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Abstract. We present a new hybrid numerical method for multiscale partial

differential equations, which simultaneously captures the global macroscopic

information and resolves the local microscopic events over regions of relatively

small size. The method couples concurrently the microscopic coefficients in the

region of interest with the homogenized coefficients elsewhere. The cost of the

method is comparable to the heterogeneous multiscale method, while being

able to recover microscopic information of the solution. The convergence of

the method is proved for problems with bounded and measurable coefficients,

while the rate of convergence is established for problems with rapidly oscillating

periodic or almost-periodic coefficients. Numerical results are reported to show

the efficiency and accuracy of the proposed method.

1. Introduction

Consider the elliptic problem with Dirichlet boundary condition

(1.1)

{
− div (a ε(x)∇uε(x)) = f(x), x ∈ D ⊂ Rn,

uε(x) = 0, x ∈ ∂D,

where D is a bounded domain in Rn and ε is a small parameter that signifies

explicitly the multiscale nature of the coefficient a ε. We assume a ε belongs to a

set M(λ,Λ;D) that is defined as

M(λ,Λ;D): =
{
a ∈ [L∞(D)]n×n | ξ · a(x)ξ ≥ λ |ξ|2 , ξ · a(x)ξ ≥ (1/Λ) |a(x)ξ|2

for any ξ ∈ Rn and a.e. x in D
}
,

where |·| denotes the Euclidean norm in Rn. Note that the coefficients a ε in

M(λ,Λ;D) are not necessarily symmetric.

The large scale behavior of the solution of (1.1) is well understood by the theory

of homogenization. In the sense of H-convergence due to Murat and Tartar [42,

Theorem 6.5] and [34], for every a ε ∈ M(λ,Λ;D) and f ∈ H−1(D) the sequence
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of solutions {uε} of (1.1) satisfies

uε ⇀ u0 weakly in H1
0 (D), and

a ε∇uε ⇀ A∇u0 weakly in [L2(D)]n,

where u0 is the solution of a homogenized problem

(1.2)

{
− div (A(x)∇u0(x)) = f(x), x ∈ D,

u0(x) = 0, x ∈ ∂D,

with the homogenized coefficient A ∈ M(λ,Λ;D).

For multiscale PDEs as (1.1), the quantities of interest include the macroscopic

behavior of the solution and also the microscopic information (local fluctuation) of

the solution [18]. Many numerical approaches based on the idea of homogenization

have been proposed and thoroughly studied in the literature, such as the multiscale

finite element method [25] and the heterogeneous multiscale method (HMM) [19].

In this work, our focus is the scenario where the microscopic coefficient a ε is only

available in part of the domain, while outside the region, only a coarse information is

available about the coefficient field. More specifically, we only assume the knowledge

of the homogenized coefficients outside a small region of the domain. The question

is that given this information, whether it is still possible to recover the macroscopic

behavior of the solution, together with resolving the local fluctuation of the solution,

where the detailed information of the coefficient is known.

Several numerical approaches have been developed in recent years for such sce-

nario. Those methods can be roughly put into two categories.

The first class is the global-local approach firstly proposed in [37, 38], and fur-

ther developed in [6, 9, 19,21]. This is a two stage method: One first computes the

homogenized global solution u0 over the whole domain and then one finds the local

fluctuation by solving an extra problem on a local part of the domain. The homog-

enized solution may be used as boundary condition in solving the local problem

or be used to provide information on the fine scale based on a L2-projection. The

convergence of this approach has been investigated numerically in [33] for problems

with many scales, within the HMM framework [1,20]. This approach has also been

critically reviewed in [7], where in particular the choice of the local approximation

space was investigated.

Another class of method is based on the idea of domain decomposition, which

concerns handshaking multiple operators acting on different parts of the physical do-

main. Those operators may be either the restrictions of the same governing differen-

tial operators to the overlapping or non-overlapping sub-domains [5,17,22,23,29], or

different differential operators that describe perhaps different physical laws [16,27].

The popular Arlequin method [10, 11] also belongs to this category, for which the

agreement of solutions on different scales is enforced using a Lagrange multipli-

er approach. A more recent work is [3], which considers a method following the
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optimization-based coupling strategy [17, 22]: A discontinuous Galerkin HMM is

used in a region with scale separation (periodic media), while a standard con-

tinuous finite element method is used in a region without scale separation, the

unknown boundary conditions at the interface are supplied by minimizing the dif-

ference between the solutions in the overlapped domain. The well-posedness and

the convergence of the method have been proved, while the convergence rate is yet

unknown.

In this contribution, we propose a new concurrent global-local method to capture

both the average information and the local microscale information simultaneously,

as we shall explain in more details below. The current approach is mainly inspired

by the recent work [30, 31] by two of the authors, in which a hybrid method that

couples force balance equations from the atomistic model and the Cauchy-Born

elasticity is proposed and analyzed. Such method is proven to have sharp stability

and optimal convergence rate.

Compared with the sequential global-local approach, the proposed method is

a concurrent approach. Compared with the domain decomposition approach, our

method smoothly blends together the fine scale and coarse scale problem, instead of

the usual coupling in domain-decomposition approach via boundary conditions or

volumetric matching. To some extent, our coupling strategy can be understood as

directly enforcing the agreement of the solutions at different scales in the coupling

region, rather through the use of a penalty.

More concretely, our method starts with a hybridization of microscopic and

macroscopic coefficients as follows. For a transition function ρ satisfying 0 ≤ ρ ≤ 1,

we define the hybrid coefficient as

(1.3) b ε(x): = ρ(x)a ε(x) + (1− ρ(x))A(x).

Note in particular that a ε is only needed where ρ ̸= 0, and only the homogenized

coefficient A is used outside the support of ρ. This viewpoint is particularly useful

when the microscopic information of the elliptic coefficient is not accessible every-

where. We remark that ρ can be taken as a characteristic function so that b ε(x)

only involves either the coefficients for the original problem or the homogenized

coefficients.

On the continuum level, we solve the following problem with the hybrid coeffi-

cient b ε: find vε ∈ H1
0 (D) such that

(1.4) ⟨b ε∇vε,∇w⟩ = ⟨f, w⟩ for all w ∈ H1
0 (D),

where we denote the L2(D) inner product by ⟨·, ·⟩, and the L2(D̃) inner product

by ⟨·, ·⟩L2(D̃) for any measurable subset D̃ ⊂ D. It is clear that b ε ∈ M(λ,Λ;D),

and the existence and uniqueness of the solution of Problem (1.4) follows from the

Lax-Milgram theorem.
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To numerically solve (1.4), let Xh ⊂ H1
0 (D) be a standard Lagrange finite ele-

ment space consisting of piecewise polynomials of degree r − 1, we find vh ∈ Xh

such that

(1.5) ⟨b εh∇vh,∇w⟩ = ⟨f, w⟩ for all w ∈ Xh,

where

b εh = ρ(x)a ε(x) + (1− ρ(x))Ah(x),

and Ah is an approximation of A. In practice, if the homogenized coefficient is

not directly given, Ah may be obtained by HMM type method or any other nu-

merical homogenization / upscaling approaches. For practical concerns, we assume

that the support of ρ is small, which means that we essentially solve the homog-

enized problem in the most part of the underlying domain, where ρ ≃ 0, while

the original problem is solved wherever the microscale information is of particular

interest, where ρ ≃ 1. The goal is to get the microscopic information together

with the macroscopic behavior with computational cost comparable to solving the

homogenized equation.

Note that b ε∇vε = ρa ε∇vε + (1− ρ)A∇vε is a hybrid flux (i.e., a hybrid stress

tensor for elasticity problem), which reads

b ε∇vε =


a ε∇vε, if ρ(x) = 1,

A∇vε, if ρ(x) = 0,

ρa ε∇vε + (1− ρ)A∇vε, otherwise.

This implies that the proposed hybrid method actually mixes the flux/stress in a

weak sense, which is different to the approach in [30, 31] that mixes the forces in

a strong sense. This is more appropriate because Problem (1.1) is in divergence

form. Note that when taking ρ to be a characteristic function, the flux b ε∇vε may

have jumps across the support of ρ, which might cause pollution problem of the

numerical results. In our numerical examples, it is indeed observed that choosing

a smooth ρ leads to better performance likely due to the smoother flux. It is

perhaps worth pointing out that the proposed method differs from the well-known

partition of unit method [8], which incorporate the partition of unit function into

the approximating space while we directly blend the differential operators on the

continuum level by the transition functions.

We emphasize that the working assumption is that the microscopic information

is only desired on a region with relatively small size, which might lie in the interior

or possibly near the boundary of the whole domain, or even abut the boundary of

the domain. Outside the part where the oscillation is resolved, we could at best

hope for capturing the macroscopic information of the solution. This motivates that

we should only expect the convergence of the proposed method to the microscopic

solution uε in a local energy norm instead of a global norm. Moreover, such local
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energy estimate should allow for highly refined grid that is quite often in practice,

otherwise, the local events cannot be resolved properly.

The structure of the paper is as follows. In § 2, we study the H-limit of the hybrid

method without taking into account the discretization. In § 3, the error estimate of

the proposed method with discretization is proved, in particular, the local energy

error estimate is established over a highly refined grid, which is the main theoretical

result of this paper. In the last section, we report some numerical examples that

validate the method. In the Appendix, we construct a one-dimensional example to

show the size-dependence of the estimate over the measure of the support of the

transition function ρ.

Throughout this paper, we shall use standard notations for Sobolev spaces, norms

and seminorms, cf., [4], e.g.,

∥u∥H1(D): =

(∫
D

(u2 + |∇u|2) dx
)1/2

, |u|Wk,p(D) : =

∑
|α|=k

∥Dαu∥pLp(D)

1/p

.

We denote the average of a function g over a set E by∫
−

E

g dx: =
1

|E|

∫
E

g dx,

provided that the measure |E| is finite and the integral on the right is well-defined.We

use C as a generic constant independent of ε and the mesh size h, which may change

from line to line.

2. H-Convergence of the Concurrent Method

Before considering the convergence of the method, we first study the implication

of the strategy of mixing microscopic and homogenized coefficients together as

(1.3). To separate the influence of the discretization, we consider in this section the

continuous Problem (1.4). The discretized problem is studied in the next section.

By H-convergence theory, there exists a matrix B ∈ M(λ,Λ;D) that is the H-limit

of b ε. The following proposition quantifies the difference between A and B.

Proposition 2.1. There holds

(2.1) ∥A(x)− B(x)∥ ≤ 2Λ
(
Λ/λ+

√
Λ/λ

)
ρ(x)(1− ρ(x)) a.e. x ∈ D.

Here ∥ · ∥ is the Frobenius norm of a matrix.

It follows from the above result that B ≡ A whenever ρ(x) = 0 or ρ(x) = 1,

a.e., x ∈ D, which fits the intuition. When 0 < ρ < 1, the above estimate gives a

quantitative estimate about the distance between the effective matrices B and A.

Notice that when ρ is not close to 0 or 1, the proposition does not imply closeness

between the matrices A and B; thus in practice, it is not a good idea to have an

extensive region that ρ takes value in between 0 and 1.
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The proof is based on a perturbation result of H-limit, which can be stated as

the following lemma in terms of our notation.

Lemma 2.2. [42, Lemma 10.9] If a ε ∈ M(α, β;D) and b ε ∈ M(α′, β′;D) H-

converges to A and B, and ∥a ε(x)− b ε(x)∥ ≤ ϵ for a.e. x ∈ D, then

(2.2) max
x∈D

∥A(x)− B(x)∥ ≤ ϵ

√
ββ′

αα′ .

We shall not directly use Lemma 2.2, while our proof largely follows the idea of

the proof of this lemma.

Proof of Proposition 2.1 Firstly, we prove

(2.3) ∥A(x)− B(x)∥ ≤ 2Λ2

λ
(1− ρ(x)) a.e. x ∈ D.

For any f, g ∈ H−1(D), we solve{
− div(a ε∇ϕε) = f, in D,

ϕε = 0, on ∂D,

and {
− div

(
(b ε)t∇ψε

)
= g, in D,

ψε = 0, on ∂D,

where (b ε)t is the transpose of the matrix b ε. By H-limit theorem [42, Theorem

6.5], there exist A,B ∈ M(λ,Λ;D) such that{
ϕε ⇀ ϕ0 weakly in H1

0 (D), and

a ε∇ϕε ⇀ A∇ϕ0 weakly in [L2(D)]n,

and {
ψε ⇀ ψ0 weakly in H1

0 (D), and

(b ε)t∇ψε ⇀ (B)t∇ψ0 weakly in [L2(D)]n,

with {
− div(A∇ϕ0) = f, in D,

ϕ0 = 0, on ∂D,

and {
− div

(
Bt∇ψ0

)
= g, in D,

ψ0 = 0, on ∂D.

By the Div-Curl Lemma [41], we conclude

(2.4)

{
⟨a ε∇ϕε,∇ψε⟩ → ⟨A∇ϕ0,∇ψ0⟩ in the sense of measure,⟨

(b ε)t∇ψε,∇ϕε
⟩
→
⟨
(B)t∇ψ0,∇ϕ0

⟩
in the sense of measure.

Therefore, for any φ ∈ C∞
0 (D), we have

lim
ε→0

⟨φ(b ε − a ε)∇ϕε,∇ψε⟩ → ⟨φ(B −A)∇ϕ0,∇ψ0⟩ .
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Let φ ≥ 0, and we define

X: = lim
ε→0

⟨φ(b ε − a ε)∇ϕε,∇ψε⟩ .

It is clear that

X ≤ lim sup
ε→0

⟨φ(1− ρ) |(A− a ε)∇ϕε| , |∇ψε|⟩

≤ 2Λ lim sup
ε→0

⟨φ(1− ρ) |∇ϕε| , |∇ψε|⟩ .

For any α > 0, we bound X as

X ≤ 2Λ

λ

(
αλ lim sup

ε→0

⟨
φ(1− ρ), |∇ϕε|2

⟩
+

λ

4α
lim sup

ε→0

⟨
φ(1− ρ), |∇ψε|2

⟩)
≤ 2Λ

λ

(
α lim sup

ε→0
⟨φ(1− ρ)a ε∇ϕε,∇ϕε⟩+ 1

4α
lim sup

ε→0
⟨φ(1− ρ)b ε∇ψε,∇ψε⟩

)
.

Invoking the Div-Curl Lemma (2.4) once again, we obtain

X ≤ 2Λ

λ

(
α ⟨φ(1− ρ)A∇ϕ0,∇ϕ0⟩+

1

4α
⟨φ(1− ρ)B∇ψ0,∇ψ0⟩

)
≤ 2Λ2

λ

(
α
⟨
φ(1− ρ), |∇ϕ0|2

⟩
+

1

4α

⟨
φ(1− ρ), |∇ψ0|2

⟩)
,

which implies that for a.e. x ∈ D,

|(B −A)∇ϕ0 · ∇ψ0| ≤
2Λ2

λ

(
1− ρ(x)

)(
α |∇ϕ0|2 +

1

4α
|∇ψ0|2

)
.

Optimizing α, we obtain that for a.e. x ∈ D,

|(B −A)∇ϕ0 · ∇ψ0| ≤
2Λ2

λ

(
1− ρ(x)

)
|∇ϕ0| |∇ψ0| ,

from which we obtain (2.3) because ϕ0 and ψ0 are arbitrary.

Next, we prove

(2.5) ∥A(x)− B(x)∥ ≤ 2Λ
√
Λ/λ ρ(x) a.e. x ∈ D.

The proof of (2.5) is essentially the same with the one that leads to (2.3) except

that we define

X: = lim
ε→0

⟨φ(b ε −A)∇ϕ0,∇ψε⟩ for φ ≥ 0.

It is clear that

X ≤ lim sup
ε→0

⟨φρ |(A− a ε)∇ϕ0| , |∇ψε|⟩ ≤ 2Λ lim sup
ε→0

⟨φρ |∇ϕ0| , |∇ψε|⟩ .

For any α > 0, we bound X as

X ≤ 2Λ

(
α
⟨
φρ, |∇ϕ0|2

⟩
+

1

4α
lim sup

ε→0

⟨
φρ, |∇ψε|2

⟩)
≤ 2Λ

(
α
⟨
φρ, |∇ϕ0|2

⟩
+

1

4αλ
lim sup

ε→0
⟨φρb ε∇ψε,∇ψε⟩

)
.
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Applying the Div-Curl Lemma (2.4) to the second term in the right-hand side of

the above equation, we obtain

X ≤ 2Λ

(
α ⟨φρ∇ϕ0,∇ϕ0⟩+

1

4αλ
⟨φρB∇ψ0,∇ψ0⟩

)
≤ 2Λ

(
α
⟨
φρ, |∇ϕ0|2

⟩
+

Λ

4αλ

⟨
φρ, |∇ψ0|2

⟩)
,

which implies that for a.e. x ∈ D,

|(B −A)∇ϕ0 · ∇ψ0| ≤ 2Λρ

(
α |∇ϕ0|2 +

Λ

4αλ
|∇ψ0|2

)
.

Optimizing α, we obtain

|(B −A)∇ϕ0 · ∇ψ0| ≤ 2Λ
√
Λ/λρ(x) |∇ϕ0| |∇ψ0| ,

from which we obtain (2.5).

Finally we use the convex combination of (2.3) and (2.5) as

∥A(x)− B(x)∥ = ρ(x)∥A(x)− B(x)∥+ (1− ρ(x)) ∥A(x)− B(x)∥

for a.e. x ∈ D, this leads to (2.1). �
If we replace A by any matrix C ∈ M(λ′, Λ′;D), then we may slightly generalize

the above theorem as

Corollary 2.3. Let C ∈ M(λ′, Λ′;D), and we define bε = ρ(x)a ε(x)+ (1−ρ(x))C.
Denote by B the H-limit of bε, then for a.e. x ∈ D, there holds

∥B(x)− ρ(x)A(x)− (1− ρ(x))C(x)∥ ≤
(
Λ+ Λ̃

)√
Λ̃/λ̃

(√
Λ/λ+ 1

)
ρ(x)(1− ρ(x)),

where Λ̃ = Λ ∨ Λ′ and λ̃ = λ ∧ λ′.

The proof is omitted because it follows essentially the same line that leads to

Proposition 2.1.

As a direct consequence of the above corollary, if we take ρ(x) as the character-

istic function of a subdomain D0 of D, i.e., ρ = χD0 , then

(2.6) B(x) = χD0A(x) + (1− χD0)C(x) a.e. x ∈ D.

In particular, if we take C(x) = A(x), then

(2.7) B(x) = A(x) a.e. x ∈ D.

When a ε is locally periodic, i.e., a ε = a(x, x/ε) with a(x, ·) is Y -periodic with

Y = (−1/2, 1/2)n, we can characterize the effective matrix B more explicitly s-

ince b ε is also locally periodic with the same period. By classical homogenization

theory [12], the effective matrix B is given by

(2.8) Bij(x) =

∫
−

Y

(
bij + bik

∂χj
ρ

∂yk

)
(x, y) dy,
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where {χj
ρ(x, y)}dj=1 is periodic in y with period Y and it satisfies

(2.9) − ∂

∂yi

(
bik

∂χj
ρ

∂yk

)
(x, y) =

∂bij
∂yi

(x, y) in Y,

∫
Y

χj
ρ(x, y) dy = 0.

Here bij(x, y) = ρ(x)aij(x, y) + (1− ρ(x))Aij(x).

For x ∈ D with ρ(x) = 0 or ρ(x) = 1, we have B = A.

In particular, for n = 1, we have the following explicit formula for B.

B(x) =
(∫ 1

0

1

ρ(x)a(x, y) + (1− ρ(x))A(x)
dy

)−1

,

where

A(x) =

(∫ 1

0

1

a(x, y)
dy

)−1

.

As expected, when ρ(x) = 0 or ρ(x) = 1, it is clear from the above that B(x) = A(x).

3. Convergence Rate for the Discrete Problem

We now study the convergence rate of the discrete Problem (1.5). We assume

that Ah ∈ M(λ′, Λ′;D). This is true for any reasonable approximation of A. For

example, if we use HMM method [1, 20, 21] to compute the effective matrix, then

Ah ∈ M(λ,Λ;D). By this assumption, we have b εh ∈ M(λ,Λ;D). Throughout this

paper, we only assume that ρ is bounded and measurable and satisfies 0 ≤ ρ ≤ 1

a.e. in D.

Let Th be a triangulation of D with maximum mesh size h. Denote by hτ the

diameter of each element τ ∈ Th. we assume that all elements in Th are shape-

regular in the sense of Ciarlet and Raviart [13], that is each τ ∈ Th contains a ball

of radius c1hτ and is contained in a ball of radius C1hτ with fixed constants c1 and

C1.

Denote K = supp ρ and |K| : = mesK, and define

η(K) =

|ln |K||1/2 , if n = 2 and s = 1,

1, if n = 3 or s ∈ (0, 1).

We begin with the following inequality that will be frequently used later on.

Lemma 3.1. For any v ∈ Hs(D) with s ∈ (0, 1], and for any subset Ω ⊂ D, we

have

(3.1) ∥v∥L2(Ω) ≤ C |Ω|s/n η(Ω)∥v∥Hs(D),

where the constant C independent of the measure of D.

Proof. For n = 3 with 0 < s ≤ 1 and n = 2 with 0 < s < 1, let 2∗ = 2n/(n − 2s)

be the fractional critical exponent. By the Hölder’s inequality and the Sobolev

embedding inequality [15], we obtain

∥v∥L2(Ω) ≤ |Ω|1/2−1/2∗ ∥v∥L2∗ (Ω) ≤ |Ω|s/n ∥v∥L2∗ (D) ≤ C |Ω|s/n ∥v∥Hs(D),
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which yields (3.1).

As to n = 2 and s = 1, for any p > 2, we have the Sobolev embedding inequality

∥v∥Lp(D) ≤ C
√
p∥v∥H1(D) for all v ∈ H1(D),

which together with the Hölder’s inequality gives

∥v∥L2(Ω) ≤ |Ω|1/2−1/p ∥v∥Lp(Ω) ≤ |Ω|1/2−1/p ∥v∥Lp(D) ≤ C
√
p |Ω|1/2−1/p ∥v∥H1(D).

Taking p = |ln |Ω|| in the above inequality, we obtain (3.1) for n = 2 and s = 1. �

Remark. When n = s = 1, (3.1) is still true with prefactor replaced by |Ω|1/2 by

observing

∥v∥L2(Ω) ≤ |Ω|1/2 ∥v∥L∞(Ω) ≤ |Ω|1/2 ∥v∥L∞(D) ≤ C |Ω|1/2 ∥v∥H1(D),

where we have used the imbedding H1(D) ↪→ L∞(D) in the last step.

3.1. Accuracy for retrieving the macroscopic information. In this part, we

estimate the approximation error between the hybrid solution and the homogenized

solution. The following result is in the same spirit of the first Strang lemma [13].

Our proof relies on theMeyers’ regularity result [32] for Problem (1.2) in an essential

way. We state Meyers’ results as follows. There exists p0 > 2 that depends on D,Λ

and λ, such that for all p ≤ p0,

(3.2) ∥∇u0∥Lp(D) ≤ C∥f∥W−1,p(D)

with C depends on D,Λ and λ.

For any Ω ⊂ D, by Hölder inequality and the above Meyers’ estimate, we obtain

∥∇u0∥L2(Ω) ≤ |Ω|1/2−1/p ∥∇u0∥Lp(Ω) ≤ |Ω|1/2−1/p ∥∇u0∥Lp(D)(3.3)

≤ C |Ω|1/2−1/p ∥f∥W−1,p(D),

where C depends on D but independent of Ω.

Theorem 3.1. Let u0 and vh be the solutions of Problem (1.2) and Problem (1.5),

respectively. Define e(HMM): = maxx∈D\K ∥(A−Ah)(x)∥. There exists C depends

on λ,Λ and D such that for any 2 < p < p0,

(3.4)
∥∇(u0 − vh)∥L2(D) ≤ C

(
inf

χ∈Xh

∥∇(u0 − χ)∥L2(D) + e(HMM)∥f∥H−1(D)

+ |K|1/2−1/p ∥f∥W−1,p(D)

)
,

and for any 2 < p < p̃0 with

p̃0 =

{
p0, if n = 2,

p0 ∧ 6, if n = 3,
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we have

∥u0 − vh∥L2(D) ≤ C

(
inf

χ∈Xh

∥∇(u0 − χ)∥L2(D) + |K|1/2−1/p ∥f∥W−1,p(D)

)
×

(
sup

g∈L2(D)

1

∥g∥L2(D)
inf

χ∈Xh

∥∇(φg − χ)∥L2(D) + |K|1/2−1/p

)
+ Ce(HMM)∥f∥H−1(D),(3.5)

where φg ∈ H1
0 (D) is the unique solution of the variational problem:

(3.6) ⟨A∇v,∇φg⟩ = ⟨g, v⟩ for all v ∈ H1
0 (D).

The above estimates show that the solution of the hybrid problem is a good

approximation of the solution of the homogenized problem provided that |K| is
small, besides certain approximation error. This is expected since in this case we

essentially solve the homogenized problem over the main part of the domainD. The

dependence on |K| in the estimate (3.4) is also essential and sharp, as will be shown

by an explicit one-dimensional example in the Appendix A. Similar constructions

can be also done for higher dimensions, though it becomes much more tedious.

Let us also remark that the error estimates (3.4) and (3.5) are valid without any

smoothness assumption on u0. Convergence rate may be obtained if we assume

extra smoothness on u0, which may be found in Corollary 3.2.

Proof of Theorem 3.1 Let ũ ∈ Xh be the solution of the variational problem

⟨A∇ũ,∇v⟩ = ⟨f, v⟩ for all v ∈ Xh.

By Cea’s lemma [13], we obtain

(3.7) ∥∇(u0 − ũ)∥L2(D) ≤
Λ

λ
inf

χ∈Xh

∥∇(u0 − χ)∥L2(D).

Denote w = ũ− vh and using the definition of vh and ũ, we obtain

⟨b εh∇w,∇w⟩ = ⟨b εh∇ũ,∇w⟩ − ⟨f, w⟩ = ⟨(b εh −A)∇ũ,∇w⟩ .

By b εh −A = ρ(a ε −A) + (1− ρ)(Ah −A), we obtain

⟨b εh∇w,∇w⟩ ≤
(
2Λ∥∇ũ∥L2(K) + e(HMM)∥∇ũ∥L2(D)

)
∥∇w∥L2(D).

Using the triangle inequality and (3.3) with Ω = K, we obtain, for any 2 < p < p0,

(3.8) ∥∇ũ∥L2(K) ≤ ∥∇(u0 − ũ)∥L2(D) + C |K|1/2−1/p ∥f∥W−1,p(D),

and the a-priori estimate ∥∇ũ∥L2(D) ≤ C∥f∥H−1(D). Combining the above three

equations, we obtain

⟨b εh∇w,∇w⟩ ≤
(
2Λ∥∇(u0 − ũ)∥L2(D) + e(HMM)∥f∥H−1(D)

)
∥∇w∥L2(D)

+ C |K|1/2−1/p ∥f∥W−1,p(D)∥∇w∥L2(D).

This together with (3.7) concludes the estimate (3.4).
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We exploit Aubin-Nitsche’s dual argument [35] to prove the L2 estimate. For

any χ ∈ Xh, using (3.6), we obtain

(3.9) ⟨g, u0 − vh⟩ = ⟨A∇(u0 − vh),∇(φg − χ)⟩+ ⟨A∇(u0 − vh),∇χ⟩ .

The first term may be bounded by

|⟨A∇(u0 − vh),∇(φg − χ)⟩| ≤ Λ∥∇(u0 − vh)∥L2(D)∥∇(φg − χ)∥L2(D).

The second term in the right-hand side of (3.9) may be rewritten into

⟨A∇(u0 − vh),∇χ⟩ = ⟨f, χ⟩ − ⟨A∇vh,∇χ⟩ = ⟨(b εh −A)∇vh,∇χ⟩ ,

which may be bounded by

|⟨A∇(u0 − vh),∇χ⟩| ≤ 2Λ∥∇vh∥L2(K)∥∇χ∥L2(K)+e(HMM)∥∇vh∥L2(D)∥∇χ∥L2(D).

Proceeding along the same line that leads to (3.8), we obtain

∥∇vh∥L2(K) ≤ ∥∇(u0 − vh)∥L2(D) + C |K|1/2−1/p ∥f∥W−1,p(D),

and for any 2 < p < p̃0,

∥∇χ∥L2(K) ≤ ∥∇(φg − χ)∥L2(D) + C |K|1/2−1/p ∥g∥L2(D).

where we have used the imbedding L2(D) ↪→W−1,p(D) for any 2 < p < p̃0.

Summing up all the above estimates, using the triangle inequality and (3.4), we

obtain (3.5). �
In Theorem 3.1, the factor |K|1/2−1/p

may seem quite pessimistic. If there are

some extra conditions on the solution u0 or the source term f , then this factor may

be significantly improved.

Corollary 3.2. (1) If ∥∇u0∥L∞(K) is bounded, then the index p = ∞.

(2) If there holds the regularity estimate

(3.10) ∥u0∥H1+s(D) ≤ C∥f∥L2(D) for 0 < s ≤ 1,

then there exists C that depends on λ,Λ and f such that

(3.11)
∥∇(u0 − vh)∥L2(D) ≤ C

(
hs + |K|s/n η(K) + e(HMM)

)
,

∥u0 − vh∥L2(D) ≤ C
(
h2s + |K|2s/n η2(K) + e(HMM)

)
.

(3) If f is supported in K and f ∈ L2(D), then we may replace |K|s/n η(K)

in (3.11) by |K|1/n.

Proof. The first assertion is straightforward.

To prove the second assertion, we just need to replace Meyers’ estimate by the

estimate (3.1) and apply the standard interpolate estimate.



A CONCURRENT GLOBAL-LOCAL NUMERICAL METHOD FOR MULTISCALE PDES 13

As to the third assertion, denote by q the conjugate index of p, we have

∥f∥W−1,p(D) ≤ sup
g∈W 1,q

0 (D)

∥f∥L2(K)∥g∥L2(K)

∥g∥W 1,q(D)

≤ |K|1/2−1/r
sup

g∈W 1,q
0 (D)

∥f∥L2(K)∥g∥Lr(K)

∥g∥W 1,q(D)

≤ C |K|1/2−1/r ∥f∥L2(D),

where we have used the Sobolev imbedding W 1,q(D) ↪→ Lr(D) with 1/r = 1/q −
1/n. Substituting the above estimate into (3.4), we obtain the improved factor

|K|1/n in (3.11). �

3.2. Accuracy for retrieving the local microscopic information. Parallel to

the above results, we have the following energy error estimate for uε − vh. Our

proof also relies on the Meyers’ regularity result [32] for Problem (1.1). Similar

to (3.2), there exists p1 > 2 that depends on D,Λ and λ, such that for all p ≤ p1,

(3.12) ∥∇uε∥Lp(D) ≤ C∥f∥W−1,p(D)

with C depends on D,Λ and λ. Proceeding along the same line that leads to (3.4),

and using (3.12), we obtain

∥∇(uε − vh)∥L2(D) ≤ C

(
inf

χ∈Xh

∥∇(uε − χ)∥L2(D) + |D \K|1/2−1/p ∥f∥W−1,p(D)

)
,

where C depends on λ, λ′, Λ, Λ′ and D.

The above estimate indicates that the global microscopic information can be

retrieved provided that |K| is big, namely we solve (1.1) almost everywhere, which

seems to contradict with our motivation. In fact, our projective is less ambitious,

since what we need is the local microscopic information. Therefore, the most rel-

evant error notion is often related to the local norm instead of the global energy

error. The following local energy estimate is the main result of this part.

We assume that ρ ≡ 1 on K0 ⊂⊂ K, and dist(K0, ∂K \ ∂D) = d ≥ κh for a

sufficiently large κ > 0. For a subset B ∈ D, we define

H1
<(B): =

{
u ∈ H1(D) | u|D\B = 0

}
.

In order to prove the localized energy error estimate, we state some properties

of Xh confined to K following those of [14]. More detailed discussion on these

properties may be found in [36]. Let G1 and G be subsets of K with G1 ⊂ G and

dist(G1, ∂G \ ∂D) = d̃ > 0. The following assumptions are assumed to hold:

A1: Local interpolant. There exists a local interpolant such that for any u ∈
H1

<(G1) ∩ C(G1), Iu ∈ Xh ∩H1
<(G).

A2: Inverse properties. For each χ ∈ Xh and τ ∈ Th ∩K, 1 ≤ p ≤ q ≤ ∞, and

0 ≤ ν ≤ s ≤ r,

(3.13) ∥χ∥W s,q(τ) ≤ Chν−s+n/p−n/q
τ ∥χ∥W ν,p(τ).
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A3. Superapproximation. Let ω ∈ C∞(K) ∩H1
<(G1) with |ω|W j,∞(K) ≤ Cd̃−j

for integers 0 ≤ j ≤ r for each χ ∈ Xh ∩H1
<(G) and for each τ ∈ Th ∩K

satisfying hτ ≤ d,

(3.14) ∥ω2χ− I(ω2χ)∥H1(τ) ≤ C

(
hτ

d̃
∥∇(ωχ)∥L2(τ) +

hτ

d̃2
∥χ∥L2(τ)

)
,

where the interpolant I is defined in A1.

The assumptions A1,A2 and A3 are satisfied by standard Lagrange finite ele-

ment defined on shape-regular grids. In particular, the Superapproximation proper-

ty (3.14) was recently proved in [14, Theorem 2.1], which is the key for the validity

of the local energy estimate over shape-regular grids.

Theorem 3.2. Let K0 ⊂ K ⊂ D be given, and let dist(K0, ∂K \ ∂D) = d. Let

assumptions A1, A2 and A3 hold with d̃ = d/16, in addition, let maxτ∩K ̸=∅ hτ/d ≤
1/16. Then

(3.15) ∥∇(uε − vh)∥L2(K0) ≤ C

(
inf

χ∈Xh

∥∇(uε − χ)∥L2(K) + d−1∥uε − vh∥L2(K)

)
,

where C depends only on Λ, λ, Λ′, λ′ and D.

Remark. The estimate (3.15) is also valid even if the subdomain K0 abuts on the

domain D, which makes practical implementation convenient.

As suggested by the first term in the right-hand side of (3.15), locally refined

mesh may be desired to resolve the local events, which is allowed by the above

theorem because we only assume the shape-regularity of the mesh. All the other

contributions are encapsulated in the second term ∥uε−vh∥L2(K), which is a direct

consequence of the L2 estimate (3.5) and the triangle inequality as follows. To

make the presentation simpler, we assume the regularity estimate (3.10) is valid

with s = 1, then

∥uε − vh∥L2(K) ≤ ∥uε − vh∥L2(D) ≤ ∥u0 − vh∥L2(D) + ∥uε − u0∥L2(D)

≤ C

(
h2 + |K|2/n η2(K) + max

x∈D\K
∥(A−Ah)(x)∥

)
+ ∥uε − u0∥L2(D).

The convergence rate of the approximated solution in L2 consists of two parts,

the first one is how the solution approximates the homogenized solution, which

relies on the smoothness of the homogenized solution, the size of the support of the

transition function ρ, and the error committed by the approximation of the effective

matrix. The second source of the error comes from the convergence rate in L2 for

the homoginization problem. For any bounded and measurable a ε, ∥uε − u0∥L2(D)

converges to zero as ε tends to zero by H-convergence theory. More structures have

to be assumed on a ε if one were to seek for a convergence rate. There are a lot

of results for estimating ∥uε − u0∥L2(D) under various conditions on a ε. Roughly
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speaking, ∥uε −u0∥L2(D) ≃ O(εγ), where γ depends on the properties of the coeffi-

cient a ε and the domain D. We refer to [26] for a careful study of this problem for

elliptic system with periodic coefficients. For elliptic systems with almost-periodic

coefficients, we refer to [40] and references therein for related discussions.

The proof of this theorem is in the same spirit of [36] by combining the ideas

of [14] and [39]. In particular, the following Caccioppoli-type estimate for discrete

harmonic function is a natural adaption of [14, Lemma 3.3], which is crucial for the

local energy error estimate.

Lemma 3.3. Let K0 ⊂ K ⊂ D be given, and let dist(K0, ∂K \ ∂D) = d. Let

assumptions A1, A2 and A3 hold with d̃ = d/4, and assume that uh ∈ Xh satisfies

⟨b εh∇uh,∇v⟩ = 0 ∀v ∈ Xh ∩H1
<(K).

In addition, let maxτ∩K ̸=∅ hτ/d ≤ 1/4. Then, there exists C such that

(3.16) ∥uh∥H1(K0) ≤
C

d
∥uh∥L2(K),

where C depends only on the constants in (3.13), (3.14), Λ′ and λ′.

Proof of Theorem 3.2. Without loss of generality, we may assume that K0 is the

intersection of a ball Bd/2 with D, the general case may be proved by a covering

argument as in [36, Theorem 5.1 and Theorem 5.2]. Let K̃ be the intersection of

a ball B3d/4 with D and K be the intersection of a ball Bd with D. Therefore, we

have K0 ⊂⊂ K̃ ⊂⊂ K, and dist(K0, ∂K̃ \ ∂D) = d/4. Let û = ωuε with ω the

cutoff function that is 1 on K̃ and that satisfies ∥ω∥Wk,∞(K) ≤ Cd−j for 0 ≤ j ≤ r.

Let ûh be the local Galerkin projection of û, i.e., ûh ∈ Xh ∩H1
<(K), and satisfies

⟨b εh∇(û− ûh),∇v⟩ = F (v) ∀v ∈ Xh ∩H1
<(K),

where F (v): = ⟨(b εh − a ε)∇uε,∇v⟩. By coercivity of b εh , we immediately have the

stability estimate

(3.17) ∥∇ûh∥L2(K) ≤ C
(
∥∇û∥L2(K) + ∥∇uε∥L2(K\K0)

)
for certain C that depends only on Λ, λ, Λ′ and λ′.

By definition and recalling that ω ≡ 1 on K̃, we may verify that ûh − vh is

discrete harmonic in the sense that for any v ∈ Xh ∩H1
<(K̃), there holds

⟨b εh∇(ûh − vh),∇v⟩ = ⟨b εh∇ûh,∇v⟩ − ⟨f, v⟩

= ⟨b εh∇û,∇v⟩ − F (v)− ⟨f, v⟩

= ⟨b εh∇uε,∇v⟩ − ⟨a ε∇uε,∇v⟩ − F (v)

= 0.
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Using (3.16) and invoking that ω ≡ 1 on K̃ again, we obtain

∥∇(uε − vh)∥L2(K0) ≤ ∥∇(û− ûh)∥L2(K0) + ∥∇(ûh − vh)∥L2(K0)

≤ ∥∇(û− ûh)∥L2(K) +
C

d
∥ûh − vh∥L2(K̃)

≤ ∥∇(û− ûh)∥L2(K) +
C

d

(
∥ûh − û∥L2(K̃) + ∥uε − vh∥L2(K̃)

)
≤ C

(
∥∇(û− ûh)∥L2(K) + d−1∥uε − vh∥L2(K̃)

)
,(3.18)

where we have used the Poincaré-Friedrichs inequality

∥ûh − û∥L2(K̃) ≤ ∥ûh − û∥L2(K) ≤ Cd∥∇(ûh − û)∥L2(K),

because ûh − û vanishes on ∂K modulo ∂Ω.

Next we use the triangle inequality and (3.17) while recalling the decay property

of ω to find that

∥∇(û− ûh)∥L2(K) ≤ C
(
∥∇û∥L2(K) + ∥∇uε∥L2(K\K0)

)
≤ C

(
∥∇uε∥L2(K) + d−1∥uε∥L2(K) + ∥∇uε∥L2(K\K0)

)
≤ C

(
∥∇uε∥L2(K) + d−1∥uε∥L2(K)

)
.

Substituting the above inequality into (3.18), we obtain

∥∇(uε − vh)∥L2(K0) ≤ C
(
∥∇uε∥L2(K) + d−1∥uε∥L2(K) + d−1∥uε − vh∥L2(K)

)
.

For any χ ∈ Xh, we write uε − vh = (uε − χ)− (vh − χ), and we employ the above

inequality with uε taken to be uε − χ and vh taken to be vh − χ. This implies

(3.19)

∥∇(uε − vh)∥L2(K0) ≤ C inf
χ∈Xh

(
∥∇(uε − χ)∥L2(K) + d−1∥uε − χ∥L2(K)

)
+
C

d
∥uε − vh∥L2(K).

Let χ∗ = arg infχ∈Xh
∥∇(uε −χ)∥L2(K), we take χ = χ∗ +

∫
−

K
(uε −χ∗) dx in (3.19)

and apply the Poincaré inequality

∥uε − χ∥L2(K) ≤ Cd∥∇(uε − χ)∥L2(K) = Cd∥∇(uε − χ∗)∥L2(K).

Therefore, we obtain (3.15) and complete the proof. �

4. Numerical Examples

In this section, we present two numerical examples to demonstrate the accuracy

and efficiency of the proposed method.

The governing equation is (1.1) with the domain D = (0, 1)2 and the forcing

term f ≡ 1 and the homogeneous Dirichlet boundary condition is imposed. The

subdomain K0 ⊂ D whose microstructure is of interest is assumed to be a square

for simplicity, i.e., K0 = x0(−L,L)2 for certain x0 ∈ D. We also denote K: =

x0+(−L− δ, L+ δ)2 for δ > 0. The first step in implementation is to construct the

transition function ρ. We let γδ : [−L−δ, L+δ] → [0, 1] be a first order differentiable
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function such that γδ(t) ≡ 1 for 0 ≤ t ≤ L, and γ′δ(L) = 0, γδ(L+δ) = γ′δ(L+δ) = 0.

Moreover, γδ is an even function with respect to the origin. We may extend γδ to

a function defined on R by taking γδ(t) ≡ 0 for |t| ≥ L + δ. Finally we define the

transition function ρ(x): = γδ(x1)γδ(x2).

For both examples, we compute

∥uε − vh∥H1(K0) and ∥u0 − vh∥H1(D\K),

which are the two quantities of major interest. The reference solutions uε and u0

are computed over very refined mesh, and the details will be given below.

4.1. An example with two scales. In this example, we take

aε(x) =
(R1 +R2 sin(2πx1))(R1 +R2 cos(2πx2))

(R1 +R2 sin(2πx1/ε))(R1 +R2 sin(2πx2/ε))
I,

where I is a two by two identity matrix. The effective matrix is given by

A(x) =
(R1 +R2 sin(2πx1))(R1 +R2 cos(2πx2))

R1

√
R2

1 −R2
2

I.

In the simulation, we let R1 = 2.5, R2 = 1.5 and ε = 0.01. The subdomain around

the defect is K0 = (0.5, 0.5) + (−L,L)2 with L = 0.05.

We compute uε with P1 Lagrange element over a uniform mesh with mesh size

3.33e−4, which amounts to putting 30 points inside each wave length, i.e., h ≃ ε/30.

The homogenized solution u0 is computed by directly solving the homogenized

problem (1.2) with P1 Lagrange element over a uniform mesh with mesh size 3.33e−
4, and the above analytical expression for A is employed in the simulation. We take

these numerical solutions as the reference solutions, which are still denoted by uε

and u0, respectively.

We solve Problem (1.5) over a non-uniform body-fitted mesh as in Figure 1. We

admit that the body-fitted mesh leads to undesirable anistropic meshes in the tran-

sition regions. Such mesh constraints might be removed by resorting to imposing

penalty in the variational formulation, which will be left for future works. The

Figure 1. Mesh for the concurrent method
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solutions uε, u0 and vh are plotted in Figure 2, which look almost identical to each

other on the macroscopic scale.

Figure 2. Solutions in D and δ = 0.05. Left: the homogenized

solution u0; Middle: the solution of the concurrent method; Right:

the solution of Problem (1.1).

We plot the zoomed-in solutions inside the defect domain K0 in Figure 3, it

seems the hybrid solution approximates the original solution very well because it

captures the oscillation of the microstructures inside K0.

Figure 3. Solutions inside the defect domain K0 and δ = 0.05.

Left: the homogenized solution u0; Middle: the solution of the

concurrent method; Right: the solution of Problem (1.1).

Next we plot the zoomed-in solutions in D\K in Figure 4, i.e., outsie the defect

domain K0, it seems that the hybrid solution approximates the homogenized solu-

tion very well because it is as smooth as the homogenized solution, while there is

oscillation in uε.

The localized error ∥uε− vh∥H1(K0) is shown in Figure 5(a) for both the smooth

and nonsmooth transition functions. Here the nonsmooth transition function is

the characteristic function of K0. The results show first that the parameter δ has

little influence on the local energy error, and secondly the result obtained by the

nonsmooth transition function is less accurate.

Finally, we plot the error ∥u0 − vh∥H1(D\K) in Figure 5(b) for both the smooth

and nonsmooth transition functions. For fixed L, this quantity decreases as the
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Figure 4. Solution in a subdomain of D/K and δ = 0.05. Left:

the homogenized solution u0; Middle: the solution of the concur-

rent method; Right: the solution of Problem (1.1).
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Figure 5. (a) Localized H1 error with respective to the mesh size

inside the defect domainK0. (b) Error between the hybrid solution

and the homogenized solution outside K.

mesh outside K is refined. It seems that the smoothness of the transition function

has little effect on the accuracy of the homogenized solution, which is consistent

with the theoretical results.

The results in Table 2 show the convergence rate of the hybrid solution to the

homogenized solution. It is optimal in the sense that the solution of the hybrid

problem converges to the homogenized solution with first order in the energy norm,

and it converges with second order in the L2 norm. This seems consistent with the

theoretical estimates (3.4) and (3.5), because

∥∇(u0 − vh)∥L2(D) ≤ C
(
h+ L |lnL|1/2

)
, ∥u0 − vh∥L2(D) ≤ C

(
h2 + L2 |lnL|

)
.

When L ≃ h, the convergence rate is of first order with respect to the energy norm,

while the mesh size is smaller than L, the dominant term in the error bound is

L |lnL|1/2, the convergence rate deteriorates a little bit, which is clear from the last

line of Table 2. The same scenario applies to the L2 error estimate.
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Table 1. Error between the hybrid solution and the homogenized so-

lution outside K.

h ∥u0 − vh∥L2(D\K) order ∥u0 − vh∥H1(D\K) order

1/10 9.04E-04 2.56E-02

1/20 2.47E-04 1.87 1.26E-02 1.02

1/40 7.96E-05 1.64 6.28E-03 1.01

1/80 3.41E-05 1.22 3.04E-03 1.04

1/160 2.47E-05 0.47 1.61E-03 0.92

We also report the error between the hybrid solution and the homogenized solu-

tion inside K. It seems the magnitude of the error inside K is almost of the same

order with that outside K, and there is no convergence rate as the mesh is refined,

which is more pronounced for the energy error.

Table 2. Error between the hybrid solution and the homogenized so-

lution inside K.

h ∥u0 − vh∥L2(K) order ∥u0 − vh∥H1(K) order

1/10 2.46E-04 3.14E-03

1/20 1.08E-04 1.18 5.81E-03

1/40 5.38E-05 1.01 6.96E-03

1/80 3.20E-05 0.75 7.48E-03

1/160 2.67E-05 0.26 7.64E-03

4.2. An example without scale separation in the defect domain. The setup

for the second example is the same with the first one except that the coefficient is

replaced by aε = χK0 ã+ (1− χK0)ã
ε, where

ã(x) = 3 +
1

7

4∑
j=0

j∑
i=0

1

j + 1
cos

(⌊
8(ix2 −

x1
i+ 1

)

⌋
+ ⌊150ix1⌋+ ⌊150x2⌋

)
,

and

ãε(x) =
(
2.1 + cos(2πx1/ε) cos(2πx2/ε) + sin(4x21x

2
2)
)
I.

The above coefficient is taken from [2], which has no clear scale inside K0; while it

is locally periodic outside K0. We plot the coefficient aε in Figure 6 with ε = 0.1.

We let ε = 0.0063 for the sake of comparison with those in [2] and compute

uε over a uniform mesh with mesh size 3.33e − 4. By Corollary 2.3 and the iden-

tity (2.6), the effective matrix A = χK0 ã + (1 − χK0)Ã and the approximating

effective matrix Ah = χK0 ã + (1 − χK0)Ãh, where Ãh is an approximation of the

effective matrix associated with ãε through a fast solver based on the discrete least-

squares reconstruction in the framework of HMM (see [28] for details of such fast
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Figure 6. Coefficient aε with ε = 0.1. The right one is the

zoomed-in plot near the defect.

algorithm). We reconstruct Ãh to high accuracy so that the reconstruction error

is negligible. The homogenized solution u0 is computed by solving Problem (1.2)

with A, which has also been used in solving the hybrid problem (1.5), i.e.,

bεh = ρχK0 ã+ ρ(1− χK0)ã
ε + (1− ρ)χK0 ã+ (1− ρ)(1− χK0)Ãh

= χK0 ã+ (1− χK0)
(
ρãε + (1− ρ)Ãh

)
.

We solve Problem (1.5) over a non-uniform mesh as in Figure 1, and plot uε, vh

and u0 and the zoomed-in solution in Figure 7. The difference among them are

small because there is no explicit scale inside the defect domain K0.

We plot the localized H1 error in Figure 8(a). It seems the hybrid method con-

verges slightly faster than the direct method, and the parameter δ has no significant

effect on the results.

Next we plot the error outside K in Figure 8(b). The results in Table 3 shows

that the convergence rate of the hybrid solution to the homogenized solution is

optimal with respect to both the energy norm and the L2 norm.

Table 3. Error between the hybrid solution and the homogenized so-

lution outside K.

h ∥u0 − vh∥L2(D\K) order ∥u0 − vh∥H1(D\K) order

1/10 3.93E-04 1.24E-02

1/20 8.92E-05 2.14 5.86E-03 1.08

1/40 2.06E-05 2.11 2.81E-03 1.06

1/80 4.92E-06 2.07 1.35E-03 1.06

1/160 1.45E-06 1.76 7.05E-04 0.94

We also report the error between the hybrid solution and the homogenized solu-

tion inside K. It seems the magnitude of the error inside K is slightly smaller than
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(a) Solutions in D

(b) Solutions in K0.

(c) Solutions in a subdomain of D/K.

Figure 7. The solution of hybrid method with δ = 0.05 in the simulation.

those error outside K, while the energy error is almost of the same order with that

outside K, and there is also no convergence rate as the mesh is refined.

Table 4. Error between the hybrid solution and the homogenized so-

lution inside K.

h ∥u0 − vh∥L2(K) order ∥u0 − vh∥H1(K) order

1/10 4.77E-05 2.53E-04

1/20 1.17E-05 2.03 1.35E-04 0.45

1/40 3.48E-06 1.75 1.31E-04 0.03

1/80 1.29E-06 1.43 2.05E-04

1/160 6.84E-07 0.91 2.45E-04

4.3. Comparison with the global-local approach. In this part, we compare

the present method with the global-local method [37]. The local region is Ωη =
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Figure 8. (a) Localized H1 error with respective to the mesh size

inside K with different δ. (b) Error between the hybrid solution

and the homogenized solution outside K.

(0.5, 0.5) + (−L − η, L + η)2 for a positive parameter η. The recovered solution

is denoted by ũϵ. The results for Example 4.1 and Example 4.2 are plotted in

Figure 9 and Figure 10, respectively. The results in both figures show that the con-

current approach yields comparable results with those obtained by the global-local

approach, and the concurrent approach being slightly more accurate. Moreover, it

seems the parameter η has little effect on the accuracy of the global-local method.
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Figure 9. (a)Localized H1 error inside K0 for Example 4.1 by

the global-local method with different η. (b) Comparison of the

localized H1 error inside K0 for Example 4.1 with the global-local

approach and the concurrent method.
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Figure 10. (a) Localized H1 error inside K0 for Example 4.2 by

the global-local method with different η. (b) Comparison of the

localized H1 error inside K0 for Example 4.2 with the global-local

approach and the concurrent method.

5. Conclusion

We propose a concurrent hybrid method that retrieves the global macroscopic in-

formation and resolves the local events simultaneously, motivated by the atomistic-

to-continuum coupling. The efficiency and accuracy of the proposed method have

been demonstrated for problems with or without scale separation. Compared with

existing approaches, the method does not rely on obtaining homogenized coefficien-

t everywhere in the computational domain, and the methodology can be possibly

extended to situations where the microscopic region contains defects. The rate of

convergence has been established when the coefficient is either periodic or almost-

periodic.

For possible future directions, the formulation of the method can be naturally

extended to treat problems with finite number of localized defects, the random

coefficients and also time-dependent problems. The study of optimal choice of the

transition function ρ, in particular, how to balance the pollution caused by non-

smooth flux and the size of the support of ρ, is worth further investigation. It is

also interesting to study the case when the local mesh inside the defect domain is

not body-fitted, which can be done with the aid of the existing methods for elliptic

interface problem; See e.g., [24]. We shall leave these for further exploration.
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Appendix A. Example

To better appreciate the estimates (3.4) and (3.5), which are crucial in our

analysis, let us consider a one-dimensional problem{
− (a ε(x)u′(x))

′
= 0, x ∈ (0, 1),

u(0) = 0, a ε(1)u′(1) = 1,

where a ε(x) = 2+ sin(x/ε). A direct calculation gives that the effective coefficient

A =
√
3 and the solution of the homogenized problem is u0(x) = x/A.

We consider a uniform mesh given by

x0 = 0 < x1 = h < · · · < xi = ih < · · · < x2N = 1,

where h = 1/(2N). The finite element space Xh is simply the piecewise linear

element associated with the above mesh with zero boundary condition at x = 0.

Case h ≫ ε. We firstly consider the case that h ≫ ε, while the precise relation

between h and ε will be made clear below. Denote vh(xj) = vj and the interval

Ij = (xj−1, xj), the mean of the coefficients b ε over each Ij is denoted by bj =∫
−

Ij
b ε(x) dx.

We define the transition function ρ as a piecewise linear function that is sup-

ported in (−2L, 2L), where L is a fixed number with 0 < L < 1/4. Without loss of

generality, we assume that L =Mh with M an integer. In particular,

ρ(x) =



0 0 ≤ x ≤ xN−2M ,

x− xN−2M

L
xN−2K ≤ x ≤ xN−M ,

1 xN−M ≤ x ≤ xN+M ,

xN+2M − x

L
xN+M ≤ x ≤ xN+2M ,

0 xN+2M ≤ x ≤ x2N = 1.

By construction, we get the size of the support of ρ is |K| = 4L.

We easily obtain the linear system for {vj}2Nj=1 as{
−bjvj−1 + (bj + bj+1)vj − bj+1vj+1 = 0, j = 1, · · · , 2N − 1,

−b2Nv2N−1 + b2Nv2N = h.

Define cj : = (vj − vj−1)bj/h, we rewrite the above equation as

cj − cj−1 = 0, j = 1, · · · , 2N − 1, c2N = 1.

Hence cj = 1 for j = 1, · · · , 2N , and the above linear system reduces to

(vj − vj−1)bj = h.

Using v0 = 0, we obtain

(A.1) vj = h

j∑
i=1

1

bi
.
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Observing that vh(x) = u0(x) for x ∈ [0, xN−2M ] because they are linear functions

that coincide at all the nodal points xi for i = 0, · · · , N − 2M .

For x ∈ IN−2M+j+1, we obtain

u0(x)− vh(x) = h

j∑
i=1

(
1

A
− 1

bN−2M+i

)
+ (x− xN−2M+j)

(
1

A
− 1

bN−2M+j+1

)
.

Define Sj : = h
∑j

i=1

(
1

A
− 1

bN−2M+i

)
, we rewrite the above equation as

(A.2) u0(x)− vh(x) =
xN−2M+j+1 − x

h
Sj +

x− xN−2M+j+1

h
Sj+1,

which immediately yields

(A.3)

∫ xN−M

xN−2M

|u′0(x)− v′h(x)|
2
dx = h

M∑
j=1

∣∣∣∣ 1A − 1

bN−2M+j

∣∣∣∣2

≥ h

27

M∑
j=1

|A − bN−2M+j |2 .

This is the starting point of later derivation. A direct calculation gives

bN−2M+j −A =

∫
−

IN−2M+j

ρ(x)(aε(x)−A) dx

=
2−A

2

(
ρ(xN−2M+j−1) + ρ(xN−2M+j)

)
+

∫
−

IN−2M+j

sin
x

ε
dx

=
(2−A)h

2L
(2j − 1) +

∫
−

IN−2M+j

sin
x

ε
dx,

and an integration by parts yields∫
−

IN−2M+j

sin
x

ε
dx =

2jε

L
sin

h

2ε
sin

xN−2M+j−1/2

ε

− ε

L
cos

xN−2M+j−1

ε
+
ε2

Lh

(
cos

xN−2M+j−1

ε
− cos

xN−2M+j

ε

)
.

Combining the above two equations, we obtain

(A.4) bN−2M+j −A =
(2−A)h

2L
(2j − 1) +

2jε

L
sin

h

2ε
sin

xN−2M+j−1/2

ε
+REM,

where the remainder term

REM: = − ε

L
cos

xN−2M+j−1

ε
+
ε2

Lh

(
cos

xN−2M+j−1

ε
− cos

xN−2M+j

ε

)
,

which can be bounded as

|REM| ≤ ε

L
+

2ε2

Lh

∣∣∣∣sin h

2ε

∣∣∣∣ ∣∣∣cos xN−2M+j−1/2

ε

∣∣∣
≤ ε

L
+

2ε2

Lh

h

2ε
=

2ε

L
.
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Note that
∑M

j=1(2j − 1)2 =M(4M2 − 1)/3, and

M∑
j=1

j2 sin2
xN−2M+j−1/2

ε
≤

M∑
j=1

j2 =
1

6
M(M + 1)(2M + 1).

Summing up all the above estimates and using the elementary inequality

(a+ b+ c)2 + b2 + c2 ≥ a2

3
for any a, b, c ∈ R,

we have, for M ≥ 3,

M∑
j=1

|A − bN−2M+j |2 ≥ 1

3

(2−A)2h2

4L2

M∑
j=1

(2j − 1)2 − 4ε2

L2
sin2

h

2ε

M∑
j=1

j2 sin2
xN−2M+j−1/2

ε

− 4Mhε2

L2

≥ (2−A)2h2

36L2
M(4M2 − 1)− 2ε2

3L2
M(M + 1)(2M + 1)− 4Mε2

L2

≥ (2−A)2h2

36L2
M(4M2 − 1)− 2ε2

3L2
M(4M2 − 1)

≥ (2−A)2h2

72L2
M(4M2 − 1)

provided that ε/h ≤ (2 − A)/(4
√
3). Substituting the above estimate into (A.3),

we obtain ∫ xN−M

xN−2M

|u′0(x)− v′h(x)|
2
dx ≥ (2−A)2h3

1944L2
M(4M2 − 1)

≥ (2−A)2h3

648L2
M3 =

(2−A)2

648
L.

This implies

∥u′0 − v′h∥L2(1/2−2L,1/2−L) ≥
2−A
18
√
2
L1/2 =

2−A
36
√
2
|K|1/2 .

This shows that the factor |K|1/2 in (3.4) is sharp. The same argument shows the

size-dependence of |K| in the estimate (3.5).

Case h ≪ ε. We next consider the case when h ≪ ε. In fact, we may employ

coarser mesh with mesh size H outside the defect region with H ≫ h, while a

finer mesh with mesh size h inside the defect region. The above derivation remains

true and we still have vh(x) = u0(x) for x ∈ [0, 1/2 − 2L]. We start from the

inequality (A.3). Notice that the dominant term in the expression of bN−2M+j −A
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is the oscillatory one in (A.4). Denote ϕ = 2h/ε. A direct calculation gives

M∑
j=1

j2 sin2
xN−2M+j−1/2

ε
=

1

2

M∑
j=1

j2 − 1

2

M∑
j=1

cos
x2N−4M+2j−1

ε

=
1

12
M(M + 1)(2M + 1)

−
{
M(M + 1)

4 sin(ϕ/2)
sin[(N −M)ϕ] +

M + 1

4 sin2 ϕ/2
cos[(N −M)ϕ] cos

ϕ

2

−
cos[(N − 3M/2− 1)ϕ] cos

ϕ

2
sin

M + 1

2
ϕ

4 sin3(ϕ/2)

}
.

We assume that

(A.5) sin
ϕ

2
≥ 5

M
.

Denote the terms in the curled bracket by I. Given (A.5), using the elementary

inequalities 2x/π ≤ sinx ≤ x for x ∈ [0, π/2], we bound I as

|I| ≤ (M + 1)M

4 sin(ϕ/2)
+

M + 1

4 sin2(ϕ/2)
+

(M + 1)ϕ/2

4 sin3(ϕ/2)

≤ (M + 1)M

4 sin(ϕ/2)
+

M + 1

4 sin2(ϕ/2)
+

(M + 1)π

8 sin2(ϕ/2)

≤ M2(M + 1)

12
,

which immediately yields

M∑
j=1

j2 sin2
xN−2M+j−1/2

ε
≥ M3

12
.

This implies

4ε2

L2
sin2

h

2ε

M∑
j=1

j2 sin2
xN−2M+j−1/2

ε
≥ 4ε2

L2

(
2

π

h

2ε

)2
M3

12
=

M

3π2
.

Note also

(2−A)2h2

4L2

M∑
j=1

(2j − 1)2 ≤ (2−A)2

3
M.

Combining the above two estimates, we obtain

M∑
j=1

|A − bN−2M+j |2 ≥ 1

2

M∑
j=1

(
2ε

L
sin

h

2ε
j sin

xN−2M+j−1/2

ε
+

(2−A)h

2L
(2j − 1)

)2

− 4Mε2

L2

≥
(
1

6
(1/π +A− 2)

2 − 4ε2

L2

)
M > 0
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provided that

h >

√
6ε

(1/π +A− 2)M
.

This condition suffices for the validity of (A.5), which is satisfied under a weaker

condition h > 5πε/(2M).

Substituting the above estimate into (A.3), we may find that there exists C

depending only on A such that

∥u′0 − v′h∥L2(1/2−2L,1/2−L) ≥ CL1/2 =
C

2
|K|1/2 .

This proves that the factor |K|1/2 is sharp for (3.4). The same argument shows the

size-dependence of |K| in the estimate (3.5).
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