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Introduction

• Image formation equation.

f = Kū + ω

– ū: original image

– K : convolution operator

– ω: random noise

– f : observation

Our purpose is to recover ū from f (deconvolve and denoise) as well as

possible.
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• Deconvolution is severely ill-conditioned. Let F be the 2D Fourier transform

matrix. The equation is equivalent to

f̂ = K̂ ˆ̄u + ω̂,

where f̂ = Ff and K̂ = FKF
−1(diagonal). A tempting solution would be

udirect = F
−1(K̂−1f̂) = F

−1(ˆ̄u + K̂−1ω̂).

Does this work?
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Experiment 1. Blur: (’gaussian’,11,5); Noise: N (0, 10−8).

Original Blurry

Blurry&Noisy Direct inverse

Noise is amplified!
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Cut off high frequencies (Weiner Filter):

ûi =







0, if |f̂i/K̂ii| > M ;

f̂i/K̂ii, otherwise.

Result of experiment 1 after cutting off some high frequencies:

Cut off high frequencies
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Statistics Interpretation:

• Maximum likelihood estimation. Given ω ∼ N (0, σ2), the MLE of ū is

uMLE = arg max
u

Pr{f |u}

= arg min
u

(− log(Pr{f |u}))

= arg min
u
‖Ku− f‖2.

Thus, MLE, LS and direct inverse are all equivalent. They do not work. When

noise is correlated, i.e., ω ∼ N (0,Σ), MLE becomes weighted LS.
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Another Statistics Viewpoint:

• Maximum a posteriori estimation. Given ω ∼ N (0, σ2), the MAP of ū is

uMAP = arg max
u

Pr{u|f}

= arg max
u

Pr{u}Pr{f |u}

Pr{f}

= arg min
u
{− log(Pr{u})− log(Pr{f |u})}

= arg min
u

Φprior(u) + ‖Ku− f‖2.

Thus, Φprior(u) enforces some prior constraints on ū, which is called

regularization. Qusetion: what kind of prior do we need?
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• Regularization.

min
u

Φreg(u) + µ‖Ku− f‖22

– Tikhonov-like regularization (notice 2-norm squared)

Φreg(u) = ΦTik(u) ,
∑

j∈J

‖D(j)u‖22,

for some J ⊂ {0, 1, 2, . . .}, where

∗ D(0): identity matrix

∗ D(j), j = 1, 2: the 1st order finite difference matrices

∗ D(j), j = 3, 4, 5: the 2nd order . . . (used by MATLAB “deconvreg”).

The solution satisfies




∑

j∈J

(D(j))⊤D(j) + µK⊤K



u = µK⊤f.
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Experiment 2. Result of Tikhonov regularization. Blur: (’gaussian’,21,11);

Noise: N (0, 10−6).

Blurry&Noisy Recovered by "deconvreg"

Advantages: Not so sensitive to noise, easy to compute.
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Disadvantage of Square: Incapable of recovering image discontinuities.

min
u∈R11

φ(u) =
∑

i

|ui+1 − ui|
2, s.t. u1 = 0, u11 = 255.
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– Total variation regularization (Rudin, Osher and Fatemi, 1992).

Φreg(u) = TV(u) ,
∑

i

‖Diu‖.

∗ ‖Diu‖: the variation of u at pixel i, where

Diu =





(D(1)u)i

(D(2)u)i



 ∈ R
2.

∗
∑

i is taken over all pixels.

∗ The sum represents a 1-norm.

∗ ‖ · ‖: the 2-norm (isotropic) or the 1-norm (anisotropic).



Seminar Talk at ICMSEC, Chinese Academy of Sciences December 2nd, 2008 13

Advantage of 1-norm: Permits sharp edges in images.

min
u∈R11

TV(u) =
∑

i

|ui+1 − ui|, s.t. u1 = 0, u11 = 255.
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Experiment 3. Compare Tikhonov with TV regularization. The same inputs

as in experiment 2.

Recovered by "deconvreg" Recovered by FTVd

Disadvantages: More expensive in computation, stair-casing effect.
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TV/L2 : min
u

∑

i

‖Diu‖2 +
µ

2
‖Ku− f‖2.

It’s a convex program, large-scale, still ill-conditioned and requires “real-time”

processing.

• Some existing methods.

– Lagged diffusivity method (Vogel & Oman, 1995). Given uk, uk+1 is

determined by solving

∑

i

D⊤
i

Diu

‖Diuk‖α
+ µK⊤(Ku− f) = 0,

which is a linearization to the optimality condition of

min
u

∑

i

‖Diu‖α +
µ

2
‖Ku− f‖2.

Here ‖ · ‖α ,
√

‖ · ‖2 + α for some small α > 0.

Most earlier methods were based on solving (Euler-Langrange) PDE.
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– Iterative Shrinkage/Thresholding based methods (Daubechies, Defrise &

De Mol, 2004). Given uk, the original IST method iterates as

uk+1 = Ψµ

(

uk − λkK⊤(Kuk − f)
)

,

where λk > 0 and

Ψµ(ξ) , arg min
u

TV(u) +
µ

2
‖u− ξ‖2.

There exist several variants of IST methods, e.g., TwIST (Bioucas-Dias &

Figueiredo, 2007).

– Second-order cone programming approach (Goldfarb & Yin, 2005).

– Iterative Denoising (Michael Ng et al 2007). Much faster, but ......
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A Fast Alternating Algorithm

• Motivation. The problem is

min
u

∑

i

‖Diu‖+
µ

2
‖Ku− f‖2.

By introducing wi ∈ R
2, TV/L2 is approximated by, for β ≫ 0,

min
wi,u

∑

i

(

‖wi‖+
β

2
‖wi −Diu‖

2

)

+
µ

2
‖Ku− f‖2.

The approximation problem allows very fast alternating minimization.
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A simple and important lemma:

Lemma 1 Given a positive integer d. For any β > 0 and t ∈ R
d, it holds

max

{

‖t‖ −
1

β
, 0

}

t

‖t‖
= arg min

s∈Rd

{

‖s‖+
β

2
‖s− t‖2

}

,

where we follow the convention 0 · (0/0) = 0.

An important Observation: Finite differences, D(1) and D(2) can be treated

as discrete convolution under suitable boundary conditions.

Consequently, D(1) and D(2) and K are circulant matrices under the

periodic boundary conditions for u, and all can be diagonalized by FFT.
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• Our Simple Algorithm:

– w-subproblem. Fixing u, minimizing w.r.t. w reduces to

min
wi

‖wi‖+
β

2
‖wi −Diu‖

2, ∀i.

Separate and closed form solutions at all pixels i:

wi = max

{

‖Diu‖ −
1

β
, 0

}

Diu

‖Diu‖
, ∀i.

Linear time complexity: O(n2).
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– u-subproblem. Fixing {wi}, minimizing w.r.t. u reduces to

min
u

β

2

∑

i

‖wi −Diu‖
2 +

µ

2
‖Ku− f‖2.

Its normal equations are
(

∑

i

D⊤
i Di +

µ

β
K⊤K

)

u =
∑

i

D⊤
i wi +

µ

β
K⊤f

or equivalently




2
∑

j=1

(D(j))⊤D(j) +
µ

β
K⊤K



u =

2
∑

j=1

(D(j))⊤wj +
µ

β
K⊤f,

where wj = {wi(j) : i = 1, . . . , n2} for j = 1, 2.

This system can be solved by 2 FFTs at a cost of O(n2 log n).
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– Continuation/path-following. Initialize β small, and then increase it

gradually. The previous solution is used to warm-start the next problem.
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Test on continuation: β = 20, 21, . . . , 210.

Continuation not only accelerates the speed, but also, unexpectedly,

enhances solution robustness.
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Given β > 0, we solve the approximation problem by alternately

minimizing w.r.t. w and u.

– FTVd (Fast TV deconvolution). Input K, f , µ > 0, βmax ≫ 0 and

γ > 1; Initialize β = β0 > 0 and u = u0.

While β <= βmax, Do

1) Solve the approximation to certain accuracy for uβ .

2) Update u← uβ , β ← γ ∗ β.

End Do
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• Relation with half-quadratic technique. Given β > 0, FTVd solves

min
u,w

∑

i

{

‖wi‖+
β

2
‖Diu− wi‖

2

}

+
µ

2
‖Ku− f‖2.

The above is equivalent to

min
u

∑

i

φ (Diu) +
µ

2
‖Ku− f‖2,

where φ(t), t ∈ R
2, is defined as

φ(t) =







β
2 ‖t‖

2, if ‖t‖ ≤ 1/β;

‖t‖ − 1
2β

, otherwise.

This is an extension to the half-quadratic transform (German and Yang 1995).
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• Optimality. A pair (w, u) solves the approximation problem iff






wi/‖wi‖+ β(wi −Diu) = 0 i ∈ I1 , {i : wi 6= 0},

β‖Diu‖ ≤ 1 i ∈ I2 , {i : wi = 0},

βD⊤(Du− w) + µK⊤(Ku− f) = 0.

Eliminating w, the final equations become

∑

i∈I1

D⊤
i

Diu

‖Diu‖
+
∑

i∈I2

D⊤
i hi + µK⊤(Ku− f) = 0,

where hi = βDiu satisfies ‖hi‖ ≤ 1, which is an approximation to the

optimality condition of TV/L2.



Seminar Talk at ICMSEC, Chinese Academy of Sciences December 2nd, 2008 25

• Convergence results. Let D =
(

D(1); D(2)
)

,

M = D⊤D + (µ/β) ·K⊤K and T = DM−1D⊤.

AssumingN (D) ∩N (K) = {0}, for fixed β we have

1. The sequence {(wk, uk)} generated by FTVd converges to a solution

(w∗, u∗) of the approximation problem.

2. Finite convergence. wk
L ≡ w∗

L in finite number of iterations.

3. q-linear convergence. For k sufficiently large, there hold

(a) ‖D(uk+1 − u∗)‖ ≤
√

‖(T 2)EE‖ · ‖D(uk − u∗)‖;

(b) ‖wk+1 − w∗‖ ≤
√

‖(T 2)EE‖ · ‖w
k − w∗‖;

(c) ‖uk+1 − u∗‖M ≤
√

‖TEE‖ · ‖uk − u∗‖M .

Here L = {i, ‖Diu
∗‖ < 1/β} and E = {1, 2, . . . , n2} \ L.
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Numerical results and extensions

• Restoration of grayscale images. Kernel: (’gaussian’,21,10); Noise: Gaussian

white with mean zero and std= 10−3.

Blurry&Noisy. SNR:  6.3dB Lag.D. SNR: 12.2dB, CPU: 512.1s FTVd. SNR: 12.6dB, Iter: 11, CPU:  1.9s
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Blurry&Noisy. SNR:  7.7dB Lag.D. SNR: 14.4dB, CPU: 1918.0s FTVd. SNR: 14.8dB, Iter: 9, CPU:  7.0s

Blurry&Noisy. SNR:  9.1dB Lag.D. SNR: 15.0dB, CPU: 7306.7s FTVd. SNR: 15.5dB, Iter: 10, CPU: 31.2s
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• Speed comparison with Lagged Diffusivity method. Noise: Gaussian, mean

zero and std= 10−3; Blur: (’gaussian’,hsize,10).
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• Multichannel image deconvolution. Let u be a RGB image. The image

formulation equation f = Ku + ω becomes









fr

fg

f b









=









Krr Krg Krb

Kgr Kgg Kgb

Kbr Kbg Kbb

















ur

ug

ub









+









ωr

ωg

ωb









.

TV is extended to

MTV(u) ,
∑

i

‖(I3 ⊗Di)u‖,

where

(I3⊗Di)u =
[

D(1)ur, D(2)ur, D(1)ug, D(2)ug, D(1)ub, D(2)ub
]

i
∈ R

6.
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Generally, let u ∈ R
mn2

be a m-channel image and K = [Kjk]mjk=1 be a

cross-channel blurring matrix. The TV/L2 model is extended as

min
u

∑

i

αi‖Giu‖+
µ

2
‖Ku− f‖2,

where Gi = Im ⊗Di, andDi is a 1st and/or higher order local finite

difference operator. It is approximated by

min
u,w

∑

i

(

αi‖wi‖+
β

2
‖wi −Giu‖

2

)

+
µ

2
‖Ku− f‖2.

– Fixing u, the minimizer function for w is given explicitly by:

wi = max

{

‖Giu‖ −
αi

β
, 0

}

Giu

‖Giu‖
, ∀i.
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– The u-subproblem is equivalent to




∑

j

(G(j))⊤G(j) +
µ

β
K⊤K



u =
∑

j

(G(j))⊤wj +
µ

β
K⊤f.

By pre- and post- multiplying Im ⊗ F and its inverse, respectively, the

coefficient matrix becomes















Λ11 Λ12 . . . Λ1m

Λ21 Λ22 . . . Λ2m

...
...

. . .
...

Λm1 Λm2 . . . Λmm















,

with each Λij a diagonal matrix. Thus u-subproblem is easily solved by FFTs

and low complexity Gaussian elimination.
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Restoration from cross-channel blur and Gaussian noise:

Original Blurry&Noisy. SNR: 6.70dB FTVd: SNR: 18.49dB, t = 4.29s

Original Blurry&Noisy. SNR: 8.01dB FTVd: SNR: 19.54dB, t = 16.86s
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• Deconvolution in the presence of impulsive noise. Cameraman degraded by

convolution and 10% salt-and-pepper noise. Right: solution of TV/L2.
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For impulsive noise, the ℓ1-norm fidelity is more suitable. We recover ū as

the solution of the TV/L1 model:

min
u

∑

i

‖Diu‖+ µ‖Ku− f‖1.

The approximation problem is given by

min
w,z,u

∑

i

(

‖wi‖+
β

2
‖wi −Diu‖

2

)

+ µ
(

‖z‖1 +
γ

2
‖z − (Ku− f)‖2

)

.

Minimization w.r.t. w, z and u each is easy!
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Restoration from Gaussian blur and salt-and-pepper noise:

Blurry&Noisy: 30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

FTVd.  µ:  13, t: 15.1s, SNR: 14.16dB FTVd.  µ:  10, t: 13.9s, SNR: 13.21dB FTVd.  µ:   8, t: 13.5s, SNR: 12.35dB FTVd.  µ:   4, t: 16.8s, SNR: 11.08dB
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Restoration from cross-channel blur and random-valued noise:

40% RV 50% RV 60% RV

 µ:   8, t: 117s, SNR: 16.04dB  µ:   4, t: 138s, SNR: 14.06dB  µ:   2, t: 136s, SNR: 10.60dB



Seminar Talk at ICMSEC, Chinese Academy of Sciences December 2nd, 2008 37

• MRI reconstruction. In MR imaging system, MR scanner collects data:

fp = Fpū + ω ∈ CM , M ≪ N.

Without noise, under certain desirable conditions, it holds

ū = arg min
u
{TV(u) : Fpu = fp} .

In the presence of noise, we recover ū via

min
u

TV(u) +
µ

2
‖Fpu− fp‖

2.

When ū has sparse/compressible representation under certain wavelet basis,

we recover it via

min
u

TV(u) + τ‖Ψ⊤u‖1 +
µ

2
‖Fpu− fp‖

2.

FTVd can be extended to solve the above TVL1-L2 problem.
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Sparse (under TV) image reconstruction. Left to right: Original, Fourier domain

samples (9.36%), reconstructed image (RelErr: 4.48%). Gaussian noise with

mean zero and std= .01.
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Compressible (under wavelet) image reconstruction. Sample ratio: 9.64%; Noise:

Gaussian, mean zero, std= .01; Left: original brain image; Right: reconstructed

(RelErr: 11.58%).
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• Summary.

– FTVd converges without the assumption of strictly convexity.

– Finite convergence of auxiliary variables is established.

– Linear convergence rate is established and the convergence factor

depends on a submatrix.

– FTVd is fast for TV based problem because it fully exploits problem

structure and utilizes FFT.
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Thank you!


