
SUPPLEMENTARY MATERIALS: STABILITY OF A FORCE-BASED
HYBRID METHOD WITH PLANAR SHARP INTERFACE

JIANFENG LU∗ AND PINGBING MING†

S1. Lattice function and norms. We will consider only Bravais lattices in
this work, which is denoted as L. Let {aj}dj=1 ⊂ Rd be the basis vectors of L, and d
be the dimension,

L =
{
x ∈ Rd

∣∣∣x =
∑
j

njaj , n ∈ Zd
}
.

Let {bj}dj=1 ⊂ Rd be the reciprocal basis vectors satisfying aj · bk = 2πδjk,where δjk
is the standard Kronecker delta symbol. The reciprocal lattice L∗ is

L∗ =
{
x ∈ Rd

∣∣∣x =
∑
j

njbj , n ∈ Zd
}
.

We take a computational domain

Ω =
{∑

j

xjaj

∣∣∣ x ∈ [0, 1)d
}
,

and let Ωε be a grid mesh in Ω with mesh size ε = 1/(2N), N ∈ Z+:

Ωε =
{
xν = ε

∑
j

νjaj

∣∣∣ ν ∈ Zd, 0 ≤ νj < 2N
}
.

Using the reciprocal basis {bj}, we define

L∗ε =
{
ξ =

∑
j

kjbj

∣∣∣ k ∈ Zd, −N ≤ kj < N
}
.

We will identify functions defined on Ωε with their periodic extensions in this work,
i.e., we consider the periodic boundary condition. General boundary conditions will
be left for future work.

For µ ∈ Zd, we define the translation operator Tµε as

(Tµε u)(x) = u(x+ εµjaj) for x ∈ Rd,

where the index summation convention is used. We define the forward and backward
difference operators as

D+
ε,µ = ε−1(Tµε − I) and D−ε,µ = ε−1(I − T−µε ),
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where I denotes the identity operator. We say α is a multi-index, if α ∈ Zd and α ≥ 0.
We will use the notation |α| =

∑d
j=1 αj . For a multi-index α, the difference operator

Dα
ε is given by

Dα
ε =

d∏
j=1

(D+
ε,ej )αj ,

where {ej}dj=1 are the canonical basis of Rd (columns of a d× d identity matrix).
We will use various norms for functions defined on Ωε. For integer k ≥ 0, define

the difference norm

‖u‖2ε,k =
∑

0≤|α|≤k

εd
∑
x∈Ωε

|(Dα
ε u)(x)|2 .

It is clear that ‖·‖ε,k is a discrete analog of Sobolev norm associated with Hk(Ω).

Hence, we denote the corresponding spaces of lattice functions as Hk
ε (Ω) and L2

ε(Ω)
when k = 0. We also need the uniform norms on Ωε, which are defined as

‖u‖L∞ε = max
x∈Ωε

|u(x)| ,

‖u‖Wk,∞
ε

=
∑

0≤|α|≤k

max
x∈Ωε

|(Dα
ε u)(x)| .

Recall that we identify lattice function u with its periodic extension to function defined
on εL, and hence differences of the lattice functions are well-defined. These norms
may be extended to vector-valued functions as usual. For k > d/2, we have the
discrete Sobolev inequality ‖u‖L∞ε . ‖u‖ε,k. Here and throughout this paper, we

denote A . B if A ≤ CB with C an absolute constant.
The discrete Fourier transform for a lattice function u is given for ξ ∈ L∗ε by

û(ξ) =
( ε

2π

)d ∑
x∈Ωε

e−ıξ·xu(x).

By the Fourier inversion formula, for x ∈ Ωε,

u(x) =
∑
ξ∈L∗ε

eıx·ξû(ξ).

We will use a symbol introduced by Nirenberg in [2626,26], which plays the same

role for the difference operators as Λ2(ξ) = 1 + Λ2
0(ξ) = 1 + |ξ|2 for the differential

operators. For ε > 0, let

Λj,ε(ξ) =
1

ε

∣∣eıεξj − 1
∣∣ , j = 1, · · · , d,

and

Λ2
ε(ξ) = 1 + Λ2

0,ε(ξ) = 1 +

d∑
j=1

Λ2
j,ε(ξ) = 1 +

d∑
j=1

4

ε2
sin2

(εξj
2

)
.

It is not hard to check for any ξ ∈ L∗ε, there holds

cΛ2(ξ) ≤ Λ2
ε(ξ) ≤ Λ2(ξ),

where the positive constant c depends on {bj}.
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S2. Proof of Lemma 3.2. Let us first recall the following consistency lemma
proved in [2222; 22, Section 2] (proofs of these results do not depend on the smoothness
of %).

Lemma S2.1 (Consistency). For any u smooth, we have

‖Fat[u]−FCB[u]‖L∞ε ≤ Cε
2 ‖u‖W 18,∞ , (S2.1)

‖Fε[u]−FCB[u]‖L∞ε ≤ Cε
2 ‖u‖W 18,∞ , (S2.2)

‖Fhy[u]−Fat[u]‖L∞ε ≤ Cε
2 ‖u‖W 18,∞ , (S2.3)

where the constant C depends on V and ‖u‖L∞ , but is independent of ε.
Proof. [Proof of Lemma 3.2] The proof for (3.6) and (3.7) are analogous, and

hence we will only prove the latter. By definition, for 1 ≤ j, k ≤ d,

(hat)jk(ξ) = e−ıx·ξ(Hat(ekfξ))j(x),

(hhy)jk(x, ξ) = e−ıx·ξ(Hhy(ekfξ))j(x),

where fξ(x) = eıx·ξ for x ∈ Ω. Taking difference of the above two equations, we obtain
the bound

|hat(ξ)− hhy(x, ξ)| ≤ C sup
1≤k≤d

‖Hat(ekfξ)−Hhy(ekfξ)‖L∞ε .

Note that by the definition of linearized operators Hat and Hhy, we have

Hat(ekfξ)−Hhy(ekfξ) = lim
t→0+

1

t

(
Fat[t(ekfξ)]−Fhy[t(ekfξ)]

)
.

Hence,

‖Hat(ekfξ)−Hhy(ekfξ)‖L∞ε = lim
t→0+

1

t
‖Fat[t(ekfξ)]−Fhy[t(ekfξ)]‖L∞ε

. ε2 ‖ekfξ‖W 18,∞ . ε2 ‖ekfξ‖Hs . ε2(1 + |ξ|2)s/2,

where s is chosen so that the Sobolev inequality ‖f‖W 18,∞(Ω) ≤ C ‖f‖Hs(Ω) holds for

any f ∈ Hs(Ω) (s depends on the dimension). Here, we have used Lemma S2.1 in the
first inequality, noticing that ‖tekfξ‖L∞ is uniformly bounded for ξ as t → 0. This
concludes the proof.

S3. Additional details for Example 1. Lemma S3.1. z1, z2 and z3 are
distinct roots.

Proof. It is clear that

z2 = w2ζ
1/2 and z3 = w3ζ

1/2

with −1 < w3 < 0 < w2 < 1, this implies z2 6= z3.
A direct calculation gives

z1 =
6− ζ − sζ −

√(
4− ζ − sζ

) (
2− ζ − sζ

)
2(1 + sζ)

=
6− ζ − sζ −

√(
4− ζ − sζ

) (
2− ζ − sζ

)
2(1 + ζ)

(
1 + sζ

) (1 + ζ)

=
6− ζ − sζ −

√(
4− ζ − sζ

) (
2− ζ − sζ

)
2
(
2 + ζ + sζ

) (
ζ1/2 + sζ1/2

)
ζ1/2.
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Recalling ζ = eıθ with θ ∈ (−π, π), and we may write

z1 =
2 cos(θ/2)

3− cos θ +
√

(7− cos θ)(1− cos θ)
eıθ/2.

Note that

2 cos(θ/2)

3− cos θ +
√

(7− cos θ)(1− cos θ)
> 0 > w3,

this implies z1 6= z3.
It remains to prove z1 6= z2. Note that

z2 =
1

2

(
B −

√
B2 − 4

)
eıθ/2

with

B = −A/2 +
√
A2/4 + 14−

(
ζ + sζ

)
.

Using

A = ζ + sζ + ζ3 + sζ3 =
(
ζ + sζ

) (
ζ2 + sζ2

)
= 4 cos(θ/2) cos θ,

we write

A2/4 + 14−
(
ζ + sζ

)
= 16 cos2(θ/2) cos2 θ + 14− 2 cos θ

= 16 cos2(θ/2) cos2 θ + 14− 2(2 cos2(θ/2)− 1)

= 16− 4 cos2(θ/2) sin2 θ.

This gives

B = 2

√
4− cos2(θ/2) sin2 θ − 2 cos(θ/2) cos θ.

To prove z1 6= z2, it remains to show |z1| 6= |z2|, i.e.,

1

2

(
B −

√
B2 − 4

)
6= 2 cos(θ/2)

3− cos θ +
√

(7− cos θ)(1− cos θ)
.

Actually, we shall prove that for θ ∈ (−π, π) and θ 6= 0, there holds

1

2

(
B −

√
B2 − 4

)
>

2 cos(θ/2)

3− cos θ +
√

(7− cos θ)(1− cos θ)
. (S3.1)

The above inequality is equivalent to

3− cos θ +
√

(7− cos θ)(1− cos θ) > cos(θ/2)
(
B +

√
B2 − 4

)
. (S3.2)

Denote by t = cos(θ/2), we write the above inequality as

2− t2 +
√

(4− t2)(1− t2) > t
(
g(t) +

√
g2(t)− 1

)
, t ∈ [0, 1), (S3.3)
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where

g(t): = t− 2t3 + 2
√

1− t4 + t6.

To prove (S3.3), we firstly prove

2− t2 > tg(t) t ∈ [0, 1). (S3.4)

A direct calculation gives

2− t2 − tg(t) = 2(1− t2) + 2t
(
t3 −

√
1− t4 + t6

)
= 2(1− t2) +

2t(t4 − 1)√
1− t4 + t6 + t3

= 2(1− t2)

(
1− t+ t3√

1− t4 + t6 + t3

)
.

Note that √
1− t4 + t6 > t,

which follows from (1 − t2)(1 − t4) > 0. Combining the above two inequalities, we
obtain (S3.4).

Next, by (S3.4) and note g(t) ≥ 0, we obtain

(4− t2)(1− t2) = (2− t2)2 − t2 ≥ t2(g2(t)− 1).

A direct calculation gives that g(t) ≥ 1. Therefore,√
(4− t2)(1− t2) ≥ t

√
g2(t)− 1,

which together with (S3.4) gives (S3.3). This implies z1 6= z2 and completes the proof.
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