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Abstract

In this paper, we present a generalized Peierls–Nabarro model for curved dislocations. In the generalized Peierls–Nabarro model, the
anisotropic elastic energy is obtained efficiently by solving the elasticity system associated with the disregistry across the slip plane using
the fast Fourier transform method, and the generalized stacking fault energy is used for the interplanar potential across the slip plane.
Simulation results are reported on the core structures and the activation energies of dislocation loops in Al and Cu, incorporating both
the elastic anisotropy and the full disregistry vector in the slip plane.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

To model dislocations, the long-range elastic field of a
dislocation is very well described by the continuum elastic-
ity theory outside a small region surrounding the disloca-
tion, which is the core region of the dislocation; inside
the core region, the heavily distorted atomic structure
requires atomistic models, and strongly influences the
dislocation mobility and the mechanical behavior of the
materials [1]. The Peierls–Nabarro model [1–3] is a hybrid
model that incorporates atomic features into the contin-
uum framework.

In the framework of the Peierls–Nabarro model, the
solid is divided by the slip plane of the dislocation into
two half-space linear elastic continua, which have a disreg-
istry (misfit) relative to each other and are connected by a
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nonlinear potential force. In the classical Peierls–Nabarro
model [1–3], isotropic linear elasticity is used in the two
half-space elastic continua, and the interplanar potential
is approximated by the simple Frenkel sinusoidal function
[4]. The analytical solution of the classical Peierls–Nabarro
model gives qualitative descriptions for the dislocation core
profile as well as the energy barrier (Peierls energy) and the
critical stress (Peierls stress) for the motion of dislocations.

The Peierls–Nabarro model has been improved greatly
in subsequent work, especially with the introduction of
the generalized stacking fault energy for the atomic interac-
tion across the slip plane [5] and the availability of the
accurate results based on ab initio calculations [6–11]. It
has been argued in these references that by using the gener-
alized stacking fault energy obtained from ab initio calcu-
lations, the Peierls–Nabarro model can give more reliable
results than atomistic simulations using empirical poten-
tials. Using the generalized stacking fault energy, no
analytical solution of the Peierls–Nabarro model is avail-
able, and several numerical solution methods have been
rights reserved.
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proposed to obtain the dislocation profile, such as the arc-
tangent type basis functions [7,12,13] and the semidiscrete
Peierls–Nabarro model [9]. Another improvement of the
Peierls–Nabarro model is to include the full elastic anisot-
ropy [12,14,15], which is important for materials with
strong anisotropic effect (e.g. Cu) [1]. Other efforts to
improve the Peierls–Nabarro model include incorporating
the discreteness of the crystal lattices [9,16,17], the nonlocal
effect near the slip plane [18] and the disregistry normal to
the slip plane (opening) [9]. The major limitation of the Pei-
erls–Nabarro model lies in the underlying assumption that
the nonlinear interaction is restricted to the slip plane,
which makes this model work well only for dislocations
with planar cores such as those in face-centered cubic
(fcc) materials. Several attempts have been made to gener-
alize the Peierls–Nabarro model to the nonplanar core of
screw dislocations in body-centered cubic (bcc) materials
[19] and cross-slip of screw dislocations to different slip
planes in fcc materials [20].

All these Peierls–Nabarro models mentioned above are
for straight dislocations. In reality, dislocations are curved
and commonly form loops inside crystalline materials.
Only a few attempts have been made to study the core
structure and detailed dynamics of curved dislocations
within the framework of the Peierls–Nabarro models. In
Ref. [21], a variational boundary integral method [22,23]
was used to study the homogeneous nucleation of disloca-
tion loops under stress. In this model, the elastic energy
was obtained by treating the displacement discontinuity
on the slip plane as a continuous distribution of dislocation
loops [1,24]; the interplanar misfit energy was obtained
using Rice’s modification of the Frenkel relation for dislo-
cations nucleating from the crack tips [25]; and the result-
ing singular integral equation was solved by a finite
element method [22]. In Ref. [26], two-dimensional lattice
models were introduced to study the motion of a disloca-
tion kink. In Ref. [27], a hybrid model incorporating the
Peierls–Nabarro framework into a dislocation dynamics
model was proposed, in which N dislocation loops (about
20 in their examples) were used to represent the core struc-
ture of one single loop. The elastic energy of a dislocation
loop was calculated by summing the interaction between
each segment pairs on all N loops; and the restoring force
due to the generalized stacking fault energy obtained from
ab initio calculations [11] was calculated by representing
disregistry across the slip plane using a step function
approximation. However, although elastic anisotropy was
included in the formulation in some of these models, their
simulations were all performed in isotropic media. Further-
more, in the simulations in Ref. [21,27], the disregistry
across the slip plane was restricted in the direction of the
Burgers vector (the constrained path approximation [25]),
thus the dissociation of dislocations into partials was not
included.

In this paper, we use a generalized Peierls–Nabarro
model to study the core structures and properties of dislo-
cation loops in Al and Cu, incorporating both the elastic
anisotropy and the full disregistry vector in the slip plane,
which to our knowledge has never been done in simulations
within the framework of Peierls–Nabarro model in the lit-
erature. In the generalized Peierls–Nabarro model, the dis-
tribution of the dislocations is represented by the
disregistry across the slip plane that is allowed to be in
any direction [21–23,26,29,33]. The anisotropic elastic
energy is obtained by solving the elasticity system associ-
ated with the disregistry using the fast Fourier transform
(FFT) method. The generalized stacking fault energy is
used for the interplanar potential across the slip plane.
The resulting nonlinear equations for the distribution of
the dislocations are solved by minimizing the total energy.

Compared with the finite element formulation in Ref.
[21], besides the usual advantages of efficiency and simplic-
ity in formulation and programming that the FFT methods
have over the finite element methods, our FFT-based
method also avoids the singularities in calculating the stress
field associated with dislocations that all formulations in
physical space have [1,24] including the finite element
formulation in Ref. [21]. The efficiency of a two-dimen-
sional Peierls–Nabarro model is crucial, especially when
computing the core structure of dislocation loops in a crys-
tal such as Cu, in which the two partials in a dislocation
loop have a large separation and thus large simulation cells
are required. Compared with the interaction summation
over small segments on dislocation loop arrays in the
hybrid model in Ref. [27], our FFT method is simpler
and describes the dislocation structure more accurately.
Furthermore, the hybrid model in Ref. [27] works only
under the constrained path approximation for curved
dislocations.

Note that the purpose of our method is different from
that of the phase field models in Ref. [28,29], which aimed
at the dynamics of dislocation ensembles, and in which the
interplanar potentials were used only for regularization.
The three-dimensional phase field model in Ref. [28] has
also been generalized to study the dislocation dissociation
in fcc crystals by incorporating the generalized stacking
fault energy [30]. However, when applied to the dislocation
core structures in a particular slip plane, it is not as accu-
rate as the classical Peierls–Nabarro model. In particular,
their model contains a gradient energy term that is not
included in the classical Peierls–Nabarro model, and which
has been shown to change the dislocation core profile [30].
In addition, they do not directly use the disregistry across
the slip plane to represent dislocations, and it is not easy
to incorporate the opening in their model.

2. The generalized Peierls–Nabarro model

In this section, we present the formulation for the gener-
alized Peierls–Nabarro model. Suppose that the slip plane
of the dislocation is located at z ¼ 0, and the disregistry
of the upper half crystal relative to the lower half is
ð/ðx; yÞ;wðx; yÞ; 0Þ. The total energy in the framework of
the Peierls–Nabarro models [1–3] can be written as
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E ¼ Eelastic þ Emisfit: ð1Þ
The energy Eelastic is the elastic energy in the two half-

space linear elastic continua:

Eelastic ¼
Z

R3

X3

i;j¼1

1

2
rij�ij dxdy dz; ð2Þ

where frijg and f�ijg are the stress and strain tensors,
respectively, and rij ¼

P3
k;l¼1Cijkl�kl, for i; j ¼ 1; 2; 3,

where fCijklg is the elastic constant tensor. Using the dislo-
cation density tensor faijg [31–33], which in this problem is

faijg ¼
/yðx; yÞdðzÞ wyðx; yÞdðzÞ 0

�/xðx; yÞdðzÞ �wxðx; yÞdðzÞ 0

0 0 0

0
B@

1
CA; ð3Þ

the stress can be expressed using Mura’s formula in Fourier
space [33]:

r̂mnðk1; k2; k3Þ ¼
X3

j;l;p;q;r;s;t¼1

�jstCmnjlCpqrs ikq

� Nlpðk1; k2; k3Þ
Dðk1; k2; k3Þ

âtrðk1; k2; k3Þ; ð4Þ

where ðk1; k2; k3Þ are the frequencies in Fourier space, r̂ij

and âij are the Fourier transform of rij and aij, respectively,
�klm is the permutation tensor, which is 1 when klm = 123,
231, 312, �1 when klm = 132, 213, 321, and 0 otherwise,
Dðk1; k2; k3Þ is the determinant of the matrixP3

m;n¼1Cimjnkmkn

n o
and fN ijðk1; k2; k3Þg is its adjoint

matrix. The nonsingularity of the stress field in the above
formulation is guaranteed by the fact that the matrixP3

m;n¼1Cimjnkmkn

n o
is positive definite [39]. The average of

the stress in a simulation cell is determined by the applied
field.

The energy Emisfit is the misfit energy due to the nonlin-
ear atomic interaction across the slip plane:

Emisfit ¼
Z

R2
cð/ðx; yÞ;wðx; yÞÞdxdy; ð5Þ

where cð/;wÞ is the generalized stacking fault energy [5],
which can be obtained accurately using interatomic poten-
tials or ab initio calculations [5–11]. The generalized stacking
fault energy can be expressed using truncated Fourier series
[8,12,13,34] or symmetrized polynomial basis functions [11]
based on the crystal lattice symmetry, or by tabulated values.
Any of these forms can be used in our model.

The minimum energy state with respect to / and w gives
the equilibrium distribution of the Burgers vector of the
dislocations, which can be shown to satisfy the following
Euler–Lagrange equations

dE
d/
¼ r13 þ

oc
o/
¼ 0;

dE
dw
¼ r23 þ

oc
ow
¼ 0; ð6Þ

where r13 and r23 are the stress on the z ¼ 0 plane. Note that
the stress in these equilibrium equations includes both the
stress generated by the dislocations and the applied stress.
For the stress components in Eq. (6), using Eqs. (3) and
(4), we can write:

r̂mnðk1; k2Þ ¼ bF mnðk1; k2Þ/̂ðk1; k2Þ þ bGmnðk1; k2Þŵðk1; k2Þ;
ð7Þ

where

bF mnðk1; k2Þ ¼
Z

R

X3

j;l;p;q;s¼1

CmnjlCpq1skq
N lpðk1; k2; k3Þ
2pDðk1; k2; k3Þ

� ð�js2k1 � �js1k2Þdk3; ð8Þ

bGmnðk1; k2Þ ¼
Z

R

X3

j;l;p;q;s¼1

CmnjlCpq2skq
Nlpðk1; k2; k3Þ
2pDðk1; k2; k3Þ

� ð�js2k1 � �js1k2Þdk3: ð9Þ

Note that even though Eq. (7) is derived from the
three-dimensional formulation for elasticity, the expres-
sion itself is defined only on the slip plane of the disloca-
tion. For simplicity of notation, we write rmnðx; y; 0Þ as
rmnðx; yÞ, and the Fourier transform in Eqs. (7)–(9) is in
two dimensions. It is easy to verify that for straight dislo-
cations with isotropic elasticity, this formulation reduces
to that of the classical Peierls–Nabarro model [1–3].
Equivalent formulations or formulations for isotropic
elasticity have been obtained and used in Refs. [21–
23,26,29].

In some crystals, such as Si, the disregistry normal to the
slip plane (the opening) is also very important [8,9]. This
effect can be included in the elasticity system by considering
full disregistry ð/ðx; yÞ;wðx; yÞ; gðx; yÞÞ, where gðx; yÞ is the
opening across the slip plane. In this case, the dislocation
density tensor becomes

faijg ¼
/yðx; yÞdðzÞ wyðx; yÞdðzÞ gyðx; yÞdðzÞ
�/xðx; yÞdðzÞ �wxðx; yÞdðzÞ �gxðx; yÞdðzÞ

0 0 0

0
B@

1
CA:
ð10Þ

The generalized stacking fault energy with the effect of
opening cð/;w; gÞ can be obtained from interatomic poten-
tials or ab initio calculations [9], or by using the universal
binding energy curves [35–38]. The minimum energy state
in this case satisfies

oE
o/
¼ r13 þ

oc
o/
¼ 0;

oE
ow
¼ r23 þ

oc
ow
¼ 0;

oE
og
¼ r33 þ

oc
og
¼ 0; ð11Þ

in which the stress components can be calculated using the
following equations:

r̂mnðk1; k2Þ ¼ bF mnðk1; k2Þ/̂ðk1; k2Þ

þ bGmnðk1; k2Þŵðk1; k2Þ

þ bH mnðk1; k2Þĝðk1; k2Þ; ð12Þ

where in the new term containing ĝðk1; k2Þ,



1450 Y. Xiang et al. / Acta Materialia 56 (2008) 1447–1460
bH mnðk1; k2Þ ¼
Z

R

X3

j;l;p;q;s¼1

CmnjlCpq3skq
Nlpðk1; k2; k3Þ
2pDðk1; k2; k3Þ

� ð�js2k1 � �js1k2Þdk3: ð13Þ

Numerically, the solution of Eq. (6) (or Eq. (11)) is
found by minimizing the total energy in Fourier space
under periodic boundary conditions in the steepest descent

direction, i.e. solving the equations o/
ot ¼ � oE

o/, ow
ot ¼ � oE

ow

and og
ot ¼ � oE

og

� �
in Fourier space to the equilibrium state,

where t is an artificial time. The stress components in Eq.
(6) (or Eq. (11)) are calculated using the FFT method
through Eqs. (7)–(9) (or Eqs. (8), (9), (12) and (13)). The
integrals with respect to k3 in bF mnðx; yÞ, bGmnðx; yÞ (andbH mnðx; yÞ) are replaced by summations over integer values
of k3. These summations are the same for the same type
of slip planes in a crystal, e.g. {111} slip planes in an fcc
crystal, thus they can be pre-calculated only once before
the energy minimization. Smooth profiles of the disregistry
components that are close to the solutions for the perfect or
partial dislocations, such as the arctangent profiles in the
classical Peierls–Nabarro model [1–3], can be used as the
initial conditions for the energy minimization.

It is a standard technique to make the effect of periodic
images negligible by using a large simulation cell, for which
further increases in the size causes only negligible changes
in the result. In particular, since the summation with
respect to k3 is performed only once before the energy min-
imization, the size of the simulation cell in the z direction
can be chosen much larger to make the periodic effect in
the z direction arbitrarily small. The choice of the length
of the Burgers vector is a compromise between the resolu-
tion of the dislocation core, which requires more numerical
grid points for the length of the Burgers vector, and the size
of the simulation cell, which requires that the length of the
Burgers vector relative to the cell size cannot be quite large
in order to eliminate the effect of the periodic boundary
conditions. In practice, the Burgers vector can be chosen
to be several numerical grid constants.

3. Formulation and parameters for fcc Al and Cu

In this paper, we use our method to study the core struc-
tures of dislocation loops on the (111) planes of fcc Al and
Cu. The effect of opening is neglected. The dislocations
have Burgers vector b ¼ a

2
½�110�. A perfect dislocation with

this Burgers vector in most fcc crystals tends to dissociate
into Shockley partials [1]: a

2
½�110� ! a

6
½�12�1� þ a

6
½�211�.

We use the following parameters. The lattice constant a

is 0.405 nm for Al and 0.361 nm for Cu. The elastic con-
stants C11 ¼ 10:82� 1010 Pa, C12 ¼ 6:13� 1010 Pa, and
C44 ¼ 2:85� 1010 Pa for Al, and C11 ¼ 16:84� 1010 Pa,
C12 ¼ 12:14� 1010 Pa, C44 ¼ 7:54� 1010 Pa for Cu [1].

We use the following truncated Fourier expansion for
the generalized stacking fault energy cð/;wÞ on fcc (11 1)
planes, which incorporates the symmetry of the crystal lat-
tice [34]:
cð/;wÞ¼ c0þ c1 cos
2p
b

/þw=
ffiffiffi
3
p� �

þ cos
2p
b

/�w=
ffiffiffi
3
p� ��

þcos
4pwffiffiffi

3
p

b

�
þ c2 cos

2p
b

/þ
ffiffiffi
3
p

w
� ��

þcos
2p
b

/�
ffiffiffi
3
p

w
� �

þ cos
4p/

b

�

þ c3 cos
2p
b

2/þ2w=
ffiffiffi
3
p� �

þ cos
2p
b

2/�2w=
ffiffiffi
3
p� ��

þcos
8pwffiffiffi

3
p

b

�
þd1 sin

2p
b

/�w=
ffiffiffi
3
p� ��

�sin
2p
b

/þw=
ffiffiffi
3
p� �

þ sin
4pwffiffiffi

3
p

b

�

þd2 sin
2p
b

2/�2w=
ffiffiffi
3
p� ��

�sin
2p
b

2/þ2w=
ffiffiffi
3
p� �

þ sin
8pwffiffiffi

3
p

b

�
; ð14Þ

where / is the disregistry in the ½�110� direction, w is the
disregistry in the ½�1�12� direction, b is the length of the Bur-
gers vector, and c0 ¼ �3c1 � 3c2 � 3c3. For Al, the
coefficients c1 ¼ �0:0595 J m�2, c2 ¼ �0:003 J m�2, c3 ¼
�0:0109 J m�2, d1 ¼ �0:0426 J m�2, d2 ¼ 0:0153 J m�2;
and for Cu, c1 ¼ �0:0876 J m�2, c2 ¼ 0, c3 ¼ �0:0186
J m�2, d1 ¼ �0:1517 J m�2, d2 ¼ 0:0149 J m�2. These
values of the coefficients are obtained by fitting available
data for the elastic constants in the (111) plane, for the
stacking fault energy, for the unstable stacking fault energy
in the h112i direction and for the unstable stacking
fault energy in the h110i direction (only for Al) [1,11,40],
following Ref. [12]. The obtained cð/;wÞ for Al and Cu
are shown in Fig. 1.

In the simulation results reported in this paper, the size
of the simulation cell is 1024� 1024 grid points, and the
length of the Burgers vector b ¼ 4Dx (b ¼ 2Dx for very
large dislocation loops in Cu), where Dx ¼ Dy is the grid
size. We use 16,384 grid points in the summation in the z

direction. Further modifications of these parameters to
increase the accuracy only change the results negligibly.
4. Straight dislocations

When applied to straight dislocations, our FFT method,
in which only one-dimensional FFT needs to be performed,
is an alternative to the currently available numerical meth-
ods within the framework of the Peierls–Nabarro model
[7,9,11,12], In this section, we present the simulation results
of the core structures of straight dislocations in Al and Cu
using our method, and compare them with the results
obtained using other Peierls–Nabarro models and those
obtained from experiments.

We choose the direction of the straight dislocations to
be the y-axis. If h is the angle between the dislocation line
and the Burgers vector, we have / ¼ /1 sin hþ w1 cos h and
w ¼ �/1 cos hþ w1 sin h, where ð/;wÞ and ð/1;w1Þ are the
coordinates of the disregistry vector in the coordinate sys-
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Fig. 2. Under the conditions of anisotropic elasticity and Frenkel
sinusoidal potential, the dislocation density of a screw dislocation
obtained using our model (dots) and the result of the classical Peierls–
Nabarro (PN) model (solid line), using parameters for Cu.

Fig. 1. The generalized stacking fault energy cð/;wÞ (Unit: J m�2). (a) cð/;wÞ on Al (111) plane and (b) cð/;wÞ on Cu (111) plane.
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tems described in the previous and this section, respec-
tively. To enforce periodic boundary conditions for
straight dislocations, a pair of dislocations with opposite
directions are placed in one periodic cell at a distance equal
to half of the cell size. Convergence tests show that the
effect on the core structure of one dislocation from the
other and all the periodic images is negligible for the cells
we have chosen for the simulations (see previous section).
The density of dislocation, or the distribution of the
Burgers vector, is the derivative of the disregistry in the
direction perpendicular to the dislocation [1]: qðxÞ ¼
/0ðxÞ ¼ /01ðxÞ sin hþ w01ðxÞ cos h, where the derivatives can
be calculated using FFT. Even though a one-dimensional
model is enough for these straight dislocations, we solved
these examples in two dimensions as test examples for the
full two-dimensional model.

We first present a numerical test for a straight screw dis-
location in an fcc crystal using anisotropic elasticity and

the Frenkel sinusoidal potential cðw1Þ ¼
C0

44
b2

4p2d 1� cos 2pw1

b

� �
,

when the classical Peierls–Nabarro model has an analytical
solution for the dislocation density [1]: qðxÞ ¼ b

p
n

x2þn2, where

n ¼ d
2C0

44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C044

C0
11
�C0

12

2
� C0214

q
, C011, C012, C014, and C044 are the

elastic constants of the fcc crystal in the coordinate system
described above, and d is the interplanar distance in the
½111� direction. Fig. 2 shows the calculated dislocation
density using our model under these conditions and the dis-
location density given by the above analytical expression,
using parameters for Cu. The excellent agreement shows
that our model calculates the solutions accurately for
straight dislocations in anisotropic media, and recovers
the available results of the classical Peierls–Nabarro model
if the same conditions are used.

The core structure of a straight edge dislocation in Al
obtained using our model is shown in Fig. 3. The two
Shockley partials in these dislocations overlap heavily,
and only the tendency for dissociation is observed. The
results of the core width of different kinds of dislocations
in Al are shown in Table 1, in which we have followed
Lu et al. [11] to measure the dislocation core width by
the distance over which the disregistry in the direction of
the Burgers vector changes from 1

4
b to 3

4
b. To obtain such

a solution using the full two-dimensional model took about
10 min in a simulation cell with 512� 512 grid points, or
about 1 h in a simulation cell with 1024� 1024 grid points,
on a personal computer with a 3.2 GHz CPU and 4 GB
memory.

The heavy overlap of the two Shockley partials in per-
fect dislocations in Al observed in our simulations is in
agreement with the large value of the stacking fault
energy in Al [1], and the simulation results in Ref. [11]
using the semidiscrete Peierls–Nabarro model [9] and
the generalized stacking fault energy from ab initio cal-
culations. Our results of the core width shown in Table
1 agree very well with those obtained in Ref. [11], which
are 0.70, 0.60, 0.50 and 0.42 nm for the edge, 60�, 30�,
and screw dislocations, respectively. This agreement vali-
dates the approximations of isotropic elasticity and the
constrained path (i.e. neglecting the disregistry normal
to the Burgers vector) for straight dislocations in Al used
in Ref. [11].

The core structure of a straight edge dislocation in Cu
obtained using our model is shown in Fig. 4. It can be seen
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Table 1
The core width/partial separation of straight dislocations in Al and Cu (in
nm)

Edge 60� 30� Screw

Core width in Al 0.68 0.60 0.48 0.42
Partial separation in Cu 3.6 3.1 1.8 1.1
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that the edge dislocation in Cu dissociates clearly into two
Shockley partials, which is quite different from the perfect
dislocations in Al (see Fig. 3). The results of the separation
of the two Shockley partials of different kinds of straight
dislocations in Cu are shown in Table 1, where the partial
separation is also identified by the distance over which the
disregistry in the direction of the Burgers vector changes
from 1

4
b to 3

4
b.
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Fig. 4. The core structure of a straight edge dislocations in Cu. Solid line: the
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The clear dissociation of perfect dislocations in Cu into
two Shockley partials observed in our simulations is due to
the low stacking fault energy in Cu [1], and has been
observed experimentally [41]. The values of the partial
separation obtained using our method shown in Table 1
agree with the experimental results [41] of 3.8 ± 0.6 nm
for the edge dislocation and 1.8 ± 0.6 nm for the screw
dislocation.

5. Dislocation loops

In this section, we report the simulation results of the
core structure of dislocation loops in Al and Cu. The x-axis
is in the ½�110� direction, which is in the direction of the
Burgers vector, and the y-axis is in the ½�1�12� direction.
The loop center is located at the origin.
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For a dislocation loop, a constant shear stress is
needed to prevent the loop from shrinking. The resulting
unstable equilibrium configuration gives local maximum
of the total energy. In order to obtain this unstable con-
figuration of the dislocation loop, a Lagrange multiplier is
used to keep the area enclosed by a dislocation loop con-
stant during the energy minimization. The control area is
proportional to the integral of the disregistry in the direc-
tion of the Burgers vector /. The resulting Lagrange mul-
tiplier is thus the applied stress. For a very small perfect
loop (or partial loop) whose maximum value of / is less
than b (or the length of the Burgers vector of the partial
loop), it is more effective to control the value of / at the
center of the loop by varying the applied stress. Conver-
gence tests show that the effect of the periodic boundary
conditions is negligible for the core structure of disloca-
tion loops with average radius up to about 1/4 of the size
of the simulation cell with the parameters given in Section
3. The results reported here are based on the simulations
of these loops.

5.1. Dislocation loops in Al

The core profiles of perfect dislocation loops in Al
with different values of applied stress are shown in
Fig. 5. Fig. 5a and c shows the disregistry /, which is
in the direction of the Burgers vector and determines
the dislocation loops. Fig. 5b and d shows the disregistry
w, which is in the direction perpendicular to the Burgers
vector. The values of w are very small compared with the
values of / for these perfect loops, which validates the
constrained path approximation (i.e. neglecting the dis-
registry normal to the Burgers vector) used in Ref.
[21,27] for Al. As an example, the dislocation density
and the core region of a perfect loop with applied stress
0:026l111 are shown in Fig. 5e and f, where l111 is the
shear modulus in the {111} plane of Al. The core region
is identified by the region between the contour lines of
/ ¼ b

4
and / ¼ 3

4
b as the straight dislocations in Al. We

can see that in these perfect dislocation loops, the two
Shockley partials are not clearly separated, only some
tendency of splitting is shown, as in the straight perfect
dislocations in Al. These perfect loops are elongated in
the direction of the Burgers vector (the x direction),
which agrees with the classical dislocation theory that
the edge dislocations have larger line energy than the
screw dislocations [1].

Partial dislocation loops in Al with Burgers vector
a
6
½�211� are also found in our simulations, as shown in

Fig. 6. These partial loops are elongated along the 60�
direction with respect to the x-axis, which is the direction
of their Burgers vector a

6
½�211�. The perfect and partial dis-

location loops shown in Figs. 5 and 6 exist up to some
critical applied stress levels. Under a large applied stress
close to the critical levels, the loop is very small and its
maximum value of / is clearly less than b or the length
of the Burgers vector of the partial loop, e.g. see the per-
fect loop with applied stress 0:090l111 shown in Fig. 5 or
the partial loop with applied stress 0:127l111 shown in
Fig. 6. In this case, the dislocation loops are not fully
developed and the concept of the core region is not
appropriate. The perfect or partial loops larger than those
shown in these figures exist under lower values of the
applied stress, and the profiles are similar to those of
the largest loops shown in these figures. These are the
same for the dislocation loops in Cu to be shown in the
next subsection. More on the energetics of these two fam-
ilies of loops and the critical levels of the applied stress
can be found in the next section.
5.2. Dislocation loops in Cu

The core profiles of perfect dislocation loops in Cu with
different values of applied stress are shown in Fig. 7.
Fig. 7a–d shows the disregistry components / and w along
the x and y axes. As an example, the dislocation density
and the partial dissociation of a perfect loop with applied
stress 0:016l111 are shown in Fig. 7e and f, where l111 is the
shear modulus in the {111} plane of Cu. The two partial
loops shown in Fig. 7f are identified by the contour lines of
/ ¼ b

4
and / ¼ 3

4
b, respectively. These results show that

unlike in Al, the two Shockley partials of a perfect
dislocation loop in Cu are clearly separated, with Burgers

vectors a
6
½�211� ð/;wÞ ¼ b=2;

ffiffiffi
3
p

b=6
� �� �

and a
6
½�12�1�

ð/;wÞ ¼ b=2;ðð �
ffiffiffi
3
p

b=6ÞÞ for the outer and inner partial
loops, respectively. Between the two partial loops is the
stacking fault region, where the disregistry ð/;wÞ is close

to b=2;
ffiffiffi
3
p

b=6
� �

, in contrast with the very small w for the per-

fect loops in Al shown in Fig. 5b and d. From these figures we
can see that the partial dissociation along the y-axis, where
the dislocations are pure screw, is not as much as that along
the x-axis, where the dislocations are pure edge. This behav-
ior is the same as that of the straight dislocations in Cu (see
Table 1). These dissociated dislocation core structures in
Cu cannot be obtained using the constrained path approxi-
mation, as was used for the dislocation core structures in
Al in the literature [21,27].

In Fig. 7f, the two partial loops of the perfect loop
in Cu are elongated approximately in the directions of
their own Burgers vectors, respectively. This behavior
is quite different from that of the undissociated or
slightly dissociated perfect loops in Al, in which the
two partial loops together with the perfect loops are
all elongated in the direction of the Burgers vector of
the perfect loops (see Fig. 5f). For a small perfect loop
in Cu, the two partials are almost decoupled and
elongated in the directions of their own Burgers vectors,
due to the strong line tension effect of the two partials.
As the size of the perfect loop increases, the line tension
effect of the two partial loops becomes weak and the
interaction between them becomes dominant, which
makes them tend to elongated uniformly in the direction
of the Burgers vector of the perfect loop. Compared
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with the perfect loops in Al, the tendency towards
decoupling still exists for fairly large perfect loops in
Cu (e.g. a perfect loop with radius about 100b in the
x direction) due to the widely separated partials with
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relatively weak interaction between them. While for Al,
this decoupling can only be seen in very small loops
that are not fully developed (e.g. the perfect loop with
applied stress 0:090l111 in Al).
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The core profiles of partial dislocation loops in Cu with
Burgers vector a

6
½�211� obtained using our model are shown
in Fig. 8. As in Al, these partial loops are elongated in the
direction of their Burgers vector, and in some range of
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applied stress values, both the perfect and partial loops
exist. The energetics of these two families of loops will be
discussed in the next section.

6. Activation energies

It has been shown by continuum dislocation theory that
homogeneous nucleation of dislocation loops in a perfect
crystal by thermal activation is considered impossible
under realistic values of applied shear stress due to the high
activation energy [1]. This conclusion was confirmed by
more accurate calculations of the activation energy using
a variational method based on the Peierls–Nabarro frame-
work [21]. However, in the calculations in Ref. [21],
approximations of isotropic elasticity and sinusoidal inter-
planar potential with the constrained path (i.e. neglecting
the disregistry normal to the Burgers vector w in the slip
plane) were used. In this section, we calculate the activation
energy of the dislocation loops in the {111} planes in Al
and Cu using our model, incorporating elastic anisotropy
and more realistic generalized stacking fault energy with
the full disregistry in the slip plane.

Following Xu and Argon [21], the activation energy is
the difference between the total energy of the dislocation
loop and that of the uniform stable shear deformation with
the same applied stress level. The total energy is:

Etotal ¼ Eelastic þ Emisfit þ Eapplied; ð15Þ
where the elastic energy Eelastic and the misfit energy Emisfit

are given by Eqs. (2) and (5) in Section 2, and the energy
due to the applied stress Eapplied is

Eapplied ¼
Z

R2

rapp
13 /ðx; yÞ þ rapp

23 wðx; yÞ½ �dxdy; ð16Þ

where rapp
13 and rapp

23 are the components of the applied
stress. As in the previous section, in our simulations, the
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

5

10

15

20

25

30

τ/μ
111

ΔE
to

ta
l/μ

11
1
b

3

N M

perfect

partial

a b
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Burgers vector of the perfect dislocation loops is in the
+x direction, rapp

13 is constant and rapp
23 ¼ 0. It is known that

there exists a critical value sc of the applied stress r13,
above which no stable uniform deformation exists and slip
occurs over the whole slip plane at once [1,4,21,25].

The activation energies for dislocation loops in Al and
Cu obtained using our model are shown in Fig. 9. It is
found that there are two branches of the activation energy
curves when the applied stress is less than the critical
applied stress sc, which is 0:13l111 for Al and 0:12l111for
Cu (points M and E in Fig. 9). One branch starts from
sc, along which partial loops are developed from loops with
small disregistry as the applied stress decreases. The pro-
files of the partial dislocation loops and the loops with
small disregistry in this branch are shown in Figs. 6 and
8 for Al and Cu, respectively. Perfect dislocation loops
are developed along the other branch of the energy curve,
starting from another critical applied stress value sp, which
is less than sc and is 0:0898l111 for Al and 0:0179l111 for Cu
(points N and F in Fig. 9). At the applied stress level sp, the
activation energy for the perfect loop is larger than that for
the partial loop. The profiles of the perfect dislocation
loops in this branch are shown in Figs. 5 and 7 for Al
and Cu, respectively.

When the applied stress level is less than sp, both the
branches of the perfect loops and the partial loops exist.
The two branches of energy curves intersect at an applied
stress level s0, which is 0:0853l111 for Al and 0:0144l111

for Cu. When the applied stress is less than s0, the perfect
loops are energetically favorable; when the applied stress is
between s0 and sp, the partial loops are energetically
favorable. For Al, the two branches of energy curves inter-
sect almost at the starting point of the branch of perfect
loops, which means that in Al, the perfect loops, if they
exist, are almost always more energetically favorable than
isolated partial loops. Note that since the stacking fault
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Table 2
The activation energy of some dislocation loops in Al and Cu

Al perfect
loop

Al partial
loop

Cu perfect
loop

Cu partial
loop

Applied stress
ðl111Þ

0.034 0.060 0.018 0.027

Activation
energy (eV)

34 25 93 24
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region inside a partial loop is a local minimum energy state,
there is an energy barrier for the nucleation of the second
partial loop inside the original partial loop to form a per-
fect one, even though in most cases the perfect loop has
lower energy than the initial partial loop at the same
applied stress level.

In our simulations, we have considered the full disregist-
ry vector ð/;wÞ in the slip plane, where / and w are the
components parallel and perpendicular to the given Bur-
gers vector, respectively. We have also examined the previ-
ously used constrained path approximation [21,27], and the
resulting energy curves are shown by the dotted lines in
Fig. 9, along which perfect dislocation loops without disso-
ciation are developed. For Al, the dotted line almost agrees
with the energetically favorable parts of the two branches
of energy curves with full disregistry, which verifies the
constrained path approximation used previously for Al
[21,27]. However, for Cu, the constrained path approxima-
tion has a large error and does not give the energetically
favorable partial loops. Thus, it is very important to incor-
porate the full disregistry for the quantitative study of dis-
location nucleation in Cu.

The values of activation energy of some dislocation
loops in Al and Cu are shown in Table 2. These loops
are among the smallest fully developed perfect or partial
loops (see Figs. 5–8). These high values of activation energy
confirm the conclusion that thermal activation plays a neg-
ligible role in homogeneous nucleation of dislocation loops
in a perfect crystal [1,21].

Our method and results provide a basis for accurate
analysis of the nucleation of dislocation loops combined
with other effects such as the presence of cracks [25,42,43]
or surfaces [44,45].

7. Summary and discussion

We have proposed a generalized Peierls–Nabarro model
for curved dislocations, in which the anisotropic elastic
energy is obtained efficiently by solving the elasticity sys-
tem associated with the disregistry across the slip plane
using the FFT method, and the generalized stacking fault
energy incorporating the full disregistry vector in the slip
plane is used for the interplanar potential. We have used
this method to study the core structures and activation
energies of dislocation loops in fcc Al and Cu.

Further generalization of this model may include incor-
poration of the opening [9], the Peierls energy and the Pei-
erls stress [9,17], the nonlocal effect near the slip plane [18],
and multiple slip planes [20], as has been done for straight
dislocations. This model can also be generalized to the
study of structure and activation energy of curved disloca-
tions near crack tips [25,42,43] or crystal surfaces [44,45].

Acknowledgements

The work of Y. Xiang is partially supported by the
Hong Kong Research Grants Council CERG 603706.
The work of P.B. Ming is partially supported by the Na-
tional Natural Science Foundation of China under the
Grant 10571172 and also supported by the National Basic
Research Program under the Grant 2005CB321704. The
work of W.E is supported by ONR Grant N00014-01-1-
0674 and NSF Grant DMS04-07866.
References

[1] Hirth JP, Lothe J. Theory of dislocations. second ed. New York: John
Wiley; 1982.

[2] Peierls R. Proc Phys Soc 1940;52:34.
[3] Nabarro FRN. Proc Phys Soc 1947;59:256.
[4] Frenkel J. Z Phys 1926;37:572.
[5] Vitek V. Philos Mag 1968;18:773.
[6] Kaxiras E, Duesbery MS. Phys Rev Lett 1993;70:3752.
[7] Joos B, Ren Q, Duesbery MS. Phys Rev B 1994;50:5890.
[8] Juan YM, Kaxiras E. Philos Mag A 1996;74:1367.
[9] Bulatov VV, Kaxiras E. Phys Rev Lett 1997;78:4221.

[10] Hartford J, von Sydow B, Wahnstrom G, Lundqvist BI. Phys Rev B
1998;58:2487.

[11] Lu G, Kioussis N, Bulatov VV, Kaxiras E. Phys Rev B 2000;62:3099.
[12] Schoeck G. Philos Mag A 1994;69:1085.
[13] Schoeck G, Krystian M. Philos Mag 2005;85:949.
[14] Eshelby JD. Philos Mag 1949;40:903.
[15] Seeger A, Schoeck G. Acta Metall 1953;1:519.
[16] Movchan AB, Bullough R, Willis JR. Eur J Appl Math 1998;9:373.
[17] Schoeck G. Philos Mag A 1999;79:2629.
[18] Miller R, Phillips R, Beltz G, Ortiz M. J Mech Phys Solid

1998;46:1845.
[19] Ngan AHW. J Mech Phys Solid 1997;45:903.
[20] Lu G, Bulatov VV, Kioussis N. Philos Mag 2003;83:3539.
[21] Xu G, Argon AS. Philos Mag Lett 2000;80:605.
[22] Xu G, Ortiz M. Int J Numer Method Eng 1993;36:3675.
[23] Xu G. J Appl Mech 2000;67:403.
[24] Lothe J. Philos Mag A 1982;46:177.
[25] Rice JR. J Mech Phys Solid 1992;40:239.
[26] Movchan AB, Bullough R, Willis JR. Philos Mag 2003;83:569.
[27] Banerjee S, Ghoniem N, Lu G, Kioussis N. Philos Mag 2007;87:4131.
[28] Wang YU, Jin YM, Cuitino AM, Khachaturyan AG. Acta Mater

2001;49:1847.
[29] Koslowski M, Cuitino AM, Ortiz M. J Mech Phys Solid

2002;50:2597.
[30] Shen C, Wang Y. Acta Mater 2004;52:683.
[31] Nye JF. Acta Metall 1953;1:153.
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