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Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).
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Limitations of Derivative-Free Optimization

In DFO convergence/stopping is typically slow (per function evaluation):
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The book!

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, MPS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009.
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There are two main classes of rigorous methods in DFO

Direct search methods, of directional type.

Achieve descent by using positive spanning sets and moving in the
directions of the best points.

Model-based methods, of local nature.

Examples of models are polynomials or radial basis functions (RBFs).
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Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:
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Model-based trust-region methods

One typically minimizes a model m in a trust region Bp(x; ∆):

Trust-region subproblem

min
y∈Bp(x;∆)

m(y)

In derivative-based optimization, one could use:

2nd order Taylor:

m(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x)(y − x)
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Fully linear models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is C1 with Lipschitz continuous gradient.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

Fully linear models can be quadratic (or even nonlinear).
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Fully quadratic models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is C2 with Lipschitz continuous Hessian.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully quadratic models, the (unknown) constants
κef , κeg, κeh > 0 must be independent of x and ∆.

Fully quadratic models are only necessary for global convergence to 2nd
order stationary points.
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Polynomial interpolation models

Given a sample set Y = {y0, y1, . . . , yp}, a polynomial basis φ, and a
polynomial model m(y) = α>φ(y), the interpolating conditions form the
linear system:

M(φ, Y )α = f(Y ),

where

M(φ, Y ) =


φ0(y0) φ1(y0) · · · φp(y

0)
φ0(y1) φ1(y1) · · · φp(y

1)
...

...
...

...
φ0(yp) φ1(yp) · · · φp(y

p)

 f(Y ) =


f(y0)
f(y1)

...
f(yp)

 .
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Natural/canonical basis

The natural/canonical basis appears in a Taylor expansion and is given by:

φ̄ =

{
1

2
y2

1, ...,
1

2
y2
n, y1y2, ..., yn−1yn, y1, ..., yn, 1

}
.

Under appropriate smoothness, the second order Taylor model, centered
at 0, is:

f(0) [1] + ∂f
∂x1

(0)[y1] + ∂f
∂x2

(0)[y2]

+ ∂2f
∂x21

(0)[y2
1/2] + ∂2f

∂x1x2
(0)[y1y2] + ∂2f

∂x22
(0)[y2

2/2].
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Well poisedness (Λ–poisedness)

Λ is a Λ–poisedness constant related to the geometry of Y .
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Λ is a Λ–poisedness constant related to the geometry of Y .

The original definition of Λ–poisedness says that the maximum absolute
value of the Lagrange polynomials in B(x; ∆) is bounded by Λ.

An equivalent definition of Λ–poisedness is (|Y | = |α|)

‖M(φ̄, Yscaled)
−1‖ ≤ Λ,

with Yscaled obtained from Y such that Yscaled ⊂ B(0; 1).

Non-squared cases are defined analogously (IDFO).
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A badly poised set

Λ = 5324.
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A not so badly poised set

Λ = 295.
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Another badly poised set

Λ = 492625.
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An ideal set

Λ = 1.
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Quadratic interpolation models

The system M(φ, Y )α = f(Y ) can be

Overdetermined when |Y | > |α|.

Determined when |Y | = |α|.

−→ For M(φ, Y ) to be squared one needs N = (n+ 2)(n+ 1)/2
evaluations of f (often too expensive).

−→ Leads to fully quadratic models when Y is well poised (the
constants κ in the error bounds will depend on Λ).

Underdetermined when |Y | < |α|.
−→ Minimum Frobenius norm models (Powell, IDFO book).

−→ Other approaches?...
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Underdetermined quadratic models

Let m be an underdetermined quadratic model (with Hessian H) built
with less than N = O(n2) points.

Theorem (IDFO book)

If Y is ΛL–poised for linear interpolation or regression then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

−→ One should build models by minimizing the norm of H.
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Minimum Frobenius norm models

Using φ̄ and separating the quadratic terms, write

m(y) = α>Qφ̄Q(y) + α>L φ̄L(y).

Then, build models by minimizing the entries of the Hessian (‘Frobenius
norm’):

min 1
2‖αQ‖

2
2

s.t. M(φ̄, Y )α = f(Y ).

The solution of this convex QP problem requires a linear solve with:[
MQM

>
Q ML

M>L 0

]
where M(φ̄, Y ) =

[
MQ ML

]
.
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Minimum Frobenius norm models

Theorem (IDFO book)

If Y is ΛF –poised in the minimum Frobenius norm sense then

‖H‖ ≤ CfΛF ,

where H is, again, the Hessian of the model.

Putting the two theorems together yield:

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + CfΛF ] ∆ ∀y ∈ B(x; ∆).

−→ MFN models are fully linear.
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Sparsity on the Hessian

In many problems, pairs of variables have no ‘correlation’, leading to
zero second order partial derivatives in f :

Thus, the Hessian ∇2m(x = 0) of the model (i.e., the vector αQ in
the basis φ̄) should be sparse.
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Our main question

Question

Is it possible to build fully quadratic models by quadratic underdetermined
interpolation (i.e., using less than N = O(n2) points) in the SPARSE
case?

An answer will be given by building the models using instead the `1-norm
and relaxing the interpolating conditions for noisy recovery

min ‖αQ‖1
s.t. ‖M(φ̄, Y )α− f(Y )‖2 ≤ η.
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Compressed sensing — sparse recovery

Objective: Find sparse α subject to a highly underdetermined linear
system Mα = f .

{
min ‖α‖0 = | supp(α)|
s.t. Mα = f

is NP-Hard.

{
min ‖α‖1
s.t. Mα = f

often recovers sparse solutions.
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Restricted isometry property

Definition (RIP)

The RIP Constant of order s of M (p×N) is the smallest δs such that

(1− δs)‖α‖22 ≤ ‖Mα‖22 ≤ (1 + δs)‖α‖22

for all s−sparse α (‖α‖0 ≤ s).

Theorem (Candès, Tao, 2005, 2006)

If ᾱ is s−sparse and M satisfies RIP of order 2s with δ2s <
1
3 , then ᾱ can

be recovered by `1-minimization:

min ‖α‖1
s. t. Mα = Mᾱ.

i.e., the optimal solution α∗ of this problem is unique and given by α∗ = ᾱ.
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If ᾱ is s−sparse and M satisfies RIP of order 2s with δ2s <
1
3 , then ᾱ can
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Compressed sensing — noisy sparse recovery

Theorem (Candès 2009)

Let M ∈ Rp×N satisfy RIP of order 2s with

δ2s <
√

2− 1.

For every s−sparse vector ᾱ ∈ RN , let noisy measurements f = Mᾱ+ ε
be given satisfying ‖ε‖2 ≤ η.

Let α∗ be a solution of

min
α∈RN

‖α‖1 s. t. ‖Mα− f‖2 ≤ η.

Then
‖α∗ − ᾱ‖2 ≤ ctotal η,

for a constant ctotal only depending on the RIP constant.
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Compressed sensing — noisy PARTIALLY sparse recovery

Theorem (Jacques 2010, Bandeira, Scheinberg, and Vicente 2011)

Let M = (M1,M2) ∈ Rp×(N−r) × Rp×r satisfy RIP of order 2(s− r) with

δ2(s−r) <
√

2− 1.

For every (s− r)−sparse vector ᾱ1, with ᾱ = (ᾱ1, ᾱ2), let noisy
measurements f = Mᾱ+ ε be given satisfying ‖ε‖2 ≤ η.

Let α∗ = (α∗1, α
∗
2) be a solution of

min
α∈RN

‖α1‖1 s. t. ‖Mα− f‖2 ≤ η.

Then
‖α∗ − ᾱ‖2 ≤ cpartial η,

for a constant cpartial only depending on the RIP constant.
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Random matrices

It is hard to find deterministic matrices that satisfy the RIP for
large s.

Using Random Matrix Theory it is possible to prove RIP for

p = O(s logN).

Matrices with Gaussian entries.
Matrices with Bernoulli entries.
Uniformly chosen subsets of discrete Fourier transform.
· · ·
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Bounded orthonormal expansions (Rauhut)

Question

How to find a basis φ and a sample set Y such that M(φ, Y ) satisfies the
RIP?

Choose orthonormal bases (leads to uncorrelated matrix entries).

Avoid localized functions (‖φi‖L∞ should be uniformly bounded) —
to avoid zeros in matrix entries.

Select Y randomly.
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Sparse orthonormal bounded expansion recovery

Theorem (Rauhut, 2010)

If φ is orthonormal in a probability measure µ and ‖φi‖L∞ ≤ K.

each point of Y is drawn independently according to µ.
p

log p ≥ cK2s(log s)2logN .

Then, with high probability, for every s−sparse vector ᾱ:

Given noisy samples f = M(φ, Y )ᾱ+ ε with ‖ε‖2 ≤ η, let α∗ be the
solution of

min ‖α‖1 s. t. ‖M(φ, Y )α− f‖2 ≤ η.

Then,
‖α∗ − ᾱ‖2 ≤ ctotal η.
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Given noisy samples f = M(φ, Y )ᾱ+ ε with ‖ε‖2 ≤ η, let α∗ be the
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Given noisy samples f = M(φ, Y )ᾱ+ ε with ‖ε‖2 ≤ η, let α∗ be the
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What basis do we need for sparse Hessian recovery?

Remember the second order Taylor model

f(0) [1] + ∂f
∂x1

(0)[y1] + ∂f
∂x2

(0)[y2]

+ ∂2f
∂x21

(0)[y2
1/2] + ∂2f

∂x1x2
(0)[y1y2] + ∂2f

∂x22
(0)[y2

2/2].

So, we want something like the natural/canonical basis:

φ̄ =

{
1

2
y2

1, ...,
1

2
y2
n, y1y2, ..., yn−1yn, y1, ..., yn, 1

}
.

29/76



What basis do we need for sparse Hessian recovery?

Remember the second order Taylor model

f(0) [1] + ∂f
∂x1

(0)[y1] + ∂f
∂x2

(0)[y2]

+ ∂2f
∂x21

(0)[y2
1/2] + ∂2f

∂x1x2
(0)[y1y2] + ∂2f

∂x22
(0)[y2

2/2].

So, we want something like the natural/canonical basis:

φ̄ =

{
1

2
y2

1, ...,
1

2
y2
n, y1y2, ..., yn−1yn, y1, ..., yn, 1

}
.

29/76



An orthonormal basis for quadratics (appropriate for sparse
Hessian recovery)

Proposition (Bandeira, Scheinberg, and Vicente, 2011)

The following basis ψ for quadratics is orthonormal (w.r.t. the uniform
measure on B∞(0; ∆)) and satisfies ‖ψι‖L∞ ≤ 3.


ψ0(u) = 1

ψ1,i(u) =
√

3
∆ ui

ψ2,ij(u) = 3
∆2uiuj

ψ2,i(u) = 3
√

5
2

1
∆2u

2
i −

√
5

2 .

−→ ψ is very similar to the canonical basis, and preserves the sparsity of
the Hessian (at 0).
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Hessian sparse recovery

Let us look again at

min ‖αQ‖1 s. t. ‖M(φ, Y )α− f‖2 ≤ η,

where
f = M(ψ, Y )ᾱ+ ε.

So, the ‘noisy’ data is f = f(Y ).

What we are trying to recover is the 2nd order Taylor model ᾱ>ψ(y).

Thus, in ‖ε‖ ≤ η, one has η = O(∆3).
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Hessian sparse recovery

Theorem (Bandeira, Scheinberg, and Vicente, 2011)

If the Hessian of f at 0 is h−sparse.

Y is a random sample set chosen w.r.t. the uniform measure on
B∞(0; ∆).
p

log p ≥ 9c (h+ n+ 1) log2(h+ n+ 1)logO(n2).

Then, with high probability, the quadratic

q∗ =
∑

α∗ιψι

obtained by solving the noisy and partial `1-minimization problem is a fully
quadratic model for f (with error constants not depending on ∆).
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An answer to our main question

For instance, when the number of non-zeros of the Hessian is
h = O(n), we are able to construct fully quadratic models with

O(n log4n) points.

Also, we recover both the function and its sparsity structure.
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Remarks

However, the Theorem only provides motivation because, in a practical
Optimization approach we:

Solve
min ‖αQ‖1
s. t. M(φ̄Q, Y )αQ +M(φ̄L, Y )αL = f(Y ).

Deal with small n (from the DFO setting) and the bound we obtain is
asymptotical.

Use deterministic sampling.
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A practical interpolation-based trust-region solver

We have tested the effect of minimum `1-norm Hessian models in a
practical trust-region DFO algorithm:

New sample points are only defined by the trust-region step x+ ∆x
(no model management iterations).

Quadratic underdetermined models are built by minimum `1 or
Frobenius norm minimization.

Points too far from the current iterate are thrown away (sort of a
criticality step).

Trust-region radius is not reduced when the sample set has less than
n+ 1 points.
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Performance profiles (accuracy of 10−4 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA

(Powell) in a test set from CUTEr (Fasano et al.).
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Performance profiles (accuracy of 10−6 in function values)

Figure: Performance profiles comparing DFO-TR (`1 and Frobenius) and NEWUOA

(Powell) in a test set from CUTEr (Fasano et al.).
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Concluding remarks

Optimization is a fundamental tool in Compressed Sensing. However,
this work shows that CS can also be ‘applied to’ Optimization.

In a sparse scenario, we were able to construct fully quadratic models
with samples of size O(n log4n) instead of the classical O(n2).

We proposed a practical DFO method (using `1-minimization) that
was able to outperform state-of-the-art methods in several numerical
tests (in the already ‘tough’ DFO scenario where n is small).
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Open questions

Improve the efficiency of the model `1-minimization, by properly
warmstarting it (currently we solve it as an LP using lipsol by
Y. Zhang).

Study the convergence properties of possibly stochastic
interpolation-based trust-region methods.
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Direct-search methods

Definition

Sample the objective function at a finite number of points at each
iteration.

Base actions on those function values.

Direct search of directional type: Achieve descent by using positive
spanning sets and moving in the directions of the best points.

These methods do not necessarily depend on derivative approximation
or model building (although they can be made much more efficient
when doing so).
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Coordinate search (poll step)
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Positive spanning sets / positive bases

D1 = D⊕ D2 D3

All of them are positive spanning sets (since they span Rn (n = 2) with
nonnegative coefficients).

D1 and D2 are positive bases.
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Our problem setting

Unconstrained optimization

min
x∈Rn

f(x)

f : Rn → R

f is at least locally Lipschitz continous
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Forcing function

A forcing function ρ(·) is a positive and monotonically nondecreasing
function such that

lim
α↓0

ρ(α)

α
= 0.

In this talk, we will consider ρ(α) = αp, with p > 1.

A simple example of a forcing function is when p = 2: ρ(α) = α2.
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A class of direct-search methods

Initialization: Choose x0 and α0 > 0.

For k = 0, 1, 2, . . .

(1) Search step (optional): Try to compute a point x with

f(x) < f(xk)− ρ(αk)

by evaluating the function f at a finite number of points.

If such a point is found then set xk+1 = x, declare the iteration and the
search step successful, and skip the poll step.
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A class of direct-search methods

(2) Poll step: Choose a positive spanning set Dk.

Order the set of poll points Pk = {xk + αkd : d ∈ Dk} and start
evaluating f following the chosen order.

If a point xk + αkdk is found such that

f(xk + αkdk) < f(xk)− ρ(αk)

then stop polling, set xk+1 = xk + αkdk, and declare the iteration and the
poll step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set
xk+1 = xk.
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A class of direct-search methods

(3) Step size update: If the iteration was successful then maintain or
increase the step size parameter: αk+1 ∈ [αk, γαk].

Otherwise decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].

The parameters are chosen at initialization: 0 < β1 ≤ β2 < 1, and γ ≥ 1.
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Behavior of the step size parameter

Assumption

The level set L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} is bounded. The
function f is bounded below in L(x0).

Lemme (IDFO book or SIAM Review 2003 survey on DS)

There exists a point x∗ and a subsequence K of unsuccessful iterations
such that

lim
k∈K

xk = x∗ and lim
k∈K

αk = 0.

From such a result, one can then prove global convergence results (some
form of stationarity independently of the starting point).
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The question that interest us (smooth case)

Question

Given ε ∈ (0, 1), how many iterations k are needed to reach

‖∇f(xk+1)‖ ≤ ε.
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Worst case complexity of direct search (smooth case)

Assumption

The norm of the vectors of any positive spanning set Dk are bounded
above and away from zero.

The cosine measure of Dk is bounded away from zero.

Theorem (Lewis, Tolda, and Torczon 2003)

Let Dk be a positive spanning set.

Assume that ∇f is Lipschitz continuous (with constant Lf > 0).

If f(xk + αkd) ≥ f(xk)− ρ(αk), for all d ∈ Dk, then

‖∇f(xk)‖ ≤ C(Lf , bounds)× αk ... in the case ρ(α) = α2.

Note that global convergence is deduced from here: ‖∇f(xk)‖ −→
K

0.
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Worst case complexity of DS (smooth case)

Suppose that all iterations ` satisfy ‖∇f(x`)‖ ≥ ε, ` = 0, . . . , k.

Then we obtain a lower bound on the step size:

α` ≥
ε

C
, ` = 0, . . . , k.

From sufficient decrease on succ. iteration, f(x`+1) ≤ f(x`)− α2
` .

From this, we thus get a bound on the # of succ. iterations to reach
‖∇f(xk+1)‖ ≤ ε.

The # of unsucc. iterations is a function of the # succ. iterations.

Thus...
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Worst case complexity of DS (smooth case)

Theorem (LNV 2010)

Any direct-search method (based on sufficient decrease) takes at most

O
(
ε
− p

min(p−1,1)

)
iterations to reduce the gradient below ε ∈ (0, 1).

The number of function evaluations is O
(

(n+ 1)ε
− p

min(p−1,1)

)
.

One obtains O
(
ε−2
)

for p = 2 as in steepest descent (Nesterov).

Reference:

L. N. Vicente, Worst case complexity of direct search, preprint 10-17,
Dept. of Mathematics, Univ. Coimbra, 2010.
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Difficulties in the nonsmooth case

The cone of descent directions at the poll center is shaded.
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Difficulties in the nonsmooth case

Thus, one needs to use an infinite number of polling directions.

This does not pose a problem to global convergence, which can be
guaranteed a.e. in the unit sphere (see Audet and Dennis 2006, Vicente
and Custódio 2011).

But it does create a problem for worst case complexity:

Since it is difficult to measure how many iterations are needed to find a
descent one ...

... and thus to relate some form of stationarity (Clarke) to the step size.
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One possible fix: Smoothing functions

Definition

Let f : Rn → R be a locally Lipschitz continuous function.

We call f̃ : Rn × R+ → R a smoothing function of f if

1 f̃(·, µ) is continuously differentiable in Rn for any µ ∈ R++,

2 and, for any x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).

56/76



One possible fix: Smoothing functions

Definition

Let f : Rn → R be a locally Lipschitz continuous function.

We call f̃ : Rn × R+ → R a smoothing function of f if

1 f̃(·, µ) is continuously differentiable in Rn for any µ ∈ R++,

2 and, for any x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).

56/76



One possible fix: Smoothing functions

Definition

Let f : Rn → R be a locally Lipschitz continuous function.

We call f̃ : Rn × R+ → R a smoothing function of f if

1 f̃(·, µ) is continuously differentiable in Rn for any µ ∈ R++,

2 and, for any x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).

56/76



Example of a smoothing function

A smoothing function of |x1|+ |x2| for µ = 0.5.
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A class of smoothing DS methods

Initialization: Choose a function r(·) such that limµ↓0 r(µ) = 0.

Choose µ0 > 0 and σ ∈ (0, 1).

Choose x0 ∈ Rn.

For k = 0, 1, . . .

Apply DS to f̃(·, µk) (starting from y0,k = xk) generating points
y0,k, . . . , yj,k until αj+1,k < r(µk).

Set xk+1 = yj,k and decrease the smoothing parameter:
µk+1 ∈ (0, σµk].
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Global convergence of smoothing DS

Assumption (for all k)

The level sets L(y0,k) = {y ∈ Rn : f̃(y, µk) ≤ f̃(y0,k, µk)} are bounded.
The functions f̃(·, µk) are bounded below in L(y0,k).

If we let DS run forever for a given k, then lim infj→+∞ αj,k = 0.

Thus, one always reaches the stopping criterion and µk is decreased.

Theorem

The smoothing parameter goes to zero:

lim
k→∞

µk = 0.
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Global convergence of smoothing DS

Let jk be the unsucc. internal DS iteration that achieves the stopping
criterion αjk+1,k < r(µk).

After having proved that µk goes to zero, one then obtains:

Theorem
1 lim

k→+∞
αjk,k = 0.

2 There exists a point x∗ and a subsequence K ⊆ {j1, j2, . . .} of
unsucc. DS iterates such that xk = yjk,k −→

K
x∗.
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Global convergence of smoothing DS

Now, ‖∇xf̃(xk, µk)‖ ≤ C(Lf̃ )αjk

≤ C(Lf̃ )r(µk).

Thus, choosing r(·) appropriately (i.e., r(µ) = µ2 when Lf̃ = 1
µ),

Theorem

lim
k∈K
‖∇xf̃(xk, µk)‖ = 0

and x∗ is stationary point associated with the smoothing function f̃ .

Definition

We say that x∗ is a stationary point associated with the smoothing
function f̃ if 0 ∈ Gf̃ (x∗), where

Gf̃ (x∗) = {v : ∃N : x −−→
N

x∗, µ ↓ 0 with ∇xf̃(x, µ) −−→
N

v}.
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Clarke subdifferential

Does 0 ∈ Gf̃ (x∗) mean any form of true stationarity?

What is true stationarity?

Definition

Let f be Lipschitz cont. near x∗. The Clarke subdifferential is given by:

∂f(x∗) = {d ∈ Rn : f◦(x∗; v) ≥ v>d ∀v ∈ Rn},

where the Clarke generalized directional derivative is defined by

f◦(x∗; v) = lim sup
x→x∗ t↓0

f(x+ tv)− f(x)

t
.

Definition

We say that x∗ is a Clarke stationary point if 0 ∈ ∂f(x∗).
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f(x+ tv)− f(x)

t
.

Definition

We say that x∗ is a Clarke stationary point if 0 ∈ ∂f(x∗).

62/76



Clarke subdifferential (alternative characterization)

Theorem

Let f be Lipschitz continuous near x∗.

Let Df be the subset of Rn where f is differentiable.

Then the Clarke subdifferential can be given by

∂f(x∗) = co{lim∇f(x) : x→ x∗, x ∈ Df},

where co represents the convex hull.
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How to construct smoothing functions

Definition

We say that the sequence {ψµ : Rn → R+, µ ∈ R++} is a mollifier if:

Bµ = {z : ψµ(z) > 0} converges to {0}, as µ ↓ 0,∫
Rn ψ

µ(z)dz = 1.

Now consider the averaged functions

f̃(x, µ) =

∫
Rn

f(x− z)ψµ(z)dz =

∫
Rn

f(z)ψµ(x− z)dz.

If the mollifiers {ψµ} are bounded and continuous on Rn, then f̃ is a
smoothing function of f and one has the gradient consistency property

∂f(x∗) = coGf̃ (x∗).
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How to construct smoothing functions

In particular, mollifiers can be built from density functions.

Let B be a bounded set and ψ : B −→ R+ be a density function with∫
B ψ(z)dz = 1. The following is a mollifier:

ψµ(z) =

{
ψ(x/µ)
µn if z ∈ µB,

0 otherwise.

In this case, ∇xf̃(·, µ) is Lipschitz continuous with constant

Lf̃ = O
(

1

µ2

)
.

There are other forms of building smoothing functions such that

Lf̃ = O
(

1

µ

)
.
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Worst case complexity of smoothing DS

Theorem

Any smoothing DS (based on sufficient decrease) takes at most (when
r(µ) = µq)

O
(
(− log ξ)ξ−pq

)
iterations to reduce µ below ξ ∈ (0, 1).

After such effort, the gradient of f̃ is O
(
ξq−1 + ξ(p−1)q

)
.

Thus, as long as q ≥ 2 and (p− 1)q ≥ 1, one arrives at a gradient of f̃
of O(ξ).

Optimal choices consist of q = 2 and p = 3/2, leading to a worst case cost
of

O
(
(− log(ξ))ξ−3

)
.
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A smoothing function for ‖F (·)‖1

Chen and Zhou have introduced the following smoothing function of |t|:

s̃(t, µ) =

∫ ∞
−∞
|t− µτ |ρ(τ)dτ,

where ρ : R+ → R+ is a piecewise continuous density function with a
finite number of pieces satisfying

ρ(τ) = ρ(−τ) and

∫ ∞
−∞
|τ |ρ(τ)dτ <∞.

Using the density corresponding to the so-called Steklov mollifier,

ρ(τ) =

{
1 if τ ∈ [−1

2 ,
1
2 ],

0 otherwise,

one obtains

s̃(t, µ) =

{
t2

µ + µ
4 if t ∈ [−µ

2 ,
µ
2 ],

|t| otherwise.
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Example of this smoothing function

The smoothing function s̃(x1, µ) + s̃(x2, µ) of |x1|+ |x2| for µ = 0.5.
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A smoothing function for ‖F (·)‖1

Proposition (Chen and Zhou 2010)

(i) s̃ is a smoothing function of | · |.

(ii) ∇ts̃(·, µ) is Lipschitz continuous with Ls̃ = O
(

1
µ

)
.

(iii) s̃ is gradient consistent:{
lim

t→0,µ↓0
s̃′(t, µ)

}
= [−1, 1] = ∂| · |(0).
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A smoothing function for ‖F (·)‖1

Now, let f : Rn → R be C1. Then s̃(f) is a smoothing function of |f |.

Let F : Rn → Rm with F (x) = (F1(x), . . . , Fm(x)), where each Fi is C1

and ∇Fi is Lips. continuous.

Theorem

(i) F̃ =
∑m

i=1 s̃(Fi) is a smoothing function of ‖F‖1 =
∑m

i=1 |Fi|.

(i) F̃ satisfies the gradient consistent property{
lim

x→x∗,µ↓0
∇xF̃ (x, µ)

}
= ∂‖F (x∗)‖1.

(iii) For each µ, ∇xF̃ (·, µ) is Lipschitz cont. with constant LF̃ = O
(

1
µ

)
.
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Example of this smoothing function

The smoothing function F̃ (x1, x2, µ)
for ‖F (x1, x2)‖1 = ‖(x2

1 − 1, x2
2 − 1)‖1 and µ = 0.5.
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Some numerical experiments

We have tested the smoothing direct-search approach on the MATLAB
direct-search sid-psm code:

A. L. Custódio and L. N. Vicente, Using sampling and simplex
derivatives in pattern search methods, SIAM Journal on Optimization,
18 (2007), 537-555.

A. L. Custódio, H. Rocha, and L. N. Vicente, Incorporating minimum
Frobenius norm models in direct search, Computational Optimization
and Applications, 46 (2010) 265–278.

We tested the piecewise-linear problems (min ‖F (·)‖1) from:

J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization
algorithms, SIAM Journal on Optimization, 20 (2009), 172–191.
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Some numerical experiments

Smoothing DS with µ0 = 10−2 vs DS
(no search step, cycling polling).
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Some numerical experiments

Smoothing DS with µ0 = 10−2 vs DS
(search step using smoothing function with µ = 10−4, cycling polling).
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Some numerical experiments

Smoothing DS with µ0 = 10−2 vs DS
(no search step, polling using simplex gradient of smoothing function with

µ = 10−4).
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Conclusions

We have developed a smoothing direct-search approach using smoothing
functions.

We have proved that the smoothing DS method is globally convergent.

Smoothing DS is costly but seems able to find better solutions.

We have derived a complexity worst case bound for direct-search methods
in the non-smooth case.
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