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Quadratic Optimization

min xT Qx + qT x

s.t. Ax = b

x ≥ 0, x ∈ {0, 1}nor{−1, 1}n.

I One of the basic optimization models widely used in many
applications from experiment design and portfolio selection;

I One of the corner stones in the development of optimization
theory and methodologies;

I In general, it is NP-hard. For some special cases, even getting
a good approximation is hard too.

Jiming Peng New Approaches for discrete and nonconvex QP



Introduction
New SDP Relaxations for Quadratic Assignment Problems

New Clustering-based Approaches for 0-1 Binary QP
Probabilistic Analysis of Nonconvex QP

Quadratic Optimization

min xT Qx + qT x

s.t. Ax = b

x ≥ 0, x ∈ {0, 1}nor{−1, 1}n.

I One of the basic optimization models widely used in many
applications from experiment design and portfolio selection;

I One of the corner stones in the development of optimization
theory and methodologies;

I In general, it is NP-hard. For some special cases, even getting
a good approximation is hard too.

Jiming Peng New Approaches for discrete and nonconvex QP



Introduction
New SDP Relaxations for Quadratic Assignment Problems

New Clustering-based Approaches for 0-1 Binary QP
Probabilistic Analysis of Nonconvex QP

Quadratic Optimization

min xT Qx + qT x

s.t. Ax = b

x ≥ 0, x ∈ {0, 1}nor{−1, 1}n.

I One of the basic optimization models widely used in many
applications from experiment design and portfolio selection;

I One of the corner stones in the development of optimization
theory and methodologies;

I In general, it is NP-hard. For some special cases, even getting
a good approximation is hard too.

Jiming Peng New Approaches for discrete and nonconvex QP



Introduction
New SDP Relaxations for Quadratic Assignment Problems

New Clustering-based Approaches for 0-1 Binary QP
Probabilistic Analysis of Nonconvex QP

Semidefinite Programming

min Tr(CX )

s.t. Tr(AiX ) = bi , i = 1, · · · ,m
X � 0.

I First appeared in [Bellman & Fan, 1963];

I Fast development in 1990s:

I Many applications from various disciplines [Boyd &
Vandenberhe, 2004];

I Polynomially solvable by interior-point methods [Nemirovskii &
Nesterov, 1994], Handbook of SDP edited by Wolkowicz et’al,
2002;

I Called new “LP” in this century.
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Transformation from QP to SDP

SDP based approach for QP has been well-studied in both the
continuous and discrete optimization communities since 1990s:

I Early pioneers: Lovaz (1979), Lovaz & Schrijver (1991), N.
Shor (1987), Alizedah (1991);

I The well-known SDP based method for max-cut by Goemans
and Williamson (1994), Nesterov (1998);

I The SDP relaxation is based on the relaxation of the gram
matrix X = xxT (or lifting techniques):

X � 0,diag (X ) = 1 if x ∈ {−1, 1}n;

X � 0 or

(
1 xT

x X

)
� 0,X ≥ 0 if x ∈ {0, 1}n,
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SDP for QP

I Hundreds of papers have been published;

I Most of these papers follow the Goemans-Williamson approach
or the Lovas-Schrijver hierarchy.

I Excellent theoretical results, but scalability of the SDP
approach is a concern;

I The SDP relaxation of 0-1 binary QP involves n2 linear
constraints, it is too expensive to solve such an SDP!

I Some NP-hard problems can be solved relative easily if the
input data has special structure:

I Many elegant results from classical graph theory and discrete
optimization;

I Recent exciting developments on compressed sensing Donoho
(2006), Candés and Tao (2006)!
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Quadratic Assignment Problem

min
X∈Π

Tr(AXBX T )

where Π is the set of permutation matrices.

I Numerous applications from facility locations and
communications (QAP-Library), TSP;

I Recognized as one of the most challenging problems;

I Optimal solution have been reported only for small-scale
problems (Brixius & Anstreicher 01);

I Even computing a good lower bound for problems of size
n = 30 is too expensive (the classical lifting technique leads to
O(n4) constraints) Hahn et’al 2007;
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Existing Relaxations for QAP

I Step 1: Vectorization of X , z = vec(X ).

I Step 2: Use the Kronecker product to rewrite the problem as

min
z=vec(X )

zT (A⊗ B)z .

I Step 3: use the gram matrix Z = zzT and add constraints on
Z .

I Many existing works on how to derive/solve these expensive
relaxations, but only works for small-scale problems.
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Some Observations

I Fact 1: X is a permutation matrix, not only a matrix with
binary elements!

I Fact 2: The spectrum of a matrix is invariant under
permutations;

I Fact 3: There exist certain functions/mappings that are
invariant for permutations: i.e., f (Xv) = f (v) or
f (MX ) = f (M), f (XM) = Xf (M);

I Fact 4: In many applications, the matrices A or B are
associated with specific graphes, i.e., B is the Hamming
distance matrix of a hypercube or the Manhattan distance
matrix of a rectangular grids;

I Fact 5: The matrices A and B have nonnegative elements,
thus dominated by its first principal component.
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Proposed Relaxation

I Observation: If B � 0, then we have

Y = XBX T , Y � 0.

I Question: What to do if B is not positive semidefinite?

I Answer: Positive semidefinite matrix splitting (PSD splitting)
B = B+ − B− with B+,B− � 0.

I Splitting schemes:

I Orthogonal PSD splitting: based on the SVD;
I Use the Laplacian operator:

D = diag (
∑

(B)),B = D − (D − B);
I Specific splitting B = αE − B−, where E is the all-1 matrix.
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I Question: What to do if B is not positive semidefinite?

I Answer: Positive semidefinite matrix splitting (PSD splitting)
B = B+ − B− with B+,B− � 0.

I Splitting schemes:
I Orthogonal PSD splitting: based on the SVD;
I Use the Laplacian operator:

D = diag (
∑

(B)),B = D − (D − B);
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Special Splitting Examples

I The Hamming distance matrix with a binary codebook

C = {c1 = ‘00′, c2 = ‘01′, c3 = ‘10′, c4 = ‘11′}.

B =


0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 ,E − B =


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 � 0.

I Manhattan distance matrix from facility location

B = [bij ] ∈ <n×n, bij = |i − j |, n − 1

2
E − B � 0. (1)
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Construction of Valid Cut

Given a matrix Y and a function f , we define a mapping

F (Y ) = [f (Y1); f (Y2); · · · ; f (Yn)].

Theorem: Suppose that F (·) is a mapping defined with a
symmetric function f (·) and X is a permutation matrix. Then we
have

F (XBX T ) = XF (B).

Constructing Cut: Choose f to be convex, and relax it to

F (Y ) = F (XBX T ) ≤ XF (B).
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A Sample Relaxation

Let (B+,B−) be a PSD splitting of B and Y + = XB+X T ,
Y− = XB−X T . Using symmetric mappings max,min,L1 and L2,
we derive

min Tr(A(Y + − Y−))

s.t. Y + − XB+X T � 0, Y− − XB−X T � 0;

diag (Y +) = Xdiag (B+), Y +e = XB+e;

diag (Y−) = Xdiag (B−), Y−e = XB−e;

(X min(B+))i ≤ y +
i ,j ≤ (X max(B+))i , ∀i 6= j ;

(X min(B−))i ≤ y−i ,j ≤ (X max(B−))i , ∀i 6= j ;

L2(Y +) ≤ XL2(B+), L2(Y−) ≤ XL2(B−);

X ≥ 0, Xe = X T e = e.
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Comments on New SDP Relaxation of QAPs

I A substantial reduction in model complexity;

I Not dominated by existing expensive relaxations;

I Easy integration of other cheap relaxations;

I Strong bounds for large scale instances have been obtained;
I Future directions:

I Using dimension reduction techniques to get a good
approximation;

I Develop new solving techniques for these new relaxation
models.
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0-1 Binary QP

We consider the following binary QP

(StQP) max xT Qx

s.t.
n∑

i=1

xi = k , x ∈ {0, 1}n.

I Applications: the densest k-subgraph, feature selection in
learning;

I Extra constraints can be added;

I NP-hard, even a good approximation is hard unless P=NP.
PTAS have been ruled out recently(S. Khot, SIAM J.
Computing, 2006, Best paper award in SIAM ).
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Existing Approaches

I Classical approach based on graph theory and discrete
optimization;

I SDP relaxation by Lovaz and Schrijver (2001):

max Tr(QX )

s.t. Xe = k ∗ diag (X )
n∑

i=1

xii = k

X � 0, X ≥ 0.
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Issues in Existing Approaches

I The conventional SDP relaxation uses only the binary
structure of the variables;
The structure of the graph has been ignored!

I Only applicable to medium size problem (Helmberg & Rendl);

I Constant approximations have been reported only for special
classes of instances. Even most heuristics have a hard time in
local search!

I Question: What’s wrong?
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Convex QP: Relaxation or Geometric Embedding: I

We rewrite the problem as QAP:

max xT (Q − λmin(Q)I )x (2)

s.t
n∑

i=1

xi = k, xi ∈ {0, 1}.

λmin(Q) denotes the minimal eigenvalue of Q.

I Relaxation for a cheap bound?
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Convex QP: Relaxation or Geometric Embedding:II

I Let Q̄ = (Q − λmin(Q)I ) � 0. We can interpret each element
of Q̄ as the inner product of two data points in a data set on
the surface of a unit sphere in a certain dimensional space;

V = {vi : ‖vi‖2 = −λmin(Q), i = 1, · · · , vn}, Q̄ij = vT
i vj .

I Geometric Embedding: Consider a specific clustering problem
of finding a single cluster of fixed size whose within cluster
sum of squared distances is minimal:

min
|V1|=k

∑
v∈V1

‖v −
∑

v∈V1
v

k
‖2. (3)

Here |V1| denotes the cardinality of the subset V1.
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Approximation to A Simple Clustering Problem

Theorem: Problem (StQP) and the clustering problem (3) share
the same optimal solution set.
Problem (3) is equivalent to

min
c

min
|V1|=k

∑
v∈V1

‖v − c‖2. (4)

Some simple and effective approximation algorithms/heuristics:

I Use an iterative scheme as in the classical K-means clustering
that subsequently update c and cluster;

I Try different starting points and select the best one as final
output (provable 2-approximation);

I Use the first eigenvector of Q to find the cluster...
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Complexity Analysis

We beak down the whole process into three steps:

I Use the eigenvalue decomposition of the input matrix Q to
construct the data set V (O(n3));

I Find the k − 1 closest data points for any given data point in
V (O(n2k log n));

I Perform a local search (O(n2));

I In total O(n3 + n2k log n + n2).

Jiming Peng New Approaches for discrete and nonconvex QP



Introduction
New SDP Relaxations for Quadratic Assignment Problems

New Clustering-based Approaches for 0-1 Binary QP
Probabilistic Analysis of Nonconvex QP

Complexity Analysis

We beak down the whole process into three steps:

I Use the eigenvalue decomposition of the input matrix Q to
construct the data set V (O(n3));

I Find the k − 1 closest data points for any given data point in
V (O(n2k log n));

I Perform a local search (O(n2));

I In total O(n3 + n2k log n + n2).

Jiming Peng New Approaches for discrete and nonconvex QP



Introduction
New SDP Relaxations for Quadratic Assignment Problems

New Clustering-based Approaches for 0-1 Binary QP
Probabilistic Analysis of Nonconvex QP

Complexity Analysis

We beak down the whole process into three steps:

I Use the eigenvalue decomposition of the input matrix Q to
construct the data set V (O(n3));

I Find the k − 1 closest data points for any given data point in
V (O(n2k log n));

I Perform a local search (O(n2));

I In total O(n3 + n2k log n + n2).

Jiming Peng New Approaches for discrete and nonconvex QP



Introduction
New SDP Relaxations for Quadratic Assignment Problems

New Clustering-based Approaches for 0-1 Binary QP
Probabilistic Analysis of Nonconvex QP

Complexity Analysis

We beak down the whole process into three steps:

I Use the eigenvalue decomposition of the input matrix Q to
construct the data set V (O(n3));

I Find the k − 1 closest data points for any given data point in
V (O(n2k log n));

I Perform a local search (O(n2));

I In total O(n3 + n2k log n + n2).

Jiming Peng New Approaches for discrete and nonconvex QP



Introduction
New SDP Relaxations for Quadratic Assignment Problems

New Clustering-based Approaches for 0-1 Binary QP
Probabilistic Analysis of Nonconvex QP

Comments

I A new role of convex QP relaxation;

I A bridge to simple and effective clustering model;

I Future direction: Extensions to other binary QPs such as
xT Qx + qT x ; and faster approximation algorithms based on
the spectrum of Q.
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Sparse Solutions to Linear Equation System

min ‖x‖0

s.t. Ax = b, x ≥ 0.

Replacing the objective in the above model by ‖x‖1, we end up
with an LP problem. As proved by Candés and Tao (2006),
Donoho (2006):
Theorem: If the input data matrix A follows certain distribution
and there exists a sparse solution, then the solution from the LP
problem is also optimal for the original L0 optimization problem
with a high probability.
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From Linear Equation to QP

The LP problem can be equivalently stated as

min ‖Ax − b‖2

s.t.
n∑

i=1

xi = 1, x ≥ 0.

Let us consider a generalized case:

min xT Qx + qT x (5)

s.t.
n∑

i=1

xi = 1, x ≥ 0. (6)

Question: Under what conditions, the above problem admits sparse
solutions?
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Checking the Co-positivity of Matrices

Question: Given a matrix Q, is there a nonnegative vector x such
that xT Qx < 0?
Mathematically, we can address the above problem by solving the
following problem:

min xT Qx (7)

s.t.
n∑

i=1

xi = 1, x ≥ 0.

Such a model arise also from learning and feature selection. The
problem has been proved to be NP-hard ( Murty and Kabadi,
1987). It is also called standard quadratic programming problem in
the literature.
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A Simple SDP Relaxation

min Tr(QX ) (8)

s.t.
n∑

i ,j=1

xij = 1,X � 0,X ≥ 0.

Observation: My simple matlab code always gives me rank-one
solution, which implies the SDP relaxation solved the original
problem precisely!
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Checking the Co-positivity of Random Matrices

We have proved the following result.
Theorem: If the matrix Q is random following certain distributions,
then with a high probability that the optimal solution of
problem (7) is sparse and it can be found in polynomial time.
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Comments on Probabilistic Analysis of QP

I A new analysis for a special class of QP;

I Verified numerically by using SDP relaxation;
I Future directions:

I Possible extension to other NP hard problems;
I For SDP, under what conditions, the SDP problem has rank 1

solution? How can we use this information to develop more
effective resolution techniques?
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Questions

For reference, please refer to my personal web site
https://netfiles.uiuc.edu/pengj/www/
or contact pengj@illinois.edu
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