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Abstract. In this paper, we present a generalized Peierls-Nabarro model for curved
dislocations using the discrete Fourier transform. In our model, the total energy is ex-
pressed in terms of the disregistry at the discrete lattice sites on the slip plane, and the
elastic energy is obtained efficiently within the continuum framework using the dis-
crete Fourier transform. Our model directly incorporates into the total energy both the
Peierls energy for the motion of straight dislocations and the second Peierls energy for
kink migration. The discreteness in both the elastic energy and the misfit energy, the
full long-range elastic interaction for curved dislocations, and the changes of core and
kink profiles with respect to the location of the dislocation or the kink are all included
in our model. The model is presented for crystals with simple cubic lattice. Simula-
tion results on the dislocation structure, Peierls energies and Peierls stresses of both
straight and kinked dislocations are reported. These results qualitatively agree with
those from experiments and atomistic simulations.
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1 Introduction

Dislocations are one-dimensional topological defects in crystalline solids, whose motion
is directly responsible for the plastic deformation of these materials [1]. When a straight
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dislocation moves in its slip plane over the crystal lattice, its energy changes periodi-
cally, and an energy barrier has to be overcome when it moves from one energy valley
to another. This energy barrier is referred to as the Peierls energy, and the minimum
stress to drive the dislocation over this energy barrier is the Peierls stress [1–4]. In real-
ity, due to thermal fluctuations and other effects, a dislocation line may lie in different
Peierls valleys connected by kinks, and the motion of the dislocation is also controlled
by the kink nucleation and migration. The energy barrier and the minimum stress to
move an individual kink are the second Peierls energy and the second Peierls stress, re-
spectively [1, 5–12]. These Peierls energies and Peierls stresses play important roles in
characterizing the mobility of dislocation lines [1–16, 18–30].

The Peierls energy and Peierls stress can be estimated using the Peierls-Nabarro model
[1–4], which is a hybrid model incorporating atomic features into continuum framework.
In the Peierls-Nabarro model, the solid is divided by the slip plane of the dislocation into
two half-space linear elastic continua, which have a disregistry (or misfit) relative to each
other and are connected by a nonlinear potential force. The total energy consists of the
elastic energy in the two half-space continua and the misfit energy due to the nonlinear
atomic interaction across the slip plane. The minimum energy state gives the dislocation
core profile on the slip plane. The change of the energy as the dislocation moves over
the crystal lattice is obtained by shifting rigidly the continuous dislocation profile and
summing the misfit energy over the discrete lattice sites near the slip plane. The Peierls
energy is the difference between the maximum and minimum of this discrete summation
of misfit energy, and the Peierls stress is associated with the maximum derivative of this
discrete summation of misfit energy.

The estimates of the Peierls energy and Peierls stress within the Peierls-Nabarro model
give qualitative descriptions for the energy barrier and minimum stress required when
the dislocations move over the crystal lattice, and agree reasonably with the experimental
results [1–4, 14–16]. The Peierls-Nabarro model has been improved greatly with the gen-
eralized stacking fault energy [17] obtained using ab initio calculations [18–23]. However,
in most of these models, the estimates of the Peierls energy and Peierls stress are still
obtained in the same way as those in the classical Peierls-Nabarro model, which has been
criticized for the following limitations [20, 25]. The first limitation is the inconsistency in
the incorporation of the lattice discreteness: on one hand, the continuous dislocation core
profile is obtained from energy minimization, on the other hand, discrete sum is used to
calculate the Peierls energy; i.e., the Peierls energy is not directly included in the energy
minimization. Another limitation is that only the discreteness of the misfit energy is con-
sidered, while the discreteness of the elastic energy is neglected. Finally, this method is
based on the assumption that the dislocation core profile does not change as it moves.
It has been shown that these limitations may result in large errors especially in dealing
with dislocations with narrow cores (e.g. in silicon) [20, 25].

Several efforts have been made to address these problems. Bulatov and Kaxiras pro-
posed a semidiscrete variational Peierls framework [20], in which the total energy is min-
imized with respect to the disregistry at discrete lattice sites and the elastic energy is still
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obtained in the continuum framework by linking the values of disregistry at discrete lat-
tice sites using piecewise linear functions. This method has been applied to dislocations
in Si [20] and Al [23]. Movchan et al. [24] proposed a discrete model in which the singular
integral in the stress formula is regularized and then evaluated at the discrete lattice sites
to include the effect of the crystal lattice. In these models [20, 23, 24], the Peierls stress
is calculated as the critical stress at which the procedure of energy minimization fails to
converge. Schoeck [25–27] included in the total energy the approximation of the energy
change due to the discrete lattice using Poisson’s summation formula, and the disloca-
tion profile is obtained using a set of trial functions of the Peierls type. All these models
are for straight dislocations.

In the classical models for dislocation kinks [1, 5, 6, 8, 11, 13], a dislocation is approx-
imated by almost straight line segments lying in the Peierls valleys and connected by
kinks (the string approximation). Besides the limitations of the classical Peierls-Nabarro
model for straight dislocations, further simplifications are needed in these string approx-
imation models for dislocations with kinks. First, the core structure of the dislocation
is lost in these models. Second, the long-range elastic effect is only approximated by
the local line tension model, and the line tension cannot be determined accurately for
a general curved dislocation. Finally, the Peierls energy in the direction normal to the
almost straight dislocation is included as a given function obtained from the Peierls-
Nabarro model for straight dislocations, which may not be accurate near the kink; while
the second Peierls energy for a kink (the energy barrier for kink migration) and the sec-
ond Peierls stress (the minimum stress to move a kink along the dislocation) are missing
in these models. However, it has been shown that the second Peierls energy for kinks
is very high and comparable with the Peierls energy for straight dislocations in covalent
bond crystals such as Si [19, 28].

Only a few attempts have been made within the frameworks of the Peierls-Nabarro
model and the string approximation to calculate the second Peierls stress and the sec-
ond Peierls energy for dislocation kinks. In the models of Joos et al. [9, 10], similar to
the Peierls energy for a straight dislocation in the Peierls-Nabarro model, the second
Peierls energy for a kink within the string approximation is obtained from the sum-
mation of the total energy at discrete lattice sites along the dislocation, and the second
Peierls stress is associated with the maximum derivative of the discrete summation of
the total energy. Schottky [6] used the long-range elastic interaction in the string ap-
proximation in the kink profile, and obtained the second Peierls energy using discrete
summation. Sanders [7] calculated kink profile, the second Peierls energy and the second
Peierls stress using a two dimensional Frenkel-Kontorowa model, which is a simplified
atomistic model considering only the interaction of the atoms on the slip plane, while the
whole upper and lower half spaces of atoms are omitted. Movchan et al. [29] proposed a
two-dimensional lattice model in which the singular integral in the stress formula is reg-
ularized and then evaluated at the discrete lattice sites, and used the model to simulate
the motion of a dislocation kink; however, they did not give any quantitative estimates
for the second Peierls stress or the second Peierls energy. Some generalizations have also
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been made by Xu and Argon [31] and Xiang et al. [32] on the models for curved disloca-
tions within the Peierls-Nabarro framework. However, the Peierls energies and Peierls
stresses are not directly included in these models.

In this paper, using the discrete Fourier transform, we present a generalized Peierls-
Nabarro model for curved dislocations incorporating the Peierls energies and Peierls
stresses. In our model, the total energy is expressed in terms of the disregistry at the
discrete lattice sites on the slip plane, and the elastic energy is obtained efficiently within
the continuum framework using the discrete Fourier transform. The latter means that
when calculating the elastic fields, the values of the disregistry at discrete lattice sites are
connected smoothly using the trigonometric functions. Our model directly incorporates
into the total energy the Peierls energy for the motion of straight dislocations and the
second Peierls energy for kink migration. The discreteness in both the elastic energy and
the misfit energy, the full long-range elastic interaction for curved dislocations, and the
changes of core and kink profiles with respect to the location of the dislocation or the kink
are all included in our model. In this paper, we present our model for crystals with sim-
ple cubic lattice. The core structure and profile of both straight and kinked dislocations,
the Peierls energy and Peierls stress for straight dislocations, and the second Peierls en-
ergy and Peierls stress will be obtained using our model. We will show that these results
qualitatively agree with those from experiments and atomistic simulations.

2 The classical Peierls-Nabarro model for straight dislocations

In this section, we briefly review the classical Peierls-Nabarro model for a straight dislo-
cation and how the Peierls energy and the Peierls stress are calculated within this model.
More on this model can be found in [1–4].

As an example, consider an edge dislocation in a crystal with simple cubic lattice. In
a Cartesian set of coordinates xyz, assume that the dislocation is located along the y axis
and the Burgers vector is in the direction of the x axis. Thus the xy plane is the slip plane
of the dislocation. The length of the Burgers vector is b. The disregistry of the upper half
crystal (z > 0) relative to the lower half (z < 0) in the direction of the Burgers vector is
φ(x), where φ(−∞)=0 and φ(+∞)=b. The distribution of the Burgers vector of the edge
dislocation is ρ(x)=φ′(x).

In the Peierls-Nabarro model, the total energy is written as

E=Eelastic+Emisfit, (2.1)

where

Eelastic =
∫

R3

3

∑
i,j=1

1

2
σijǫijdxdydz (2.2)

is the elastic energy in the upper and lower half spaces, {σij} and {ǫij} are the stress and
strain tensors, respectively, and Emisfit is the misfit energy due to the nonlinear atomic
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interaction across the slip plane

Emisfit =
∫ +∞

−∞
γ(φ(x))dx, (2.3)

where γ(φ) is the interplanar potential. In the classical Peierls-Nabarro model, isotropic
elasticity is used for Eelastic, and γ(φ) in Emisfit is approximated by the Frenkel sinusoidal
potential

γ(φ)=
µb2

4π2d

(
1−cos

2πφ

b

)
, (2.4)

where d is the lattice spacing perpendicular to the slip plane, and µ is the shear modu-
lus. The equilibrium configuration of the dislocation is obtained by minimizing the total
energy with respect to φ(x), which results in the integro-differential equation

µ

2π(1−ν)

∫ +∞

−∞

φ′(x1)

x−x1
dx1 =

µb

2πd
sin

2πφ(x)

b
, (2.5)

where ν is Poisson ratio. This equation has an analytical solution

φ(x)=
b

π
tan−1 x

ζ
+

b

2
, (2.6)

where ζ = 1
2 d/(1−ν) is the half-width of the dislocation.

In order to obtain estimates of the energy barrier and the critical stress to move a
dislocation using this model, Peierls [2] and Nabarro [3] assumed that the elastic energy
in the two half-spaces does not vary when the dislocation moves over the discrete crystal
lattice, i.e., the total energy variation as the dislocation moves over the discrete lattice
only comes from the change in the misfit energy. They also assumed that the dislocation
core profile given by Eq. (2.6) does not change as the dislocation moves. Under these
assumptions, the integral in the misfit energy in Eq. (2.3) was replaced by the summation
at discrete lattice sites

Emisfit(α)=
+∞

∑
n=−∞

b

2
[γ(φ(nb+αb))+γ(φ(nb+b/2+αb))] , (2.7)

where αb is the location of the center of the dislocation relative to a reference atomic site,
and φ(x) is given by the solution Eq. (2.6). This summation is the average of the misfit
energy at the lattice sites on the rows right above and below the slip plane, which have a
shift b/2 due to the initial configuration for the energy minimization used in the model.
The summation can be approximated to the leading order by

Emisfit(α)=
µb2

4π(1−ν)

[
1+2exp(−4πζ

b
)cos4πα

]
. (2.8)
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The Peierls energy is then defined as the amplitude of the energy variations

E
(1)
1p =

µb2

π(1−ν)
exp(−4πζ

b
), (2.9)

and the Peierls stress is associated with the maximum derivative of the Peierls energy

with respect to the dislocation translation max
α

1
b2

∂Emisfit(α)
∂α , which is

σ
(1)
1p =

2µ

1−ν
exp(−4πζ

b
). (2.10)

It has been argued that the period b/2 in the misfit energy given by Eq. (2.8) is not
physical [4, 16], and that in order to obtain the correct period b, the summing should be
performed at the lattice positions after the energy minimization [4] or on a single row of
the atoms near the slip plane [16,19–27]. Both modifications give the misfit energy [4,16]

Emisfit(α)=
µb2

4π(1−ν)

[
1+2exp(−2πζ

b
)cos2πα

]
, (2.11)

and the Peierls energy and Peierls stress are given respectively by

E
(2)
1p =

µb2

π(1−ν)
exp(−2πζ

b
) (2.12)

and

σ
(2)
1p =

µ

1−ν
exp(−2πζ

b
). (2.13)

3 The generalized Peierls-Nabarro model using discrete Fourier

transform

In this section, we present our generalized Peierls-Nabarro model for curved dislocations
using the discrete Fourier transform, which incorporates the Peierls energies and Peierls
stresses for both straight dislocations and dislocation kinks. The model is presented for
dislocations in simple cubic crystals with the isotropy approximation, as in the classical
Peierls-Nabarro model [1–3].

In a simple cubic crystal, let the coordinates axes coincide with the cubic axes, and
the slip plane of the dislocation is located at z = 0. As in the classical Peierls-Nabarro
model [1–3], the upper and lower halves of the crystal are assumed to be elastic continua
governed by linear elasticity theory, and are connected at the slip plane by a nonlinear
potential force. The total energy Eq. (2.1) is expressed in terms of the disregistry vector
(φ,ψ) at the discrete lattice sites on the slip plane: (xj,ym) where xj = ja1 and ym = ma2

for integers j and m, where a1 and a2 are values of lattice spacing in the x and y axes,
respectively. A constant shear stress (σ

app
13 ,σ

app
23 ) is applied to the system, and the uniform
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shear state without dislocation under this applied stress is used as the reference state for
the elastic energy Eelastic and the misfit energy Emisfit.

The elastic energy Eelastic given by Eq. (2.2) can be written as an integral over the slip
plane. Replacing the integral by the summation at discrete lattice sites, we have

Eelastic =∑
j,m

a1a2

2
[σ13(xj,ym)φ(xj,ym)+σ23(xj,ym)ψ(xj,ym)]. (3.1)

The stress components σ13(xj,ym) and σ23(xj,ym) can be obtained using the discrete Fourier
transform under periodic boundary conditions. Under isotropic approximation, these
two stress components can be given analytically in Fourier space by [32, 33]

σ̂13(k1,k2)=µ

(
1

2

k2
2

‖k‖+
1

2(1−ν)

k2
1

‖k‖

)
φ̂(k1,k2)+

νµ

2(1−ν)

k1k2

‖k‖ ψ̂(k1,k2) (3.2)

and

σ̂23(k1,k2)=
νµ

2(1−ν)

k1k2

‖k‖ φ̂(k1,k2)+µ

(
1

2

k2
1

‖k‖+
1

2(1−ν)

k2
2

‖k‖

)

ψ̂(k1,k2), (3.3)

where k=(k1,k2) are the frequencies in Fourier space, ‖k‖=
√

k2
1+k2

2, −N1
2 ≤ N1a1

2π k1≤ N1
2 −1

and −N2
2 ≤ N2a2

2π k2 ≤ N2
2 −1, for a simulation cell with size N1a1×N2a2 (N1 and N2 are

even for numerical convenience), and a variable with hat represents its discrete Fourier
transform. The constants in these two components of the self-stress of the dislocation are
zero. Recall that the discrete Fourier transform is defined by, using φ as an example,

φ̂(k1,k2)=
1

N1N2

N1−1

∑
j=0

N2−1

∑
m=0

φ(xj,ym)e−i(k1xj+k2ym), (3.4)

and the inverse discrete Fourier transform is given by

φ(xj,ym)=
N1/2−1

∑
N1a1

2π k1=−N1/2

N2/2−1

∑
N2 a2

2π k2=−N2/2

φ̂(k1,k2)ei(k1xj+k2ym),

j=0,1,··· ,N1−1, m=0,1,··· ,N2−1, (3.5)

both can be performed efficiently using the fast Fourier transform method (FFT). Note
that σ̂13(k1,k2)=σ̂23(k1,k2)=0 when N1a1

2π k1=−N1
2 or N2a2

2π k2=−N2
2 , for the correct symmetry

of the highest frequencies [34].
In fact, in the above formulation, the elastic energy is obtained by connecting the

disregistry vector (φ(xj,ym),ψ(xj,ym)) smoothly using basis functions ei(k1x+k2y), −N1
2 ≤

N1a1
2π k1≤ N1

2 −1, −N2
2 ≤ N2a2

2π k2≤ N2
2 −1. The smooth disregistry, using component φ(x,y) as

an example, is given by

φ(x,y)=
N1/2−1

∑
N1a1

2π k1=−N1/2

N2/2−1

∑
N2 a2

2π k2=−N2/2

φ̂(k1,k2)ei(k1x+k2y) =
N1−1

∑
j=0

N2−1

∑
m=0

φ(xj,ym) f j,m(x,y) (3.6)
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for (x,y)∈ [0,N1a1]×[0,N2a2], where the basis functions f j,m(x,y), 0≤ j≤ N1−1, 0≤m≤
N2−1, are given by

f j,m(x,y)=






sin
π(xj−x)

a1
sin

π(ym−y)
a2

cos
[

π(xj−x)
N1a1

+ π(ym−y)
N2a2

]

N1N2sin
π(xj−x)

N1a1
sin

π(ym−y)
N2a2

if xj 6= x and ym 6=y,

sin
π(ym−y)

a2

(
N2 tan

π(ym−y)

N2a2

)−1

if xj = x and ym 6=y,

sin
π(xj−x)

a1

(
N1 tan

π(xj−x)

N1a1

)−1

if xj 6= x and ym =y,

1 if xj = x and ym =y.

(3.7)

Note that in the summations with respect to k1 and k2 in Eq. (3.6), eik1x is replaced by

1

2
(eik1x+e−ik1x) when

N1a1

2π
k1 =−N1

2
,

and eik2y is replaced by

1

2
(eik2y+e−ik2y) when

N2a2

2π
k2 =−N2

2
,

for the correct symmetry of the highest frequencies [34]. The formulation of Eqs. (3.6) and
(3.7) is used only when determining the exact location of the dislocation or in the analysis
of the solutions, and is not for the purpose of numerical calculations. The numerical
formulation has already been given in the previous paragraph.

The misfit energy Eq. (2.3) in the form of summation at the discrete lattice sites is

Emisfit =∑
j,m

a1a2[γ(φ(xj,ym),ψ(xj,ym))−γ(φ0,ψ0)], (3.8)

where γ(φ,ψ) is the generalized stacking fault energy [17], and (φ0,ψ0) is disregistry
vector in the uniform shear state under applied stress (σ

app
13 ,σ

app
23 ):

σ
app
13 +

∂γ

∂φ
(φ0,ψ0)=0, σ

app
23 +

∂γ

∂ψ
(φ0,ψ0)=0.

Under applied stress (σ
app
13 ,σ

app
23 ), the equilibrium configuration of the dislocation is

determined by minimizing the potential energy functional

E=Eelastic+Emisfit+∑
j,m

a1a2[σ
app
13 φ(xj,ym)+σ

app
23 ψ(xj,ym)] (3.9)
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with respect to φ(xj,ym) and ψ(xj,ym), where Eelastic and Emisfit are given by Eqs. (3.1) and
(3.8), respectively. The resulting equations are






σ13(xj,ym)+
∂γ

∂φ
(φ(xj,ym),ψ(xj,ym))+σ

app
13 =0,

σ23(xj,ym)+
∂γ

∂ψ
(φ(xj,ym),ψ(xj,ym))+σ

app
23 =0.

(3.10)

The solutions φ(xj,ym) and ψ(xj,ym) are found by solving the following dynamic equa-
tions which minimize the total energy in the steepest descent direction to the equilibrium
state






∂φ(xj,ym,t)

∂t
=−σ13(xj,ym,t)− ∂γ

∂φ
(φ(xj,ym,t),ψ(xj,ym,t))−σ

app
13 ,

∂ψ(xj,ym,t)

∂t
=−σ23(xj,ym,t)− ∂γ

∂ψ
(φ(xj,ym,t),ψ(xj,ym,t))−σ

app
23 .

(3.11)

4 Peierls stress and Peierls energy for straight dislocations

In this section, we apply our model to the straight edge and screw dislocations and com-
pare the results with the classical Peierls-Nabarro model.

Assume that the straight dislocation lies parallel to the y axis. Only the disregistry
in the direction of the Burgers vector is considered, and the Frenkel sinusoidal potential
Eq. (2.4) is used for the nonlinear interplanar interaction, where the interplanar distance
d=b. For a straight edge dislocation, the Burgers vector is in the direction of the x axis,

φ=φ(x), τ =σ
app
13 , ψ=0, σ

app
23 =0.

For a straight screw dislocation, the Burgers vector is in the direction of the y axis,

ψ=ψ(x), τ =σ
app
23 , φ=0, σ

app
13 =0,

and the Frenkel potential Eq. (2.4) is a function of ψ. The system in Eq. (3.11) is then
reduced to a single equation in one dimension for the disregistry φ(x) (edge) or ψ(x)
(screw). We consider the cases of b = 2a1 and b = a1 corresponding to the periods b/2
(Eq. (2.8)) and b (Eq. (2.11)) in misfit energy in the classical Peierls-Nabarro model, re-
spectively, and use simulation cells with 1024 atoms and 512 atoms for these two cases,
respectively. The difference of the disregistry at the two end points of the simulation cell
is b, and in order to meet the periodic boundary conditions, a linear function is subtracted
before the discrete Fourier transform is performed. Further increasing the size of simu-
lation cells only gives negligible changes in the results. We choose ν=0.347 which is the
value for Al.

Following [20,23,24], the Peierls stress, denoted by σ1p, is defined as the critical value
of the applied stress above which the equilibrium profile of the dislocation no longer
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Table 1: Peierls stress.

σ1p(b=2a1) σ
(1)
1p σ1p(b= a1) σ

(2)
1p

Edge 7.4×10−5µ 2.1×10−4µ 0.0051µ 0.0127µ
Screw 1.4×10−3µ 3.7×10−3µ 0.0192µ 0.0429µ

−3 −2 −1 0 1 2 3
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1
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tr
y 

φ/
b

Figure 1: The disregistry profiles when an edge dislocation (b= a1) is located at different positions. The circles
denote the disregistry values on atom positions.

exists. Our calculated values of the Peierls stress for the cases b = 2a1 and b = a1 are
shown in Table 1. It can be seen that these results agree in order of magnitude with the

corresponding values of σ
(1)
1p and σ

(2)
1p in the classical Peierls-Nabarro models given by

Eq. (2.10) and Eq. (2.13), respectively. Note that for the screw dislocation, the coefficient
µ/(1−ν) in Eqs. (2.10) and (2.13) should be replaced by µ.

We have also studied the disregistry profiles and the variation in the total energy
when the dislocation is located at different positions relative to the lattice sites, for which
different values of applied stress are required. The center of the dislocation is determined
by

x̄= N1a1−
N1

∑
j=0

φ(xj)a1/b,

which is equivalent to the definition given in [20]:

x̄=
N1

∑
j=0

xjρ(xj)a1/b,

where ρ(x) = φ′(x) is the dislocation density. In order to obtain the disregistry profiles
when the dislocation center is located at different positions, we fix the disregistry of an
atom nearest to the dislocation center (the atom at 1/2 in the rescaled unit in Fig. 1) by
adding a constant in disregistry at each time step, and the value of the applied stress
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Figure 2: The variations in the energies and the required applied stress when the center of the edge dislocation
(b= a1) is located at different positions.

is obtained accordingly. Continuous disregistry profiles are obtained from the values at
discrete lattice sites using Eqs. (3.6) and (3.7).

The results for the disregistry profiles and the variation in the total energy of an edge
dislocation when b = a1 are shown in Figs. 1 and 2. Without applied stress, a stable
solution is found, whose center stays in the middle between two atoms, and whose total
energy is minimal, see the leftmost profile in Fig. 1 and the total energy in Fig. 2(c). When
the center of the dislocation moves to the position of an atom, the total energy is maximal,
see the rightmost profile in Fig. 1 and the total energy in Fig. 2(c). These results agree with
those from the classical Peierls-Nabarro model Eq. (2.11). Unlike the assumption in the
classical Peierls-Nabarro model, the disregistry profiles are not exact rigid shifts from the
profile without applied stress, see Fig. 1. As the center of the dislocation moves from
the middle of two adjacent atoms to the position of an atom, the total energy (Fig. 2(c))
and the misfit energy (Fig. 2(b)) increase, while the elastic energy (Fig. 2(a)) decreases.
The values of applied stress required to obtain these disregistry profiles are shown in
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Table 2: Peierls energy (in unit of µb2) for the case b=2a1.

∆Eelastic ∆Emisfit E1p (∆Etotal) PN (E
(1)
1p )

Edge −1.0×10−4 1.1×10−4 1.2×10−5 3.3×10−5

Screw −1.3×10−3 1.5×10−3 2.3×10−4 6.0×10−4

Edge (rigid shift) −2.1×10−5 3.3×10−5 1.2×10−5

Screw (rigid shift) −3.7×10−4 6.0×10−4 2.3×10−4

Table 3: Peierls energy (in unit of µb2) for the case b= a1.

∆Eelastic ∆Emisfit E1p (∆Etotal) PN (E
(2)
1p )

Edge −0.0065 0.0081 0.0016 0.0040
Screw −0.0147 0.0209 0.0061 0.0138

Edge (rigid shift) −0.0024 0.0040 0.0016
Screw (rigid shift) −0.0077 0.0138 0.0061

Fig. 2(d). Note that in Figs. 1 and 2, the origin of the x axis is moved to the center of the
dislocation without applied stress.

The Peierls energy is determined by the difference between the maximum and mini-
mum of the total energy. The evaluated values of the Peierls energy E1p (∆Etotal) and the
change of the elastic energy (∆Eelastic) and misfit energy (∆Emisfit) for different cases are
presented in Tables 2 and 3. It can be seen that ∆Eelastic and ∆Emisfit have the same order
of magnitude and opposite signs, which results in a smaller ∆Etotal due to their cancel-
lation. The obtained values of the Peierls energy E1p for different cases agree in order of
magnitude with the analytical predictions in the classical Peierls-Nabarro models (PN)
given by Eq. (2.9) or Eq. (2.12), in which only the variation in the misfit energy is con-
sidered when the dislocation is shifted rigidly. The cancellation in ∆Eelastic and ∆Emisfit is
consistent with the results obtained by Schoeck in [25] using approximations of Poisson’s
summation formula and the arctangent type trial functions.

To further compare our model with classical Peierls-Nabarro model, we also calculate
the variations of the energies when the dislocation undergoes rigid shift. The results are
also shown in Tables 2 and 3. It is interesting to find that the Peierls energy obtained using
our full model agrees excellently with that from simple shifting. Another interesting
fact is that ∆Emisfit obtained using our model with approximation of simple shift agrees
excellently with the Peierls energy from the classical Peierls-Nabarro model. This shows
that our model is indeed a generalization of the classical Peierls-Nabarro model.

In summary of this section, we have validated our model by showing that our model,
which incorporates more physics such as the variations in the dislocation profile and
the elastic energy, is a direct generalization of the classical Peierls-Nabarro model, which
has been shown to give qualitative descriptions of the dislocation structure and mobil-
ity [14–16]. Even though the results of the Peierls energy and Peierls stress for straight
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dislocations obtained using our model are not significantly different from those from the
classical Peierls-Nabarro model, our model is able to calculate the Peierls energy and
Peierls stress for dislocation kinks in the same manner as those for straight dislocations,
which has never been done in the literature.

5 The second Peierls stress and the second Peierls energy for

dislocation kinks

In this section, we present the simulation results using our model on the second Peierls
stress and the second Peierls energy for dislocation kinks. We consider an edge disloca-
tion with a double kink. Assume that the almost straight edge dislocation lies parallel to
the y axis, and the Burgers vector is in the direction of the x axis. We use the isotropic
elasticity and consider only the disregistry in the direction of Burgers vector (i.e., ψ =0).
The Frenkel sinusoidal potential Eq. (2.4) is still employed for the interplanar atomic in-
teraction. The dynamics equation under these simplified conditions is

∂

∂t
φ(xj,ym,t)=−σ13(xj,ym,t)− µb

2πd
sin

2πφ(xj,ym)

b
−σ

app
13 , (5.1)

where σ13(xj,ym,t) is given by Eq. (3.2) with ψ =0. The lattice constants in the slip plane
are a1 = a2 = b, and the simulation cell is 512b×512b. The Poisson ratio ν = 0.347. The
straight parts of the dislocation lie in adjacent Peierls valleys. Since we are interested in
the properties of a single kink, the two kinks in the dislocation are placed at a distance of
one half of the size of the simulation cell to reduce the interaction effect between them.
Further increase in the size of simulation cell (thus the distance between the two kinks)
only gives negligible changes in the results. As in the cases of straight dislocations, the
difference of the disregistry at the two boundaries of the simulation cell in the direction
of the x axis is b, and in order to meet the periodic boundary conditions, a linear function
is subtracted before the discrete Fourier transform is performed.

We first investigate the equilibrium configuration of the kink without applied stress.
Fig. 3 shows the profiles of the disregistry of the kinked dislocation for different values of
interplanar distance, in which the continuous disregistry profiles are obtained from the
values at discrete lattice sites using Eqs. (3.6) and (3.7). Fig. 3 also shows the location of
the dislocation line, which is identified by the contour line φ=b/2. The center of the kink
is identified by the intersection point of the kink with the atomic row between the two
Peierls valleys where the straight parts of the dislocation are located, see Fig. 4. Without
applied stress, the center of the kink stays in the middle of two adjacent atomic sites,
see also Fig. 4. From Fig. 3 we can see that when the interplanar distance d is smaller,
the kink is narrower, which agrees with the conclusion from the classical Peierls-Nabarro
model (Eq. (2.9) or (2.12)) that smaller d gives higher Peierls energy thus longer part of
the dislocation stays in the Peierls valley. Following [1,6,8,9,13], we determine the width
of the kink by w=b/tanθm, where tanθm is the maximum slope of the kink, see Fig. 4. The



288 H. Wei, Y. Xiang and P. Ming / Commun. Comput. Phys., 4 (2008), pp. 275-293

−2 −1 0 1 2 3

−10

−5

0

5
0

0.2

0.4

0.6

0.8

1

x/b

y/b

di
sr

eg
is

tr
y 

φ/
b

(a) d= b

−2 −1 0 1 2 3
−10

−5

0

5
0

0.2

0.4

0.6

0.8

1

x/b

y/b

di
sr

eg
is

tr
y 

φ/
b

(b) d=
√

2
3 b

Figure 3: The disregistry configurations for a kink in an edge dislocation and locations of the dislocation line.
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Figure 4: The definition of the kink width and the center of the kink. The kink width w=b/tanθm. The circles
show the positions of the atoms in a cubic crystal. The horizontal dash lines indicate the locations of the Peierls
valleys. The center of the kink is identified by the intersection point of the kink with the atomic row between
the two Peierls valleys where the straight parts of the dislocation are located.

evaluated kink width is about 3.5b in Fig. 3(a) for the case of d=b, and 2.0b in Fig. 3(b) for
the case of d =

√
2/3b. Note that in Fig. 3 and all other figures in this section, the x axis

is shifted to a Peierls valley where part of the dislocation lies, and the y axis is shifted to
the center of the kink without applied stress.

Similar to the Peierls stress for a straight dislocation, the second Peierls stress for
a dislocation kink is defined as the critical value of the applied stress above which no
stable equilibrium configuration of the kinked dislocation exists. Physically, above this
critical value of the applied stress, the kink can move over the energy barrier. In the case
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Figure 5: The dislocation profiles when the kink is located at different positions.

of d= b, the obtained second Peierls stress is σ2p =3.2×10−6µ, which is several orders of
magnitude smaller than the corresponding Peierls stress for straight dislocations shown
in Table 1 (our result σ1p for the case b = a1 and the result of classical Peierls-Nabarro

model σ
(2)
1p ). In the case of a smaller interplanar distance d =

√
2/3b (thus a narrower

kink), the evaluated second Peierls stress is σ2p =3.7×10−4µ, which is much larger than

that in the case of d=b. In the case of d=
√

2/3b, from the classical Peierls-Nabarro model,

σ
(2)
1p =0.63µ for a straight edge dislocation, and the second Peierls stress for a kink is also

several orders of magnitude smaller than the Peierls stress for straight dislocations.

We have also studied the dislocation profiles and the variation in the total energy
when the kink is located at different positions relative to the lattice sites, for which differ-
ent values of applied stress are required. In order to obtain the disregistry profiles when
the kink center is located at different positions, we fix the disregistry of an atom nearest
to the kink center by adding a constant in disregistry at each time step, and the value of
the applied stress is obtained accordingly. Since there are two kinks in the dislocation
line and they are symmetric with respect to the central line of the simulation cell parallel
to the x axis, we only evolve the disregistry of half of the atoms in the simulation cell and
the values on the other half are determined by reflection.

Fig. 5 shows the dislocation profiles when the kink is located at different positions
for the cases of d = b and d =

√
2/3b. The uppermost profiles in Fig. 5(a) and (b) are

the stable profiles without applied stress. The second Peierls energy for the dislocation
kink is determined by the difference between the maximum and minimum of the total
energy as the kink moves along the dislocation. The obtained second Peierls energy in
our simulations is E2p =7.5×10−7µb3 for the case of d= b and E2p =1.2×10−4µb3 for the

case of d =
√

2/3b. The variations in the elastic energy, misfit energy and total energy,
and the applied stress required when the kink is located at different positions are shown
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Figure 6: The variations in the elastic energy, misfit energy and total energy, and the applied stress required

when the kink center in an edge dislocation is located at different positions for the case of d=
√

2
3 b.

in Fig. 6 for the case of d =
√

2/3b. Similar to the energies of a straight dislocation, as
the dislocation kink moves from the middle of two adjacent atoms to the position of an
atom, the total energy (Fig. 6(c)) and the misfit energy (Fig. 6(b)) increase, while the elastic
energy (Fig. 6(a)) decreases.

We have also calculated the second Peierls energy using rigid shift of the kink profile
without applied stress. The results are 1.2×10−6µb3 and 2.2×10−4µb3 for the cases of
d = b and d =

√
2/3b, respectively. These results are of the same order of magnitude as

those obtained using the full relaxation shown above.

Now we compare our model with a recent Frenkel-Kontorowa model for kinked dis-
location using string approximation and line tension model [9]. The limitations of these
type of models have been discussed in the introduction. In [9], the dislocation profile is
obtained by the balance between the line tension and the potential force due to the peri-
odic variation of the total energy when the straight dislocation moves over the discrete



H. Wei, Y. Xiang and P. Ming / Commun. Comput. Phys., 4 (2008), pp. 275-293 291

lattice, and the second Peierls stress and second Peierls energy for a dislocation kink are
obtained by leading order approximation using rigid shift of the kink profile without ap-
plied stress. Their obtained kink profile, using the notations in this paper and a1 = a2 =b,
is

f (y)=
2b

π
tan−1eπy/w,

where w=
√

Γ/(2E1p)b is the width of the kink, Γ is the line energy, and E1p is the Peierls

energy. Their obtained second Peierls energy and second Peierls stress for a dislocation
kink are

E2p =16e−πw/bΓb, σ2p =16πe−πw/bΓ/b2,

respectively. The two models agree in some qualitative properties of dislocation kinks
such as higher Peierls energy gives narrower kink.

One limitation of the line tension model is that the line energy cannot be determined
accurately for a general curved dislocation due to the long-range elastic interaction [1].
Our model can be used to examine the line tension approximation and to determine the
value of the line energy in the Frenkel-Kontorowa model for kinked dislocation. Using
the same value of the kink width w, the fitted value of the line energy using our model is
about 0.1µb2 for the edge dislocation and 0.2µb2 for the screw dislocation. With this fitted
line energy, for the kink with width w=3.5b in the edge dislocation when d=b, the second
Peierls energy and second Peierls stress given by the formulas in [9] are E2p=2.4×10−5µb3

and σ2p=7.5×10−5µ, which are larger by at least one order of magnitude than our results.
Qualitatively, their second Peierls stress is also several orders of magnitude smaller than
the Peierls stress for straight dislocations (see Table 1), which agrees with the results of
our model.

For the realistic FCC or covalent bond materials, the generalization of our model to
triangular lattice in the slip plane is needed. This work is in progress and the results will
be reported elsewhere. Now, as an example, using the present model, we may roughly
estimate the second Peierls energy and the second Peierls stress for a kink in 90o glide
partial dislocation in Si. We use the isotropic elastic constants µ = 0.425eV/Å3 and ν =
0.218 [1]. The length of the Burgers vector of the perfect dislocation is b=3.84Å and that
of a partial dislocation is bp = b/

√
3. The lattice spacing perpendicular to the slip plane

is d=
√

1/24b, and lattice constants a1 =
√

3b/2 and a2 =b. Our evaluated second Peierls
energy for a kink in this partial using rigid shift approximation is 1.5eV, which agrees
with the values of 0.5-0.6eV obtained using atomistic simulations [35] and is in the range
of 1.0-1.7eV for the second Peierls energy for dislocation kink (the kink migration energy)
in Si obtained from experiments [36,37]. Our evaluated second Peierls stress for this kink
is 0.2µ, which has the same order of magnitude as the result 0.358J (J = 0.536eV/Å3 is
the anisotropic elastic dislocation energy factor) obtained using the Frenkel-Kontorowa
model in [9].
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6 Summary and discussions

We have proposed a generalized Peierls-Nabarro model for curved dislocations incor-
porating the Peierls energies and Peierls stresses. In our model, the elastic energy is
calculated efficiently using the discrete Fourier transform, the core structure of curved
dislocations is incorporated, and the discreteness in both elastic energy and misfit energy
is considered. Our model is validated by comparisons with the classical Peierls-Nabarro
model for straight dislocations. Simulation results show that our model gives some in-
teresting predictions for the energy barriers and critical stresses for the motion of kinked
dislocations, which agree qualitatively with the results from experiments and atomistic
simulations. We have also examined using our model the Frenkel-Kontorowa model for
kinked dislocations using string approximation and line tension model [9].

The generalization of our model will be done in the future work to include the elastic
anisotropy, the generalized stacking fault energy [17] obtained accurately using ab initio
calculations [18–23] for the interplanar atomic interaction, and the realistic lattices in the
slip plane such as triangular lattice in FCC or covalent bond crystals.
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