOCO Formulation of a Disjunctive Conic Cut

MIXED INTEGER SECOND ORDER CONE
OPTIMIZATION (MISOCO)

minimize: ¢’ x
subject to: Ax = b (MISOCO)
xeK

xeZ x R",

where,

>

v

v

v

A cR"™" ccR" becR"
L" = {x|x1 > [lx2 |}
K=L" % xLJ*

Rows of A are linearly independent

Conclusions and Futur



OBJECTIVES

» Obtain the convex hull after applying a linear disjunction
to a Mixed Integer Second Order Conic Optimization
(MISOCO) problem.

» Design Disjunctive Conic Cuts for MISOCO.



Introduction Disjunctive Conic Cuts for MISOCO Formulation of a Disjunctive Conic Cut Conclusions and Future Work

PREVIOUS WORK

» Atamtiirk and Narayanan (2010), conic cuts for general
MISOCO problems.

» Drewes (2009), nonlinear cuts for 0-1 MISOCO problems.

» Krokhmal and Soberanisin(2010), Drewes (2009), Vielma et

al. (2008), branch and bound algorithm based on linear
outer approximations for Second Order Cones.

» Drewes (2009), Atamtiirk and Narayanan (2009), lifting
techniques for MISOCO problems.

» Cezik and Iyengar (2005), cuts for mixed 0-1 conic
programming.

» Stubbs and Mehrotra (1999), lift-and-project method for 01
mixed convex programming.
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APPLICATIONS

» Turbine balancing problems can be modeled as MISOCOs,
White (1996).

» The euclidean Steiner tree problem can be formulated as a
MISOCO, Fampa and Maculan (2004)

» Computer Vision and Pattern Recognition, Kumar, Torr,
and Zisserman (2006).

» Cardinality-constrained portfolio optimization problems,
Bertsimas and Shioda (2009).
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SINGLE CONE PROBLEM

Let us consider the special case:

minimize: ¢’ x
subject to: Ax = b (MISOCO)
xel”

xe€Z x R",

» This problem has a single second order cone
» All the variables are in the single second order cone
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STEP 1: SOLVE THE RELAXED PROBLEM

Find the optimal solution x* for the continuous relaxation of
the MISOCO problem

minimize: 3x; +2xp +2x3 +Xxg4
subjectto: 9x;  +x2 +x3 +x4 =10

(xl,xz,xg,x4) € L*

Xy € 7.

Relaxing the integrality constraint we get the optimal solution:
x* = (1.36,-0.91,—-0.91, -0.45),

with and optimal objective value: z* = 0.00.



Disjunctive Conic Cuts for MISOCO

STEP 2: FIND A DISJUNCTION alx < 3 \/ a’x > 3
VIOLATED BY x* = (1.36, —0.91, —0.91, —0.45)

The disjunction x4 < —1 \/ x4 > 0is violated by x*

1.5

-3 Relaxed optimal :
2 : X, <-1
X solution 4
3 0
2, s 4 w05 0 05 1 15

X5

1) : .
Integer optimal solution
05
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STEP 3: APPLY THE DISJUNCTION AND CONVEXIFY

min:  3x; +2x7 +2x3 +x4
s.t: 9xp +X2 +x3 +X4 =10
—0.04x, —0.04x3 —3.56x4 x5 =10.14
—6.28x, —6.28x3 +0.14x4 +X6 =1.65
6.36x, —6.36x3 +x7; =0

(x1,%2,x3,x4) € L*
(x5.,x6,x7) S L3
X4 € 7.

The constraints in red represent the disjunctive conic cut.
An integer optimal solution is obtained after adding one cut:

x* =(1.32, —0.93, —0.93, 0.00, 10.06, —10.06, 0.00),

with and optimal objective value: z* = 0.24.



Formulation of a Disjunctive Conic Cut

CONVEX HULL OF THE INTERSECTION OF A
DISJUNCTION AND A CONVEX SET

Consider a closed convex set £ and two halfspaces
Hi={xeR":a'x<a}andH, ={xeR":b"x < 3},

such that they do not intersect inside &, i.e., € N Hy N Hp = 0.

Denote Hi = {x e R":a'x =a},and Hy = {x e R" : b"x = 3}.

If 3a convex cone Ls.t. HF NE=KNHT and H; NE =KNH; are

bounded, then conv(E N (H1 UH,)) = ENK.
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INTERSECTION OF AN AFFINE SPACE AND A SECOND
ORDER CONE

Consider an affine subspace H = {x|Ax = b} and xg € H.

Let H | Abe s.t rank([H, AT]) = 1, & columns of H are orthonormal.
We can write H = {x|x = xo + Hz, Vz € R}.

Then, there exist a matrix Q € R "™ g e R"™, p € R, s.t.

HAOL" = {y|x = xo + Hz withz'Qz + 29"z + p < 0}.

Further, Q has at most one negative eigenvalue.
Define a quadric as the set Q = {z|z" Qz + 2"z + p < 0},
which we also denote as Q = (Q, ¢, p).
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UNI-PARAMETRIC FAMILY OF QUADRICS Q(T)

Given two hyperplanes H; = {z[a{ z = a1} and H, = {z]a, z = a}.
Let @ = (Q, 9, p) be a quadric where Q is positive definite.

The family of quadrics having the same intersection with #; and #H,
as the quadric Q is parametrized by 7 € R as Q(7), where

Q) =0+ Talag + apal
(r) =g — Lm + a1
1 w
p(r) = p+2r 2
w

where
L 2aTa, ifalay #0
1 ifala, = 0.
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UNI-PARAMETRIC FAMILY OF QUADRICS Q(T)

<
-5
-10
15 = S e S — m—
A5 10 5 0 5 10 1010

Sequence of quadrics x " Q(7)x +2¢(7) "x + p(7) <0,
for —106.863 < 7 < 1617
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UNI-PARAMETRIC FAMILY OF QUADRICS Q(T)

Range Description

T =-8.9946,T7 = 1617 Paraboloid

7= —106.863, 7 = —9.581 | Cones

—8.9946 < 1 < 1617 Ellipsoids

T > 1617 Two sheets hyperboloids
—106.863 < 7 < —8.9946 | One sheet hyperboloids
T < —106.863, Two sheets hyperboloids

Behavior of the quadrics for different ranges of =
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THE DISJUNCTIVE CONIC CUT FOR PARALLEL
DISJUNCTIONS

Theorem

Let Ay = {x|a] x = ay } and Ay = {x|a] x = an},
be two parallel hyperplanes where a; = yay.

The disjunctive conic cut is the quadric generated by

Q1) = (Q(7),4(7), p(7)),

where 7 is the larger root of equation

q(1) " Q(1)q(r) — p(7) = 0.



ive Conic Cut

Formulation of a Disj

OUR DISJUNCTIVE CONIC CUT IS NEW

Atamtiirk and Narayanan
designed a conic mixed integer
rounding inequality.

Our disjunctive conic cut is
different, sometimes stronger.
Consider the problem:

minimize:
subject to:

x +y +2

Relaxed Optimal

«— Solution

Conic mixed integer
rounding inequality

Disjunctive conic cut

T 1z 14 16 18 2 22 24 26 28
x

Case with o = 4.66

=« .

Relaxed Optimal

Ja-irtw-rse
xeZ,yecR

In this particular example our

disjunctive conic cut is stronger.

Solution

Disjunctive conic cut

Conic mixed integer
rounding inequality

Y ] 0 T 2 3 .
x

Case witha =8
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CONCLUSIONS

» We developed a new disjunctive conic cut for MISOCO.
» It is algebraically simple to find the disjunctive conic cut
for MISOCO problemes.
Next steps

» Develop disjunctive conic cuts for the case when Q is not
positive definite.

» Develop a prototype branch-and-cut framework for
solving MISOCO problems using disjunctive conic cuts.

» Develop strategies which, and how many disjunctive conic
cuts to generate when several cones are in the problem.

» Develop a comprehensive branch-and-cut framework for
solving MISOCO problems using disjunctive conic cuts.

Far future work

» Develop disjunctive conic cuts for Semidefinite Optimization.
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