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Some Important Words

Here some suggestions on Research Methodology in Applied and

Computational Mathematics shall be discussed. Of course some

of you already know such techniques. Note that these techniques

are not necessarily correct, also not for writing great papers. It is

only for you to learn how to start your own research, to increase

your number of publications and to go out of shadow of your

advisor. Therefore, please don’t be too serious about my words

here. My words are not important for your future.
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• New Proofs

• Modifications

• Generalizations

• Helps from Other Areas

• Diagram

• Integration and Cooperation among Different Areas
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• Refinement

• Groups

• Conclusion
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New Proofs

Many theorems have several different proofs. For example,

Necessary and sufficient conditions of Optimality in constrained

Optimization have two proofs: KKT condition via dual function

(Lagrangian)-Analysis proof; e Fritz John Lemma - Geometrical

proof.
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Hahn-Banach theorem also has two proofs: Analysis and geom-

etry.

The conjugate gradient method for solving symmetric and posi-

tive definite systems can be derived from optimization of quadratic

function or from pure linear algebra.
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Hence, It is worthwhile to think about new proofs of existing

results with at least one of following characteristics:

Simplicity

Different vision (geometry, algebra, analysis or other motivations

)

More for teaching

New and smart idea

New Interpretations
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Example A: convergence of Filter method:

Paper of Fletcher etc.

Paper of Clovis Gonzaga and Elizabeth Karas

Example B: finite termination of the conjugate gradient method:

All residuals at all steps are mutual orthogonal by optimization

rn = 0 since it is orthogonal to all vectors of base by linear

algebra
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Modifications

Analyze possibility of modification for conditions of published

results; Try to set weaker conditions or more feasible conditions.

Motivation: Technique of proof, or limitation of tools lead the

conditions stronger than necessary.

8



J.Y. Yuan, Study of Comparison theorem of splitting matrices:

A = M1 − N1 = M2 − N2, M−1
i existem

xk+1 = M−1
1 N1xk + M−1

1 b

yk+1 = M−1
2 N2yk + M−1

2 b

x0 = y0, Ax = b
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If A−1Mi ≥ 0 e A−1M1 ≤ A−1M2, then

ρ(M−1
1 N1) ≤ ρ(M−1

2 N2)
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If (M−1
2 A)i+l ≤ (M−1

1 A)i(M−1
2 A)l

then

ρ(M−1
1 N1) ≤ ρ(M−1

2 N2)
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Theorem

If A and M∗A−∗A + N satisfy the condition

x∗Ax 6= 0
x∗(M∗A−∗A + N)x

x∗Ax
> 0

for all x ∈ E = {x ∈ Cn : Hx = λx}. Then ρ(H) < 1.
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Lemma

AA∗ − H∗A∗AH = (I − H)∗(M∗A + A∗N)(I − H).

Theorem

ρ(H) < 1 if and only

x∗(M∗A + A∗N)x > 0,

∀x ∈ E = {x ∈ Cn : Hx = λx}.
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Proof

x∗A∗Ax − x∗H∗A∗AHx = [(I − H)x]∗(M∗A + A∗N)[(I − H)x]

or

(1 − |λ|2)x∗A∗Ax = |1 − λ|2x∗(M∗A + A∗N)x.

(1 − |λ|2) = |1 − λ|2
x∗(M∗A + A∗N)x

x∗A∗Ax
.
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With new (always weaker or/and simpler), the published results

should be modified.

Motivations: Most cases, the conditions are necessary for the

published results. If we modify those conditions, the results have

to be modified.
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A.M. Ostrowski, On the linear iteration procedures for symmetric

matrices (1954)

E. Reich, On the convergence of the classical iterative procedures

for symmetric matrices (1949)

K.B. Keller, On the solution of singular and semi-definite linear

systems by iteration, SIAM J. Numer. Anal. (1965)
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J.M. Ortega and R.J. Plemmons, Extensions of the Ostrowski-

Reich Theorem for SOR iterations, LAA (1979)

J.Y. Yuan, The Ostrowski-Reich theorem for SOR iterations:

extensions to the rank deficient case, LAA (2000)
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Let A = M − N . For solving linear system Ax = b. There are

xk+1 = M−1Nxk + M−1b

xk → x∗ ⇔ ρ(M−1N) < 1

H = M−1N
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Theorem

If A and M∗A−∗A + N satisfy the condition

x∗Ax 6= 0
x∗(M∗A−∗A + N)x

x∗Ax
> 0

for all x ∈ E = {x ∈ Cn : Hx = λx}. Then ρ(H) < 1.
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Contrary, if ρ(H) < 1, then for all x ∈ E, there are

x∗Ax 6= 0
x∗(M∗A−∗A + N)x

x∗Ax
> 0

or

x∗Ax =
x∗(M∗A−∗A + N)x

x∗Ax
= 0.
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Proof

Let λ and x be Hx = λx e x ∈ E. Remind λ 6= 1 (if not, Mx = Nx

implies that A is singular).

Since

A − H∗AH = (I − H)∗(M∗A−∗A + N)(I − H), (∗)

x∗Ax − x∗H∗AHx = [(I − H)x]∗(M∗A−∗A + N)[(I − H)x]
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or

(1 − |λ|2)x∗Ax = |1 − λ|2x∗(M∗A−∗A + N)x.

By the condition,

(1 − |λ|2) = |1 − λ|2x∗(M∗A−∗A + N)x/x∗Ax > 0.

Then |λ| < 1.
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Consider singular A. The key problems: x∗Ax can be zero; There

does not exist A−1. Now we cannot consider classic convergence

concept because λ = 1 is eigenvalue of H explicitly.

Therefore, We have to think semi-convergence (λ = 1 is simple

eigenvalue of H and other eigenvalues λ of H satisfy |λ| < 1).

Also we must consider generalized inverse of A.
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To get the result, by the proof, the first step is to modify (*).

A − H∗AH = (I − H)∗(M∗(A+)∗A + N)(I − H), (∗∗)

with condition R(A) = R(A∗).

24



Theorem

Let A = M − N and H = M−1N with R(A) = R(A∗) and M :

R(A) → R(A). If A and M∗A+∗A + N 6= 0 satisfy the condition

x∗Ax 6= 0
x∗(M∗A+∗A + N)x

x∗Ax
> 0

for all x ∈ E = {x ∈ Cn : Hx = λx}
⋂

R(A). Then H is semi-

convergent.
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Contrary, if H is semi-convergent, then for all x ∈ E
⋂

R(A), there

is

x∗Ax 6= 0
x∗(M∗A+∗A + N)x

x∗Ax
> 0

or

x∗Ax =
x∗(M∗A+∗A + N)x

x∗Ax
= 0.
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Let A = M − N and H = M−1N with M : R(A∗) → R(A). Then,

• If M∗A + A∗N is positive on E
⋂

R(A∗), then, H is semi-

convergent;

• If H is semi-convergent, then, M∗A + A∗N is positive on

E
⋂

R(A∗) or x∗(M∗A + A∗N)x = 0 for all x ∈ N(A).
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Generalizations

Generalize results from Problem A to Problem B with the same

ideas and techniques or similar to solve new problems;
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For the generalization, we have to analyze characteristics of

Problem B, try to obtain the same results as Problem A. since

both problems are different, we must use new techniques, new

tools or new ideas which are our contributions. If Problem B can

be solved (theoretically or numerically), it also is great contribu-

tion.
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• J.Y. Yuan, Numerical Methods for generalized least squares

problems, JCAM, 1996

• J.Y. Yuan and A.N. Iusem, Preconditioned Conjugate Gradi-

ent Methods for Generalized Least Squares Problems, JCAM,

1996.

• A.N. Iusem and J.Y. Yuan, Preconditioned SOR Methods

for Generalized Least Squares Problems, Acta Mathematica

Applicada Sinica, 2000.
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To establish iterative methods for solving the generalized least

squares problems

min (Ax − b)TW−1(Ax − b)

where A ∈ Rm×n with full rank and m ≥ n.
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Consider problem

min (Ax − b)TW−1(Ax − b)

where A ∈ Rm×n is not full rank and m ≥ n.
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• C.H. dos Santos, B.P.B. Silva and J.Y. Yuan, Direct Itera-

tive Methods for Rank Deficient Generalized Least Squares

Problems, JCAM, 2000.

• C.H. dos Santos and J.Y. Yuan, Block SOR methods for

rank deficient generalized least squares problems, Inter. J.

Computer Math., 1998.

• C.H. dos Santos and J.Y. Yuan, Preconditioned conjugate

gradient methods for rank deficient generalized least squares

problems, JCAM, 1999.
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Apply Method B to solve the same problem which was solved

by Method A to establish new algorithms,obtain new results,

discover new things and properties and improve existing results.
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Consider

min (Ax − b)TW−1(Ax − b)

where A ∈ Rm×n with full rank and m ≥ n.

Apply the preconditioned conjugate gradient method, study con-

vergence and iterative errors (J.Y. Yuan and A.N. Iusem, Pre-

conditioned Conjugate Gradient Methods for Generalized Least

Squares Problems, JCAM, 1996).
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Apply the 2-block and 3-block SOR methods for solving the same

problem, study the convergence and conditions of convergence.

Also make comparison between the block SOR methods and

the preconditioned conjugate gradient method (A.N. Iusem and

J.Y. Yuan, Preconditioned SOR Methods for Generalized Least

Squares Problems, ACTA Mathematica Applicada Sinica, 2000).
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The problem can be generalized to a general form: Saddle point

problem which was well studied. Many papers discussed different

preconditioners for the problem.
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Another example Equations of motion of Oldroyd Fluids.

• A.K. Pani, J.Y. Yuan and P. Damázio, On a linearized back-

ward Euler method for the equations of motion of Oldroyd

fluids of order one, SIAM, 2006.

• A.K. Pani and J.Y. Yuan, Semidiscrete finite element galerkin

approximation to the equations of motion arising in the Ol-

droyd model, IMA J. Numer. Anal., 2005.
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Rolle’s Theorem

Let f ∈ C[a, b] and derivative in (a, b). If f(a) = f(b), then there

exists at least one c ∈ (a, b) such that f ′(c) = 0.

Naturally we shall ask what happens nif f(a) 6= f(b)?

It leads to Mean value Theorem:
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Mean value Theorem

Let f ∈ C[a, b] and derivative in (a, b). Then there exists at

least c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.
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Observation

We can understand

f ′(c) =
f(b) − f(a)

b − a

⇓

f ′(c)

x′
=

f(b) − f(a)

x(b) − x(a)

Then, what happens if denominator is one uma funtion g(x)?
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Lagrangian Theorem

Let f, g ∈ C[a, b] and derivative in (a, b). If g′(x) 6= 0 ∀x ∈ (a, b),

and g(b) 6= g(a), then there exists at least c ∈ (a, b) such that

f ′(c)

g′(c)
=

f(b) − f(a)

g(b) − g(a)
.
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Help from Other Areas

Sometimes the point of view, the technique, the idea or the

methods from other areas can hep us to solve our problem.

discuss with researchers from different areas,

attend talks of other areas,

Collaborate with researchers from other areas,

Listen critics from other areas.
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Bieberbach’s conjecture - Branges’ Theorem

f(z) = z +
∑
n≥n

anzn, |z| ≤ 1

satisfies

|an| ≤ n (n = 2,3, . . .).

was proved in Feb. 1984.
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Louis de Branges worked on this conjecture much time with-

out success, and published some papers wtih errors so that his

colleagues didn’t trust him too much. But he persisted in his

work and transformed the problem to the following problem by

functional analysis:
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∫ 1

0
2F1(

−n,n+a+2,
(a+3)/2

st)s(a−1)/2(1 − s)(a−1)/2 ds > 0

where a > −1, 0 < t < 1, 2F1 is geometric function apresented

by Jacobian polynomials.
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Now we only need to prove the integration is positive for all

n ≥ 2.

Brange asked help of Gautschi who verified numerically the result

till n ≤ 40. Brange was very happy with the result because in

general people confirmed the result only for n = 2, . . . ,8.
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On Feb. 29, 1984, Gautschi called Askey, specialist at special

functions. At the beginning Askey that it would be impossible

because complex inequality cannot be proved by only real anal-

ysis, finally he agreed to think about the problem.
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At the same night, Gautschi received call from Askey who said

that the result is the special case of his result with Gasper pub-

lished in 1976. (Amer. J. Math., 98(1976) 709-737).

Then, in 1985, North Europe Acta Mathematica published Branges’

paper: A proof of the Bieberbach Conjetura
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Computational fluid mechanics + numerical linear algebra + op-

timization
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Diagram

Sometimes we design one diagram (or table) which can give us

many helps to create new ideas.
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Ostrowski-Reich Theorem

Necessary and sufficient convergence conditions of iterative meth-

ods for solving Ax = b where A = M − N :

xk+1 = M−1Nxk + M−1b
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A (SPD) =⇒ A SPSD
O − R,1949,1954 Keller,1965

⇓
A NSPD ? → A singular

O − P,1979 Yuan,2000
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In nonlinear optimization, nonlinear conjugate gradient methods

exist several forms. The difference of the forms is the choice of

βk which influences the convergence of the method.

βk is function of ‖gk‖
2, gT

k yk−1, ‖gk−1‖
2, dT

k−1yk−1 e −gT
k−1dk−1

whose combinations result in the following methods:
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‖gk‖
2 gT

k yk−1

‖gk−1‖
2 FR PRP

dT
k−1yk−1 DY HS

−gT
k−1dk−1 CD LS

FR – Fletcher-Reevves, PRP – Polak-Ribiére-Polyak, DY – Dai-

Yuan, HS – Hestenes-Stiefel, CD – Conjugate Descent.
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Consider inexact gradient method using interpolation. We can

obtain the similar results. Think one-dimensional problem. We

have 4 interpolation conditions f(0), f(−1), f ′(0), and f ′(−1).

For quadratic interpolation, we only need 3 conditions. Then, we

can have various combinations corresponding to different inexact

methods.
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Integration and Cooperation

• Between Pure Mathematics and Applied Mathematics

• Among Mathematics and Physics, Chemistry etc.

• Between Mathematics and Engineering

• Among Mathematics and medicine, pharmacology, psychol-

ogy, economics, etc.
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Example: Generalization of results from generalized inverse ma-

trices to groups, semi-groups and algebra.
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Example: Computational Fluid Mechanics. Cuminato and his

Ph.D. student use Crank-Nicolson method with explicit cooper-

ation of boundary conditions. The numerical simulation gives

some conjecture that the method is stable with some parameter

α ∈ (0, 2), and unstable when α ≥ 2. Unfortunately they proved

that the conjecture is true only for α ∈ (0, 1/8) and α → ∞.

At that time, Yuan was visiting the group. They discussed the

problem with Yuan. Yuan tried some numerical linear algebra

technique to extend their result to α ∈ (0, 3/5). It still was

not good enough. After two night thinking, Yuan used combi-

nation of optimization techniques and numerical linear algebra

techniques to proved the conjecture successfully.
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Refinement

For the same problem, we improve our result step by step with

different techniques and ideas.

Example, round-off error analysis of eigenvalue problem, and ma-

trix decomposition etc. Each paper gives sharp upper bounds.
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Group

The idea research group consists of

Idea + Technique + Implementation + English.
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Conclusion

Using examples to illustrate several techniques of research method-

ology in Applied and Computational Mathematics.
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