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a b s t r a c t 

We present a general variational formulation of phase field framework for dynamic adia- 

batic shear banding (ASBing). The ASB surface energy is derived from the Griffith’s regu- 

larized ASB surface function, and the concept of shear banding energy density that charac- 

terized by the energy jump contour integral. We reveal that the ASB phase field formula- 

tion reduces to a standard strain-gradient plasticity model by energy minimization and 

ASB canonical analysis, which indicates that strain-gradient regularization for problems 

involving strain softening has been incorporated reasonably. The phase-field and plastic- 

ity coupled constitutive relations are developed within an atomistic potentials consistent 

hyperelastic-plasticity framework. The degraded volumetric strain energy governs the elas- 

tic responses, while the degraded deviatoric strain energy, as well as the ASB surface en- 

ergy, accounts for the combined effects of shear localization, plasticity and fracture, which 

directly relates energy dissipation to the evolution of dynamic ASBs. Numerical simulations 

demonstrate the ability of this predictive ASB phase field framework in capturing discon- 

tinuous surfaces, and the removal of pathological mesh-dependence. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Adiabatic shear banding (ASBing) is an important material failure mechanism preceding fracture. It is generally viewed

as a dynamic behaviour that is triggered by strain softening, at the onset of which the homogeneous deformation abruptly

localizes into a very narrow band ( Bai and Dodd, 1992; Wright, 2002; Zener and Hollomon, 1944 ). The underlying physics

of ASB is rather complex and still remains unclear. 

Recently, the phase-field models are extensively used in fracture simulations for their capabilities of capturing com-

plex crack propagations ( Ambati et al., 2015; Duda et al., 2015; Giambanco and Ribolla, 2019; Loew et al., 2019; Martinez-

Paneda et al., 2018; Tanne et al., 2018 ). Based on a regularized Griffith type formulation and the �- convergence the-

ory ( Francfort and Marigo, 1998 ), the crack discontinuities are smeared within a continuum phase-field approach, with an

assumption that the damage energy is quadratic dependence upon the gradient of the damage. 

A unified phase-field model for shear banding and fracture is presented for studying metal failure ( Arriaga and Wais-

man, 2017; McAuliffe and Waisman, 2015 ). Based on a ‘two-surface’ formulation, Miehe (2011) , Miehe et al. (2016) ,
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Brepols et al. (2017) proposed gradient-extended damage-plasticity models for dynamic cracking. They introduce two in-

dependent internal variables and hence two separate yield surfaces of damage and plasticity for regularizing the crack

discontinuity and the plastic response respectively. To decrease model complexion of gradient-extended damage-plasticity 

models, we aim to build a phase field framework that incorporates gradient-plasticity effects implicitly. It is developed for

ASBing, and reduces to a standard strain-gradient plasticity model via energy minimization. To some degree this phase field

framework is a plasticity model. 

Our primary goal is to develop a general variational formulation of a phase field framework for simulating dynamic

ASBing in elastic-plastic solids. The main idea consists four parts: a phase field formulation for ASBing, its relation to strain-

gradient theory, a phase field and plasticity coupled constitutive model and numerical simulations. We explain them in the

following several paragraphs. First, based on Griffith’s theory, the ASB surface energy is constructed as the integral of the

shear banding energy density over ASB surfaces. The shear banding energy density is taken to be the contour integral of the

energy jump across ASB surfaces ( Xu and Chen, 2015 ). The regularized surface energy of ASB, together with the degraded

elastic energy, constitute the phase field energy in a general variational formulation. 

Second, we prove that the phase field formulation of ASB reduces to a standard strain-gradient plasticity model, using

energy minimization and the canonical structural analysis of ASB. This relationship deepens the understanding of ASB phys-

ical mechanisms including energy dissipation, shear instability and size effects. Meanwhile, it indicates that strain-gradient

regularization for strain softening has been incorporated reasonably in this phase field formulation, which partly explains

the mesh-independence in the numerical simulations. 

Third, the phase-field and plasticity coupled constitutive relations are developed within a hyperelastic-plastic framework 

that is consistent with atomistic potentials ( Xu et al., 2014 ). The degraded volumetric strain energy governs the elastic

responses, while the degraded deviatoric strain energy, as well as the ASB surface energy, accounts for the combined effects

of dynamic localization, plasticity and fracture, which directly relates energy dissipation to the evolution of dynamic ASBs. 

Finally, numerical simulations demonstrate the capability of this predictive phase field model. Two tests of plane tension

are carried out to show that the strain-softening responses in dynamic localization can be captured without pathological

mesh-dependence. The advantage of this phase field formulation in capturing discontinuous surfaces is displayed by the

study of collapsing thick-walled cylinders. The distribution and evolution of the multiple ASBs are in good agreement with

experimental evidences. 

The remainder of this paper is organized as follows. We develop the phase field framework of ASB in §2, including the

construction of the shear banding energy density and ASB surface energy. It reduces to a strain-gradient plasticity model by

energy minimization. The phase field and plasticity coupled constitutive model are presented in §3. System energy decompo-

sition, constitutive equations derivation and finite element implementation are illustrated within the hyperelastic-plasticity 

consistent with atomistic potentials. Numerical simulations are provided in §4, and §5 summaries this paper. 

2. ASB Phase field framework 

Considering that ASBs fulfill three foundational ingredients of the Griffith theory: discontinuity, propagating with a

threshold energy and irreversibility, let � ⊂� be the discontinuous ASB surfaces, the surface energy of ASB can be defined

as 

�A = 

∫ 
�
G A d �, (1) 

where G A is the shear banding energy density. From experimental investigations, G A can be illustrated as the shear-band

dissipation energy or shear-band toughness ( Grady, 1994 ), and the ASB energy failure criterion ( Dolinski and Rittel, 2015;

Dolinski et al., 2010 ). We will explain the construction of G A in the following subsection. 

The dynamic behaviours of ASB are governed by minimizing the following free energy functional 

� = 

∫ 
�

�e (E ) dx + 

∫ 
�
G A d �, (2) 

where �e (E ) = 

1 
2 E : C : E is the elastic strain energy density ( Bourdin et al., 20 0 0; Francfort and Marigo, 1998 ), with C the

Lagrangian tangent modulus and E the Green-Lagrangian strain tensor. They are listed in the notation table. 
Notation Description Dimension 

C Lagrangian tangent modulus 4th-order tensor 

E Green-Lagrangian strain 2nd-order tensor 

� ⊂ � ASB surface 

G A shear banding energy density scalar 

� free energy scalar 

σ Cauchy stress 2nd-order tensor 

( continued on next page ) 
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Notation Description Dimension 

[ ·] jump across ASB surface 

n current normal vector vector 

P first Piola-Kirchhoff stress 2nd-order tensor 

G B energy density as integral over �B scalar 

N reference normal vector vector 

φ phase field variable scalar 

� phase field length scale scalar 

Q microstresses in gradient plasticity scalar 

τi moment stresses in gradient plasticity vector 

� = (Q, � −1 τi ) enhanced effective stress 

� = | �| magnitude of � scalar 

˙ ε p equivalent plastic strain rate scalar 

˙ ε p,i spatial gradient of ˙ ε p vector 
˙ E p = ( ̇ ε p , � ̇ ε p,i ) gradient enhanced plastic strain rate 
˙ E p = | ̇ E p | magnitude of ˙ E p scalar 

F = F e F p multiplicative decomposition 2nd-order tensor 

C = F T F Cauchy-Green deformation tensor 2nd-order tensor 

2.1. Shear banding energy density 

The shear banding energy density represents the energy required for an unit area extension of an ASB. It relates the

advancement of ASBs to the competition between the surface energy and material resistance. We derive the shear banding

energy density from the contour integral around the band tip ( Xu and Chen, 2015 ). 

Let �0 and � be open sets in R 

N , the deformation 

X �→ x = ϕ(X , t) , ∀ X ∈ �0 , t ≥ 0 (3)

maps the initial position X to current coordinate x . The deformation gradient and its determinant or Jacobian are defined

by 

F = ∇ X ϕ, F iK = 

∂ϕ i 

∂X K 

= 

∂x i 
∂X K 

, J = det (F ) . 

The governing equations are the conservation law of mass, momentum and energy: { 

ρJ = ρ0 

ρü = ρb + ∇ x · σ
ρ ˙ ε = ρr + (∇ x v ) : σ + ∇ x q , 

(4)

where ˙ u , ˙ v and ˙ ε indicate the material time derivatives. ( ∇ x ), ( ∇ x · ) are the gradient and divergence operators in the

current configuration. u = x − X denotes the displacement vector, ρ0 and ρ are the initial and current density. While ˙ u = v ,

σ , ε and q are velocity, Cauchy stress tensor, specific energy and heat flux, respectively. Based on the conservation law, the

energy jump across an ASB surface � can be expressed as ( Olmstead, 1994; Wright and Walter, 1996 ): 

[ ̇ S ] = ( σn ) · [ v ] − [ q · n ] , (5)

where [ ] denotes the jump across �, the signs for matrix-matrix and matrix-vector multiplications are omitted, and the

notation ‘ · ’ is used for scalar product. Note that n is the current unit vector normal to �, and ( σn ) · [ v ] is a scalar. In the

following relationships 

˙ � = ( σn ) · v , q · n = 

˙ F T : P , (6)

˙ � is the stress work rate, and P is the first Piola-Kirchhoff stress with P = 

∂�
∂F 

. The jump of the redundant stress work [ S ]

can be transformed into 

[ S] = [�] − [ F T : P ] . (7)

It is found that Eq. (7) can be related to the Eshelby energy-momentum tensor S by expanding the scalar [ S ] to its matrix

form as 

S = �I − F T P . (8)

The energy density of an ASB surface (as shown in Fig. 1 (A)) can be calculated from the integral of S over a contour �B

(as shown in Fig. 1 (B)): 

G B = 

ˆ e ·
∫ 
�B 

SN d �B = 

ˆ e ·
∫ 
�B 

(
�N − F T PN 

)
d �B , (9)

where N denotes the reference unit vector normal to �B , and 

ˆ e is the unit vector along the ASB propagation direction.

Generally, this contour integral G B is path-dependent in elastic-plastic solids under dynamic loading condition, and should

be obtained by correcting the far-field integral G far (as shown in Fig. 1 (C)) ( Xu and Chen, 2015 ). When G B reaches a critical

value that equals to the shear banding energy density, the ASBs start to initiation and propagation. 
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Fig. 1. Phase field approximation of an ASB surface. (A) The discontinuous ASB surface � in a solid �. (B) The contour integral path �B around the band 

tip. (C) The far field contour integral path �far . (D) The phase field approximation of a regularized ASB surface, with φ( x , t ) varied from 0 to 1. 

 

 

 

 

 

 

2.2. Surface energy of ASB 

The shear banding energy density in Eq. (1) is assumed to be a material constant for computational simplicity, and the

ASB surface energy can be written as 

�A = G A 
∫ 
�

d �. (10) 

The regularization formulation of Eq. (2) is derived as ( Bourdin et al., 20 0 0 ) 

�� (φ) = 

∫ 
�

g(φ)�e (E ) dx + G A 
∫ 
�

( 1 

2 � 
φ2 + 

� 

2 

|∇φ| 2 ) dx , (11) 

with the degradation function 

g(φ) = (1 − φ) 2 + η. (12) 

The variable φ is defined as 

φ(x ) = 

{
1 x ⊆ �
0 x � �, 

(13) 

where the length scale � denotes the width of the smearing ASB (as illustrated in Fig. 1 (D)). The small constant η is in-

troduced to avoid possible numerical difficulties in the case of φ = 1 . The regularized energy of Eq. (11) approximates

Eq. (2) for the �- convergence with � → 0. 

Let 

γ (φ, ∇φ) = 

1 

2 � 
φ2 + 

� 

2 

|∇φ| 2 (14) 

be the ASB surface density function in Eq. (11) . The ASB surface energy �A can then be regularized as 

�A (�, φ) = G A 
∫ 
�

γ (φ, ∇φ) dx , (15) 

with the following integration function of the ASB surface 

�� (φ) = 

∫ 
�

γ (φ, ∇φ) dx . (16) 

Note that γ ( φ, ∇φ) is the same as that defined for cracks ( Miehe, 2011 ), and similarly, the Euler equation of the varia-

tional functional 

φ = Arg { inf �A (�, φ) } (17) 

is the Ginzburg-Landau type differential equation 

φ(x ) − � 2 � φ(x ) = 0 . (18) 

Considering that ASBs are essentially 1-d structures as mentioned in Wright and Ravichandran (1997) , the solution of

Eq. (18) can be expressed by the following exponential function 

φ(x ) = e −
| x | 
� , (19) 

which coincides with the approximation of the basic phase field variable. The minimized ASB surface energy can be obtained

with Eq. (19) . 
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2.3. Reduces to strain-gradient plasticity 

It is worth noting that within the infinitesimal strain theory, the above ASB phase field framework reduces to a standard

strain-gradient plasticity model using energy minimization. In ASB canonical analysis, the shear band was considered as

essentially a 1-d structure ( Wright and Ravichandran, 1997 ). Only the x −component velocity v and the xY −component strain

ε = u y are nonzero ( Glimm et al., 1993 ). The shear strain ε is decomposed into elastic and plastic parts 

ε = ε e + ε p . (20)

The elastic strain energy density is given by 

�e (ε) = 

1 

2 

μ(ε − ε p )(ε − ε p ) , (21)

with the shear stress 

σ = μ(ε − ε p ) , (22)

where μ being the shear modulus. Inserting ˙ ε = v y into the rate form of the shear stress 

˙ σ = μ( ̇ ε − ˙ ε p ) , (23)

one get 

˙ σ/μ = v y − ˙ ε p . (24)

Glimm et al. (1993) address that 

v y = ˙ ε p , (25)

since 1/ μ is moderately small. Meanwhile, v y is approximated as ( Eq. (16) in Wright and Ravichandran (1997) ): 

v y = ζ e −
z 

m c , (26)

where ζ is the strain rate at the band center, and m c is a small constant that relates to the width of the shear

band ( Wright and Ravichandran, 1997 ). Combining Eqs. (25) and (26) , 

˙ ε p (z) = ζ e −
z 

m c . (27)

Considering that m c is a regularization parameter, Eq. (27) can be rewritten as 

˙ ε p (x ) = ζ e −
| x | 
� , (28)

where � = m c and x = 0 denotes the band center. Using the formula for the phase field variable φ( x ), 

˙ ε p (x ) = ζφ(x ) . (29)

Substitute Eq. (29) into Eq. (14) yields 

γ ( ̇ ε p , ˙ ε p,i ) = 

1 

ζ 2 

(
1 

2 � 
˙ ε 2 p + 

� 

2 

˙ ε p,i ˙ ε p,i 

)
, (30)

and the following integration function of the ASB surface 

�� ( ̇ ε p , ˙ ε p,i ) = 

∫ 
�

γ ( ̇ ε p , ˙ ε p,i ) d�. (31)

The equivalent plastic strain εp and its spatial gradient εp,i can be calculated from 

ε p = 

∫ 
˙ ε p d t, ε p,i = 

∫ 
˙ ε p,i d t. (32)

It may be interesting by rescaling γ as 

˜ γ = ζ
√ 

2 � 
√ 

γ = 

√ 

˙ ε 2 p + � 2 ˙ ε p,i ˙ ε p,i , (33)

and ˜ γ turned out to be the gradient enhanced plastic strain rate ˙ E p that is defined in most strain gradient theories ( Fleck

and Hutchinson, 2001; Gudmundson, 2004; Hutchinson, 2012 ): 

˙ E p = 

√ 

˙ ε 2 p + � 2 ˙ ε p,i ˙ ε p,i . (34)

˜ γ = 

˙ E p , γ = 

1 

2 �ζ 2 
˙ E 2 p . (35)

This relationship between the phase field formulation and the strain gradient theory can deepen the understandings of ASB,

including energy dissipation, strain softening and size effects. 
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The total energy of Eq. (11) can be expressed as 

�� (φ) � �e 
PF + � p 

PF 
, (36) 

with 

�e 
PF = 

∫ 
�

g(φ)�e ( ε ) d x , � p 
PF 

= G A 
∫ 
�

( 1 

2 � 
φ2 + 

� 

2 

|∇φ| 2 ) d x . (37)

The stress quantities that are work conjugate to the strain quantities ( Fleck and Hutchinson, 2001; Hutchinson, 2012 ): 

˙ �� (ε 
e 
i j , ε p , ε p,i ) = 

∂�e 
PF 

∂ε e 
i j 

˙ ε e i j + 

∂� p 
PF 

∂ε p 
˙ ε p + 

∂� p 
PF 

∂ε p,i 

˙ ε p,i 

= σi j ˙ ε 
e 
i j + Q ˙ ε p + τi ˙ ε p,i . (38) 

Let � = (Q, � −1 τi ) denotes the enhanced effective stress pair consists of the microstresses Q and the moment stresses

τ i . They work conjugate to the strain quantities ˙ ε p and ˙ ε p,i , respectively. The gradient enhanced plastic strain rate can be

written in the pair form as ˙ E p = ( ̇ ε p , � ̇ ε p,i ) . The inner product of � · ˙ E p yields a scalar as 

� · ˙ E p = Q ˙ ε p + τi ˙ ε p,i , 

� = | �| = 

√ 

Q 

2 + � −2 τi τi , 

˙ E p = | ̇ E p | = 

√ 

˙ ε 2 p + � 2 ˙ ε p,i ˙ ε p,i . 

(39) 

The minimized ASB surface energy �A (�, ˙ ε p , ˙ ε p,i ) can be calculated from Eq. (15) as 

�A (�, ˙ ε p , ˙ ε p,i ) = G A 
∫ 
�

γ ( ̇ ε p , ˙ ε p,i ) dx , (40) 

which relates energy dissipation to the evolution of ASB surface. Substituting Eq. (35) in Eq. (40) : 

�A (�, ˙ ε p , ˙ ε p,i ) = 

∫ 
�

G A 
2 �ζ 2 

˙ E 2 p dx 

= 

∫ 
�

h ̇

 E 2 p dx , (41) 

where h = 

G A 
2 �ζ 2 is the hardening modulus. Obviously, �A (�, ˙ ε p , ˙ ε p,i ) ≥ 0 follows from h > 0, with � > 0, ζ > 0. It provides a

simple way to construct a scalar work-conjugate stress � in terms of ˙ E p as 

� = 

G A 
2 �ζ 2 

˙ E p , (42) 

and ensures that the plastic work rate is non-negative, i.e. � · ˙ E p ≥ 0 . The free energy of Eq. (11) changes into 

�� ( ̇ ε p , ˙ ε p,i ) = 

∫ 
�

g( ̇ ε p )�
e ( ε ) dx + 

∫ 
�

h ̇

 E 2 p dx , (43) 

with the degradation function 

g( ̇ ε p ) = (1 − 1 

ζ
˙ ε p ) 

2 + η. (44) 

Let g( ̇ ε p ) = 1 , the above Eq. (43) is simplified as 

�� ( ̇ ε p , ˙ ε p,i ) = 

∫ 
�

�e ( ε ) dx + 

∫ 
�

h ̇

 E 2 p dx . (45) 

It equivalents to the minimum principle ( Fleck and Hutchinson, 2001; Fleck and Willis, 2009 ), or the strain energy of

strain gradient plasticity ( Hutchinson, 2012 ). Finally, based on this energy formulation, the internal virtual work and the

microstress equilibrium equation can be identified similar to standard strain gradient theories. 

3. Constitutive model 

3.1. System energy 

The system Helmholtz energy density � is obtained from the atomistic potential energy by Cauchy-Born rule ( Born and

Huang, 1954; E and Ming, 2007 ), 

�(r m , β) = E (r m ) + E (r m , β) . (46)
col v ib 
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E col is the cold energy of the system, and it is constructed from the embedded-atom method (EAM) potential func-

tion ( Daw and Baskes, 1984 ), 

E col = 

1 

v 0 

∑ 

m 

(
U 

(
f (r m ) 

)
+ 

1 

2 

φ(r m ) 
)
. (47)

In the above function, U is the embedding energy, f ( r m ) is the density of the host at the position r m but without atom m,

φ is the short-range pair potential, and v 0 is the volume of the cell element. The cold energy is the sum of the individual

contributions. 

E vib is the thermal vibration part of the system, and it is approximated by the local harmonic approximation ( LeSar et al.,

1989 ) (which is proved to be accurate up to half of the melting temperature): 

E v ib = 

∑ 

m 

1 

2 β
ln 

‖ D ({ r m } ) ‖ 

(2 π/β) 3 
, (48)

where r m denotes the atom positions, β = 1 /k B T , k B is Boltzmann’s constant and v 0 is a reference volume. The effects of

atomic vibrate frequency have been included in the dynamic matrix D ({ r m }), and ‖ · ‖ denotes the determinant of the

matrix. 

In the point view of Simo (1988) , � can be decomposed into the volumetric strain energy �e and the deviatoric strain

energy �p to address the uncoupled volumetric deviatoric response: 

� = �e (F ) + � p (F , F p ) . (49)

The multiplicative decomposition F = F e F p , F e = J 
1 
3 I , F p = J −

1 
3 F , which satisfies | F p | = 1 , J = | F | = | F e | . The volumetric part

is supposed to be stored in the elastic deformation, and is determined by the upscaled elastic Green’s strain tensor and

the underlying lattice structure. The deviatoric part is the outcome of atomic bonds breaking and dislocation motions. The

Lagrangian tangent modulus C is 

C = 

∂ 2 �̄(E ) 

∂ E ∂ E 

, (50)

where E is the Green-Lagrangian strain tensor 

E = 

1 

2 

(C − I ) = 

1 

2 

(F T F − I ) , (51)

and C is the right Cauchy-Green deformation tensor. The elastic Green-Lagrangian strain tensor E 

e is defined as 

E 

e = 

1 

2 

(C 

e − I ) = 

1 

2 

(F e 
T 

F e − I ) . (52)

The volumetric strain energy �e can be calculated from C and E 

e as 

�e = 

1 

2 

E 

e : C : E 

e . (53)

The deviatoric strain energy 

� p = �̄ − �e = (E col + E v ib ) − �e . (54)

3.2. Coupled with phase field formulation 

Dynamic shear bands accompanied by large deformation and finite strain, and the plasticity evolution that resulted from

dislocation nucleation and multiplication plays an important role in the initiation of ASBs. We suggest that the deviatoric

part energy �p in Eq. (49) be included into the total energy of Eq. (2) for characterizing shear localization before ASB

initiation. It is constructed as 

�� (F , F p , φ) = 

∫ 
�

g(φ) 
(
�e (F ) + � p (F , F p ) 

)
dx + 

∫ 
�
G A d �. (55)

The first term g ( φ) �e ( F ) denotes the degraded volumetric strain energy density of the undamaged solid. The second term

g ( φ) �p ( F, F p ) denotes the degraded deviatoric strain energy density of the plasticity-damage coupled solid, and the third

term denotes the ASB surface energy. The degraded plasticity-damage energy is defined as 

��,p (F , F p , φ) = 

∫ 
�

g(φ)� p (F , F p ) dx + 

∫ 
�
G A d �. (56)

The Cauchy stress can be computed as 

σ = g(φ) J −1 F e SF e 
T 

= g(φ) J −1 F e 
∂�e 

∂E 

e 
F e 

T 

= g(φ) J −
1 
3 C : E 

e . (57)
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The associative flow rule can be derived based on the plasticity-damage energy and the principle of maximum plastic

dissipation. Introduce the plasticity-damage functional ϕ( b 

e ) 

ϕ (b 

e ) = 

∂��,p (F , F p , φ) 

∂g 

= 

∂��,p ( g , b 

e −1 
, F , φ) 

∂g 

, (58) 

where b 

e = F e F e 
T 

. The unit tensor in the intermediate configuration is denoted by g , with its Lie derivative defined as 

L v g = F T gF = C̄ , (59) 

in which the overbar denotes the intermediate configuration. The numerical strategy for computing ϕ( b 

e ) is to find the

inverse matrix of g (denoted as ˜ g ) and 

ϕ (b 

e ) = 

∂��,p 

∂g 

= ��,p ̃  g , (60) 

in which ϕ( b 

e ) is a nonzero tensor functional. The Kirchhoff stress τ can be calculated as ( Simo, 1988; Simo and Hughes,

1998 ): 

τ = Jpg + 2 J −2 / 3 dev [ ϕ (b 

e )] , (61) 

where p = d(g(φ)�e ) /dJ is the hydrostatic pressure. The maximum plastic dissipation implies the following plasticity- 

damage evolution equation (the detailed proof is given in Xu et al. (2014) ): 

∂ 

∂t 
ϕ(C 

p −1 

) = −2 

3 

δtr [ ϕ (b 

e )] r , (62) 

where δ is the consistency parameter, C 

p = F p 
T 

F p , and 

˙ ε p = 

√ 

2 

3 

δ. (63) 

The plastic flow direction r is calculated as 

r = dev [ τ] / ‖ dev [ τ] ‖ , ‖ dev [ τ] ‖ = 

(3 

2 

dev [ τ] : dev [ τ] 
) 1 

2 
. (64)

The associative flow rule is explained in Remark 3.1 . 

Remark 3.1. Consider a specific example by taking ϕ (b 

e ) = μg(φ) b 

e , where μ is the shear modulus, the above

Eq. (62) leads to the following evolution equation of plastic flow rule: 

∂ 

∂t 
( ̄C 

p −1 

) = −2 

3 

δg(φ)[ C 

p −1 

: C ] F −1 rF −T . (65) 

Let g(φ) = 1 for simplicity, Eq. (65) is the same as that in Simo and Hughes (1998) (p.312), and the free energy reads as:

U(J e ) = 

1 
2 
κ
(

1 
2 
(J e 

2 − 1) − log J e 
)

W̄ ( ̄b 

e ) = 

1 
2 
μ( tr [ ̄b 

e ] − 3) , 
(66) 

which is the widely used Neo-Hookean model. It indicates for the choice of a linear functional ϕ( b 

e ), the coupled phase

field model may relate to the degraded Neo-Hookean model. 
Fig. 2. Loading conditions of rectangular plane strain model. Left: Tension test I; Right: Tension test II. 
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Fig. 3. Contours of equivalent plastic strain under plane strain tension I on four different meshes (from left to right). The length parameter is fixed at � = 0 . 5 mm . 
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Fig. 4. Contours of equivalent plastic strain under plane strain tension I with four different values of the length parameter � = 0 . 3 mm , � = 0 . 4 mm , � = 0 . 5 mm and � = 0 . 6 mm on a fixed mesh (from left to 

right). 
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The variation of Eq. (55) with respect to δφ renders the weak form of the phase field contribution, ∫ 
�

(
−2(1 − φ) δφ

(
�e + � p 

)
+ G A 

(1 

� 
φδφ + � ∇φ · ∇δφ

))
dx = 0 , (67)

and the phase field equilibrium equation 

G A 
(1 

� 
φ − � � φ

)
− 2(1 − φ)(�e + � p ) = 0 . (68)

The full set of constitutive equations can be obtained with Eqs. (4) , (57) and (62) . 

3.3. Finite element implementation 

Updated Lagrangian finite element scheme is used in this simulation. The finite interpolations of displacement and ve-

locity are 

u i (X , t) = u iI (t ) N I (X ) , v i (X , t ) = v iI (t) N I (X ) . (69)

The momentum conservation equation can be written as: ∫ 
�

N I ρ ˙ v i d� + 

∫ 
�

∂N I 

∂x j 
σ ji d� −

∫ 
�t 

N I ̄t i d� = 0 , (70)

where t̄ i is the loading force on boundary �t . Let f int 
iI 

= 

∫ 
�

∂N I 
∂x j 

σ ji d�, f ext 
iI 

= 

∫ 
�t 

N I ̄t i d�, the discrete momentum equation is

transformed into: 

M i jIJ ̇ v jJ = f ext 
iI − f int 

iI , (71)

where M i jIJ = δi j 

∫ 
� ρN I N J d� is the mass matrix. It is solved by the second-order explicit time integration algorithm. For 2-d

computation, the isoparametric 4-node element on quadrilateral mesh with 2 × 2 Gauss quadrature scheme is used. Since

the computation is carried out over Gauss quadrature points, the stress and strain at finite element nodes are recovered

from the shape functions. 

Mesh failure technique is adopted in finite element method based on the energy release rate criterion. Once the node

is judged to be failure, it will be split into two new nodes, with velocities set to be one half of that of the failure node at

current time. The crack propagates along the common side of two adjacent elements rather than crossing the interior of an

element by simplicity assumption. The crack will grow if G = �, where � = 1 . 09 × 10 4 J · m 

−2 is the fracture energy per unit

area. ASBs initiate at the shear banding energy density G A = 2 . 15 × 10 3 J · m 

−2 , which is much smaller than that of the crack

initiation. The value of G A is taken to be 2 . 36 × 10 3 J · m 

−2 for steel ( Zhou et al., 1998 ). 

4. Numerical study 

The computational framework of the phase field formulation is applied to simulate the evolution of ASBs under strain

softening conditions. First, a rectangular specimen is loaded under different tensions ( Anand et al., 2012; McAuliffe, 2014;

Tvergaard and Needleman, 1995 ). The material of this specimen is taken to be the stainless steel SS304L. The following

tension test I and tension test II are different only in boundary conditions. The specimen size is 20 mm × 30 mm, and

the computation is carried out under 2-d plane-strain conditions. We want to test two problems: (i) mesh dependency,
Fig. 5. Force versus displacement curves under plane strain tension I. Left: for different computational mesh sizes; Right: for different � values. 
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Fig. 6. Contours of equivalent plastic strain under plane strain tension II on four different meshes (from left to right). The length parameter is fixed at � = 0 . 5 mm . 
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Fig. 7. Contours of equivalent plastic strain under plane strain tension II with four different values of the length parameter � = 0 . 3 mm , � = 0 . 4 mm , � = 0 . 5 mm and � = 0 . 6 mm on a fixed mesh (from left to 

right). 
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and (ii) regularized parameter sensitivity. For the first problem, we construct three meshes with 30 × 20 = 600 , 60 × 40 =
2400 , 90 × 60 = 5400 and 120 × 80 = 9600 finite elements, and study shear localization on different meshes. For the second

problem, we change the values of the regularized parameter � on the same finite element mesh. 

Second, the collapse of the thick-walled cylinders (TWC) is simulated. We demonstrate the performance of the proposed

phase model formulation for capturing the spontaneous multiple ASBing in the collapsing SS304L cylinder. The outer and

inner copper shells are computed by the isotropic J 2 -plasticity model. Simulation results are compared with that of both

explosively and electro-magnetically driven experiments ( Lovinger et al., 2011; 2015; Nesterenko and Bondar, 1994 ). The

distribution and evolution of the multiple adiabatic shear bands are in good agreement with experimental evidences. 

4.1. Plane tension tests 

The boundary conditions for tension test I and II are listed in a table (as shown in Fig. 2 ): u denotes the displacement, T

denotes the tension, and a is a non-zero value. The index 1 and 2 means in x -direction and in y -direction, respectively. For

tension test I, the edges BC and AD are taken to be traction-free. For tension test II, the edge BC is taken to be traction-free.

Under tension condition I the corresponding contours of the equivalent plastic strain ε p at a = 2 . 0 mm are shown in Fig. 3 .

Note that no geometrical or loading asymmetries were introduced to trigger shear localizations. Over three computational

meshes from coarse to fine, the shear bands are nearly the same to each other and converge with the mesh refinement.

There is no significant mesh dependency in the simulation results of our phase field formulation. To observe the effects of

the regularized length parameter � on the width of an ASB, we change the values of � to 0.3 mm , 0.4 mm , 0.5 mm and 0.6 mm

on a fixed mesh. The contours of ε p at a = 2 . 0 mm are displayed in Fig. 4 . 

Edge Tension test I Tension test II 

DA T 1 = 0 , T 2 = 0 u 1 = 0 , T 2 = 0 

AB u 1 = 0 , u 2 = 0 u 2 = 0 , T 1 = 0 

BC T 1 = 0 , T 2 = 0 T 1 = 0 , T 2 = 0 

CD u 1 = 0 , u 2 = a u 2 = a, T 1 = 0 

Under tension condition II the corresponding contours of the equivalent plastic strain ε p at a = 2 . 0 mm are shown in

Fig. 6 . Over three computational meshes from coarse to fine, the shear bands are nearly the same to each other and converge

with the mesh refinement. There is no significant mesh dependency in the simulation results of our phase field formulation.

To observe the effects of the regularized length parameter � on the width of an ASB, we change the values of � to 0.3 mm ,

0.4 mm and 0.5 mm on a fixed mesh. The contours of ε p at a = 2 . 0 mm are displayed in Fig. 7 . 

The force-displacement curves under plane strain tension I and II are displayed in Figs. 5 and 8 , respectively. They exhibit

little mesh dependency: for different mesh sizes the profiles of the force-displacement curves are similar to each other and

converge with mesh refinement. The widths of the shear bands are finite and independent of the computational meshes

(observed from the left of Figs. 5 and 8 ). For five different values of � , the force-displacement curves show that the force

decreases at a slower rate as � increases. Meanwhile, the width of the shear bands increases (the shear bands are more

diffused) and the maximum equivalent plastic strain inside the shear bands decreases (observed from the right of Figs. 5 and

8 ). 
Fig. 8. Force versus displacement curves under plane strain tension II. Left: for different computational mesh sizes; Right: for different � values. 
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a. Driver Copper Shell

Stopper
Copper Shell

Specimen SS304L

b.

Fig. 9. Model setup. (a) The model consists of three sandwiched cylinders Cu-SS-Cu, and the loading condition is exerted on the outer copper shell. (b) 

The phase field model is used for SS (in green), and J 2 -plasticity is adopted for Cu (in yellow). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

4.2. TWC test 

The thick-walled SS304L cylinder is sandwiched between two cylindrical copper shells, and the shells are driven inwards,

as shown in Fig. 9 . Specimen symmetry and plain strain conditions are used in this simulation. The boundary velocities

are loaded on the outer copper shell, and the duration time is 5.0 μs . The diameter of the outer copper cylinder, the SS

specimen and the inner copper cylinder are 5 . 0 − 5 . 4 mm , 3 . 0 − 5 . 0 mm and 2 . 6 − 3 . 0 mm , respectively. The parameters

of SS304L are taken from Meyers et al. (2001) , and the isotropic J2-plasticity material parameters for copper can be found

in Lovinger et al. (2011) . 
Fig. 10. Simulation results for loading velocity v = 100 m · s −1 at t = 15 μs, t = 20 μs and t = 25 μs (from top to bottom): contours of the temperature 

distribution (the left column, unit: K), and the von Mises stress distribution (the right column, unit: GPa). 



16 Y. Xu, P. Ming and J. Chen / Journal of the Mechanics and Physics of Solids 135 (2020) 103810 

Fig. 11. Simulation results for loading velocity v = 150 m · s −1 at t = 15 μs, t = 20 μs and t = 25 μs (from top to bottom): contours of the temperature 

distribution (the left column, unit: K), and the von Mises stress distribution (the right column, unit: GPa). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical perturbation is a commonly used simulation strategy for investigating spontaneous multiple shear localiza-

tion ( Liu et al., 2016; Lovinger et al., 2011; Zhou et al., 2006 ). Experimental observations showed that the grains inside the

work-hardened layer had a special orientation along the cutting direction and all the shear bands displayed a single direc-

tion spiral pattern ( Xue et al., 2003 ). The single direction spiral perturbation has been applied to trigger the initiation and

formation of shear bands in the TWCs, which results in counter-clockwise propagated multiple shear bands. The size of the

perturbation region is assumed to be several elements in π /4 tangential direction along the inner surface of the TWC speci-

men, inside which the local yield stresses are softened to be 80% of their initial values ( Liu et al., 2016 ). Since each position

at the inner surface has the same chance to trigger a shear band, the locations of the perturbation regions are calculated

from a random number generator, and hence are varied for different simulations. The number of the shear bands is deter-

mined by the random number generator. It is calibrated by experimental observations under different loading conditions. In

the initiation and early stage, mesh size has no influence to the number of the shear bands. With further propagation and

strain localization, more complex structures such as bifurcation and interaction between shear bands are resolved better on

finer computational meshes. 

Time evolutions of the temperature and the von Mises stress distribution for loading velocities v 1 = 100 ms −1 and v 2 =
150 ms −1 are displayed in Figs. 10 and 11 . We take the critical shear banding energy density G A = 2 . 15 × 10 3 J · m 

−2 as the

initiation criterion of ASBs, and find that the multiple shear bands are initiated on the internal surface of the SS cylindrical

specimen. The general observations are in good agreement with that of experiments ( Lovinger et al., 2011; Meyers et al.,

2001 ). The von Mises stress concentrates at the band tips, and decreases quickly as the ASBs propagate ahead. For larger

loading velocity, higher temperature and stress peak are reached, which promote the occurrence of shear localization and

failure. 

The characteristics of multiple shear bands pattern are illustrated in Fig. 12 (A). Simulation results show that the proposed

phase field model can predict the spontaneous shear instability and strain localization. Fig. 12 (B) demonstrates profiles of
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Fig. 12. Shear band length distribution. (A) Characteristics of shear band pattern: L i is the length of the i th shear band. (B) The distributions of von Mises 

stresses and temperatures from the shear band tip to the internal surface. (For interpretation of the references to color in this figure, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the von Mises stress and the temperature of spontaneous multiple ASBs in the collapsing cylinder. The x -axis denotes the

distance from the shear band tip to the internal surface in radial direction. Results for loading velocity v 1 = 100 ms −1 are

expressed by black dash lines, and for v 2 = 150 ms −1 are expressed by red solid lines. The stress value for v 2 achieves 1.2 GPa

at the band tip, and decreases fast to 0.51 GPa at the radial location with the distance of 0.5 mm. For v 1 the stress changes

from 0.85 GPa to 0.47 GPa. It means that the stress has been released after the propagation of ASBs. The temperatures decay

with a kernel structure. The maximum temperature for v 2 is 750 K at the band tip, and slowly downto about 700 K, then

quickly decay to about 400 K at the radial location with the distance of 0.15 mm. Similar tendency of temperature for v 1 can

be observed, revealing the strongly dependence of ASBs on the rapid rise of temperatures. 

5. Summary and conclusions 

The theoretical and computational framework of a general phase field formulation for simulating ASBs is given and dis-

cussed. It provides a new tool to explore the essential mechanism that stems from micro-structural plasticity for the initi-

ation of ASB under dynamic conditions. The phase field length scale � to some extent is a regularization parameter defines

the width of the diffuse shear band process zone. It is used to model the post-initiation stage of localization of plastic de-

formation in shear bands of finite thickness. Future studies will focus on determination of more physically reasonable values

for the phase field length scale � . It is different from the strain gradient plasticity length scale, which has physical grounds

including dislocation motion and strain hardening from experimental evidences, with a value on the order of microns. How-

ever, they have one thing in common: they can regularize strain softening behavior so as to avoid mesh-dependency related

issues during numerical simulations, and the obtained shear band widths are dependent on the values of them. The follow-

ing points are concluded: 

1. The proposed phase field framework works well for simulating the initiation and propagation of ASBs in elastic-plastic

solids. In the phase field formulation, the derivation of shear banding energy density and the Griffith’s regularized ASB

surface energy approximation proved to be an effective way to characterize the energy dissipation in ASBing, which is

closely related to the underlying physical mechanisms of ASBs. 

2. Using energy minimization and ASB canonical structural analysis, we find that ASB phase field formulation reduces to a

standard strain-gradient plasticity model. The rescaled ASB surface density function in the phase field formulation and

the gradient enhanced plastic strain rate in conventional strain-gradient models have exactly the same expressions, by

which the hardening modulus and work-conjugate stress of the corresponding strain-gradient model can be obtained

explicitly. 

3. This relationship bridges the two established theories, and deepens the understanding of energy dissipation, shear in-

stability and size effects for the dynamic localization in propagating ASBs. For example, as a reason to the good per-

formances for problems involving strain-softening, this phase field formulation has implicitly incorporated the strain-

gradient regularization by the characteristic length scale. 

4. The constitutive relations are calculated in a coupled way from the evolution of phase field equation and atomistic po-

tentials consistent hyperelastic-plasticity. Based on system energy decomposition, the degraded volumetric strain energy

is applied to calculate the elastic responses. The degraded deviatoric strain energy and the surface energy of ASB are

used to account for the combined effects of dynamic localization, plasticity and fracture, which directly relates energy

dissipation to the evolution of dynamic ASBs. 

5. Numerical experiments are carried out to show the accuracy and efficiency of our phase field formulation. The plane

tension tests displayed that the strain-softening in ASBs can be captured without pathological mesh-dependence. The
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regularized parameter controls the widths of ASBs, which is equivalent to that of the characteristic length scale appeared

in strain-gradient plasticity theories. The advantage in capturing discontinuous surfaces is demonstrated by the collapse

of thick-walled cylinders. The distribution and evolution of the multiple ASBs are in good agreement with the experi-

mental evidences. 
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