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Abstract. We propose a condition under which the heterogeneous multiscale finite element

method converges for elliptic problem with nonsmooth coefficients, and obtain the optimal

convergence rate for elliptic problem with nonsymmetric periodic coefficients that allow for

nonsmooth microstructures.

1. Introduction

Consider the elliptic problem

(1.1)

{
−div (aε(x)∇uε(x)) = f(x) x ∈ D ⊂ Rd,

uε(x) = 0 x ∈ ∂D,

where ε is a small parameter that signifies explicitly the multiscale nature of the coefficient aε,
which is not necessarily symmetric. We assume aε belongs to a set M(λ,Λ, D) that is defined as

M(λ,Λ, D) ≡
{
B ∈ [L∞(D)]d

2 | (B(x)ξ, ξ) ≥ λ|ξ|2, |B(x)ξ| ≤ Λ|ξ|

for any ξ ∈ Rd and a.e. x in D
}

,

where D is a bounded domain in Rd, and (·, ·) denotes the inner product on Rd while |·| the
corresponding norm.

On the analytic side, the following fact is known about (1.1). In the sense of H-convergence
due to Murat and Tartar [27], for every aε ∈M(λ,Λ, D) and f ∈ H−1(D) the sequence {uε}
the solutions of (1.1) satisfies

uε ⇀ U0 weakly in H1
0 (D),

aε∇uε ⇀ A∇U0 weakly in [L2(D)]d,

where U0 is the solution of

(1.2)

{−div (A(x)∇U0(x)) = f(x) x ∈ D,

U0(x) = 0 x ∈ ∂D,

and A ∈ M(λ,Λ2/λ,D). Here H1
0 (D), L2(D), and H−1(D) are standard Sobolev spaces [1].

We denote the L2(D) inner product by (·, ·), and the L2(D̃) inner product by (·, ·)L2(D̃) for any

measurable subset D̃ ⊂ D.
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The heterogeneous multiscale method (HMM) introduced by E and Engquist [13] is a general
methodology for designing sublinear scaling algorithms by exploiting scale separation and other
special features of the problem. Sublinear scaling algorithm is an algorithm whose computational
cost scales sublinearly with that of a brute force solver. It consists of two components: selection of
a macroscopic solver and estimating the missing macroscale data by solving locally the microscale
problem. The finite element method is frequently employed as the macroscopic solver in HMM
(HMM-FEM for short). The convergence behavior of HMM-FEM applied to (1.1) was well-
understood (see [13] and [14]). The error between U0 and the HMM-FEM solution also consists
of two parts: one is the approximation error of the macroscopic solver; the other is the error
committed in estimating the effective matrix (the missing macroscale data), which is referred to
as e(HMM).

E, Ming and Zhang [14] obtained the optimal estimate of e(HMM) when aε is a locally peri-
odic matrix. The optimality of the estimate was confirmed by the numerical examples in [23, 12].
Their main assumptions are: 1) aε is a symmetric matrix; 2) each entry of aε is a smooth function;
3) the microscale problem is subject to the Dirichlet boundary condition. Moreover, they im-
plicitly used a regularity assumption that was never proved; see (3.5). Although Du and Ming

recently extended this result to the case when aε is a nonsymmetric matrix [12], it is still un-
known under which condition e(HMM) converges to zero if there is no further assumption on the
coefficients beyond aε ∈M(λ,Λ, D) and to what degree the smoothness assumption on the coef-
ficients is weakened while keeping the optimal convergence rate of e(HMM). Besides the Dirichlet
boundary condition, the microscale problem may be supplemented with other boundary condi-
tions such as periodic and Neumann boundary conditions. They are often used in practice [26]
and the Neumann microscale problem appeared in the original formulation of HMM-FEM [13].
However, the estimate of e(HMM) has not been justified yet when the microscale problem is
subject to either of the two boundary conditions.

This paper is aimed at answering the above questions and could be viewed as a follow-up
of [14]. First we shall propose a condition under which e(HMM) converges to zero. Second we
shall prove the optimal convergence rate of e(HMM) with the very weak smoothness assumption
on aε that allows for nonsmooth microstructures when it is a locally periodic matrix. The proof
equally applies to the three types of microscale problems. It will be found that the regularity as-
sumption (3.5) is unnecessary, which, however, was used explicitly or implicitly in all the previous
works for HMM-FEM and also for other numerical homogenization methods; see e.g. [19].

It is worth mentioning that E, Ming and Zhang [14] also estimated e(HMM) when aε is a
stationary random field. We shall not discuss this case since the proof is much more involved, but
some technical results established in this paper may be helpful to improve the estimates in [14].

The remaining part of this paper is as follows. We formulate HMM-FEM in § 2 and present
a condition under which e(HMM) converges to zero. In § 3, we estimate the convergence rate of
e(HMM) when aε is a locally periodic matrix. In the last section we summarize our results and
discuss certain extensions.

2. HMM-FEM Formulation and Convergence

We only present the simplest version of HMM-FEM in this section and refer to [14] for more
details. The linear finite element method is employed as the macroscopic solver and the finite
element space is denoted by XH corresponding to the triangulation TH with mesh size H. For
each V ∈ XH , we can see that ∇V is a piecewise constant vector. This fact will be frequently
used throughout this paper.
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The HMM-FEM solution UH ∈ XH satisfies

(2.1)
∑

K∈TH

|K|∇V · AH(xK)∇UH = (f, V ) for all V ∈ XH ,

where xK is the barycenter of the element K.
The missing macroscale data is the effective matrix AH(xK) which can be evaluated by

(2.2) AH(xK) 〈∇vε〉Iδ
≡ 〈aε∇vε〉Iδ

,

where Iδ ≡ xK + δY with Y ≡ (−1/2, 1/2)d, and δ is the size of the cell. We use 〈·〉Iδ
to denote

the integral mean over Iδ. Here vε − V ∈ V satisfies

(2.3) (aε∇vε,∇ϕ)L2(Iδ) = 0 for all ϕ ∈ V.

We call (2.3) the Dirichlet cell problem if V = V 0
D ≡ H1

0 (Iδ). We call (2.3) the periodic cell
problem if

V = V 0
P ≡ {

φ ∈ H1
per(Iδ) | 〈φ〉Iδ

= 0
}

,

where H1
per(Iδ) is the closure of C∞per(Iδ) for the H1 norm, and C∞per(Iδ) is the subset of C∞(Iδ)

of Iδ−periodic functions [9]. We call (2.3) the Neumann cell problem if

V = V 0
N ≡ {

φ ∈ H1(Iδ) | 〈∇φ〉Iδ
= 0

}
.

In the numerical computation, we choose the boundary data V in the cell problem (2.3) as
ei · x where {ei}d

i=1 are the canonical basis. Denote by φε
i the solution of the corresponding cell

problem. Using the definition (2.2) and the constraint (2.4), we obtain

AH(xK)ei = AH(xK)∇(ei · x) = AH(xK) 〈∇φε
i〉Iδ

= 〈aε∇φε
i〉Iδ

.

Therefore, the effective matrix is given by

AH(xK) ≡ (〈aε∇φε
1〉Iδ

, . . . , 〈aε∇φε
d〉Iδ

)
.

We consider the above three types of cell problems in this paper, and refer to [29, 11, 12] for
their implementation details. The discussion on the other types of cell problems can be found
in [29, 17].

It may be easily checked that the solutions of the above three cell problems satisfy the following
constraint:

(2.4) 〈∇vε〉Iδ
= ∇V.

Indeed, if V = V 0
N then the identity is true by the definition; if V = V0

D or V 0
P then integrating

by parts we obtain

〈∇(vε − V )〉Iδ
=

1
|Iδ|

∫

Iδ

∇(vε − V ) dx =
1
|Iδ|

∫

∂Iδ

(vε − V )ds = 0.

It follows from the definition of the cell problem (2.3) that

(2.5) (aε∇vε,∇vε)L2(Iδ) = (aε∇vε,∇V )L2(Iδ)

for vε the solutions of the cell problems subject to any one of the three boundary conditions.
Using (2.4), we write the above relation as

〈∇vε · aε∇vε〉Iδ
= ∇V · 〈aε∇vε〉Iδ

= 〈∇vε〉Iδ
· 〈aε∇vε〉Iδ

,

which is nothing but the so-called Hill’s condition [18]. This is actually the starting point for
analyzing HMM-FEM, which has been extensively exploited in [14].
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The original definition of the effective matrix in [13] and [14, (1.7)] is based on the energy,
which reads as:

〈∇wε〉Iδ
· AH(xK) 〈∇vε〉Iδ

≡ 〈∇wε · aε∇vε〉Iδ
,

where wε is defined in the same manner with vε except that the boundary value V is replaced
by any W ∈ XH . This definition is equivalent to the flux-based definition (2.2) due to the
relations (2.4) and (2.5). It seems that the definition (2.2) could simplify the proof considerably.

It follows from (2.5) that

(2.6) ‖∇vε‖L2(Iδ) ≤
Λ

λ
‖∇V ‖L2(Iδ) .

Using (2.4), we have

(2.7) ‖∇vε‖2L2(Iδ) = ‖∇V ‖2L2(Iδ) + ‖∇(vε − V )‖2L2(Iδ) .

Using (2.7) and (2.6), and proceeding along the same lines of [12, Lemma 3.1], we obtain, at each
xK ,

(2.8) (AH(xK)ξ, ξ) ≥ λ|ξ|2 and |AH(xK)ξ| ≤ Λ2

λ
|ξ| for all ξ ∈ Rd,

which gives the existence and uniqueness of the HMM-FEM solution.
The following error estimate is based on the theorem of Berger, Scott and Strang [5],

and can be found in [14, Theorem 1.1] except explicit constants in the estimate. We give a proof
for the readers’ convenience. In order to state this result, we define

ẽ(HMM) ≡ max
K∈TH

‖ 〈A〉K −AH(xK)‖F ,

where ‖ · ‖F is the Euclidean norm.

Lemma 2.1. Let U0 and UH be the solutions of (1.2) and (2.1), respectively. Then,

(2.9) ‖∇(U0 − UH)‖L2(D) ≤
Λ

λ
inf

V ∈XH

‖∇(U0 − V )‖L2(D) +
cp

λ2
‖f‖H−1(D)ẽ(HMM),

where cp is the constant in the following discrete Poincaré’s inequality

‖V ‖H1(D) ≤ cp ‖∇V ‖L2(D) for all V ∈ XH .

Proof. Let Û0 ∈ XH be the solution of
(
A∇Û0,∇V

)
= (A∇U0,∇V ) for all V ∈ XH .

Defining W ≡ UH − Û0 and using the above equation we obtain

(A∇W,∇W ) = (A∇UH ,∇W )−
(
A∇Û0,∇W

)
= (A∇UH ,∇W )− (A∇U0,∇W )

= (A∇UH ,∇W )−
∑

K∈TH

|K|∇W · AH(xK)∇UH

=
∑

K∈TH

((〈A〉K −AH(xK))∇UH ,∇W )L2(K) .

Therefore, we obtain
∥∥∥∇(UH − Û0)

∥∥∥
L2(D)

≤ λ−1ẽ(HMM) ‖∇UH‖L2(D) .
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By Céa’s lemma [8]1, we have
∥∥∥∇(U0 − Û0)

∥∥∥
L2(D)

≤ Λ

λ
inf

V ∈XH

‖∇(U0 − V )‖L2(D) .

Using (2.8), we obtain

‖∇UH‖L2(D) ≤
cp

λ
‖f‖H−1(D).

Combining the above three inequalities, we come to (2.9). ¤

By [8, Theorem 3.2.3], we have

lim
H→0

inf
V ∈XH

‖∇(U0 − V )‖L2(D) = 0

since U0 ∈ H1(D).
Next we prove ẽ(HMM) → 0 as ε, δ → 0.

Lemma 2.2. For any K ∈ TH , if xK is a Lebesgue point of A and

(2.10) max
K∈TH

‖ 〈A〉K −A(xK)‖F → 0 as H → 0,

then

(2.11) lim
δ→0

lim
ε→0

ẽ(HMM) = 0.

Proof. By H-convergence theory [27], the H−limit of Problem (2.3) satisfies

(2.12)

{
(A(x)∇V0,∇ϕ)L2(Iδ) = 0 for all ϕ ∈ V,

〈∇(V0 − V )〉Iδ
= 0.

By (2.6),

‖∇V0‖L2(Iδ) ≤ lim inf
ε→0

‖∇vε‖L2(Iδ) ≤
Λ

λ
‖∇V ‖L2(Iδ) .

Using the definition of H-convergence and (2.12)2, we obtain

(AH(xK)− 〈A〉K)∇V = 〈aε∇vε〉Iδ
− 〈A〉K ∇V

ε→0−→ 〈A(x)∇V0〉Iδ
− 〈A〉K ∇V

= 〈(A(x)−A(xK))∇V0〉Iδ
+ (A(xK)− 〈A〉K)∇V.

The right hand side of the above equation is bounded by

Λ

λ

〈‖A(x)−A(xK)‖2F
〉1/2

Iδ
|∇V |+ ‖ 〈A〉K −A(xK)‖F |∇V |.(2.13)

Since xK is a Lesbegue point of A, by [15, Corollary 1 in §1.7], we have

lim
δ→0

〈‖A(x)−A(xK)‖2F
〉

Iδ
= 0.

Hence the first term of (2.13) tends to zero as δ → 0. The second term of (2.13) tends to zero
due to the condition (2.10). This implies (2.11) by the definition of ẽ(HMM). ¤

If each entry of A is a continuous function, then (2.10) holds true. However, if any entry of A
is discontinuous at the quadrature node xK , then (2.10) is invalid.

Lemma 2.2 is actually a reformulation of the so-called principle of periodic localization in
H-convergence [30, (5.15)]. The above proof seems more direct.

1The present form can be found in Xu and Zikatanov [28]
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3. Estimate of e(HMM) with Nonsmooth Periodic Microstructute

So far we make no assumption on the form of the coefficient except that aε ∈ M(λ,Λ, D).
In order to obtain the quantitative estimate of ẽ(HMM), we assume that aε is a locally periodic
matrix, i.e., aε(x) = a(x,x/ε) and a(x,y) is periodic in y with period Y . By [4], the effective
matrix A is given by

(3.1) Aij(x) =
∫
−

Y

(
aij + aik

∂χj

∂yk

)
(x,y) dy i, j = 1, . . . , d,

where χ(x,y) = {χj(x,y)}d
j=1 is periodic in y with period Y and it satisfies

(3.2) − ∂

∂yi

(
aik

∂χj

∂yk

)
(x,y) =

(
∂

∂yi
aij

)
(x,y) in Y,

∫

Y

χj(x,y) dy = 0.

This problem is solvable and an integration by parts gives: for j = 1, . . . , d,

(3.3) ‖∇yχj(x,y)‖L2(Y ) ≤
Λ

λ
for all x ∈ D and y ∈ Y.

We further assume that a(x,y) ∈ C 0,1(D;L∞(Y )). By (3.1) and Lemma 2.2, we have if
H → 0 then

e(HMM) = ẽ(HMM).

Therefore, we change the definition of ẽ(HMM) to its original form [13]:

e(HMM) ≡ max
K∈TH

‖(A−AH)(xK)‖F .

When aε is a locally periodic matrix and the cell problem is subject to the Dirichlet boundary
condition, E, Ming and Zhang [14] proved

(3.4) e(HMM) ≤ C
( ε

δ
+ δ

)
.

If the periodic boundary condition is used for the cell problem and the cell size is an integer time
of the period, then

e(HMM) ≤ Cδ.

However, the exact period is usually unknown due to the uncertainty of the input data [10, 3].
This means that the cell problems are usually posed over a cell whose size is not necessarily an
integer time of the period.

Their proof depends on the following assumptions: 1)aε is symmetric; 2)the gradient of χ is
uniformly bounded, i.e., there exists C such that for i, j = 1, . . . , d,

(3.5) |∂yi
χj(x,y)| ≤ C for all x ∈ D and y ∈ Y.

Both assumptions are unrealistic. On the one hand, the symmetry assumption on aε is not
appropriate in the conductivity problem when a magnetic field is present: Hall effect is the
consequence of an anti-symmetric part in the conductivity tensor (see [21] for a discussion); on
the other hand, the assumption (3.5) has not been thoroughly studied. Li and Vogelius [22]
proved that the gradient of χ is indeed uniformly bounded in the interior of the domain for the
Dirichlet boundary value problems. However, less is known about the assumption (3.5) for the
periodic, the Neumann, and the mixed boundary value problems which are often used in practice.
Moreover, the result obtained in [22] does not apply to many important composite materials
such as the fibre-reinforced composites with a touching angle for the neighboring fibres [2]; see
also [7, 20] for more examples.

In this section, we shall prove (3.4) without the above assumptions. In order to remove the
symmetric assumption on aε, we resort to the dual problem of the cell problem as in [12]; in
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order to remove the smoothness assumption on χ, we shall derive some new a priori estimates
for the solutions of the cell problems. We shall give a unified proof for the cell problem of the
Dirichlet, the periodic and the Neumann type, while the latter two were not considered in [14].
The proof is different from that in [14, 24, 12] since we employ the flux-based definition of the
effective matrix.

Let v̂ε be the solution of the cell problem (2.3) with aε replaced by aε
K = a(xK ,x/ε). Pro-

ceeding along the same lines that lead to (2.4) and (2.5), we have

(3.6) 〈∇v̂ε〉Iδ
= ∇V

and

(3.7) (aε
K∇v̂ε,∇v̂ε)L2(Iδ) = (aε

K∇v̂ε,∇V )L2(Iδ) .

Define

(3.8) V̂ ε ≡ V + ε(χK · ∇)V,

where χK = χ(xK ,x/ε). By (3.1) and (3.2)2, a straightforward calculation gives

(3.9)
〈
aε

K∇V̂ ε
〉

Iκε

= A(xK)∇V and
〈
∇V̂ ε

〉
Iκε

= ∇V,

where Iκε ≡ xK + εκY and κ is the integer part of δ/ε, i.e., κ = bδ/εc. The above relation
immediately implies

(AH −A)(xK)∇V = 〈aε∇vε〉Iδ
−

〈
aε

K∇V̂ ε
〉

Iκε

= 〈aε∇vε − aε
K∇v̂ε〉Iδ

+ 〈aε
K∇θε〉Iδ

+
(〈

aε
K∇V̂ ε

〉
Iδ

−
〈
aε

K∇V̂ ε
〉

Iκε

)
,(3.10)

where θε ≡ v̂ε − V̂ ε. This is the starting point to estimate e(HMM).
The following estimates of V̂ ε are old [14], while the proof is new and without using the

assumption (3.5). In order to prove the estimates in (3.11), we define a cut-off function ρε ∈
C∞0 (Iδ) that satisfies |∇ρε| ≤ C/ε, and

ρε(x) =

{
1 if dist(x, ∂Iδ) ≥ 2ε,

0 if dist(x, ∂Iδ) ≤ ε.

Lemma 3.1. Let V̂ ε be defined as (3.8). Then

(3.11)

∥∥∥∇V̂ ε
∥∥∥

L2(Iδ\Iκε)
≤

√
2d − 1

Λ

λ

( ε

δ

)1/2

‖∇V ‖L2(Iδ) ,

∥∥∥∇[(V̂ ε − V )(1− ρε)]
∥∥∥

L2(Iδ)
≤ C

Λ

λ

( ε

δ

)1/2

‖∇V ‖L2(Iδ) .

Proof. It follows from (3.2) and the definition of V̂ ε that

(3.12)
(
aε

K∇V̂ ε,∇ϕ
)

L2(I(κ+1)ε\Iκε)
= 0 for all ϕ ∈ H1

per(I(κ+1)ε\Iκε).

Taking ϕ = V̂ ε − V in (3.12) we obtain
(
aε

K∇V̂ ε,∇V̂ ε
)

L2(I(κ+1)ε\Iκε)
=

(
aε

K∇V̂ ε,∇V
)

L2(I(κ+1)ε\Iκε)
,

which immediately implies
∥∥∥∇V̂ ε

∥∥∥
L2(I(κ+1)ε\Iκε)

≤
√

2d − 1
Λ

λ

( ε

δ

)1/2

‖∇V ‖L2(Iδ) .
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This inequality together with∥∥∥∇V̂ ε
∥∥∥

L2(Iδ\Iκε)
≤

∥∥∥∇V̂ ε
∥∥∥

L2(I(κ+1)ε\Iκε)

leads to (3.11)1.
Using (3.3), we obtain

∥∥∥(V̂ ε − V )∇(1− ρε)
∥∥∥

L2(Iδ)
≤ C

ε

∥∥∥V̂ ε − V
∥∥∥

L2(Iδ\Iκε)
≤ C ‖χK‖L2(Iδ\Iκε)

|∇V |
≤ C ‖χK‖L2(I(κ+1)ε\Iκε)

|∇V |
≤ C(δd−1ε)1/2 ‖χK‖L2(Y ) |∇V |

≤ C
Λ

λ

( ε

δ

)1/2

‖∇V ‖L2(Iδ) .

It follows from (3.11)1 that
∥∥∥(1− ρε)∇(V̂ ε − V )

∥∥∥
L2(Iδ)

≤
∥∥∥∇(V̂ ε − V )

∥∥∥
L2(Iδ\Iκε)

≤
√

2d − 1
(

1 +
Λ

λ

) ( ε

δ

)1/2

‖∇V ‖L2(Iδ) .

Combining the above two inequalities we get (3.11)2. ¤

Using the above estimates for V̂ ε, we shall bound the corrector θε. It can be easily checked
that

(aε
K∇θε,∇ϕ)L2(Iδ) = 0 for all ϕ ∈ H1

0 (Iδ).(3.13)

The estimate of θε arising from the Dirichlet cell problem can be found in [14, (3.9)]; see also
Remark 3.3. The proof therein is an analogy of the so-called corrector estimate in the homoge-
nization theory [30], and relies on the assumption (3.5) which is not used in our proof. We also
estimate θε arising from the periodic and Neumann cell problems. Such estimate is new and
key to bound e(HMM). A simple analogy of the corresponding corrector estimate does not work
since the cell problem (3.7) with V = VN is not a standard Neumann boundary value problem
dealt with in [30].

Lemma 3.2. Let v̂ε be the solution of (3.7) and θε ≡ v̂ε − V̂ ε. Then

(3.14) ‖∇θε‖L2(Iδ) ≤ C
Λ2

λ2

( ε

δ

)1/2

‖∇V ‖L2(Iδ) .

Proof. Define P ε ≡ aε
K∇V̂ ε and P 0 ≡ A(xK)∇V . Using (3.7), we obtain

(aε
K∇v̂ε,∇θε)L2(Iδ) =

(
aε

K∇v̂ε,∇(V − V̂ ε)
)

L2(Iδ)

=
(
aε

K∇θε,∇(V − V̂ ε)
)

L2(Iδ)
+

(
aε

K∇V̂ ε,∇(V − V̂ ε)
)

L2(Iδ)
.

By (3.13) and (3.12), we have
(
aε

K∇θε,∇[(V − V̂ ε)ρε]
)

L2(Iδ)
= 0,

(
aε

K∇V̂ ε,∇(V − V̂ ε)
)

L2(Iκε)
= 0.

It follows from the above three equations that

(aε
K∇v̂ε,∇θε)L2(Iδ) =

(
aε

K∇θε,∇[(V − V̂ ε)(1− ρε)]
)

L2(Iδ)
+

(
aε

K∇V̂ ε,∇(V − V̂ ε)
)

L2(Iδ\Iκε)
.

Using (3.6), (3.9)2, and the fact that P 0 is a constant vector over Iδ, we obtain
(
P 0,∇θε

)
L2(Iδ)

=
(
P 0,∇(V − V̂ ε)

)
L2(Iδ)

=
(
P 0,∇(V − V̂ ε)

)
L2(Iδ\Iκε)

.
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Combining the above two equations, we have
(
aε

K∇v̂ε − P 0,∇θε
)
L2(Iδ)

=
(
aε

K∇θε,∇[(V − V̂ ε)(1− ρε)]
)

L2(Iδ)

+
(
aε

K∇V̂ ε − P 0,∇(V − V̂ ε)
)

L2(Iδ\Iκε)
.

Using the estimates (3.11), we have
∣∣∣
(
aε

K∇v̂ε − P 0,∇θε
)
L2(Iδ)

∣∣∣

≤ Λ
∥∥∥∇[(V − V̂ ε)(1− ρε)]

∥∥∥
L2(Iδ)

‖∇θε‖L2(Iδ)

+
∥∥∥∇(V − V̂ ε)

∥∥∥
L2(Iδ\Iκε)

(
Λ

∥∥∥∇V̂ ε
∥∥∥

L2(Iδ\Iκε)
+

Λ2

λ
‖∇V ‖L2(Iδ\Iκε)

)

≤ C
Λ3

λ2

ε

δ
‖∇V ‖2L2(Iδ) + C

Λ2

λ

( ε

δ

)1/2

‖∇θε‖L2(Iδ) ‖∇V ‖L2(Iδ) .(3.15)

Next, we define

(P ε
1 )i ≡ (P 0)i + ε

∂

∂xj

(
αk

ij

∂V

∂xk
ρε

)
,

where
∂αj

ik

∂yk
= gij ≡ (aε

K)ij + (aε
K)ik

∂χj
K

∂yk
−Aij(xK), αj

ik = −αj
ki.

By [30, (1.12)], the tensor α exists and satisfies

(3.16) ‖α‖L2(Y ) + ‖∇α‖L2(Y ) ≤ C ‖g‖L2(Y ) ≤ CΛ2/λ.

A direct calculation gives

(P ε)i − (P ε
1 )i = ε

∂

∂xj

(
αk

ij

∂V

∂xk
(1− ρε)

)
=

∂αk
ij

∂yj

∂V

∂xk
(1− ρε)− εαk

ij

∂V

∂xk

∂ρε

∂xj
.

Using (3.16), we obtain

‖P ε − P ε
1‖L2(Iδ) ≤ ‖∇yα‖L2(Iδ\Iκε)

|∇V |+ C ‖α‖L2(Iδ\Iκε)
|∇V |

≤ ‖∇yα‖L2(I(κ+1)ε\Iκε)
|∇V |+ C ‖α‖L2(I(κ+1)ε\Iκε)

|∇V |
≤ C(δd−1ε)1/2(‖∇α‖L2(Y ) + ‖α‖L2(Y ))|∇V |

≤ C
Λ2

λ

( ε

δ

)1/2

‖∇V ‖L2(Iδ) .(3.17)

Integrating by parts and using the anti-symmetry of α, we obtain

(3.18)
(
P ε

1 − P 0,∇ϕ
)
L2(Iδ)

= 0 for all ϕ ∈ H1(Iδ),

which implies

(aε
K∇θε,∇θε)L2(Iδ) =

(
aε

K∇v̂ε − P 0,∇θε
)
L2(Iδ)

+ (P ε
1 − P ε,∇θε)L2(Iδ) .

Using the estimates (3.15) and (3.17), we obtain

‖∇θε‖2L2(Iδ) ≤ C
Λ3

λ3

ε

δ
‖∇V ‖2L2(Iδ) + C

Λ2

λ2

( ε

δ

)1/2

‖∇θε‖L2(Iδ) ‖∇V ‖L2(Iδ)

≤ C
Λ3

λ3

ε

δ
‖∇V ‖2L2(Iδ) +

1
2
‖∇θε‖2L2(Iδ) + C

Λ4

λ4

ε

δ
‖∇V ‖2L2(Iδ)

≤ 1
2
‖∇θε‖2L2(Iδ) + C

Λ4

λ4

ε

δ
‖∇V ‖2L2(Iδ) ,
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which leads to (3.14). ¤

Remark 3.3. When the cell problem is of the Dirichlet type, we may proceed as follows. Taking
ϕ = θε + (V̂ ε − V )(1− ρε) ∈ H1

0 (Iδ) in (3.13), we have

(aε
K∇θε,∇θε)L2(Iδ) =

(
aε

K∇θε,∇[(V − V̂ ε)(1− ρε)]
)

L2(Iδ)
,

which gives

‖∇θε‖L2(Iδ) ≤
Λ

λ

∥∥∥∇[(V̂ ε − V )(1− ρε)]
∥∥∥

L2(Iδ)
.

This inequality together with (3.11)2 implies (3.14).

Using (3.10) and (3.14), we come to the main result of this paper.

Theorem 3.4. If aε = a(x,x/ε) with a(x,y) ∈ C0,1(D;L∞(Y )), and a(x,y) is periodic in y

with period Y , then

(3.19) e(HMM) ≤ C
Λ4

λ3

(
δ +

ε

δ

)
for all the three boundary conditions.

Proof. By a standard perturbation result (see [14, Lemma 1.8]), we have

(3.20) ‖∇(vε − v̂ε)‖L2(Iδ) ≤ Cλ−1δ ‖∇vε‖L2(Iδ) ≤ C
Λ

λ2
δ ‖∇V ‖L2(Iδ) .

It follows from (2.6) and (3.20) that

|〈aε∇vε − aε
K∇v̂ε〉Iδ

| ≤ |〈(aε − aε
K)∇vε〉Iδ

|+ |〈aε
K∇(vε − v̂ε)〉Iδ

|
≤ C|Iδ|−1/2

(
δ ‖∇vε‖L2(Iδ) + Λ ‖∇(vε − v̂ε)‖L2(Iδ)

)

≤ C
Λ2

λ2
δ|∇V |.(3.21)

Using (3.11)1, (3.9)1 and the ellipticity of A, we obtain
∣∣∣∣
〈
aε

K∇V̂ ε
〉

Iδ

−
〈
aε

K∇V̂ ε
〉

Iκε

∣∣∣∣ ≤
1
|Iδ|

∫

Iδ\Iκε

∣∣∣ aε
K∇V̂ ε

∣∣∣ dx +
(

1− |Iκε|
|Iδ|

) ∣∣∣∣
∫
−

Iκε

aε
K∇V̂ ε dx

∣∣∣∣

≤ Λ
|Iδ\Iκε|1/2

|Iδ|
∥∥∥∇V̂ ε

∥∥∥
L2(Iδ\Iκε)

+ 3
ε

δ
| A(xK)∇V |

≤ C
Λ2

λ

ε

δ
|∇V |.(3.22)

Let ŵε be the solution of (2.3) with aε replaced by aε
K and subject to the boundary value W ,

and define

W̃ ε ≡ W + ε(χ̃K · ∇)W,

where χ̃K is defined in the same manner as χK with aε
K replaced by its transpose (aε

K)t.

∇W · 〈aε
K∇θε〉Iδ

= 〈∇W · aε
K∇θε〉Iδ

=
〈
∇(W − W̃ ε) · aε

K∇θε
〉

Iδ

+
〈
∇W̃ ε · aε

K∇θε
〉

Iδ

=
〈
∇[(W − W̃ ε)(1− ρε)] · aε

K∇θε
〉

Iδ

+
〈
∇θε · (aε

K)t∇W̃ ε
〉

Iδ

.(3.23)
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Using (3.11)2 and (3.14), we have∣∣∣∣
〈
∇[(W − W̃ ε)(1− ρε)] · aε

K∇θε
〉

Iδ

∣∣∣∣ ≤ Λ|Iδ|−1
∥∥∥∇[(W − W̃ ε)(1− ρε)]

∥∥∥
L2(Iδ)

‖∇θε‖L2(Iδ)

≤ C
Λ4

λ3

ε

δ
|∇V ||∇W |.(3.24)

We define P̃ ε, P̃ 0 and P̃ ε
1 exactly in the same way as P ε, P 0 and P ε

1 , respectively, provided
that we replace V by W and aε

K by its transpose (aε
K)t. By (3.18), we obtain

〈
∇θε · (aε

K)t∇W̃ ε
〉

Iδ

=
〈
(P̃ ε − P̃ 0) · ∇θε

〉
Iδ

+
〈
P̃ 0 · ∇θε

〉
Iδ

=
〈
(P̃ ε − P̃ ε

1 ) · ∇θε
〉

Iδ

+
1
|Iδ|

(
∇(V − V̂ ε), P̃ 0

)
L2(Iδ\Iκε)

where we have used (3.6) and (3.9)2.
Using (3.14) and (3.17), we obtain∣∣∣∣

〈
(P̃ ε − P̃ ε

1 ) · ∇θε
〉

Iδ

∣∣∣∣ ≤ |Iδ|−1 ‖∇θε‖L2(Iδ)

∥∥∥P̃ ε
1 − P̃ ε

∥∥∥
L2(Iδ)

≤ C
Λ4

λ3

ε

δ
|∇V ||∇W |.

Invoking (3.11)1 again, we have

1
|Iδ|

∣∣∣∣
(
∇(V − V̂ ε), P̃ 0

)
L2(Iδ\Iκε)

∣∣∣∣ ≤ |Iδ|−1 Λ2

λ

∥∥∥∇(V̂ ε − V )
∥∥∥

L2(Iδ\Iκε)
‖∇W‖L2(Iδ\Iκε)

≤ C
Λ3

λ2

ε

δ
|∇V ||∇W |.

It follows from the above two inequalities that

(3.25)
∣∣∣∣
〈
∇θε · (aε

K)t∇W̃ ε
〉

Iδ

∣∣∣∣ ≤ C
Λ4

λ3

ε

δ
|∇V ||∇W |.

Substituting (3.24) and (3.25) into (3.23), we obtain
∣∣ 〈aε

K∇θε〉Iδ

∣∣ ≤ C
Λ4

λ3

ε

δ
|∇V |,

which together with (3.21) and (3.22) leads to (3.19). ¤

Remark 3.5. If the cell problem (2.3) is of the Dirichlet type, then we may estimate the second
term of (3.23) as follows. Using θε + (V̂ ε − V )(1− ρε) ∈ H1

0 (Iδ) and (3.11)2, we have∣∣∣∣
〈
∇θε · (aε

K)t∇W̃ ε
〉

Iδ

∣∣∣∣ =
∣∣∣∣
〈
∇[(V − V̂ ε)(1− ρε)] · (aε

K)t∇W̃ ε
〉

Iδ

∣∣∣∣

≤ Λ|Iδ|−1
∥∥∥∇[(V − V̂ ε)(1− ρε)]

∥∥∥
L2(Iδ)

∥∥∥∇W̃ ε
∥∥∥

L2(Iδ\Iκε)

≤ C
Λ3

λ2

ε

δ
|∇V ||∇W |,

which gives (3.25).

Our result, i.e., Theorem 3.4 allows for nonsmooth microstructures inside the unit cell, and
suggests that the error committed in estimating data (the so-called resonance error) depends
weakly on the smoothness of the microstructures. However, the corresponding estimates in [14,
12] and also [19] in the context of the multiscale finite element method require the smooth
microstructures. The methods tailored to resolve the microstructures hence are in great demand
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to improve the overall accuracy of HMM-FEM. We refer to [16, 2, 6, 25] and the references
therein for such methods.

4. Conclusion

In this paper we have clarified the condition under which e(HMM) converges to zero, and
proved the optimal convergence rate of e(HMM) for the locally periodic coefficients under very
weak and natural smoothness assumption when the cell problem is subject to the Dirichlet, the
periodic, or the Neumann boundary condition.

The present work can be naturally extended to HMM for the parabolic homogenization prob-
lem; see [24, Theorem 1.2]. The most challenging issue is to prove the sharp bound for e(HMM)
under the minimal smooth assumption on the random coefficients. The analysis of the cell prob-
lem of the mixed type is also very promising and deserves a further exploration since it is easy
to realize in the experiment. It is also very interesting to derive the same estimates for the
multiscale finite element method and the related methods; see [19].
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