SUPPLEMENTARY MATERIALS: STABILITY OF A FORCE-BASED HYBRID METHOD WITH PLANAR SHARP INTERFACE

JIANFENG LU* AND PINGBING MING ${ }^{\dagger}$

S1. Lattice function and norms. We will consider only Bravais lattices in this work, which is denoted as \mathbb{L}. Let $\left\{a_{j}\right\}_{j=1}^{d} \subset \mathbb{R}^{d}$ be the basis vectors of \mathbb{L}, and d be the dimension,

$$
\mathbb{L}=\left\{x \in \mathbb{R}^{d} \mid x=\sum_{j} n_{j} a_{j}, n \in \mathbb{Z}^{d}\right\}
$$

Let $\left\{b_{j}\right\}_{j=1}^{d} \subset \mathbb{R}^{d}$ be the reciprocal basis vectors satisfying $a_{j} \cdot b_{k}=2 \pi \delta_{j k}$, where $\delta_{j k}$ is the standard Kronecker delta symbol. The reciprocal lattice \mathbb{L}^{*} is

$$
\mathbb{L}^{*}=\left\{x \in \mathbb{R}^{d} \mid x=\sum_{j} n_{j} b_{j}, n \in \mathbb{Z}^{d}\right\}
$$

We take a computational domain

$$
\Omega=\left\{\sum_{j} x_{j} a_{j} \mid x \in[0,1)^{d}\right\},
$$

and let Ω_{ε} be a grid mesh in Ω with mesh size $\varepsilon=1 /(2 N), N \in \mathbb{Z}_{+}$:

$$
\Omega_{\varepsilon}=\left\{x_{\nu}=\varepsilon \sum_{j} \nu_{j} a_{j} \mid \nu \in \mathbb{Z}^{d}, 0 \leq \nu_{j}<2 N\right\} .
$$

Using the reciprocal basis $\left\{b_{j}\right\}$, we define

$$
\mathbb{L}_{\varepsilon}^{*}=\left\{\xi=\sum_{j} k_{j} b_{j} \mid k \in \mathbb{Z}^{d},-N \leq k_{j}<N\right\} .
$$

We will identify functions defined on Ω_{ε} with their periodic extensions in this work, i.e., we consider the periodic boundary condition. General boundary conditions will be left for future work.

For $\mu \in \mathbb{Z}^{d}$, we define the translation operator T_{ε}^{μ} as

$$
\left(T_{\varepsilon}^{\mu} u\right)(x)=u\left(x+\varepsilon \mu_{j} a_{j}\right) \quad \text { for } x \in \mathbb{R}^{d}
$$

where the index summation convention is used. We define the forward and backward difference operators as

$$
D_{\varepsilon, \mu}^{+}=\varepsilon^{-1}\left(T_{\varepsilon}^{\mu}-I\right) \quad \text { and } \quad D_{\varepsilon, \mu}^{-}=\varepsilon^{-1}\left(I-T_{\varepsilon}^{-\mu}\right)
$$

[^0]where I denotes the identity operator. We say α is a multi-index, if $\alpha \in \mathbb{Z}^{d}$ and $\alpha \geq 0$. We will use the notation $|\alpha|=\sum_{j=1}^{d} \alpha_{j}$. For a multi-index α, the difference operator D_{ε}^{α} is given by
$$
D_{\varepsilon}^{\alpha}=\prod_{j=1}^{d}\left(D_{\varepsilon, e_{j}}^{+}\right)^{\alpha_{j}}
$$
where $\left\{e_{j}\right\}_{j=1}^{d}$ are the canonical basis of \mathbb{R}^{d} (columns of a $d \times d$ identity matrix).
We will use various norms for functions defined on Ω_{ε}. For integer $k \geq 0$, define the difference norm
$$
\|u\|_{\varepsilon, k}^{2}=\sum_{0 \leq|\alpha| \leq k} \varepsilon^{d} \sum_{x \in \Omega_{\varepsilon}}\left|\left(D_{\varepsilon}^{\alpha} u\right)(x)\right|^{2}
$$

It is clear that $\|\cdot\|_{\varepsilon, k}$ is a discrete analog of Sobolev norm associated with $H^{k}(\Omega)$. Hence, we denote the corresponding spaces of lattice functions as $H_{\varepsilon}^{k}(\Omega)$ and $L_{\varepsilon}^{2}(\Omega)$ when $k=0$. We also need the uniform norms on Ω_{ε}, which are defined as

$$
\begin{aligned}
\|u\|_{L_{\varepsilon}^{\infty}} & =\max _{x \in \Omega_{\varepsilon}}|u(x)|, \\
\|u\|_{W_{\varepsilon}^{k, \infty}} & =\sum_{0 \leq|\alpha| \leq k} \max _{x \in \Omega_{\varepsilon}}\left|\left(D_{\varepsilon}^{\alpha} u\right)(x)\right| .
\end{aligned}
$$

Recall that we identify lattice function u with its periodic extension to function defined on $\varepsilon \mathbb{L}$, and hence differences of the lattice functions are well-defined. These norms may be extended to vector-valued functions as usual. For $k>d / 2$, we have the discrete Sobolev inequality $\|u\|_{L_{\varepsilon}^{\infty}} \lesssim\|u\|_{\varepsilon, k}$. Here and throughout this paper, we denote $A \lesssim B$ if $A \leq C B$ with C an absolute constant.

The discrete Fourier transform for a lattice function u is given for $\xi \in \mathbb{L}_{\varepsilon}^{*}$ by

$$
\widehat{u}(\xi)=\left(\frac{\varepsilon}{2 \pi}\right)^{d} \sum_{x \in \Omega_{\varepsilon}} e^{-\imath \xi \cdot x} u(x)
$$

By the Fourier inversion formula, for $x \in \Omega_{\varepsilon}$,

$$
u(x)=\sum_{\xi \in \mathbb{L}_{\varepsilon}^{*}} e^{\imath x \cdot \xi} \widehat{u}(\xi)
$$

We will use a symbol introduced by Nirenberg in 2626,26 , which plays the same role for the difference operators as $\Lambda^{2}(\xi)=1+\Lambda_{0}^{2}(\xi)=1+|\xi|^{2}$ for the differential operators. For $\varepsilon>0$, let

$$
\Lambda_{j, \varepsilon}(\xi)=\frac{1}{\varepsilon}\left|e^{\imath \varepsilon \xi_{j}}-1\right|, \quad j=1, \cdots, d
$$

and

$$
\Lambda_{\varepsilon}^{2}(\xi)=1+\Lambda_{0, \varepsilon}^{2}(\xi)=1+\sum_{j=1}^{d} \Lambda_{j, \varepsilon}^{2}(\xi)=1+\sum_{j=1}^{d} \frac{4}{\varepsilon^{2}} \sin ^{2}\left(\frac{\varepsilon \xi_{j}}{2}\right)
$$

It is not hard to check for any $\xi \in \mathbb{L}_{\varepsilon}^{*}$, there holds

$$
c \Lambda^{2}(\xi) \leq \Lambda_{\varepsilon}^{2}(\xi) \leq \Lambda^{2}(\xi)
$$

where the positive constant c depends on $\left\{b_{j}\right\}$.

S2. Proof of Lemma 3.2, Let us first recall the following consistency lemma proved in $22[22,22$, Section 2] (proofs of these results do not depend on the smoothness of ϱ).

Lemma S2.1 (Consistency). For any u smooth, we have

$$
\begin{align*}
& \left\|\mathcal{F}_{\mathrm{at}}[u]-\mathcal{F}_{\mathrm{CB}}[u]\right\|_{L_{\varepsilon}^{\infty}} \leq C \varepsilon^{2}\|u\|_{W^{18, \infty}} \tag{S2.1}\\
& \left\|\mathcal{F}_{\varepsilon}[u]-\mathcal{F}_{\mathrm{CB}}[u]\right\|_{L_{\varepsilon}^{\infty}} \leq C \varepsilon^{2}\|u\|_{W^{18, \infty}} \tag{S2.2}\\
& \left\|\mathcal{F}_{\mathrm{hy}}[u]-\mathcal{F}_{\mathrm{at}}[u]\right\|_{L_{\varepsilon}^{\infty}} \leq C \varepsilon^{2}\|u\|_{W^{18, \infty}} \tag{S2.3}
\end{align*}
$$

where the constant C depends on V and $\|u\|_{L^{\infty}}$, but is independent of ε.
Proof. [Proof of Lemma 3.2 The proof for 3.6 and 3.7 are analogous, and hence we will only prove the latter. By definition, for $1 \leq j, k \leq d$,

$$
\begin{aligned}
& \left(h_{\mathrm{at}}\right)_{j k}(\xi)=e^{-\imath x \cdot \xi}\left(\mathcal{H}_{\mathrm{at}}\left(e_{k} f_{\xi}\right)\right)_{j}(x), \\
& \left(h_{\mathrm{hy}}\right)_{j k}(x, \xi)=e^{-\imath x \cdot \xi}\left(\mathcal{H}_{\mathrm{hy}}\left(e_{k} f_{\xi}\right)\right)_{j}(x),
\end{aligned}
$$

where $f_{\xi}(x)=e^{2 x \cdot \xi}$ for $x \in \Omega$. Taking difference of the above two equations, we obtain the bound

$$
\left|h_{\mathrm{at}}(\xi)-h_{\mathrm{hy}}(x, \xi)\right| \leq C \sup _{1 \leq k \leq d}\left\|\mathcal{H}_{\mathrm{at}}\left(e_{k} f_{\xi}\right)-\mathcal{H}_{\mathrm{hy}}\left(e_{k} f_{\xi}\right)\right\|_{L_{\varepsilon}^{\infty}}
$$

Note that by the definition of linearized operators $\mathcal{H}_{\text {at }}$ and $\mathcal{H}_{\text {hy }}$, we have

$$
\mathcal{H}_{\mathrm{at}}\left(e_{k} f_{\xi}\right)-\mathcal{H}_{\mathrm{hy}}\left(e_{k} f_{\xi}\right)=\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(\mathcal{F}_{\mathrm{at}}\left[t\left(e_{k} f_{\xi}\right)\right]-\mathcal{F}_{\mathrm{hy}}\left[t\left(e_{k} f_{\xi}\right)\right]\right)
$$

Hence,

$$
\begin{aligned}
\left\|\mathcal{H}_{\mathrm{at}}\left(e_{k} f_{\xi}\right)-\mathcal{H}_{\mathrm{hy}}\left(e_{k} f_{\xi}\right)\right\|_{L_{\varepsilon}^{\infty}} & =\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left\|\mathcal{F}_{\mathrm{at}}\left[t\left(e_{k} f_{\xi}\right)\right]-\mathcal{F}_{\mathrm{hy}}\left[t\left(e_{k} f_{\xi}\right)\right]\right\|_{L_{\varepsilon}^{\infty}} \\
& \lesssim \varepsilon^{2}\left\|e_{k} f_{\xi}\right\|_{W^{18, \infty}} \lesssim \varepsilon^{2}\left\|e_{k} f_{\xi}\right\|_{H^{s}} \lesssim \varepsilon^{2}\left(1+|\xi|^{2}\right)^{s / 2}
\end{aligned}
$$

where s is chosen so that the Sobolev inequality $\|f\|_{W^{18, \infty}(\Omega)} \leq C\|f\|_{H^{s}(\Omega)}$ holds for any $f \in H^{s}(\Omega)$ (s depends on the dimension). Here, we have used Lemma S2.1 in the first inequality, noticing that $\left\|t e_{k} f_{\xi}\right\|_{L^{\infty}}$ is uniformly bounded for ξ as $t \rightarrow 0$. This concludes the proof.

S3. Additional details for Example 1. LEMMA S3.1. z_{1}, z_{2} and z_{3} are distinct roots.

Proof. It is clear that

$$
z_{2}=w_{2} \zeta^{1 / 2} \quad \text { and } \quad z_{3}=w_{3} \zeta^{1 / 2}
$$

with $-1<w_{3}<0<w_{2}<1$, this implies $z_{2} \neq z_{3}$.
A direct calculation gives

$$
\begin{aligned}
z_{1} & =\frac{6-\zeta-\bar{\zeta}-\sqrt{(4-\zeta-\bar{\zeta})(2-\zeta-\bar{\zeta})}}{2(1+\bar{\zeta})} \\
& =\frac{6-\zeta-\bar{\zeta}-\sqrt{(4-\zeta-\bar{\zeta})(2-\zeta-\bar{\zeta})}}{2(1+\zeta)(1+\bar{\zeta})}(1+\zeta) \\
& =\frac{6-\zeta-\bar{\zeta}-\sqrt{(4-\zeta-\bar{\zeta})(2-\zeta-\bar{\zeta})}}{2(2+\zeta+\bar{\zeta})}\left(\zeta^{1 / 2}+\bar{\zeta}^{1 / 2}\right) \zeta^{1 / 2}
\end{aligned}
$$

Recalling $\zeta=e^{\imath \theta}$ with $\theta \in(-\pi, \pi)$, and we may write

$$
z_{1}=\frac{2 \cos (\theta / 2)}{3-\cos \theta+\sqrt{(7-\cos \theta)(1-\cos \theta)}} e^{\imath \theta / 2}
$$

Note that

$$
\frac{2 \cos (\theta / 2)}{3-\cos \theta+\sqrt{(7-\cos \theta)(1-\cos \theta)}}>0>w_{3}
$$

this implies $z_{1} \neq z_{3}$.
It remains to prove $z_{1} \neq z_{2}$. Note that

$$
z_{2}=\frac{1}{2}\left(B-\sqrt{B^{2}-4}\right) e^{\imath \theta / 2}
$$

with

$$
B=-A / 2+\sqrt{A^{2} / 4+14-(\zeta+\bar{\zeta})}
$$

Using

$$
A=\zeta+\bar{\zeta}+\zeta^{3}+\bar{\zeta}^{3}=(\zeta+\bar{\zeta})\left(\zeta^{2}+\bar{\zeta}^{2}\right)=4 \cos (\theta / 2) \cos \theta
$$

we write

$$
\begin{aligned}
A^{2} / 4+14-(\zeta+\bar{\zeta}) & =16 \cos ^{2}(\theta / 2) \cos ^{2} \theta+14-2 \cos \theta \\
& =16 \cos ^{2}(\theta / 2) \cos ^{2} \theta+14-2\left(2 \cos ^{2}(\theta / 2)-1\right) \\
& =16-4 \cos ^{2}(\theta / 2) \sin ^{2} \theta
\end{aligned}
$$

This gives

$$
B=2 \sqrt{4-\cos ^{2}(\theta / 2) \sin ^{2} \theta}-2 \cos (\theta / 2) \cos \theta
$$

To prove $z_{1} \neq z_{2}$, it remains to show $\left|z_{1}\right| \neq\left|z_{2}\right|$, i.e.,

$$
\frac{1}{2}\left(B-\sqrt{B^{2}-4}\right) \neq \frac{2 \cos (\theta / 2)}{3-\cos \theta+\sqrt{(7-\cos \theta)(1-\cos \theta)}}
$$

Actually, we shall prove that for $\theta \in(-\pi, \pi)$ and $\theta \neq 0$, there holds

$$
\begin{equation*}
\frac{1}{2}\left(B-\sqrt{B^{2}-4}\right)>\frac{2 \cos (\theta / 2)}{3-\cos \theta+\sqrt{(7-\cos \theta)(1-\cos \theta)}} \tag{S3.1}
\end{equation*}
$$

The above inequality is equivalent to

$$
\begin{equation*}
3-\cos \theta+\sqrt{(7-\cos \theta)(1-\cos \theta)}>\cos (\theta / 2)\left(B+\sqrt{B^{2}-4}\right) \tag{S3.2}
\end{equation*}
$$

Denote by $t=\cos (\theta / 2)$, we write the above inequality as

$$
2-t^{2}+\sqrt{\left(4-t^{2}\right)\left(1-t^{2}\right)}>t\left(\begin{array}{c}
\left.g(t)+\sqrt{g^{2}(t)-1}\right), \quad t \in[0,1), \tag{S3.3}\\
\mathrm{S} 4
\end{array}\right.
$$

where

$$
g(t):=t-2 t^{3}+2 \sqrt{1-t^{4}+t^{6}} .
$$

To prove S3.3, we firstly prove

$$
\begin{equation*}
2-t^{2}>\operatorname{tg}(t) \quad t \in[0,1) . \tag{S3.4}
\end{equation*}
$$

A direct calculation gives

$$
\begin{aligned}
2-t^{2}-t g(t) & =2\left(1-t^{2}\right)+2 t\left(t^{3}-\sqrt{1-t^{4}+t^{6}}\right) \\
& =2\left(1-t^{2}\right)+\frac{2 t\left(t^{4}-1\right)}{\sqrt{1-t^{4}+t^{6}+t^{3}}} \\
& =2\left(1-t^{2}\right)\left(1-\frac{t+t^{3}}{\sqrt{1-t^{4}+t^{6}}+t^{3}}\right) .
\end{aligned}
$$

Note that

$$
\sqrt{1-t^{4}+t^{6}}>t,
$$

which follows from $\left(1-t^{2}\right)\left(1-t^{4}\right)>0$. Combining the above two inequalities, we obtain (S3.4.

Next, by S3.4 and note $g(t) \geq 0$, we obtain

$$
\left(4-t^{2}\right)\left(1-t^{2}\right)=\left(2-t^{2}\right)^{2}-t^{2} \geq t^{2}\left(g^{2}(t)-1\right)
$$

A direct calculation gives that $g(t) \geq 1$. Therefore,

$$
\sqrt{\left(4-t^{2}\right)\left(1-t^{2}\right)} \geq t \sqrt{g^{2}(t)-1},
$$

which together with (S3.4) gives (S3.3). This implies $z_{1} \neq z_{2}$ and completes the proof. ■

[^0]: *Department of Mathematics, Physics, and Chemistry, Duke University, Box 90320, Durham, NC, 27708 USA. Email: jianfeng@math.duke.edu
 ${ }^{\dagger}$ LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences, No. 55, Zhong-Guan-Cun East Road, Beijing 100190, China. Email: mpb@lsec.cc.ac.cn

