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Abstract. The accuracy of the quasicontinuum method is analyzed using a series of models
with increasing complexity. It is demonstrated that the existence of the ghost force may lead to large
errors. It is also shown that the ghost force removal strategy proposed by E, Lu and Yang leads to
a version of the quasicontinuum method with uniform accuracy.
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1. Introduction. The quasicontinuum (QC) method [33] is among the most
successful multiscale methods for modeling the mechanical deformation of crystalline
solids. It is designed to deal with situations when the crystal is undergoing mostly
elastic deformation except at isolated regions with defects. The QC method is usually
formulated as an adaptive finite element method. But instead of relying on a contin-
uum model, the QC method is based on an atomistic model. Its main ingredients are:
adaptive selection of representative atoms (rep-atoms), with fewer atoms selected in
regions with smooth deformation; division of the whole sample into local and nonlo-
cal regions, with the defects covered by the nonlocal regions; and the application of
the Cauchy-Born (CB) approximation in the local region as a device for reducing the
complexity involved in computing the total energy of the system.

The quasicontinuum method has several distinct advantages. First of all, it has
a reasonably simple formulation. In fact, it can be considered as a natural extension
of adaptive finite element methods in which one simply uses the atomistic model
where the mesh is refined to the atomic scale. Secondly, in the QC method, the
treatment in different regions is based on the same model, the atomistic model, with
the additional Cauchy-Born approximation used in the local region. For this reason,
it is also considered to be more seamless than methods that are based on an explicit
coupling between continuum and atomistic models. We refer to the review articles [6,
21] for a discussion of methods that are based on explicitly coupling atomistic and
continuum models.

However, this does not mean that the QC method is free of the problems that
one encounters when formulating coupled atomistic-continuum methodologies. In
some sense, one may also regard the QC method as an example of such a strategy,
with the local region playing the role of the continuum region, and the Cauchy-Born
nonlinear elasticity model playing the role of the continuum model. In particular, the
issue of consistency between the continuum and atomistic models across the coupling
interface is very much manifested in the accuracy at the local-nonlocal interface for
the QC method. This is the issue we will focus on in this paper. In fact, even though
the atomistic models are used in both the local and the nonlocal regions, the Cauchy-
Born approximation made in the local regions means that the effective model in this
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region is a nearest neighbor model for the rep-atoms, whereas the atomistic model
itself generally involves non-nearest neighbor interactions (hence for the term local
and nonlocal regions). This disparity creates problems at the local-nonlocal interface.

From the general perspective of multiscale, multi-physics modeling, particularly
the issue of consistency between continuum and atomistic models across the con-
tinuum atomistic interface, the QC method provides the simplest example for un-
derstanding such issues. It is now well-known that the inconsistency between the
local and nonlocal regions is manifested in the existence of the so-called ghost forces,
which are the forces that the atoms experience at their equilibrium positions. We will
demonstrate that the ghost force may lead to finite size error of the gradient of the
solution. We will also show that the ghost force removal strategy proposed in [7] does
result in a version of the QC method that is uniformly accurate across the interface.

Two ways of removing the ghost force have been proposed. The simplest way is
to correct the forces by adding or subtracting some “deadload” [28]. This is called
“force-based correction”. This is easy to implement since one only needs to calculate
the magnitude of the ghost forces and substrate them from the system as a correction.
Dobson and Luskin [4] have shown the convergence of the iterations for this version
of QC. Explicit error estimates can be found in [24].

In this study we will focus on another approach for removing the ghost forces, the
geometrically consistent scheme [7]. This scheme depends only on the lattice structure
of the system and works for all existing empirical potentials with arbitrary interaction
range. It generalizes the quasi-nonlocal approach proposed earlier [29]. We will prove
uniformly first order accuracy for the QC method that satisfies the geometrically
consistent condition. We will focus primarily on one-dimensional models. This is
because a lot of insight can already be gained by studying such models. It is possible to
extend the results presented in this paper to high dimensional case with planar local-
nonlocal interfaces, and we will outline the ideas for such an extension later. However,
doing a good job of that requires a substantial amount of more work. Therefore we will
postpone a detailed discussion of the high dimensional results to a later publication.

Since we are primarily interested in the error induced at the local-nonlocal inter-
face, we will assume that every atom is a rep-atom. To understand the QC method
fully, we also need to study the coarsening process, in particular the transition be-
tween the atom-based and element-based summation rules. There, the presence of
corners seems to present some real difficulty, as was pointed out in [7].

The paper is organized as follows. In § 2, we give a brief review of the QC method.
In § 3, we demonstrate the existence of the“ghost force” and its consequences. In § 4,
we introduce the existing strategies for ghost forces removal and in § 5, we present
detailed analysis of the geometrically consistent schemes. Conclusions are drawn in
the last section. Some omitted proofs of § 3 are given in the Appendix.

2. Review of the Quasicontinuum Method. We start with a brief review of
the QC method. The main objective of the QC method is to systematically coarsen
an atomistic description by a judicious introduction of kinematic constraints. These
kinematic constraints are selected and designed so as to preserve full atomistic reso-
lution where required, e.g., in the vicinity of lattice defects, and to treat collectively
large numbers of atoms in regions where the deformation field varies slowly on the
scale of the lattice. The essential building blocks are: i) a reduced representation of
the solid using rep-atoms; ii) the use of summation rules in order to efficiently com-
pute the total energy of the system; iii) and the use of adaptive criteria in order to
tailor the computational mesh to the structure of the deformation field.
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The method starts with an underlying atomistic model of the material which
is considered to be accurate. In principle, this atomistic model can be a quantum-
mechanically based description such as a tight-binding model or models based on the
density functional theory [14], but in the present paper we will focus on atomistic
models using empirical potentials.

We will denote by yi and xi the positions of the i-th atom in the deformed and
undeformed configurations, respectively. For simple crystalline solids, the undeformed
state can be represented as the collection of points with the form

x = n1A1 + n2A2 + n3A3,

where A1, A2 and A3 are the basis vectors, and n1, n2 and n3 are integers. The
displacement vector for the i-th atom is defined as

ui = yi − xi.

The total energy of the system can be written as a sum over the energy of each
atom

Etot(y) =

N∑

i=1

Ei(y) =

N∑

i=1

Ei({y1,y2, . . . ,yN}),

where Ei is the energy associated with the i-th atom, which depends on the positions
of the other atoms as well, and N is the number of atoms in the solid.

If some external load is applied to the system, the total energy of the system can
be written as

Φ(y) = Etot(y) −
N∑

i=1

f iyi,

where −f iyi is the work done by the external force f i on the i-th atom.
The actual displacement of the atoms can in principle be found by minimizing

the above total energy functional. In practice, this is often very expensive and unin-
formative: the computational cost is very large; the information of interest is often
buried together with a huge amount of uninteresting data. In the QC method, one
makes the observation that in regions where the atomic displacement is rather smooth,
there is no need to include every atom as an independent degree of freedom, since
the deformation in these regions can be represented with satisfactory accuracy by a
much smaller set of rep-atoms. This idea is implemented in the QC method through
a set of kinematic constraints–reducing the number of degrees of freedom by intro-
ducing rep-atoms and representing the displacement of all other atoms in terms of
the displacement of the rep-atoms.

The rep-atoms are usually the vertices of the underlying finite element triangula-
tion. They are selected using an adaptive mesh refinement strategy. Piecewise linear
finite elements are used and the mesh size is denoted by h.

The kinematic constraint for the displacement of the atoms is given by

uh(xi) =

Nrep∑

j=1

Sj(xi)uj ,

where Sj(x) is the basis function associated with the j-th rep-atom, and Nrep is the
number of rep-atoms. In general, we expect Nrep to be much smaller than N .
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The total energy of such a system is now a function of the positions (displacement)
of the rep-atoms only. However, to compute this energy by direct summation using
the original atomistic model still requires visiting all the atoms. The QC method
bypasses this by introducing approximate summation rules.

In the QC method, the computational domain is divided into local and nonlocal
regions according to the smoothness of the displacement field uh. Inside the nonlocal
region where deformation is large, all the atoms are rep-atoms, hence the energy
associated with these atoms can be computed using direct summation. Inside the
local region, the total energy is computed by using the Cauchy-Born rule on each
element [3]. For simple crystals, the CB rule works as follows (there is a simple
generalization to complex crystals, see [34, 30, 10]). Let F = ∇u be the deformation
gradient tensor of a uniform deformation, and E0(F ) be the energy of the unit cell in
a deformed lattice when its lattice vectors are deformed according to F , i.e.,

ai = FAi.

The strain energy density at F is given by

WCB(F ) =
E0(F )

Ω0
,

where Ω0 is the volume of the unit cell at the equilibrium state. The total energy
associated with an element is simply the energy density evaluated at the deformation
gradient Fe associated with the element and multiplied by the volume of the element
Ωe. The total potential energy in the local region is simply the sum of the energies
on each element:

Elocal =

Nelement∑

e=1

ΩeWCB(Fe).

The total potential energy of the system for the QC method is the sum of the energy
of the local and nonlocal regions:

Etot
QC = Elocal + Enonlocal.

This formulation of the summation rule introduces an inconsistency across the
local/nonlocal interface: the energy in the local region is computed for each element,
whereas the energy in the nonlocal region is naturally computed for each rep-atom.
Formally, the energy of the local region can be rewritten as a sum over all the rep-
atoms:

Elocal =
∑

i

ωiE
el
i ,

where the energy associated with each local atom is defined as

Eel
i =

1

ωi

∑

e

ωi,eWCB(Fe),

where the weights ωi,e satisfy ωi =
∑

e ωi,e. However, this may introduce inconsis-
tency at the interface where the transition takes place.

An alternative way of approximating the energy is the cluster-based summation
rule proposed by Knap and Ortiz [16].
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Fig. 3.1. 1D chain
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The error in the QC method comes from two main sources. In the local region
the error comes mainly from the kinematic constraint and the CB rule used. This
source of error can be understood following the work of E and Ming [8, 9, 10]. More
interesting is the error introduced at the interface between the local and nonlocal
regions, where “ghost forces” may arise.

3. Ghost Forces.

3.1. Illustration of the ghost force. Consider a one-dimensional chain shown
in Fig. 3.1, with a pairwise potential V0. The first step in the QC method is coarse-
graining, i.e., selecting rep-atoms. Since we are focusing on the interface between the
continuum and atomistic regions, we will consider the case when every atom is a rep-
atom. The first N atoms indexed by −N, . . . ,−1 will make up the nonlocal region in
which the original atomistic model will be used. The atoms indexed by 1, . . . , N will
make up the local region in which the Cauchy-Born continuum model will be used.
The atom indexed by 0 separates the two regions. For convenience, we will sometimes
use ī to replace −i as the subscript, and use rij to denote the distance between the
i-th and the j-th atoms.

If the interaction is limited to the nearest neighbor, the CB rule is the same as the
atomistic model (direct summation). In this case, there is no ghost force. However, if
the interaction range contains the next nearest neighbor, then the energies associated
with the atoms near the interface are (in the absence of the external force):

E3̄ =
1

2

(
V0(r5̄3̄) + V0(r4̄3̄) + V0(r3̄2̄) + V0(r3̄1̄)

)
,

E2̄ =
1

2

(
V0(r4̄2̄) + V0(r3̄2̄) + V0(r2̄1̄) + V0(r2̄0)

)
,

E1̄ =
1

2

(
V0(r3̄1̄) + V0(r2̄1̄) + V0(r1̄0) + V0(r1̄1)

)
,

E0 =
1

2

(
V0(r2̄0) + V0(r1̄0) + V0(r01) + V0(2r01)

)
,

E1 =
1

2

(
V0(2r01) + V0(r01) + V0(r12) + V0(2r12)

)
,

E2 =
1

2

(
V0(2r12) + V0(r12) + V0(r23) + V0(2r23)

)
.

Therefore, the forces on the atoms with indices 1̄, 0 and 1 are given by

f1̄ = −V ′
0(r3̄1̄) − V ′

0(r2̄1̄) + V ′
0(r1̄0) +

1

2
V ′

0(r1̄1),

f0 = −V ′
0(r2̄0) − V ′

0(r1̄0) + V ′
0(r01) + 2V ′

0(2r01),

f1 = −1

2
V ′

0(r1̄1) − 2V ′
0(2r01) − V ′

0(r01) + V ′
0(r12) + 2V ′

0(2r12).
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Fig. 3.2. Ghost force for the original QC solution with V0 the Lennard-Jones potential
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Fig. 3.3. Conventional ( left) and modified (right) Morse potential
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At the equilibrium state, we have

f1̄ = −1

2
V ′

0(2ǫ), f0 = V ′
0(2ǫ), f1 = −1

2
V ′

0(2ǫ),

where ǫ = x1 − x0 is the equilibrium bond length. We refer to Fig. 3.2 for the
demonstration of the ghost force when V0 is the Lennard-Jones potential [18].

From this example, we see that ghost force arises due to the asymmetry in calcu-
lating the energies in the local and nonlocal regions. The energy associated with the
atom 1̄ depends on y1, but the energy associated with the atom 1 does not depend
on y1̄.

Next, let us examine the effect of the ghost force. First, let us discuss a simple
example. We consider a one-dimensional chain with 21 atoms in total, interacting with
the modified Morse-potential (see below) and next nearest neighbor interaction. The
atoms are indexed by −10, . . . , 10, where the 0-th atom is the interfacial atom. On
the left side, we use the atomistic model. On the right-hand side, we use the Cauchy-
Born continuum model. The QC solution y = (y−10, . . . , y10) is a local minimizer of

Etot(w) subject to the boundary condition

wi = iǫ, i = −11,−12, 11,
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Fig. 3.4. Displacement (upper) and deformation gradient (lower) of each atom for the original
QC
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where Etot(w) is defined as:

Etot(w) =

10∑

i=−11

V0(|wi − wi+1|) +

−2∑

i=−12

V0(|wi − wi+2|)

+
1

2
V0(|w1̄ − w1|) +

10∑

i=0

V0(2|wi − wi+1|).

Here V0 is a modified Morse potential [25] (see Fig. 3.3) defined as:

V0(r) = De

[
e−2a(r−re) − 2e−a(r−re)

]
+ δ
[
cos
(
100π(r − 0.72)

)
+ 1
]

for 0.71 < r < 0.73,

V0(r) = De

[
e−2a(r−re) − 2e−a(r−re)

]

for r ≤ 0.71 or r ≥ 0.73. Here a is a constant with dimension of the reciprocal of
distance, and re is atomic length scale parameter,De is the well depth of the potential,
and the parameter a controls the “width” of the potential. We rescale the potential
and simply set re = 1.0, De = 1.0, and a = 1.0. The main feature of the modification
is to create a second well for the potential. δ is the parameter that determines the
height of the barrier between two wells in the modified Morse potential and is set to
be δ = 10−3. The equilibrium distance between neighboring atoms is adjusted to be
approximately 0.70965.

Figure 3.4 shows the displacement and the deformation gradient of each atom.
One can see that the maximum strain in this particular example is as large as 6.8%,
which occurs near the interface (the 1̄-th atom). Since there is no external force
applied to the system, this strain is entirely due to the numerical error introduced
by the QC formulation, or equivalently, by the ghost force. Such error may push the
system to the basin of attraction of another nearby minimum. Physically, this suggests
that it may cause unphysical dislocation nucleation around the tip of a propagating
crack [39]. Moreover, we have confirmed that the system will not switch back to the
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original state even if we switch the QC formulation back to a full atomistic description.
Whether this actually occurs in more realistic simulations is still a subject of debate.
But the possibilities are certainly there.

3.2. Explicit solution of the original QC method. In this subsection, we
estimate the error caused by the ghost force in the case when there is an external
force. For the case when there is no external force, we compute explicitly the error,
which allows us to see exactly how the error caused by the ghost force looks like. To
this end, we assume the interaction potential is harmonic

V0(x1, x2) =
1

2
(x1 − x2)

2,

and consider the next nearest neighbor interaction. Let ǫ be the equilibrium bond
length, we assume that 2Nǫ = 1 and r = r/ǫ, we rescale the potential as V (r) = V0(r).
The atomistic problem is: find the minimizer yǫ = (yǫ

N̄−2
, . . . , yǫ

N+2) ∈ S that satisfies

(3.1) yǫ = argmin
w∈S

{Etot(w) − 〈f ,w〉},

where

Etot(w) =

N∑

i=−N−1

V

(∣∣∣∣
wi − wi+1

ǫ

∣∣∣∣
)

+

N∑

i=−N−2

V

(∣∣∣∣
wi − wi+2

ǫ

∣∣∣∣
)
,

f is the external force and 〈f ,w〉 ≡
∑N

i=−N fiwi. The admissible set S is defined by

(3.2) S = { z ∈ R
2N+5 | zi = iǫ, i = N + 1, N + 2,−N − 1,−N − 2 }.

The QC solution yqc = (y−N , . . . , yN ) is the minimizer that satisfies (3.1) with

Etot(w) replaced by

Eqc(w) =

N∑

i=−N−1

V

(∣∣∣∣
wi − wi+1

ǫ

∣∣∣∣
)

+

−2∑

i=−N−2

V

(∣∣∣∣
wi − wi+2

ǫ

∣∣∣∣
)

+
1

2
V

(∣∣∣∣
w1̄ − w1

ǫ

∣∣∣∣
)

+

N∑

i=0

V

(
2

∣∣∣∣
wi − wi+1

ǫ

∣∣∣∣
)
.

It is clear to see that yǫ satisfies the Euler-Lagrangian equations:

−∂E
tot

∂wi
= fi.

Using the boundary condition (3.2), we write the above equations as

ǫ−2
(
4yǫ

−N − yǫ
−N+1 − yǫ

−N+2

)
= ǫ−2(x−N−1 + x−N−2) + f−N = −(2N + 3)/ǫ+ f−N .

Similarly,

ǫ−2
(
−yǫ

−N + 4yǫ
−N+1 − yǫ

−N+2 − yǫ
−N+3

)
= ǫ−2x−N−1 + f−N+1

= −(N + 1)/ǫ+ f−N+1,
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and

ǫ−2
(
4yǫ

N − yǫ
N−1 − yǫ

N−2

)
= (2N + 3)/ǫ+ fN ,

ǫ−2
(
−yǫ

N + 4yǫ
N−1 − yǫ

N−2 − yǫ
N−3

)
= (N + 1)/ǫ+ fN−1.

For i = −N + 3, . . . , N − 2,

ǫ−2
(
−yǫ

i−2 − yǫ
i−1 + 4yǫ

i − yǫ
i+1 − yǫ

i+2

)
= fi,

We can write these equations in a compact form as:

(3.3) Byǫ = f̂ ,

where

f̂−N = −(2N + 3)/ǫ+ f−N , f̂−N+1 = −(N + 1)/ǫ+ f−N+1,

f̂N−1 = (N + 1)/ǫ+ fN−1, f̂N = (2N + 3)/ǫ+ fN ,

f̂i = fi, i = −N + 2, . . . , N − 2.

Similarly, yqc satisfies the Euler-Lagrangian equations:

−∂E
qc

∂wi
= fi.

Proceeding along the same line that leads to (3.3), we write the above equations as

ǫ−2 (4y−N − y−N+1 − y−N+2) = −(2N + 3)/ǫ+ f−N ,

ǫ−2 (−y−N + 4y−N+1 − y−N+2 − y−N+3) = −(N + 1)/ǫ+ f−N+1,

and for i = −N + 3, . . . ,−2,

ǫ−2 (−yi−2 − yi−1 + 4yi − yi+1 − yi+2) = fi.

Near the interface, we have





ǫ−2

(
−y3̄ − y2̄ +

7

2
y1̄ − y0 −

1

2
y1

)
= f1̄,

ǫ−2 (−y2̄ − y1̄ + 7y0 − 5y1) = f0,

ǫ−2

(
−1

2
y1̄ − 5y0 +

21

2
y1 − 5y2

)
= f1.

For i = 2, . . . , N − 1,

ǫ−2 (−5yi−1 + 10yi − 5yi+1) = fi,

and for the boundary atom N ,

ǫ−2 (−5yN−1 + 10yN) = (5N + 5)/ǫ+ fN .

We may write these equations in a compact form as:

(3.4) Ayqc = f̃ ,
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where f̃i = f̂i for i = −N, . . . , N − 2 and f̃N−1 = fN−1, f̃N = (5N + 5)/ǫ+ fN . To
avoid the influence of the boundary atoms, we change the (N − 1)-th and the N -th
equations of (3.4) to the same with (3.3) and still denote the solution by yqc, the
equations (3.4) changes to

(3.5) Âyqc = f̂ ,

where

Âi,j =

{
Ai,j if i = −N, . . . , N − 2, j = −N, . . . , N,
Bi,j if i = N − 1, N, j = −N, . . . , N.

Theorem 3.1. For i = −N, . . . , N − 1,

(3.6) |D+(yqc − yǫ)i| ≤ C




∣∣∣∣∣
3 −

√
5

2

∣∣∣∣∣

|i|

+ ǫ



(‖ f ‖∞ + 1
)
,

where yqc is the QC solution (3.5) and yǫ is the solution of the atomistic model (3.3).

The forward difference quotient operator D+ is defined as D+yi = (yi+1 − yi)/ǫ and
‖f‖∞ ≡ max−N≤i≤N |fi|.

We start with the following identity:

(3.7) B(yqc − yǫ) = Byqc − f̂ = (B − Â)yqc ≡ F ,

where F ∈ R
2N+1 that is given by






Fi = 0, i = −N, . . . , 2̄, N − 1, N,

F1̄ = − 1

2ǫ
D+(y1̄ + y0), F0 = −(D+)2y0 +

2

ǫ
D+y0,

F1 = −ǫ2(D+)4y1̄ −
1

2ǫ
D+(y1̄ + y0), F2 = −ǫ2(D+)4y0,

Fi =
ǫ2

5
(D+)2fi−1, i = 3, . . . , N − 2.

Using (3.7) we obtain the following explicit expression of the error in terms of the
Green’s difference function [35] that is defined by

G = ǫ−2B−1.

Lemma 3.2. Let yqc and yǫ be the solutions of (3.5) and (3.3), respectively, then

D+(yqc − yǫ)i = − ǫ
4

5

N−3∑

j=1

D1D2Gi,jD
+fj +

ǫ3

5

(
D1Gi,N−2D

+fN−2 −D1D2Gi,0f1
)

+ ǫ2D1D2

[1
2
Gi,1̄ +

3

5
Gi,0 −

1

10
Gi,1

]
D+(y0 + y1̄)

− 2ǫ2D1D2Gi,0D
+y0,(3.8)

where D1Gi,j = ǫ−1(Gi+1,j − Gi,j) and D2Gi,j = ǫ−1(Gi,j+1 − Gi,j).
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Proof. It is clear to see yi − yǫ
i = ǫ2

∑N
j=−N Gi,jFj = ǫ2

∑N−2
j=1̄ Gi,jFj . Summation

by parts, we obtain

(3.9)

N−2∑

j=3

Gi,jFj = − ǫ
2

5

N−3∑

j=3

D2Gi,jD
+fj +

ǫ

5
(Gi,N−2D

+fN−2 − Gi,3D
+f2).

A direct calculation gives

(3.10)

2∑

j=1̄

Fj = −ǫ(D+)3y1,

1∑

j=1̄

Fj = −ǫ(D+)3y0.

Using the first identity of (3.10), we get

2∑

j=1̄

Gi,jFj = −ǫGi,2(D
+)3y1 +

1∑

j=1̄

(Gi,j − Gi,2)Fj

= −ǫGi,2(D
+)3y1 − ǫD2Gi,1(F1̄ + F0 + F1)

− ǫD2Gi,0F0 − ǫD2(Gi,1̄ + Gi,0)F1̄.

Using the second identity of (3.10) and the expressions of F1̄ and F0, we obtain

1∑

j=1̄

(Gi,j − Gi,2)Fj = ǫD2Gi,1((D
+)2y1 − (D+)2y0) + ǫD2Gi,0(D

+)2y0

− 2D2Gi,0D
+y0 + (1/2)D2(Gi,1̄ + Gi,0)D

+(y1̄ + y0)

= ǫD2Gi,1(D
+)2y1 − ǫ2D2

2Gi,0(D
+)2y0

− 2D2Gi,0D
+y0 +

1

2
D2(Gi,1̄ + Gi,0)D

+(y1̄ + y0).

Using the (N + 3)-th, (N + 4)-th and (N + 5)-th equations of (3.5), we get

(D+)2y1 = −f2
5
, (D+)3y1 = −D

+f2
5

, (D+)2y0 = −f1
5

+
1

10ǫ
D+(y1̄ + y0),

which together with the above equation leads to

2∑

j=1̄

Gi,jFj =
ǫ

5
Gi,2D

+f2 −
ǫ

5
D2Gi,1f2 +

ǫ2

5
D2

2Gi,0f1

− 2D2Gi,0D
+y0 +

[1
2
D2(Gi,1̄ + Gi,0) −

ǫ

10
D2

2Gi,0

]
D+(y1̄ + y0).

This equation and (3.9) gives

yi − yǫ
i = − ǫ

4

5

N−3∑

j=1

D2Gi,jD
+fj +

ǫ3

5

(
Gi,N−2D

+fN−2 −D2Gi,0f1
)

+ ǫ2D2

[1
2
Gi,1̄ +

3

5
Gi,0 −

1

10
Gi,1

]
D+(y1̄ + y0) + 2ǫ2D2Gi,0D

+y0.

The identity (3.8) immediately follows from the above equation.
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It remains to bound G, D+y1̄ and D+y0. We estimate D+y0 and D+y1̄ in the
following lemma and postpone the proof to Appendix B.

Lemma 3.3. There exists a constant C such that

(3.11) |D+y0| + |D+y1̄| ≤ C(‖ f ‖∞ + 1).

To estimate the Green’s difference function G, we resort to its explicit expression
that will be given below. By definition, it is clear that for i = −N + 2, . . . , N − 2,

(3.12)






4Gi,−N − Gi,−N+1 − Gi,−N+2 = 0,

−Gi,−N + 4Gi,−N+1 − Gi,−N+2 − Gi,−N+3 = 0,

−Gi,j−2 − Gi,j−1 + 4Gi,j − Gi,j+1 − Gi,j+2 = δj,i, j = −N + 2, . . . , N − 2,

−Gi,N−3 − Gi,N−2 + 4Gi,N−1 − Gi,N = 0,

−Gi,N−2 − Gi,N−1 + 4Gi,N = 0.

From the theory of recurrence equation, we get

(3.13)

{
Gi,j = αiFN+j(ω1) + βiFN+j(ω2), j = −N, . . . , i+ 1,

Gi,j = γiFN−j(ω1) + δiFN−j(ω2), j = i− 1, . . . , N,

where Fm(z) = f(z) + g(z)m+ zm,m ∈ Z with

f(z) = 14 + 5z, g(z) = 11 + 4z, ω1 = (−3 +
√

5)/2, ω2 = (−3 −
√

5)/2.

To determine the unknown parameters αi, βi, γi and δi in (3.13), we equate the
expressions of Gi,j for j = i − 1, i, i + 1, and use the i-th equation of (3.12) To this
end, we firstly prove an auxiliary identity.

Lemma 3.4. For z = ω1, ω2, and i ∈ Z, we have

(3.14)
Fi−3(z) + Fi−2(z) + Fi(z) + Fi+1(z) = 4Fi−1(z),

Fi(z) + Fi+2(z) − 2Fi+1(z) = −5zi+1.

Proof. It follows from z2 + 3z + 1 = 0, z = ω1, ω2 that

zi+1 + zi = −2zi − zi−1 and zi−3 + zi−2 = −2zi−2 − zi−1.

Adding up these two identities, we obtain

zi+1 + zi + zi−3 + zi−2 = −2(zi + zi−2) − 2zi−1 = 6zi−1 − 2zi−1 = 4zi−1,

which together with the definition of Fi(z) gives the identity (3.14)1.
Proceeding in the same way, we obtain (3.14)2.
Using the i-th equation of (3.12), we obtain

[4FN+i(ω1) − FN+i−2(ω1) − FN+i−1(ω1) − FN+i+1(ω1)]αi

+ [4FN+i(ω2) − FN+i−2(ω2) − FN+i−1(ω2) − FN+i+1(ω2)]βi

− FN−i−2(ω1)γi − FN−i−2(ω2)δi = 1.

By (3.14)1, we write the above equation as

FN+i+2(ω1)αi + FN+i+2(ω2)βi − FN−i−2(ω1)γi − FN−i−2(ω2)δi = 1.
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The above equation together with the equations obtained by equating the expressions
for Gi,i−1,Gi,i and Gi,i+1 gives




FN+i−1(ω1) FN+i−1(ω2) −FN−i+1(ω1) −FN−i+1(ω2)
FN+i(ω1) FN+i(ω2) −FN−i(ω1) −FN−i(ω2)
FN+i+1(ω1) FN+i+1(ω2) −FN−i−1(ω1) −FN−i−1(ω2)
FN+i+2(ω1) FN+i+2(ω2) −FN−i−2(ω1) −FN−i−2(ω2)







αi

βi

γi

δi


 =




0
0
0
1


 .

Denote the above (4 × 4)-matrix by A. Solving the above linear system and substi-
tuting αi, βi, γi and δi into (3.13), we obtain the explicit expression of Gi,j .

Lemma 3.5. For i = −N+2, . . . , N−2, let i∧j = min(i, j) and i∨j = max(i, j),

(3.15) Gi,j = γi∧j(ω1, ω2)FN−i∨j(ω1) + γi∧j(ω2, ω1)FN−i∨j(ω2),

where

γi(ω1, ω2) =
{

5[g(ω2) + ω2N
2 g(ω1)][ω

N+i
1 f(ω2) − ωN+i

2 f(ω1) + (N + i)(ω1 − ω2)]

+ 5[ω1 − ω2 + ωN+i
2 g(ω1) − ωN+i

1 g(ω2)]

× [ω2N
2 f(ω1) − f(ω2) − 2Ng(ω2)]

}
(detA)−1,(3.16)

and

(3.17) detA = 50(ω1 − ω2)[ω
N
1 g(ω2) + ωN

2 g(ω1)][ω
N
2 FN (ω1) − ωN

1 FN (ω2)].

For the cases when i = −N,−N + 1, N − 1, N , we have
Lemma 3.6. For j = −N, . . . , N ,

G−N,j = −j −N − 1 +
1

△(ω1, ω2)
(△1(ω2)FN+j(ω1) −△1(ω1)FN+j(ω2)) ,

G−N+1,j = 2(N + 1 + j) + 1 +
1

△(ω1, ω2)
(△2(ω2)FN+j(ω1) −△2(ω1)FN+j(ω2)) ,

GN,j = G−N,−j, GN−1,j = G−N+1,−j ,

with △(ω1, ω2) = F2N+1(ω1)F2N+2(ω2) − F2N+1(ω2)F2N+2(ω1) and

{
△1(z) = (2N + 2)F2N+2(z) − (2N + 3)F2N+1(z),

△2(z) = −(4N + 5)F2N+2(z) + (4N + 7)F2N+1(z),
z = ω1, ω2.

By Lemma 3.5 and Lemma 3.6, we get the following estimates for G and its
forward difference quotient, the proof is postponed to Appendix A.

Lemma 3.7. There exists a constant C such that

(3.18)
0 ≤ Gi,j ≤ Cǫ(N + 1 + i ∧ j)(N + 1 − i ∨ j), i, j = −N, . . . , N,

|D1D2Gi,j | ≤ Cǫ−2
(
ǫ+ |ω1||i−j|

)
i, j = −N, . . . , N − 1.

Combining the estimates (3.11), (3.18) and the explicit expression of the er-
ror (3.8), we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1 Using (3.18)1, we get

|D1Gi,N−2| ≤ (|Gi+1,N−2| + |Gi,N−2|)/ǫ ≤ Cǫ−1.

A direct calculation gives

N−3∑

j=1

|ω1||i−j| ≤ 1 + |ω1|
1 − |ω1|

, i = −N, . . . , N.

Using the above two estimates, (3.18)2 and the fact that |D+fi| ≤ ‖ f ‖∞/ǫ, we bound
the first three terms in the right-hand side of (3.8) as

∣∣∣∣∣∣
− ǫ

4

5

N−3∑

j=1

D1D2Gi,jD
+fj +

ǫ3

5

(
D1Gi,N−2D

+fN−3 −D1D2Gi,0f1
)
∣∣∣∣∣∣

≤ Cǫ




N−3∑

j=1

|ω1||i−j|


 ‖ f ‖∞ + Cǫ‖ f ‖∞ + C(ǫ2 + ǫ|ω1||i|)‖ f ‖∞

≤ Cǫ‖ f ‖∞.

Using Lemma 3.7 and (3.11), we estimate the last two terms in (3.8) as

∣∣∣∣ ǫ
2D1D2

[1
2
Gi,1̄ +

3

5
Gi,0 −

1

10
Gi,1

]
D+(y0 + y1̄) − 2ǫ2D1D2Gi,0D

+y0

∣∣∣∣

≤ C(ǫ+ |ω1||i|)(‖ f ‖∞ + 1).

A combination of the above two inequalities leads to (3.6).

Next we turn to the case when there is no external force. In this special case,
a simpler expression (see Lemma 3.8 below) can be found for the error of the QC
method, as was firstly noted by Dobson and Luskin [5] in a slightly different set-up,
although we derived this result independently. In the absence of the external force,
the atomistic system is at the equilibrium state, i.e., yǫ = x. It is easy to see that

(3.19) A(yqc − x) = h,

where h1̄ = −1/ǫ, h0 = 2/ǫ, h1 = −1/ǫ, and hi = 0 otherwise. The difference between
yqc and x is the error of the QC method. This error is given explicitly by the
following lemma. The basic strategy for deriving the explicit expression of such error
is the same as the above procedure to find the explicit formula of the Green’s difference
function. It consists of two steps. Firstly we get a general expression by the recurrence
equation with certain unknown parameters; secondly, we match the equations near
the “interface” to determine such parameters.

Lemma 3.8. Let yqc be the solution of (3.4), and ŷ
ǫ ≡ yqc − x. Define γ =

αg(ω1) + βg(ω2), where α and β are two parameters that satisfy (3.24) below. Then

(3.20) ŷ ǫ
i =

{
(i+N)γ + αf(ω1) + βf(ω2) + αωi+N

1 + βωi+N
2 , if i = −N, . . . , 0,

(i−N − 1)γ, if i = 1, . . . , N,
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Fig. 3.5. Error profile for the original QC solution with N = 16
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(b) Profile for D+(yqc − x)

and
(3.21)

D+ŷ ǫ
i =





γ

ǫ
+
α

ǫ
ωi+N

1 (ω1 − 1) +
β

ǫ
ωi+N

2 (ω2 − 1), if i = −N, . . . , 1̄,

−2γ

ǫ
N − αf(ω1) + βf(ω2)

ǫ
− αωN

1 + βωN
2

ǫ
, if i = 0,

γ/ǫ, if i = 1, . . . , N − 1.

Proof. From the theory of recurrence relations, we have

(3.22) ŷ ǫ
i =

{
αFi+N (ω1) + βFi+N (ω2), i = −N, . . . , 0,
γ(i−N − 1), i = 1, . . . , N.

Summing up the 1̄-th, 0-th and 1−th equations, we obtain

5(ŷ ǫ
2 − ŷ ǫ

1 ) = 2ŷ ǫ
1̄ + ŷ ǫ

0 − 2ŷ ǫ
2̄ − ŷ ǫ

3̄ .

Substituting (3.22) into the above equation we obtain

α(2FN−1 − 2FN−2 + FN − FN−3)(ω1) + β(2FN−1 − 2FN−2 + FN − FN−3)(ω2) = 5γ.

A direct calculation gives: for z = ω1, ω2,

(2FN−1 − 2FN−2 + FN − FN−3)(z) = 5g(z).

Combining the above two equations leads to

(3.23) γ = αg(ω1) + βg(ω2),

which together with (3.22) gives (3.20). A direct calculation gives (3.21).
The equations (3.20) and (3.21) give the asymptotic error profile that is consistent

with the “exact” profiles plotted in Fig. 3.5 even without knowing the exact values of
α, β and γ.
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Now we use the QC equations near the interface to determine the coefficients.
Using the equation for i = 1̄, we get

α

(
7

2
FN−1 − FN−2 − FN−3 − FN

)
(ω1) + β

(
7

2
FN−1 − FN−2 − FN−3 − FN

)
(ω2)

+
N

2
γ = −ǫ,

using (3.14), we write the above equation as

α(FN+1 − FN−1/2)(ω1) + β(FN+1 − FN−1/2)(ω2) +
N

2
γ = −ǫ.

Using the equation for i = 1, we get

α

(
−5FN − 1

2
FN−1

)
(ω1) + β

(
−5FN − 1

2
FN−1

)
(ω2) −

(
11

2
N + 5

)
γ = −ǫ.

Combining the above two equations, we obtain that α and β satisfy the following
(2 × 2)-linear system:

(3.24)

(
M11 M12

M21 M22

)(
α
β

)
=

(
−ǫ
ǫ

)
,

where M11 = R(ω1),M12 = R(ω2),M21 = S(ω1) and M22 = S(ω2) with

R(z) = FN+1(z) −
1

2
FN−1(z) +

N

2
g(z),

S(z) = 5FN (z) +
1

2
FN−1(z) +

(
11

2
N + 5

)
g(z).

Solving the above equations, we obtain

α = −[6f(ω2) + (2 − ω1)ω
N
2 + 6(2N + 1)g(ω2)]ǫ/△(ω1, ω2),

β = [6f(ω1) + (2 − ω2)ω
N
1 + 6(2N + 1)g(ω1)]ǫ/△(ω1, ω2),

where

△(ω1, ω2) = R(ω1)S(ω2) −R(ω2)S(ω1)

= (N + 1/2)g(ω1)(17ω1 + 38)ωN
2 − (N + 1/2)g(ω2)(17ω2 + 38)ωN

1

− 1

2
(74 + 191ω2)ω

N
2 +

1

2
(74 + 191ω1)ω

N
1 + 12(ω1 − ω2).

Using (3.23), we obtain

γ =
[
6(ω2 − ω1) − (2 − ω1)g(ω1)ω

N
2 + (2 − ω2)g(ω2)ω

N
1

]
ǫ/△(ω1, ω2).

It is easy to deduce that

(3.25)

α =
(ω1 − 2)ωN

2

△(ω1, ω2)
ǫ+ O(ǫ|ω1|N ), β =

6(2N + 1)g(ω1)

△(ω1, ω2)
ǫ+ O(ǫ2|ω1|N ),

γ =
(ω1 − 2)g(ω1)ω

N
2

△(ω1, ω2)
ǫ+ O(ǫ2|ω1|N ).
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This leads to
Theorem 3.9. Let yqc be the solution of (3.4). Then,

(3.26)
|D+(yi − xi)| ≤ C

(
ǫ+ |ω1||i|

)
, i = −N, . . . , 0,

|D+(yi − xi)| ≤ Cǫ, i = 1, . . . , N.

Moreover, we have

(3.27) D+(y1̄ − x1̄) ≥
9(
√

5 − 1)

17 + 5
√

5
, N ≥ 4.

A direct consequence of the above result is the characterization of the width of the
polluted region around the interface, that is, the region beyond which |D+(yqc−x)| =
O(ǫ).

Corollary 3.10. Let yqc be the solution of (3.4). Then

|D+(yi − xi)| ≤ Cǫ, i = −N, . . . ,−
⌈ ∣∣∣∣

ln ǫ

ln(3 +
√

5)/2

∣∣∣∣
⌉

or i = 1, . . . , N.

Remark 3.11. Since the equilibrium bond length is ǫ, it follows from the above
corollary that the width of the interface is O(ǫ|ln ǫ|) (see [22]). Essentially the same re-
sult was presented firstly in print by Dobson and Luskin in their recent manuscript [5].

Proof of Theorem 3.9 Our starting point is (3.21). For i = −N, . . . , 1̄, we obtain

|D+(yi − xi)| ≤ C(ǫ+ |ω1|−i).

For i = 0, using (3.25), we obtain

|D+ŷ ǫ
0 | ≤

∣∣∣∣
g(ω1)(2N(2 − ω1) − 12N)ωN

2

△(ω1, ω2)

∣∣∣∣+ C(ǫ+ |ω1|2N ) ≤ C(ǫ+ 1).

For i = 1, . . . , N , we have

|D+ŷ ǫ
i | ≤ Cǫ.

The above three equations gives (3.26).
For i = 1̄, we have

D+(y1̄ − x1̄) = P (ω1, ω2)ω
N
1 /(△(ω1, ω2)ω

N
1 ),

where

P (ω1, ω2)ω
N
1 = 6(2N + 1)g(ω1)(1 − ω1) − 6(2N + 1)g(ω2)(1 − ω2)ω

2N
1

− [6(1 − ω2)f(ω2) + (ω2 − 2)g(ω2)]ω
2N
1 + 7(ω2 − ω1)ω

N
1

+ 6(1 − ω1)f(ω1) + (ω1 − 2)g(ω1).

It is easy to have

P (ω1, ω2)ω
N
1 ≥ 6(2N + 1)g(ω1)(1 − ω1).
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Next,

ωN
1 △(ω1, ω2) = (N + 1/2)g(ω1)(17ω1 + 38) − (N + 1/2)g(ω2)(17ω2 + 38)ω2N

1

− 1

2
(74 + 191ω2) +

1

2
(74 + 191ω1)ω

2N
1 + 12(ω1 − ω2)ω

N
1 .

We have

0 < ωN
1 △(ω1, ω2) ≤ (N + 3/2)g(ω1)(17ω1 + 38).

This implies

D+(y1̄ − x1̄) ≥
12N + 6

N + 3/2

1 − ω1

17ω1 + 38
.

This implies (3.27) since N ≥ 4.

Before going further, let us introduce some notations. For any vector z =
(z−N , . . . , zN ) ∈ R

2N+1, we define the backward difference quotient D−zi ≡ (zi −
zi−1)/ǫ, the central difference quotient D̂ ≡ (D+ +D−)/2, and the higher-order for-
ward difference quotient operator (D+)k ≡ [(E − I)/ǫ]k for any k ∈ N, where E is
the forward shift operator. We will use 〈 ·, ·〉 to denote the standard Euclidean inner
product unless otherwise stated. We define a discrete rescaled H1 norm as

(3.28) ‖ z ‖d ≡
(
ǫ−2z2

−N + ǫ−2z2
N +

N∑

i=−N

|D+zi|2
)1/2

.

By Cauchy-Schwartz inequality, we have

(3.29) |zN−1| ≤
√

2ǫ‖ z ‖d, |zN−2| ≤
√

3 ǫ‖ z ‖d, |zN−3| ≤ 2ǫ‖ z ‖d.

4. Removal of Ghost Forces.

4.1. Quasi-nonlocal QC method. To remove the ghost force, Shimokawa,
Mortensen, Schiøz and Jacbosen [29] introduced the concept of quasi-nonlocal atoms.
Roughly speaking, a quasi-nonlocal atom acts like a nonlocal atom on the nonlocal side
of the interface, while it acts like a local atom on the local side of the interface. For the
case of next nearest neighbor interaction, the introduction of the quasi-nonlocal atoms
is sufficient to remove the ghost-force. For the one-dimensional chain as Fig. 3.1, if
the interaction range contains the next nearest neighbor, then the energies associated
with the atoms near the interface are (in the absence of the external force):

E1̄ =
1

2

(
V0(r3̄1̄) + V0(r2̄1̄) + V0(r1̄0) + V0(r1̄1)

)
,

E0 =
1

2

(
V0(r2̄0) + V0(r1̄0) + V0(r01) + V0(2r01)

)
,

E1 =
1

2

(
V0(r1̄1) + V0(r01) + V0(r12) + V0(2r12)

)
,

E2 =
1

2

(
V0(2r12) + V0(r12) + V0(r23) + V0(2r23)

)
.
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The forces for the atoms indexed by i = −N, . . . , 2̄, 2, . . . , N are the same as the
original QC method, while the forces for the interfacial atoms 1̄, 0 and 1 are:

f1̄ = −1

ǫ

{
V ′
(
D−y1̄

)
+ V ′

(
2D̂y2̄

)
+ V ′

(
−D+y1̄

)
+ V ′

(
−2D̂y0

)}
,

f0 = −1

ǫ

{
V ′
(
2D̂y1̄

)
+ V ′

(
D−y0

)
+ V ′

(
−D+y0

)
+ V ′

(
−2D+y0

)}
,

f1 = −1

ǫ

{
V ′
(
D−y1

)
+ V ′

(
2D̂y1

)
+ V ′

(
2D−y1

)
+ V ′

(
−D+y1

)
+ 2V ′

(
−2D+y1

)}
.

At the equilibrium state, we have

f1̄ = f0 = f1 = 0.

Therefore, there is no ghost force.

4.2. Geometrically consistent reconstruction scheme. In [7], the authors
introduced the concept of geometrically consistent scheme as a general strategy for
removing the ghost force. This is a concept that depends only on the geometry of
the lattice, not the details of the potential. Moreover, this scheme has an underlying
variational formulation.

As we have addressed in § 2, computing the energy of the whole system is equiv-
alent to computing the site energy for each rep-atom. For this reason, it suffices to
reconstruct the local environment of each rep-atom. We can then compute the as-
sociated energy using the atomic potential. Denote by Ri(j) the reconstruction of
the relative position of the j-th atom with respect to the i-th atom. Well inside the
nonlocal region, we may simply use the position of nearby rep-atom, i.e.,

Ri(j) = Ra
i (j) ≡ (yj − yi)/ǫ.

Inside the local region, we may use the position of the nearest rep-atom, i.e.,

Ri(j) = RCB
i (j) ≡ |j − i|(yi+sgn(j−i) − yi)/ǫ.

At the local-nonlocal interface, one needs to reconstruct the relative atomic positions
with respect to each rep-atom, inside its interaction range.

In [7], the authors introduced the geometrically consistent condition. As to the
one-dimensional chain, this condition becomes:

Definition 4.1. The reconstruction scheme is geometrically consistent if for all
k and n,

(4.1)
∑

|ri(j)|=Rn

∂Ri(j)

∂yk
= 0, for all i,

where ri(j) = xj − xi denotes the relative position of atom j with respect to atom i at
the equilibrium state, and Rn is the distance between atom i and atom j.

To find reconstruction schemes that are geometrically consistent, instead of using
either Ra

i (j) or RCB
i (j), we allow linear combination of Ra

i (j) and RCB
i (j),

Ri(j) = Ci(j)R
a
i (j) + (1 − Ci(j))R

CB
i (j),
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where the Ci(j)’s are the coefficients to be determined. In particular, for the n−th
nearest neighbors of atom i, we let

Ri(i± n) = C±
i (n)Ra

i (i± n) + (1 − C±
i (n))RCB

i (i± n)

= C±
i (n)(yi±n − yi)/ǫ+ n(1 − C±

i (n))(yi±1 − yi)/ǫ.(4.2)

The original QC method and the quasi-nonlocal approach correspond to the case when
Ci(j) equals to either 0 or 1. We further require that away from the interface, in the
local region, Ci(j) = 0 in accordance with the CB rule and in the nonlocal region,
Ci(j) = 1 in accordance with the atomistic reconstruction. Using these constraints,
we can solve the linear system (4.1) to determine the coefficients Ci(j). Tables of
coefficient for different crystal structures have been provided in [7]. Throughout this
paper, we assume that

(4.3) 0 ≤ C+
i (2), C−

i (2) ≤ 1.

As was shown in [7], as long as a reconstruction scheme is geometrically consis-
tent, there are no ghost forces at the local-nonlocal interface. In addition, geometric
consistency is also a necessary condition for local uniform first order accuracy at the
local/nonlocal interface, see [7, Proposition 5].

The quasi-nonlocal approach is a special case of geometrically consistent recon-
struction schemes. The quasi-nonlocal reconstruction scheme uses the positions of the
nearest neighbor atoms to reconstruct the relative position of other atoms. There-
fore, the method is limited to cases for which, along each line, the interaction only
involves the second nearest neighbors. If the interaction range is larger, for example
if it involves the third nearest neighbors along a line, the condition (4.1) in the quasi-
nonlocal approach is violated. In Fig. 3.1, the reconstruction of atom 3 starting from
atom 0 will use the position of atom 1. However, the reconstruction of atom 0 from
atom 3 does not involve atom 1, since it is not the nearest neighbor of atom 3.

5. Error Estimates for the Geometrically Consistent Quasicontinuum

Method. In this section, we study the geometrically consistent QC method for the
one-dimensional chain with a pairwise potential V0 and Dirichlet boundary condi-
tion (3.2). It will be clear from the presentation that similar analysis carries over to
the case of any finite range interaction (see [11] for details). We refer to [19, 8, 9, 1,
2, 20, 4, 26] for related work on the analysis of the QC method.

5.1. Analysis of the one-dimensional chain. The problem we need to solve
is

yǫ ∈ argmin
w∈S

{
Etot(w) − 〈f ,w〉

}
,

where Etot is the same as (3.1) with a general pairwise potential V0. The local
minimizer yǫ ∈ S satisfies the equilibrium equation:

(5.1) Lǫ
at(y

ǫ) = f .

We write (5.1) in component form as: for i = −N, . . . , N ,

(5.2) −1

ǫ

{
V ′
(
D−yi

)
+ V ′

(
2D̂yi−1

)
+ V ′

(
−D+yi

)
+ V ′

(
−2D̂yi+1

)}
= fi.
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Using the fact that V ′ is an odd function, we write (5.2) into a more compact form:

(5.3) D−V ′
(
D+yi

)
+ 2D̂V ′

(
2D̂yi

)
= fi.

From now on, we assume that there exists a smooth function

f(x) : I ≡ [−1/2, 1/2] → R

such that

(5.4) f(xi) = fi i = −N, . . . , N.

To begin with, we need to establish the existence results for the atomistic model
(5.1) and derive a priori estimates for its solution, see Theorem 5.6. The proof is
based on a systematic asymptotic analysis of the solution. We view the atomistic
model as a singular perturbation of the macroscopic model obtained from Cauchy-
Born rule [3]. Asymptotic expansions are used to construct approximate solution
that satisfies the macroscopic equations to high-order accuracy. Finally, using linear
stability results for the atomistic model and implicit functional theorem, we obtain
the desired existence results. Such ideas have been used by Strang [32] in the context
of nonlinear finite difference schemes. A general approach for constructing such higher
order approximation for the atomistic model has been introduced in [10, §5]. Here,
for the one-dimensional chain, the construction can be made quite explicit.

Define

(5.5) ỹi =

{
xi + ucb(xi) + ǫ2u2(xi), if i = −N, . . . , N,
xi, if i = −N − 2,−N − 1, N + 1, N + 2,

where ucb satisfies

(5.6)

{
L0(ucb(x)) = f(x), in I,

ucb(−1/2) = ucb(1/2) = 0,

and

L0(ucb) = − d

dx

{
V ′

(
1 +

ducb

dx

)
+ 2V ′

(
2 + 2

ducb

dx

)}
.

Moreover, u2 satisfies

(5.7)

{
Llin(ucb(x))u2(x) = −L2(ucb(x)), in I,

u2(−1/2) = u2(1/2) = 0,

where Llin(ucb) is the linearized operator of L0 at ucb, which takes the form

Llin(ucb)u2 = − d

dx

{[
V ′′

(
1 +

ducb

dx

)
+ 4V ′′

(
2 + 2

ducb

dx

)]
du2

dx

}
,

and

L2(ucb) =
1

12

d

dx

{[
V ′′

(
1 +

ducb

dx

)
+ 16V ′′

(
2 + 2

ducb

dx

)]
d3ucb

dx3

}

+
1

24

d

dx

{[
V ′′

(
1 +

ducb

dx

)
+ 16V ′′

(
2 + 2

ducb

dx

)](
d2ucb

dx2

)2}
.
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It is easy to verify that ỹ ∈ S. We may also view ỹ as a function of x, which is
denoted by ỹ and defined as

ỹ(x) = x+ ucb(x) + ǫ2u2(x), x ∈ I.

We need to show that the problems (5.6) and (5.7) are solvable. Obviously, u2

exists provided that Llin is coercive at ucb, and u2 is smooth as long as ucb is smooth.
More precisely, we have the following regularity estimate for u2:

(5.8) ‖u2‖W 2,p(I) ≤ C‖ucb‖W 4,p(I), p ≥ 1.

The case when p ≥ 2 can be found in [12], and the case when 1 ≤ p < 2 is quite
elementary for this one-dimensional problem. The existence of ucb is implied by the
following lemma.

Lemma 5.1. There exist two constants ρ1 and ρ2 such that for any m ≥ 0 and
p ≥ 1, for all f ∈ Wm,p(I) with ‖f‖W m,p(I) ≤ ρ1, there exists a locally unique solution

ucb ∈Wm+2,p
0 (I) that satisfies (5.6) and ‖ucb‖W m+2,p(I) ≤ ρ2. Moreover, there exists

a constant Λ > 0 such that

(5.9) 〈 Llin(ucb)v, v〉 ≥ Λ‖v‖2
H1(I), for any v ∈ H1

0 (I),

where, 〈 ·, ·〉 denotes the dual pair between H1
0 (I) and H−1(I).

The proof of the above lemma follows essentially the same argument as in [38,
Chapter IV, Theorem 5.3].

Lemma 5.2. There exists a constant ρ1, if ‖f‖W 4,p(I) ≤ ρ1 with p ≥ 1, then there
exists a ỹ ∈ S such that

(5.10) ‖Lǫ
at(ỹ) − f‖∞ ≤ Cǫ4,

where C depends on ρ1.
Proof. Using the Taylor expansion, we obtain, for any i = −N, . . . , N ,

∣∣Lǫ
at(ỹ)i − [L0(ỹ(x) − x) + ǫ2L2(ỹ(x) − x)]|x=xi

∣∣ ≤ Cǫ4,

where C depends on ‖ucb‖W 5,∞(I).
By the definition of ỹ (5.5), using (5.6) and (5.7), we get, for any i = −N, . . . , N ,

∣∣ [L0(ỹ − x) + ǫ2L2(ỹ − x)]|x=xi
− fi

∣∣ ≤ Cǫ4,

where C depends on ‖ucb‖W 4,∞(I). Combining the above two inequalities and using
Lemma 5.1, we obtain (5.10).

Remark 5.3. The estimate (5.10) improves the result in [10, Corollary 5.1] for
the case when d = 1.

Next, we give a direct proof of the coercivity of the linearized operator of the
atomistic model. Define the Hessian matrix H ∈ R

(2N+1)2 of the total energy as

(5.11) Hij(w) =
∂2Etot

∂wi∂wj
(w), i, j = −N, . . . , N.

We have the following coercivity inequality for H(w) at w = x.
Lemma 5.4.

(5.12) 〈H(x)z, z〉 ≥ (V ′′ (1) − 4|V ′′ (2)|)‖ z ‖2
d for z ∈ R

2N+1.
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Proof. A direct calculation gives

ǫ2 〈H(x)z, z〉 =
(
V ′′ (1) + V ′′ (2)

)
(z2

−N + z2
N ) + V ′′ (2)

(
z2
−N+1 + z2

N−1

)

+ V ′′ (1)

N−1∑

i=−N

(zi − zi+1)
2 + V ′′ (2)

N−2∑

i=−N

(zi − zi+2)
2.(5.13)

If V ′′ (2) < 0, then by the Cauchy-Schwartz inequality:

|zi − zi+2|2 ≤ 2(|zi − zi+1|2 + |zi+1 − zi+2|2),

we write (5.13) as

ǫ2 〈H(x)z, z〉 ≥ [V ′′ (1) + 4V ′′ (2)]
N−2∑

i=−N+1

(zi − zi+1)
2

+ [V ′′ (1) + V ′′ (2)](z2
−N + z2

N ) + V ′′ (2) (z2
−N+1 + z2

N−1)

+ [V ′′ (1) + 2V ′′ (2)]
(
(z−N − z−N+1)

2 + (zN − zN−1)
2
)
.

For i = N, j = N − 1 and i = −N, j = −N + 1, we have

[V ′′ (1) + V ′′ (2)]z2
i + V ′′ (2) z2

j + [V ′′ (1) + 2V ′′ (2)](zi − zj)
2

= [V ′′ (1) + 4V ′′ (2)](z2
i + (zi − zj)

2) + (−V ′′ (2))[z2
i + (2zi − zj)

2].(5.14)

Combining the above two inequality gives (5.12) for the case when V ′′ (2) < 0.
If V ′′ (2) ≥ 0, then we get (5.12) from (5.13).
The next lemma is a perturbation result of (5.12) that follows exactly the same

way as [10, Lemma 6.7], we omit the proof.
Lemma 5.5. If

〈H(y1)z, z〉 ≥ κ‖ z ‖2
d,

then there exists a constant δ > 0, such that if ‖D+(y1 − y2)‖∞ ≤ δ, we have

(5.15) 〈H(y2)z, z〉 ≥ (κ/2)‖ z ‖2
d.

Based on the above higher-order approximation result, we prove the interior regu-
larity for the solution of the atomistic model that is the main result of this subsection.

Theorem 5.6. For p ≥ 1, there exists a constant ρ3 such that if ‖f‖W 4,p(I) ≤ ρ3,
then the problem (5.1) has a locally unique solution yǫ ∈ S satisfying

(5.16) ‖D+(yǫ − ỹ)‖∞ ≤ Cǫ4.

Moreover,

(5.17) max
−N+2≤i≤N−3

|(D+)3yǫ
i | ≤ C, max

−N+2≤i≤N−2

2∑

k=1

|(D+)kyǫ
i | ≤ C.
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Proof. The existence of yǫ follows from [10, Theorem 2.2]. By [10, Lemma 6.8],
the solution yǫ satisfies

‖yǫ − ỹ ‖d ≤ Cǫ4,

which immediately implies (5.16).
Moreover, for i = −N + 2, . . . , N − 3, the quantity (D+)3yǫ

i is well-defined and
we have

|(D+)3yǫ
i | ≤ |(D+)3(yǫ − ỹi)| + |(D+)3ỹi|
≤ 3ǫ−2‖D+(yǫ − ỹ) ‖∞ + |(D+)3ỹi|
≤ 3ǫ−2‖D+(yǫ − ỹ) ‖∞ + |(D+)3ucb(xi)| + 3|D+u2(xi)|
≤ Cǫ2 + C‖ucb‖W 3,∞(I) + C‖u2‖W 1,∞(I)

≤ Cǫ2 + C‖ucb‖W 4,p(I) + C‖u2‖W 2,p(I)

≤ Cǫ2 + C‖ucb‖W 4,p(I)

≤ C,

where C depends on ρ1. This leads to the first inequality in (5.17). Similar estimate
holds for |(D+)kyǫ

i | with k = 1, 2.

5.2. Convergence analysis of the geometrically consistent QC method.

The problem we need to solve is: find the local minimizer yqc ∈ S that satisfies

yqc ∈ argmin
w∈S

{
Egcs(w) − 〈f ,w〉

}
,

where

Egcs(w) =
N∑

i=−N−1

V (Ri(i+ 1)) +
N∑

i=−N−2

V (Ri(i+ 2)).

We write the equilibrium equations for the above problem as: find yqc ∈ S such that

(5.18) Lǫ
gcs(yqc)i = fi, i = −N, . . . , N,

where

Lǫ
gcs(z)i = D−V ′

(
D+zi

)

− 1

2ǫ

[
C−

i+2(2)V ′ (Ri+2(i)) + (C−
i (2) − 2)V ′ (Ri(i− 2))

+ 2(1 − C−
i+1(2))V ′ (Ri+1(i− 1))

]

− 1

2ǫ

[
C+

i−2(2)V ′ (Ri−2(i)) + (C+
i (2) − 2)V ′ (Ri(i+ 2))

+ 2(1 − C+
i−1(2))V ′ (Ri−1(i+ 1))

]
,

where Ri(i±n) is defined the same as (4.2) with y replaced by z. To avoid the influence
of the boundary condition on the accuracy of the method; cf., [37], we assume that

(5.19) Lǫ
gcs(z)i = Lǫ

at(z)i, i = N,N − 1.
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Table 5.1

coefficients for 1D chain with next nearest neighbor interaction

Atom −5 −4 −3 −2 −1 0 1 2 3 4 5

C+(2) 1 α1 α2 α3 α4 α5 α6 α7 0 0 0

C−(2) 1 1 1 α1 α2 α3 α4 α5 α6 α7 0

We make the following assumption on the coefficients:

(5.20)
C+

i (2) = 1, i ≤ −5; C+
i (2) = 0, i ≥ 3,

C−
i (2) = 1, i ≤ −3; C−

i (2) = 0, i ≥ 5.

That leaves a sufficiently wide transition region for interactions that involves up to
the next nearest neighbors.

The geometrically consistent condition (4.1) can be written in a more explicit
form:

C+
i−2(2) − C+

i (2) + 2[C+
i (2) − C+

i−1(2)]

= C−
i+2(2) − C−

i (2) + 2[C−
i (2) − C−

i+1(2)](5.21)

for any i-th atom with next nearest neighbor interaction.
To analyze the geometrically consistent QC method, we follow the strategy of

Strang for the finite difference scheme [32]. Therefore, we need to study the stability
and the consistency error of the method. The stability of the linearized operator of
Lǫ

gcs may be proven as in Lemma 5.4, which will be shown in Lemma 5.12 below.
To analyze the consistency error, we firstly illuminate the geometrically consistent
condition (5.21).

Lemma 5.7. For i = −5, . . . , 3, if the geometrically consistent condition (5.21)
and the assumption (5.20) hold, then

(5.22) C+
i (2) = C−

i+2(2).

Proof. For i = −6, . . . , 3, denote by di = C+
i (2) − C−

i+2(2). By (5.20) we get
d−5 = d−6 = 0. Moreover, it follows from (5.21) that

di = 2di−1 − di−2,

which immediately implies

di − di−1 = di−1 − di−2 = · · · = d−5 − d−6 = 0.

Therefore di = di−1 = · · · = d−6 = 0, which leads to (5.22).
By (5.22), we get Table 5.1 for the coefficients C+

i (2) and C−
i (2) with i =

−4, . . . , 4. If we take α1 = · · · = α4 = 1 and α5 = α6 = α7 = 0 in Table 5.1, then
the geometrically consistent QC method changes to the quasi-nonlocal QC method as
shown in [7].

Next we define the truncation error functional as:
Definition 5.8. Let yǫ ∈ S be the solution of (5.1). The truncation error

functional F ∈ R
2N+1 is defined as

Fi = (Lǫ
at − Lǫ

gcs)(y
ǫ)i, i = −N, . . . , N.



26 P.B. Ming and J. Z. Yang

A direct calculations gives F = O(1) (see [11, Lemma 4.6] for a proof), which
seems to suggest that this scheme does not converge. However, we will see that
the truncation error functional has some structure that can be exploited, due to
the translation invariance of the potential function [15] and the periodicity of the
underlying lattice structure [27].

It is easy to see that Fi = 0 for i = −N, . . . ,−5, N − 1, N . Using the assump-
tion (5.20), we have, for i = 5, . . . , N − 2,

(5.23)
Fi = D+Qi,

Qi = V ′
(
2D̂yi

)
+ V ′

(
2D̂yi−1

)
− 2V ′

(
2D+yi−1

)
.

Summing by parts for the first term in the right-hand side of (5.3), we obtain, for any
w ∈ R

9,

4∑

i=−4

Lǫ
at(z)iwi = 2

2∑

i=−4

V ′
(
Ra

i+2(i)
)
D̂wi+1 −

4∑

i=−4

D−V ′
(
D+yi

)
wi

− V ′ (Ra
6(4))

w4

ǫ
− V ′ (Ra

5(3))
w3

ǫ

− V ′ (Ra
6̄(4̄))

w4̄

ǫ
− V ′ (Ra

5̄(3̄))
w3̄

ǫ
.(5.24)

Using the explicit expression of Lǫ
gcs and summation by parts, we get

Lemma 5.9. If (5.20) is true, then for any w ∈ R
9, we have

4∑

k=−4

Lǫ
gcs(z)iwi = −

4∑

i=−4

D−V ′
(
D+yi

)
wi

+
1

2

2∑

i=−4

{[
(2 − C−

i+2(2))V ′ (Ri+2(i)) − C+
i (2)V ′ (Ri(i+ 2))

]
D+wi+1

+
[
C−

i+2(2)V ′ (Ri+2(i)) − (2 − C+
i (2))V ′ (Ri(i+ 2))

]
D+wi

}

− V ′
(
RCB

3 (5)
)
D+w3 +

[
V ′
(
RCB

4 (6)
)
− V ′

(
RCB

5 (3)
)]w4

ǫ

− V ′ (Ra
5̄(3̄))

w3̄

ǫ
− V ′ (Ra

6̄(4̄))
w4̄

ǫ
.(5.25)

Proof. Denote the second and the third terms of the expression of Lǫ
gcs by I1 and

I2, respectively, summation by parts, and using (5.20) we obtain

I1 =
1

2

2∑

i=−4

V ′ (Ri+2(i))
[
(2 − C−

i+2(2))D+wi+1 + C−
i+2(2)D+wi

]

− 1

2ǫ

[
−V ′ (Ra

4̄(6̄))w4̄ − V ′ (Ra
3̄(5̄))w3̄ + 2V ′

(
RCB

5 (3)
)
w4

]
,
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and

I2 = −1

2

2∑

i=−4

V ′ (Ri(i+ 2)) [C+
i (2)D+wi+1 + (2 − C+

i (2))D+wi]

− 1

2ǫ
[V ′ (Ra

6̄(4̄))w4̄ + V ′ (Ra
5̄(3̄))w3̄ − 2V ′

(
RCB

4 (6)
)
w4] − V ′

(
RCB

3 (5)
)
D+w3.

Combining the above two equations, we get (5.25).

Combining the above three identities (5.23), (5.24) and (5.25), and using the fact

that 2D̂ = D+ +D−, we obtain the following identity for F .

Lemma 5.10. If (5.20) is true, then for any w ∈ R
2N+1, we have

〈F ,w〉

=

2∑

i=−4

[(
C−

i+2(2)

2
− 1

)
V ′ (Ri+2(i)) +

C+
i (2)

2
V ′ (Ri(i+ 2)) + V ′

(
Ra

i+2(i)
)]
D+wi+1

+

2∑

i=−4

[
V ′
(
Ra

i+2(i)
)
− C−

i+2(2)

2
V ′ (Ri+2(i)) +

(
1 − C+

i (2)

2

)
V ′ (Ri(i+ 2))

]
D+wi

−
N−3∑

i=4

Qi+1D
+wi −

[
V ′ (Ra

3(5)) − V ′
(
RCB

3 (5)
)]
D+w3 +QN−1

wN−2

ǫ
.

A remarkable aspect of the above lemma is that it is valid without assuming the
geometrically consistent condition (5.21). Given this condition, using the a priori
estimates for the atomistic solution yǫ, we can prove that the truncation error of the
geometrically consistent QC method is small in a weak norm.

Lemma 5.11. Let yǫ ∈ S be the solution of the atomistic model (5.1). Under the
same conditions in Theorem 5.6 and if the geometrically consistent condition (4.1)
and the assumption (5.20) are valid, then there exists a constant C such that

(5.26) | 〈F ,w〉 | ≤ Cǫ‖w ‖d, ∀w ∈ R
2N+1.

Proof. We start with the expression of 〈F ,w〉 in Lemma 5.10. Denote the right-
hand side of 〈F ,w〉 by I1, . . . , I5 and let C+

i (2) = C−
i+2(2) = α. By (5.22) and Taylor

expansion, we obtain

(
−1 +

1

2
C−

i+2(2)

)
V ′ (Ri+2(i)) +

1

2
C+

i (2)V ′ (Ri(i+ 2)) + V ′
(
Ra

i+2(i)
)

= (1 − α/2)
[
V ′
(
Ra

i+2(i)
)
− V ′ (Ri+2(i))

]
+
α

2

[
V ′
(
Ra

i+2(i)
)
− V ′ (Ri(i+ 2))

]

= (1 − α)ǫ
[
(1 − α/2)

∫ 1

0

V ′′
(
tRa

i+2(i) + (1 − t)Ri+2(i)
)

dt

− (α/2)

∫ 1

0

V ′′
(
tRa

i+2(i) + (1 − t)Ri(i+ 2)
)

dt
]
(D+)2yǫ

i .
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Proceeding along the same line, we get

V ′
(
Ra

i+2(i)
)

+

(
1 − 1

2
C−

i+2(2)

)
V ′ (Ri(i+ 2)) − 1

2
C+

i (2)V ′ (Ri+2(i))

= (1 − α/2)
[
V ′
(
Ra

i+2(i)
)
− V ′ (−Ri(i+ 2))

]
+
α

2

[
V ′
(
Ra

i+2(i)
)
− V ′ (Ri+2(i))

]

= (1 − α)ǫ
[
(α/2 − 1)

∫ 1

0

V ′′
(
tRa

i+2(i) − (1 − t)Ri(i+ 2)
)

dt

+ (α/2)

∫ 1

0

V ′′
(
tRa

i+2(i) + (1 − t)Ri+2(i)
)

dt
]
(D+)2yǫ

i .

Using the a priori estimates (5.17) for yǫ
i with i = −4, . . . , 2, we bound I1 and I2 as

|I1| + |I2| ≤ Cǫ
2∑

i=−4

|D+wi+1| ≤ Cǫ‖w ‖d.

Using a Taylor expansion, we can write Qi for i = 1, . . . , N − 1 as

Qi = ǫ

[∫ 1

0

V ′′
(
(1 + t)D+yǫ

i−1 + (1 − t)D+yǫ
i

)
dt

]
(D+)2yǫ

i−1

− ǫ

[∫ 1

0

V ′′
(
(1 + t)D+yǫ

i−1 + (1 − t)D+yǫ
i−2

)
dt

]
(D+)2yǫ

i−2

= ǫ2
[∫ 1

0

V ′′
(
(1 + t)D+yǫ

i−1 + (1 − t)D+yǫ
i

)
dt

]
(D+)3yǫ

i−2

− ǫ2
[∫ 1

0

∫ 1

0

V ′′′
(
(1 + t)D+yǫ

i−1 + (1 − t)D+(syǫ
i + (1 − s)yǫ

i−2)
)

ds (1 − t) dt

]

× (D+)2(yǫ
i−2 + yǫ

i−1)(D
+)2yǫ

i−2.

Using (5.17) once again, we have

|Qi| ≤ Cǫ2 for i = 1, . . . , N − 1,

which immediately implies

|I3| ≤ Cǫ2
N−2∑

i=4

|D+wi| ≤ Cǫ2N

(
N−2∑

i=4

|D+wi|2
)1/2

≤ Cǫ3/2‖w ‖d.

A direct calculation gives

Ra
3(5) −RCB

3 (5) = ǫ(D+)2yǫ
3.

Therefore, we obtain

V ′ (Ra
3(5)) − V ′

(
RCB

3 (5)
)

= ǫ

∫ 1

0

V ′′
(
tRa

3(5) + (1 − t)RCB
3 (5)

)
dt (D+)2yǫ

3,

which yields

|I4| ≤ Cǫ|D+w3| ≤ Cǫ‖w ‖d.
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By (3.29) and the above estimate for QN−1, we get

|I5| ≤ Cǫ|wN−2| ≤ Cǫ2‖w ‖d.

Combing the above estimates for I1, . . . , I5, we get (5.26).
Given any F ∈ R

2N+1, define

(5.27) ‖F ‖−d = sup
w∈R2N+1

〈F ,w〉
‖w ‖d

.

This norm is the so-called Spijker norm [36, 31]. By Lemma 5.11, we obtain

‖F ‖−d ≤ Cǫ.

This suggests that the local truncation error of the geometrically consistent scheme
is small measured in Spijker norm.

Next, we prove the stability of the geometrically consistent QC method. The proof
follows the same line as for (5.12). Since we modify the equilibrium equations for the
boundary atoms, cf., (5.19), there is no well-defined energy functional. Therefore, the
Hessian matrix is defined as

(HQC)ij = −
∂(Lǫ

gcs)i

∂wj
(w),

where (Lǫ
gcs)i is regarded as a function of w. We may use H to replace HQC when

there is no confusion occurs.
Lemma 5.12. If the assumptions (5.20) is valid for i = −4, . . . , 4 and the geo-

metrically consistent condition (4.1) holds true, then, for all z ∈ R
2N+1,

(5.28) 〈HQC(x)z, z〉 ≥ [V ′′ (1) − 6|V ′′ (2)|]‖ z ‖2
d, N ≥ 4.

Proof. By (5.20), and the elementary identity:

a2 − ab =
1

2
(a− b)2 +

1

2
(a2 − b2), a, b ∈ R,

a direct calculation gives, for any z ∈ R
2N+1,

ǫ2 〈HQC(x)z, z〉 = [V ′′ (1) + V ′′ (2)]z2
−N + V ′′ (2) z2

−N+1 +

(
V ′′ (1) +

3

2
V ′′ (2)

)
z2

N

+
V ′′ (2)

2
(3z2

N−2 − z2
N−1 − z2

N−3)

+

N−3∑

i=−N

(
−ǫ2Hi,i+1

)
(zi − zi+1)

2 +

N−4∑

i=−N

(
−ǫ2Hi,i+2

)
(zi − zi+2)

2

+ [V ′′ (1) + 2V ′′ (2)](zN−2 − zN−1)
2 + V ′′ (1) (zN−1 − zN )2

+
V ′′ (2)

2

(
(zN−3 − zN−1)

2 + (zN−2 − zN )2
)
.(5.29)

A direct calculation gives

ǫ2Hi,i+1 = −V ′′ (1) +
[
(C+

i (2) − 2)(1 − C+
i (2)) + (1 − C+

i−1(2))C+
i−1(2)

]
V ′′ (2)

+
[
(1 − C−

i+2(2))C−
i+2(2) + (C−

i+1(2) − 2)(1 − C−
i+1(2))

]
V ′′ (2) ,

ǫ2Hi,i+2 = −1

2

[
C+

i (2)(2 − C+
i (2)) + C−

i+2(2)(2 − C−
i+2(2))

]
V ′′ (2) ,
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which together with the geometrically consistent condition (5.22) leads to

−ǫ2(Hi,i+1 + 2Hi,i+2 + 2Hi−1,i+1) = V ′′ (1)

+
[
4 − C+

i (2) + C−
i+2(2) + C+

i−1(2) − C−
i+1(2)

]
V ′′ (2)

= V ′′ (1) + 4V ′′ (2) .(5.30)

Using (5.20), we get

(5.31)

{
−ǫ2(H−N,−N+1 + 2H−N,−N+2) = V ′′ (1) + 2V ′′ (2) ,

−ǫ2(HN−3,N−2 + 2HN−4,N−2) = V ′′ (1) + 4V ′′ (2) .

If V ′′ (2) < 0, then by the Cauchy-Schwartz inequality

|zi − zi+2|2 ≤ 2(|zi − zi+1|2 + |zi+1 − zi+2|2),

the equations (5.30) and (5.31), we obtain

ǫ2 〈HQC(x)z, z〉 ≥ [V ′′ (1) + 4V ′′ (2)]

N−4∑

i=−N

(zi − zi+1)
2

+ [V ′′ (1) + 5V ′′ (2)](zN−3 − zN−2)
2 + [V ′′ (1) + 4V ′′ (2)](zN−2 − zN−1)

2

+ [V ′′ (1) + V ′′ (2)](zN−1 − zN )2

+
{
[V ′′ (1) + V ′′ (2)]z2

−N + V ′′ (2) z2
−N+1 + [V ′′ (1) + 2V ′′ (2)](z−N − z−N+1)

2
}

+

(
V ′′ (1) +

3

2
V ′′ (2)

)
z2

N +
V ′′ (2)

2
(3z2

N−2 − z2
N−1 − z2

N−3).

Invoking (5.14) once again we obtain

ǫ2 〈HQC(x)z, z〉 ≥ [V ′′ (1) + 5V ′′ (2)]‖ z ‖2
d +

3V ′′ (2)

2
z2

N−2.

By (3.29) and N ≥ 4, we get

ǫ2 〈HQC(x)z, z〉 ≥
(
V ′′ (1) + 5V ′′ (2) +

9V ′′ (2)

2
ǫ2
)
‖ z ‖2

d

≥ [V ′′ (1) + 6V ′′ (2)]‖ z ‖2
d.

On the other hand, if V ′′ (2) ≥ 0, then we have

ǫ2 〈HQC(x)z, z〉 ≥
(
V ′′ (1) − 3V ′′ (2) ǫ2

)
‖ z ‖2

d ≥ [V ′′ (1) − 3V ′′ (2)]‖ z ‖2
d.

Combining the above two inequalities leads to (5.12).
We are ready to prove the main theorem of this paper.
Theorem 5.13. Assume that the geometrically consistent condition (4.1), the

conditions (4.3) and (5.20) hold. Assume that p ≥ 1,m ≥ 4. There exists a constant
κ1 such that if ‖f‖W m,p(I) ≤ κ1, then the problem (5.18) has a locally unique solution
yqc that satisfies

(5.32) ‖D+(yqc − yǫ)‖∞ ≤ Cǫ.
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Proof. Write

Lǫ
gcs(y) − Lǫ

gcs(y
ǫ) =

∫ 1

0

HQC(ty + (1 − t)yǫ) dt · (y − yǫ).

Hence y ∈ S is a solution of (5.18) if and only if

∫ 1

0

HQC(ty + (1 − t)yǫ) dt · (y − yǫ) = F ,

since

Lǫ
gcs(y) − Lǫ

gcs(y
ǫ) = Lǫ

gcs(y) − Lǫ
at(y

ǫ) + Lǫ
at(y

ǫ) − Lǫ
gcs(y

ǫ) = (Lǫ
at − Lǫ

gcs)(y
ǫ).

Next define

S1 = {y ∈ S | ‖D+(y − yǫ)‖∞ <
√
ǫ }.

Let T̂ : S1 → S1, and T̂ (y) be the solution of the following linear system:

∫ 1

0

HQC(ty + (1 − t)yǫ) dt · (T̂ (y) − yǫ) = F .

Define w ≡ T̂ (y) − yǫ, using (5.16), we obtain

‖D+(ty + (1 − t)yǫ − x)‖∞ ≤ t‖D+(y − yǫ)‖∞ + ‖D+(yǫ − ỹ)‖∞ + ‖D+(ỹ − x)‖∞
≤

√
ǫ+ Cǫ5/2 + |ucb|W 1,∞(I) + Cǫ2|u2|W 1,∞(I)

≤ (
√
ǫ+ Cǫ5/2 + CIǫ

2|u2|W 2,p(I)) + CI‖ucb‖W 2,p(I),(5.33)

where CI is the imbedding constant. By the regularity estimate (5.8), we have, for
sufficiently small ǫ, we get

√
ǫ+ Cǫ5/2 + Cǫ2‖u2‖W 2,p(I) ≤

√
ǫ+ Cǫ5/2 + Cρ2ǫ

2 < δ/2.

Moreover, there exists a constant ρ3 such that if ‖f‖Lp(I) ≤ ρ3, then

C1‖ucb‖W 2,p(I) ≤ δ/2.

Substituting the above two inequalities into (5.33) leads to

‖D+(ty + (1 − t)yǫ − x) ‖∞ < δ.

Therefore, using Lemma 5.5 and Lemma 5.12, we get

(5.34)

〈∫ 1

0

HQC(ty + (1 − t)yǫ) dtw,w

〉
≥ κ′

2
‖w ‖2

d.

Using (5.26) and (5.34), we obtain

‖w ‖d ≤ Cǫ.

By the definition of ‖ · ‖d, the above inequality immediately implies

(5.35) ‖D+(T̂ (y) − yǫ) ‖∞ = ‖D+w ‖∞ ≤ ‖w ‖d ≤ Cǫ.
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Therefore, for sufficiently small ǫ, we have

‖D+w‖∞ <
√
ǫ.

Thus, we conclude that T̂ (y) ∈ S1. By the fixed point theorem, there exists a solution
of the geometrically consistent QC method. The solution is locally unique since the
Hessian matrix

∫ 1

0

HQC(ty + (1 − t)yǫ) dt

is non-degenerate for small f .
The error estimate (5.32) follows from (5.35).
A direct consequence of the above theorem is
Corollary 5.14. If p ≥ 1,m ≥ 4, then there exists a constant ρ such that for all

‖f‖W m,p(I) ≤ ρ, the quasi-nonlocal QC method has a locally unique solution yqc ∈ S
that satisfies

‖D+(yqc − yǫ)‖∞ ≤ Cǫ.

The uniform first order convergence of the geometrically consistent QC method
may seem quite unexpected since the pointwise local truncation error of such schemes
is of O(1). The origin of the above result lies in the supra-convergence phenomenon
[17, 35, 36] as shown in Lemma 5.11.

The analysis presented above can be extended to high dimension, when the in-
terface between the local and nonlocal regions is planar, i.e., there are no corners
along the interface. To do so, we have to establish the stability result and the con-
sistent analysis in high dimensions. The stability results, namely, Lemma 5.4 and
Lemma 5.12 can be easily extended to high dimensions by combining the argument
in [10] and in the proof of Lemma 5.4. As for the consistency analysis, there are
two main ingredients. One is the analysis of the local truncation error that is guar-
anteed by the geometrically consistent condition. The other is the structure of the
consistency error, i.e., (5.26). This is also due to the symmetry of the lattice and the
potential function. Even though the main ideas for the analysis in high dimensions
are quite clear, the technicalities are quite involved. We shall present the detailed
analysis in a separate paper [23].

5.3. Stability condition. In the remaining part we verify the stability condition

(5.36) V ′′ (1) > 6|V ′′ (2)|

for several pairwise potentials.
First we consider the Lennard-Jones potential [18]:

V0(r) = 4
(
(σ/r)12 − (σ/r)6

)
,

where σ is some atomic length scale parameter. The equilibrium bond length ǫ =
(2/K)1/6σ with K = (1 + 2−6)/(1 + 2−12) > 1. A direct calculation gives

V ′′ (2) < 0 and V ′′ (1) − 6|V ′′ (2)| = V ′′ (1) + 6V ′′ (2) > 72K > 0.

This verifies (5.36).
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Table 5.2

Parameters for various metals; data for ar0 adopted from [13, Table I]

Metal Rb Cs Na K Ba Fe Cr

ar0 1.206 1.260 1.267 1.293 1.650 1.988 2.260

M 1.452 1.597 1.615 1.678 1.191 .96 .903

sgn (V ′′ (2)) + + + + − − −

The next example is the Morse potential [25] mentioned before:

V0(r) = e−a(r−r0) − 2e−a(r−r0).

Let ǫ be the equilibrium bond length and denote by s = ear0 and t = e−aǫ, we find
that t satisfies

(5.37) 2st3 + (s− 2)t− 1 = 0.

It is clear to see that there exists a unique solution t ∈ (0, 1), denoted by t0, a direct
calculation gives

V ′′ (1) − 6|V ′′ (2)| = 2a2ǫ2st0(2st0 − 1 − 6|1 + t0 − st0|).

Let M ≡ 2st0 − 1 − 6|1 + t0 − st0|. For the cubic metals listed in [13], e.g., Rb, Cs,
Na, K, Ba, Fe, Cr, et al., see Table 5.2 for the corresponding values of M .

6. Conclusion. The analysis presented here is done for one-dimensional models,
which demonstrates that

1. the deformation gradient may have O(1) error;
2. the geometrically consistent QC method is uniformly accurate, even near the

interface.
The main limitation of the analysis in this paper is the assumption that every

atom is treated as a representative atom. The motivation comes from the fact that we
are mainly interested in the local-nonlocal interface. To understand the QC method
fully, we also need to analyze the coarsening procedure, in particular, the transition
between atom-based summation and element-based summation [7]. As was pointed
in [7], this is where difficulty associated with corners comes from. At the present time,
there is no clean solution to this problem.

Acknowledgement. We are grateful to Weinan E and Jianfeng Lu for helpful
discussions. We are also very grateful to the referee for many thoughtful suggestions
which helped to improve the current paper.

Appendix A. Auxiliary Results and Estimates of the Green’s Difference

Function.

We prove some auxiliary results in §3 in this part.

Proof of (3.17) and (3.16) Adding the 3rd row to the 1st row and 2nd row to the
4th row, and subtracting respectively (−2) times the 2nd row and 3rd row from 1st
row and 4th row, using the relation (3.14)2, we get

detA =

∣∣∣∣∣∣∣∣

−5ωN+i
1 −5ωN+i

2 5ωN−i
1 5ωN−i

2

FN+i(ω1) FN+i(ω2) −FN−i(ω1) −FN−i(ω2)
FN+i+1(ω1) FN+i+1(ω2) −FN−i−1(ω1) −FN−i−1(ω2)

−5ωN+i+1
1 −5ωN+i+1

2 5ωN−i−1
1 5ωN−i−1

2

∣∣∣∣∣∣∣∣
.
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Multiplying the first row by −ω1 and adding to the 4th row we obtain

detA =

∣∣∣∣∣∣∣∣

−5ωN+i
1 −5ωN+i

2 5ωN−i
1 5ωN−i

2

FN+i(ω1) FN+i(ω2) −FN−i(ω1) −FN−i(ω2)
FN+i+1(ω1) FN+i+1(ω2) −FN−i−1(ω1) −FN−i−1(ω2)

0 5ωN+i+1
2 (ω2

1 − 1) 5ωN−i−1
1 (1 − ω2

1) 0

∣∣∣∣∣∣∣∣
.

Multiplying the 4th row by ω1/(ω
2
1 − 1) and adding to the 1st row we obtain

detA =

∣∣∣∣∣∣∣∣

−5ωN+i
1 0 0 5ωN−i

2

FN+i(ω1) FN+i(ω2) −FN−i(ω1) −FN−i(ω2)
FN+i+1(ω1) FN+i+1(ω2) −FN−i−1(ω1) −FN−i−1(ω2)

0 5ωN+i+1
2 (ω2

1 − 1) 5ωN−i−1
1 (1 − ω2

1) 0

∣∣∣∣∣∣∣∣
.

Multiplying the 1st column by ω2N
2 and adding to the 4th column, and the 2nd column

by ω2N
1 and adding to the 3rd column, respectively, we obtain

detA = 25(ω2 − ω1)
[(
ω2N

1 FN+i(ω2) − FN−i(ω1)
)(
ω2N

2 FN+i+1(ω1) − FN−i−1(ω2)
)

−
(
ω2N

1 FN+i+1(ω2) − FN−i−1(ω1)
)(
ω2N

2 FN+i(ω1) − FN−i(ω2)
)]
.

A straightforward calculation gives

detA = 25(ω1 − ω2)[ω
N
1 g(ω2) + ωN

2 g(ω1)]

× [ωN
2 (FN−i−1 + FN+i+1)(ω1) − ωN

1 (FN−i−1 + FN+i+1)(ω2)].

Using the expression of Fm(z), we get (3.17).
We only calculate γi and δi in (3.13) since G is symmetric. By definition,

γi = (cof A)43/ detA, δi = (cof A)44/ detA.

Moreover, we only calculate γi since (cof A)44(ω1, ω2) = (cof A)43(ω2, ω1). By (3.14),
a direct calculation gives

γi(ω1, ω2) = 5ωN
2

[
[ωN

1 g(ω2) + ωN
2 g(ω1)][ω

N+i
1 FN+i+1(ω2) − ωN+i

2 FN+i+1(ω1)]

+ [ω1 − ω2 + g(ω1)ω
N+i
2 − g(ω2)ω

N+i
1 ][ωN

2 FN+i+1(ω1) − ωN
1 FN−i−1(ω2)]

]
/ detA.

Substituting Fm(z) into the above equation, we obtain (3.16).

Proof of Lemma 3.7 The upper bound in (3.18)1 immediately follows from (3.15)
and Lemma 3.6, while the lower bound follows from the fact that G is monotone [40].

Using (3.15) and (3.16), a direct calculation gives

(A.1) D1D2Gi,j = D+γi(ω1, ω2)D
+FN−j(ω1) +D+γi(ω2, ω1)D

+FN−j(ω2),

where D+FN−j(z) = [−g(z) + zN−j−1(1 − z)]/ǫ, z = ω1, ω2 and

D+γi(ω1, ω2) =
[5
ǫ
(ω1 − ω2)[ω

2N
2 g(ω1) + g(ω2)]

+ 5D+ωN+i
1 [ω2N

2 (ω1 − ω2) + 2f(ω2)g(ω2) + 2Ng2(ω2)]

− 5D+ωN+i
2 [f(ω1)g(ω2) + f(ω2)g(ω1) + 2Ng(ω1)g(ω2)]

]
/ detA,
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where we have used f(ω2)g(ω1) − f(ω1)g(ω2) = ω1 − ω2. By

f(ω1)g(ω2) + f(ω2)g(ω1) = 15, g(ω1)g(ω2) = 5,

we write D+γi as

D+γi(ω1, ω2) =
[5
ǫ
(ω1 − ω2)[ω

2N
2 g(ω1) + g(ω2)] − 5(10N + 15)D+ωN+i

2

+ 5D+ωN+i
1 [ω2N

2 (ω1 − ω2) + 2f(ω2)g(ω2) + 2Ng2(ω2)]
]
/ detA.

Using (3.17), we get

detA = O(ǫ−1|ω2|2N ),

which together with the above expression of D+γi leads to

D+γi(ω1, ω2) = O(1), D+γi(ω2, ω1) = O(ǫ−1|ω1|N−i−1).

Substituting the above estimate into (A.1), we obtain

|D1D2Gi,j | ≤ C(ǫ−1 + ǫ−1|ω1|N−j−1 + ǫ−2|ω1|j−i) ≤ Cǫ−2(ǫ+ |ω1|j−i),

which together with the facts that j ≥ i and the symmetry of G, we obtain (3.18) for
i = −N + 2, . . . , N − 2.

Using Lemma 3.6 and proceeding along the same line, we find that the esti-
mate (3.18) remains true for the cases when i = −N,−N + 1, N − 1, N . This finishes
the proof.

Appendix B. A-priori Estimate for the Solution of (3.5). Define ŷ
ǫ ≡

yqc − x, by (3.5), ŷ
ǫ satisfies

(B.1) Âŷ
ǫ = f .

Lemma B.1. For ŷ
ǫ the solution of (B.1), we have

(B.2) |ŷ ǫ
−N |, |ŷ ǫ

−N+1| ≤
(N + 1)ǫ2

2
‖ f ‖∞.

Proof. Note that Â is an irreducible diagonally dominant matrix. Therefore,
Â is monotone [40], i.e., each entry of Â−1 is nonnegative. Define g = ǫ2e with
e = (1, . . . , 1) ∈ R

2N+1. A direct calculation gives

(Âg)−N = (Âg)N = 2, (Âg)−N+1 = (Âg)N−1 = 1, and (Ag)i = 0 otherwise.

Hence,

gi = (Â−1Âg)i =

N∑

j=−N

(Â−1)ij(Âg)j ≥ 2[(A−1)i,−N + (Â−1)i,N ].

Therefore,

(B.3) 0 ≤ (Â−1)i,−N + (Â−1)i,N ≤ ǫ2/2.
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Next we let g ∈ R
2N+1 with gi = (N + 1 + i)(N + 1− i)ǫ2, i = −N, . . . , N . Using

the relation

gi−2 + gi+2 = 2gi − 8 and gi−1 + gi+1 = 2gi − 2,

we obtain (Âg)−N = (Âg)N = 7 − 2N and (Âg)i = 10 otherwise. Therefore,

gi = (Â−1Âg)i = (7 − 2N)[(Â−1)i,−N + (Â−1)i,N ] + 10

N−1∑

j=−N+1

(Â−1)ij ,

which together with (B.3) leads to

(Â−1e)i =
gi

10
+

2N + 3

10
[(Â−1)i,−N + (Â−1)i,N ] ≤ gi

10
+

2N + 3

20
ǫ2,

using the above identity with i = −N and −N + 1 we get (B.2).
Next we prove (3.11). Denote by t = (D+y−N , . . . , D

+y0) ∈ R
N+1 that satisfies

(B.4) Ĉt = g,

where

Ĉ =




2 1 . . . . . . . . . 0
−1 2 1 . . . . . . 0
−1 −2 2 1 . . . 0

. . .
. . .

. . .
. . .

. . . −1 −2 2 1 . . .

. . . . . . −1 −2 3/2 1/2

. . . . . . . . . −1 2 5




,

and

g1 = −ǫf1 +
2

ǫ
ŷ ǫ
−N , g2 = −ǫf2 +

1

ǫ
ŷ ǫ
−N+1, gi = −ǫfi for i = 3, . . . , N + 1.

Proof of (3.11) Denote the (N + 1)-th row of Ĉ−1 by (x1, . . . , xN+1). It is easy to
verify that






2x1 − x2 − x3 = 0,

xi−1 + 2xi − 2xi+1 − xi+2 = 0, i = 2, . . . , N − 1,

xN−1 + (3/2)xN − 2xN+1 = 0,

(1/2)xN + 5xN+1 = 1.

By standard theory of recurrence equation, we get

xi = a+ b(ωi−1
1 + ωi−1

2 ), a =
6[ψ(ω1) + ψ(ω2)]

φ(ω1) + φ(ω2)
, b = − 1

φ(ω1) + φ(ω2)
,

φ(z) = zN−2(97z + 38), ψ(z) = zN−2(5z/2 + 1).

Using the fact that a = O(1) and b = O(|ω1|N ), we get

|x1| + |x2| ≤ 2|a| + 5|b| ≤ C,
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and

N+1∑

i=1

|xi| ≤ |a|(N + 1) + |b|
(

1

1 − |ω1|
+

|ω2|N+1 − 1

|ω2| − 1

)
≤ CN,

which together with (B.2) leads to

|D+ŷ ǫ
0 | ≤

2

ǫ
(|x1| + |x2|)(|ŷ ǫ

−N | + |ŷ ǫ
−N+1|) + ǫ

(
N+1∑

i=1

|xi|
)
‖ f ‖∞ ≤ C‖ f ‖∞,

Using the triangle inequality, we obtain the estimate (3.11) for D+y0. Proceeding
along the same line, we get the estimate for D+y1̄.
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[26] C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension, ESAIM:

M2AN., 42 (2008), pp. 57–92.
[27] C. Radin and L.S. Schulman, Periodicity of groud states, Phys. Rev. Lett., 51 (1983), pp. 621–

622.
[28] V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips and M. Ortiz, An adaptive finite

element approach to atomic scale mechanics-the quasicontinuum method, J. Mech. Phys.
Solids, 47 (1999), pp. 611–642.

[29] T. Shimokawa, J.J. Mortensen, J. Schiøz and K.W. Jacobsen, Mathching conditions in
the quasicontinuum method: removal of the error introduced at the interface between the
cosrse-grained and fully atomistic region, Phys. Rev. B, 69 (2004), 214104.

[30] G.S. Smith, E.B. Tadmor and E. Kaxiras, Multiscale simulation of loading and electrical
resistance in silicon nanoindentation, Phys. Rev. Lett., 84 (2000), pp. 1260–1263.

[31] M.N. Spijker, Stability and convergence of finite difference schemes, Thesis, University of
Leiden, 1968.

[32] G. Strang, Accurate partial difference methods II. non-linear problems, Numer. Math., 6
(1964), pp. 37–46.

[33] E.B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids, Phil.
Mag., A73 (1996), pp. 1529–1563.

[34] E.B. Tadmor, G.S. Smith, N. Bernstein and E. Kaxiras, Mixed finite element and atomistic
formulation for complex crystals, Phy. Rev. B, 59 (1999), pp. 235–245.
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