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Space of LP

1 Goals and Motivations

1.1 The space of LP

Linear program (LP):

min cl'z max bly
st. Ax =D st. Aly+s=c
x>0 s >0

where A € R™*"™ is of full row rank.

e (A,b,c) = an LP instance,

e SLP(n,m) = the space of LP, i.e. the collection of (A,b, c).
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1.2 The basis partition

For any (A, b, ¢) there exists a unique index partition (B, N) of
{1,...,n} such that there is a strictly complementary solution
(x,s,y) satisfying

Ar=0b, Aly+s=c, 25>0, zxy =0, sg =0, sy > 0.

e (B,N) (or B) is called the basis of (A,b,c). There are a finite
number of bases Bq,..., By,.

e SLP(Byj) = the set of all (A, b, c) whose basis is By.

e {SLP(By),...,SLP(Bp)} is called the basis partition of
SLP(n,m).

We are particularly interested in exploring structures of the basis
partition of SLP(n,m).
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Why are we interested in the basis partition of SLP(n,m)?

There are already many powerful methods for solving individual
linear program. However, we know little about solving problems
consisting of infinitely many LPs. Such problems can be solved by
virtue of the basis partition.

o If (A,b,c) € SLP(B) and |B| = m, then we have the closed-form
optimal solution zp = A;b.

e We can solve a set P of infinitely many LP instances in the
closed-form, if we can determine the partition {Py,...,Pr} of P,

where
Pr=PNSLP(By).

(Some P may be empty.)
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1.3 Some applications

e Parametric LP:

e Bilevel programming:

HﬂnwEQ

arg mingc pn

min  c(w)! z(w)

Aw)z(w) < b(w)

where w € (2 C RP is a parameter. The problem is to find

optimal solutions x*(w) and the function f on (2.

flw, z(w))
c(w)l 'z
Aw)xr = b(w)
x>0
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/0 Differential complementarity problem: \

E=f& )
0<xz L A)x+Db(&)>0.

If we can find the closed-form solution z(&) of the LCP (LP is a
special LCP), then the problem is reduced to

e Operations on the space of LP, e.g.
Differentiation, such as differential complementarity problems;
Integration, such as stochastic programming;

Transformation;

- 9
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Remarks:

1. Most applications involve only a subset
P ={(A(w),b(w),c(w)) :weQC RP} C SLP(n,m).
2. While the dimension of SLP(n,m) can be high, the dimension

of parameter set {2 may be low, e.g. p = 3.

3. Partition {SLP(B;),...,SLP(Br)} on SLP(n,m) induces a
partition on €2:
Q(B;) ={weN: (Aw),b(w),c(w)) € SLP(B;)},i=1,..., L.

4. Characterization of the basis partition and induced partitions

is fundamentally important for solving these problems.

Up to date, there is no good tool for characterizing the basis

partition.

- 9
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2 A new tool for characterizing the

basis partition — A dynamical system

on the space of projection matrices

2.1 Mapping (A,b,c) to M

e The central path of (A,b,c), (x(t),s(t),y(t)), is defined by

ros=e 'l
Ar=b, Aly+s=c
x>0,58 > 0.

1 = the vector of all ones (regardless of dimension).

- %
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e The projection matrix associated with (A, b, ¢) is defined by

[(A,b,c) = [2(0)]A" (Az(0)]°AT) " A[2(0)], (2.1)

where |z| = Diag(x).

[ maps the space of linear programs SLP(n, m) onto the space of

projection matrices G(n,m).

Gn,m)={M e S" | MM = M, rank(M) =m}

is the Grassmann manifold.

S™ is the space of symmetric n x n-matrices.

- %
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2.2 The dynamical system on G(n,m)

The following differential equation is a key for studying the basis
partition of SLP.

O M| M1] + |M1IM — 2M|M1IM =: h(M).  (2.2)

Denote by M (t, My) the solution of M’ = h(M) with M (0) = Mj.

Let x(t) be the central path of (A,b,c). Then

M(t) = [2(t)]AT (Alz(t)]*AT) " Al2(t)], tER,

is the solution of M’ = h(M) with M (0) =T'(A,b,c).
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2.3 Defining the basis of (A,b,¢) by M’ = h(M)

e M € G(n,m) is an equilibrium point if h(M) = 0.

M € G(n,m) is an equilibrium if and only if
Mp O ,
M = with Mplp = 1p and My1y = 0.

0 My

Given (A,b,c), let M° = ['(A,b,c).

M 0 _
If limt_>_|_ooM(t,MO) — ( OB M ) with MB]]-B — ]]-B and
N

Myl =0, then {B, N} is the basis of (A, b, c).
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SLP(n,m) > (A,b,c) <=  M(0)=TI(A,b,¢c) € G(n,m)
z(t) M (t)
l l
z — M
1B, N}

Basis partition of SLP(n,m) <= Basis partition of G(n,m).

-

~

9
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2.4 The partition on G(n,m)

e M, is an (asymptotically) stable point of M’ = h(M) on
G (n,m) if there exists a neighborhood N (M) C G(n,m) such
that for any My € N (M), M(t, My) — My, as t — +oc.

e The largest neighborhood N (M) possessing the above

property is called the attraction region of M.

There are (Z) stable points in the form of

(I O
M=("" . |Bl=m.
0 Oy

G(n,m) consists of () disjoint attraction regions. Each region is

associated with a stable point.

- %




Space of LP

14

-

Equilibria, attraction regions and boundaries in G(3,1):

~
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where
1 1 1
M, = ! 1 1 1
3
1 1 1
1 0 0
M, = 0 . My = 1 . Ms = 0 )
0 0 1
i 1 1 0 ) | 0O 0 O ) | 1 0 1
Mis==11 1 0 ,M23:§ o 1 1], 3= 0 0 O
0 0 O 0 1 1 1 0 1
We will study the basis partition of SLP(n,m) via the partition of
G(n,m) that is characterized by M’ = h(M).

-

/
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3 Basic properties

For any equilibrium point M, Jacobian Dh(M) : S™ — S™ has the

form:

Dh(M)U = M|UL]+ |[UL]M —2M|UL]M
+U|ML)(I — 2M) + (I — 2M)| M1|U.

Denote

har(d) = Mld] + [d]M — 2M|d] M.

Equilibria are clustered into a number of connected sets which are
submanifolds. For each B and mp = rank(Mp), there is a unique
submanifold G°(B, mp), called an equilibrium cluster.

- %
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Theorem 1. The eigenvalues A and eigenvectors U of the Jacobian

Mg 0
Dh(M M = ‘(B .
h(M) at ( ; MN>EG( mp)

A\ = 1:

v (hMZédB) th&N))

with MBdB = 0, MNdN = dN, MBUO = 0 and U()MN = U().

A= —1:
[ —har (Uolly) U
B Ur —hyo (UL1
0 My (Ug 1)

with MBUO — U() and UOMN = 0.

A = 0: U are tangents to G°(B,mp) at M.

- %
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Denote

ng = number of rows in Mp,

ny = number of rows in My,

mp = rank(Mpg),

my = rank(My).

Eigenvalue | Number of linearly independent eigenvectors
A=1 ng —mp+mpy + (ng —mp)my
A= —1 mp(ny —mny)
A=0

(mB — 1)(nB — mB) + (nN —my — 1)mN

Total: m(n —m)

18
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Theorem 2. One-to-one correspondences between

(i) M € G(n,m);

(ii) Path M (-);

(iii) Equilibrium-eigenvector pair (M,U™) for X\ = 1;
(

iv) Equilibrium-eigenvector pair (M,U~) for A = —1.

Corollary. Partition of G(n, m) < Partition of {(M,U)}.

into M and U.

-

Remark: The latter is easier to describe because it is decomposed

9
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Question: How to determine if (M,U) € G(B)?

Theorem 3. For any (M,U) we can construct a (A, b, c) in terms
of (M,U).

Corollary.

=

U) — (A,b,¢c) — 2" — B,
= (M,U) € G(B).

(

20

- %
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4 Sources, Sinks, and Their Dimensions

E*(M) := eigenspace of Dh(M) for A\ = +1.
Source(B,mp) = {(M,U"): M € G(B,mp),UT € E*(M)}
Sink(B,mp) :={(M,U~): M € GY(B,mp),U” € E=(M)}.

dim(Source) = dimG®+dimE™
dim(Sink) = dimG°+dimE™
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-=1-dim source

o\/,

2-dim source

The circle is a 2-dim source
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e n-dim sources:

Source-0:
GC
E—I—

Source-1:
GC
E—|—

Qartitions of source-0 and source-1 < Partition of G(n,m).

Remark: (Source-0) U

/4.1 Important sources and sinks

n:=dim G(n,m) = m(n —m).

(M : M1=0}

= {M : M1=1}

—  {ha(d) : Md=0).

(Source-1) ~ G(n,m).

(har(d) = Md = d}.

9




Space of LP

24

-

e (n — 1)-dim sinks:

p-sink:

I 0
G¢ = {M:( ! T) s ulu=1,u"1 =0}
0 uu

0 U
Et = - Unu = 0).

d-sink:
i1 — ool 0
G¢ = {M= L vl =1,0"1 =0}
0 0
e (Up) U
ET = oY . Upu = 0}.
() v

Remark: Paths converging into p-sink or d-sink comprise

(n — 1)-dim boundary.

9
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5 (Geometrical properties of attraction

regions and their boundaries

5.1 Outlines

e There are (mn_l) pieces of p-boundary represented by

I 0
( (])8 uuT) with |B| = m — 1 and (mj—l) pieces of d-boundary

Ig —vol 0

represented by ( 0 O) with |B| = m + 1.

e Each attraction region G(B) has (n —m) disjoint pieces of

p-boundary and m disjoint pieces d-boundary,

e Each piece of p(d)-boundary intersets all pieces of

d(p)-boundary.
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5.2 Representation of p(d)-boundaries on

sources
Consider
Source-0 = {(M,U) : M € G°, U € EY(M)}.

(Source-1 can be considered analogously.)

Construct () special points 7¥(B) € G? for all |B| = m.
For |B| =m, let B;; = B—i+j,i € B and j € N, be adjacent

bases.

Denote

-

(Ig,Gij) == (Bij) 5 7 (Bj).

26
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e Given k € B, for any Ay = ZjeN > _ich tijGj with
ZjeN Zz’eB ti; =1,
A= (Ig,Ay), b>0withby=0, c=1

: : Ig_ 0
is on the p-boundary which converges to 0 ]
uu

e Given k € N, if ZieBtil >0VIe N— k, ZZEN—k ZieBt’il = 1,
and 8 € R}, then

A= (Ig, Z Ztilcil)v b= Apyp0, c=1

leN—kieB

Ig+k—UUT 0
0 0/

- %

is on the d-boundary which converges to (
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6 Conclusions

e We wish to characterize the basis partition of the SLP. This is of
fundamental importance for solving problems which require

closed-form solutions of a set of infinitely many LP instances.

e Our new tool, a dynamical system M’ = h(M), defines a partition

on G(n,m) which corresponds to the basis partition of SLP.

e We have found some properties about the dynamical system and
the partition, e.g. eigenvalues/vectors of Dh(M), one-to-one
correspondence between paths and equilibrium-eigenvector pairs,
sources and sinks, and some characterization of attraction regions

and their boundaries.
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