SUPPLEMENTARY MATERIALS: STABILITY OF A FORCE-BASED
HYBRID METHOD WITH PLANAR SHARP INTERFACE

JIANFENG LU* AND PINGBING MINGH

S1. Lattice function and norms. We will consider only Bravais lattices in
this work, which is denoted as L. Let {a; }?:1 C R? be the basis vectors of L, and d
be the dimension,

L:{xeRd’x:anaj,nEZd}.
J

Let {bj};-izl C R? be the reciprocal basis vectors satisfying a; - by, = 2705, where dy,
is the standard Kronecker delta symbol. The reciprocal lattice L* is

L* = {a: € Rd‘x = anbj, n e Zd}.
J
We take a computational domain
0= {Zx]a] ’ T e [0,1)d}7
J
and let Q. be a grid mesh in Q with mesh size e = 1/(2N), N € Z:

ng{xl,:gZVjaj ’ VeZd,O§Uj<2N}.
J

Using the reciprocal basis {b;}, we define

L::{fzz:kjbj‘kezd, ~N <k <N},
J

We will identify functions defined on €. with their periodic extensions in this work,
i.e., we consider the periodic boundary condition. General boundary conditions will
be left for future work.

For p1 € Z¢, we define the translation operator T* as

(T!u)(x) = u(z + epja;)  for x € RY

where the index summation convention is used. We define the forward and backward
difference operators as

Df,=e N (T¢-1) and D_,=c'(I-T; "),
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where I denotes the identity operator. We say « is a multi-index, if o € Z¢ and o > 0.
We will use the notation |a| = Zj‘:l a;. For a multi-index «, the difference operator
D¢ is given by

d

D = [ (D)™,
j=1

where {e;}9_, are the canonical basis of R* (columns of a d x d identity matrix).
We will use various norms for functions defined on €2.. For integer k£ > 0, define

the difference norm
2 2
lal2o =D &Y (D))
0<|a|<k  x€Q.

It is clear that |-, is a discrete analog of Sobolev norm associated with H*((2).

Hence, we denote the corresponding spaces of lattice functions as HF(Q) and L2(Q)
when k£ = 0. We also need the uniform norms on 2., which are defined as

lll e = max Ju(z)[,

— «
fulyre = 37 max |(D2w)(a)].

0<lal<k °

Recall that we identify lattice function u with its periodic extension to function defined
on ¢lL, and hence differences of the lattice functions are well-defined. These norms
may be extended to vector-valued functions as usual. For k > d/2, we have the
discrete Sobolev inequality [ul|,~ < [lull. ). Here and throughout this paper, we
denote A < B if A < CB with C’Ean absolute constant.

The discrete Fourier transform for a lattice function w is given for £ € LY by

E d
~ _ —i&-x
@)= (=) D e ula).
€N,
By the Fourier inversion formula, for x € €.,
u(z) = Z e s u(g).
€elz

We will use a symbol introduced by Nirenberg in [2626,26], which plays the same
role for the difference operators as A2(€) = 1 + A2(€) = 1+ [¢[* for the differential
operators. For € > 0, let

1,
AJaE(é-) = g |e‘€fj -1 ’ j: 13 >d7

and

d d
4 €&
206\ 2 _ 2 _ & 2855
A2 =1+A] (=1 +;AM(5) 1+; 5 sin ( > )
It is not hard to check for any £ € L%, there holds
cA*(§) < AZ(8) < A*(9),

where the positive constant ¢ depends on {b;}.
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S2. Proof of Lemma Let us first recall the following consistency lemma
proved in [2222;[22] Section 2] (proofs of these results do not depend on the smoothness

o Q)LEMMA S2.1 (Consistency). For any u smooth, we have
1Faclu] = Fenlulllpee < Ce* ullyps o (52.1)
|1Fe[u] = Feplulll o < Ce* [|ullypas. , (52.2)
1 Fay[u] = Fas[ulll e < O [lullyyras. (52.3)

where the constant C depends on V' and ||u| ;«, but is independent of €.
Proof. [Proof of Lemma The proof for (3.6) and (3.7) are analogous, and
hence we will only prove the latter. By definition, for 1 < j, k < d,

(hat) k(&) = e 7" (Hat (enfe)); (),
(hy)j(2,€) = €7 (Huy (exfe)); (2),

where f¢(z) = €' for z € (2. Taking difference of the above two equations, we obtain
the bound

|hat (§) — hny(2,8)| < C sup [[Hat(erfe) — Huy(erfe)ll o -
1<k<d e
Note that by the definition of linearized operators H,; and Hyy, we have

L Falt(ente)) — Fugltler o).

= lim
t—0t ¢

Hat(erfe) — Huy (e fe)

Hence,

[Hat(enfe) = Huy(erfe)ll o = lim % [Fas[t(er fe)] = Fuy[tler fo)lll Lo

2
S llenfellwise S € lewfell e S 2L+ 1E°)*2,

where s is chosen so that the Sobolev inequality || f|lyy1s.0q) < C || fll (o) holds for
h

any f € H*(Q) (s depends on the dimension). Here, we have used Lemma [S2.1|in the
first inequality, noticing that ||[teg fe||; . is uniformly bounded for £ as ¢ — 0. This
concludes the proof. O

S3. Additional details for Example 1. LEMMA S3.1. 2zy,z0 and z3 are
distinct roots.
Proof. 1t is clear that

ZQ:w2C1/2 and Z3:w3C1/2

with —1 < w3 < 0 < we < 1, this implies 25 # 23.
A direct calculation gives

6T /6-¢-0 2¢O

21

2(1+¢)
6-(-C—/(1-¢-9-¢-¢
i J-c-0e-c-9
2(1+¢) (1+¢)
G*C*E*\/(ZL*C*@@*C*E) 1/2 | 7172\ 1/2
_ CETE, (24 a2y e
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Recalling ¢ = e? with 6 € (—7,7), and we may write

2cos(0/2) 02
e’e.
3 —cosf + /(7 —cosf)(1 — cosb)

zZ1 =

Note that

2cos(0/2)
3 —cosf + /(7T —cosf)(1 — cosf)

>0>U}3,

this implies z; # z3.
It remains to prove z; # zo. Note that

. (B _/B*_ 4) /2

2
with
B= A2+ \/A2/4+ 14— ((+Q).
Using
A=(+C+3+3 = (C—i—f) (CQ—I—EQ) = 4cos(0/2) cos b,
we write
A?/4+ 14 — ((+¢) = 16cos®(0/2) cos® 6 + 14 — 2 cos §
= 16cos?(0/2) cos? 0 + 14 — 2(2cos?(0/2) — 1)
=16 — 4 cos*(A/2) sin? 6.
This gives

B= 2\/4 — cos2(0/2) sin? @ — 2 cos(0/2) cos 6.

To prove z1 # za, it remains to show |z1| # |22, i.e.,

1(3—\/@)7& 2cos(0/2)

2 3 —cosf+ /(7T —cos)(1 — cosh)

Actually, we shall prove that for § € (—m,7) and 6 # 0, there holds

1 (B VB2 - 4) > 2c05(6/2) ($3.1)

2 3 —cosf+ /(7T—cosf)(1 — cosf)

The above inequality is equivalent to

3 —cosf + /(7 —cosB)(1 — cos ) > cos(#/2) (B ++vB?% - 4) . (S3.2)

Denote by t = cos(6/2), we write the above inequality as

2- 24 A=) >t (90 + VRO - 1),  tel1),  (533)
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where
g(t): =t —26% +2¢/1 — t4 4+ 16,
To prove , we firstly prove
21> >tg(t) te][o,1). (S3.4)
A direct calculation gives
212 —tg(t) = 2(1 — %) + 2t (t3 - M)

2t(tt —1)

=21 —t*)+
( ) V1=t 46 4¢3

5 t+t?
=2(1-¢7)(1— .
VIt +6 413

Note that

V1—tt+16 >t
which follows from (1 — #2)(1 — ¢*) > 0. Combining the above two inequalities, we
obtain ((S3.4]).

Next, by and note g(t) > 0, we obtain
(A=) (1= 12) = (2— ) = 2 > £2(g%(t) — 1).
A direct calculation gives that g(t) > 1. Therefore,
V=) (1 —12) 2 /2 (t) — 1,

which together with (S3.4]) gives (S3.3|). This implies z; # 2o and completes the proof.
0
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