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Abstract6

The Peierls–Nabarro (PN) model for dislocations is a hybrid model that incorpo-7

rates the atomistic information of the dislocation core structure into the continuum8

theory. In this paper, we study the convergence from a full atomistic model to the9

PN model with γ -surface for the dislocation in a bilayer system. We prove that10

the displacement field and the total energy of the dislocation solution of the PN11

model are asymptotically close to those of the full atomistic model. Our work can12

be considered as a generalization of the analysis of the convergence from atomistic13

model to Cauchy–Born rule for crystals without defects.14

1. Introduction15

Dislocations are line defects and the primary carriers of plastic deformation in16

crystals. They are essential in the understanding of mechanical and plastic properties17

of crystalline materials [32]. Models at different length, and time scales have been18

developed to characterize the behaviors of dislocations and properties of the mate-19

rials. Atomistic models and first principles calculations are able to capture detailed20

information of dislocations, however, they are computationally time-consuming and21

are limited to domains of small size over short time scales. On the other hand, the22

continuum theory of dislocations based on linear elasticity theory applies to much23

larger domains; although this theory is accurate outside the dislocation core region24

(of a few lattice constants size), it breaks down inside the dislocation core where the25

atomic structure is heavily distorted. The Peierls–Nabarro (PN) model [45,52] is a26

hybrid model that incorporates in the continuum model the dislocation core structure27

informed by atomistic or first principles calculations. Ever since its development,28

this model and its generalizations have been widely employed in the investigation29

of dislocation-core related properties [6,11–15,22,31,34–37,40,41,43,44,46,54–30

66,68–70].31
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In the classical PN model [45,52], the slip plane of a straight edge or screw32

dislocation divides the crystal into two half-space elastic continua reconnected by a33

nonlinear potential force incorporating the atomistic effect. The nonlinear potential34

force is described based on the relative displacement (disregistry) across the slip35

plane in the direction of Burgers vector of the dislocation. The total energy consists36

of two half-space elastic energies and a misfit energy that leads to the nonlinear37

potential force across the slip plane. The misfit energy in the classical PN model38

is approximated by a sinusoidal function of the disregistry. The dislocation con-39

figuration is regarded as the minimizer of the total energy subject to the constraint40

of the Burgers vector of the dislocation. Such a hybrid model is able to give fairly41

good results of the dislocation core structure, the non-singular stress field and the42

total energy, as well as the Peierls stress and the Peierls energy for the motion of43

the dislocation.44

Vitek [59] introduced the concept of the generalized stacking fault energy45

(or the γ -surface), which is expressed in terms of the disregistry vector (relative46

displacement vector) across the slip plane. For a given disregistry vector, the value47

of the γ -surface is defined as the energy increment per unit area (after relaxation)48

when the two half-spaces of the crystal have a uniform relative shift across the49

slip plane by this disregistry vector, which can be calculated by atomistic models.50

The γ -surface does not only provide a more realistic nonlinear potential than the51

sinusoidal form used in the original works of Peierls and Nabarro [45,52], but52

also enables vector-valued disregistry function across the slip plane than the scalar53

disregistry function in the original PN model. Thus it is able to describe the partial54

dissociation of perfect dislocations [59,60]. The γ -surfaces can be calculated using55

the empirical potentials as in the original work of Vitek [59]. Recently, the γ -56

surfaces are also obtained more accurately by using the first principles calculations57

(e.g. [6,31,34,37,70]). The method of γ -surface has become an important tool for58

the study of dislocations and plastic properties in crystals.59

Besides the incorporation of γ -surfaces, a considerable number of general-60

izations of the classical PN model in other aspects have also been developed in61

the past seventy years. These generalizations further considered elastic anisotropy62

[22,54,68], the lattice discreteness and Peierls stress [6,37,43,56,57,63,64], non-63

local misfit energy [41,55] and gradient energy [40,61], and dislocation cross-64

slip [36,65]. Generalized PN models have also been developed for curved dislo-65

cations [35,44,68,69] and within the phase field framework for curved disloca-66

tions [58]. Models within the PN framework have also been proposed for grain67

boundaries [11,12,57,62], twin boundary junctions [15], and bilayer graphene and68

other bilayer materials [13,14,70]. Asymptotic analysis [67] and rigorous analy-69

sis [8,9,17,18,21,27,30,42,48–51] have also been performed for the convergence70

and properties from the PN models to models of discrete dislocations, dislocation71

distributions and plasticity at larger length and time scales.72

Despite the wide range of generalizations and applications of the PN mod-73

els, there is not much mathematical understanding and rigorous analysis on the74

atomistic foundation of these models. An attempt was made by El Hajj et al. [21]75

(theorem) and Fino et al. [23] (full proof) to prove the convergence from the near-76

est neighbor Frenkel–Kontorova model [24] on squared lattice to the PN model77
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using viscosity solutions. Such a Frenkel–Kontorova model is a simplified, special78

atomistic model compared with the atomistic models used in molecular dynamics /79

molecular static (MD/MS) simulations, and some important aspects of the deriva-80

tion of the PN models from those atomistic models used in MD/MS simulations still81

need rigorous justification. For example, in their convergence theorem established82

based on the nearest neighbor Frenkel–Kontorova model [21,23], the γ -surface83

is identical to nearest neighbor interaction potential across the slip plane in the84

atomistic model, whereas in a real crystalline material, the range of the interaction85

between atoms is larger than the nearest neighbors and rigorous analysis is still86

needed for the derivation of the γ -surface in the PN model from atomistic models87

in real MD/MS simulations. Moreover, their convergence proof is based on the88

framework of viscosity solution as the ratio of the length of the Burgers vector vs89

the dislocation core width (denoted by ε) goes to 0. However, in a real crystal, the90

dislocation core width is a finite multiple of the length of the Burgers vector.91

In this paper, we perform a rigorous analysis for the convergence from atomistic92

model to the PN model with γ -surface, in the regime where the lattice constant (or93

equivalently, the length of the Burgers vector of the dislocation) is much smaller94

than the dislocation core width (i.e., their ratio ε ≪ 1). In the atomistic model used95

in our convergence proof, each atom interacts with all other atoms via an interatomic96

potential whose effective interaction range is much larger than the nearest neighbor97

interaction. Such atomistic models are commonly used in MD/MS simulations. As98

a result, the decomposition of the total energy into the elastic energy and misfit99

energy (expressed in terms of the γ -surface) in the framework of the PN models is100

rigorously justified based on this general atomistic model. Our proof is a variant of101

the proof for the convergence of nonlinear numerical schemes, which enables us to102

obtain the convergence rate of O(ε2). In our proof, we focus on the one-dimensional103

form of the generalized PN model recently developed for the inter-layer dislocations104

in a bilayer system [13,14]. Note that in the generalized PN model in Refs. [13,14],105

dislocations are lines lying between the two layers in a bilayer system, which are106

different from the dislocations as point defects in a monolayer graphene studied by107

Ariza et al. [1,2] using a discrete dislocation dynamics model.108

Our work can also be considered as an extension of the analysis of the con-109

vergence issue of Cauchy–Born rule [3,4] for elastic media without dislocations110

and other defects, see, e.g. [3,5,7,19,20,25,38,39,47] for the recent progress. The111

major difficulty in the analysis of the PN model lies in the fact that due to the112

presence of the dislocation, the displacement vector across the slip plane of the dis-113

location is no longer continuous, which is unlike in the Cauchy–Born rule where114

the displacement and its gradient are always continuous. Such a discontinuity in115

the PN model is handled by the γ -surface, and our work successfully establishes116

the convergence from atomistic model to the PN model under the one-dimensional117

setting. Our proof is inspired by the work of E and Ming [20], in which the stability118

and convergence of the Cauchy–Born rule were rigorously analyzed for states close119

to perfect lattices. More precisely, we show that the dislocation solution and the120

associated energy of the PN model is an approximation of the dislocation solution121

using the full atomistic model. An important assumption in our analysis is that122

the ratio of the lattice constant to the dislocation core size is small, which is valid123
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in the bilayer graphene due to the strong intra-layer atomic interaction and weak124

inter-layer atomic interaction [13,14].125

Our convergence result is based on the consistency, the linear stability, and a126

fixed point argument. Infinite interaction range causes difficulties in estimating the127

truncation error and proving the compactness for the fixed point iteration. This is128

solved by detailed estimates on the decaying of the derivatives of the pair potentials129

and the PN solution. Another difficulty is that the stability of the atomistic disloca-130

tion solution cannot be directly obtained from that of a perfect lattice because the131

disregistry might be as large as a (half) Burger vector. This is different from the132

situation in the Cauchy–Born rule [20], where both atomistic and continuous con-133

figurations are perturbed from a common equilibrium state. To overcome this, we134

first prove the stability for the PN solution using the standard techniques in elliptic135

partial differential equations. Consequently, we obtain the first positive eigenvalue136

of the linearized PN operator at the PN solution. The stability of the atomistic model137

is then achieved by controlling the stability gap between two models. Such stabil-138

ity of a dislocation core still lacks systematic study in the literature. An attempt139

was made by Hudson and Ortner [33] for an atomistic model with nearest neigh-140

bor interaction. They obtained the stability of a screw dislocation under anti-plane141

deformation in the sense that the dislocation solution is a global minimizer of the142

total energy with given total Burgers vector. To avoid the lattice periodic transla-143

tion invariant, they fixed the dislocation center. Although we also fix the center of144

dislocation, our proofs of stabilities are quite different from theirs. In particular,145

we consider both atomistic and continuum models for edge dislocation, and the146

stabilities are proved in a continuum-to-atomistic way, as shown above. Again, in147

the stability analysis of our atomistic model, the infinite-ranged pair potentials lead148

to an issue in estimating double infinite summations, which is overcome by various149

summability lemmas obtained in this paper.150

There is an extensive literature on the convergence issue of dislocation mod-151

els using the language of Γ -convergence [10,16,26,28,53]. To the best of our152

knowledge, they all study the upscaling from the discrete dislocation theory to the153

dislocation density theory in much larger scales than our situation here. In contrast154

to these works focusing on many dislocations to dislocation density and neglect the155

details of the core structure, our work looks into a single dislocation core structure156

and provide a quantitative error estimate for displacement in the PN dislocation157

solution with respect to the atomistic dislocation solution. In particular, we obtain158

the misfit potential in the continuum model from atomistic model according to the159

exact definition of γ surface instead of a phenomenological quadratic or sinusoidal160

approximation.161

The present paper is organized as follows. We present the atomistic model162

and the PN model, and state the main results of this paper in Sect. 2. Section 3163

provides some preliminary results for the rest of the analysis. In Sect. 4, we deal164

with the consistency issue of the PN model based on asymptotic analysis of the165

atomistic model. In Sect. 5, we focus on the existence and stability of the PN model.166

Section 6 is concerned with the stability of atomistic model. In Sect. 7, we collect167

the previous results to prove the existence of the atomistic solution which is close168

to the continuum solution in the asymptotic sense. Finally, our key assumption on169
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From Atomistic Model to Peierls–Nabarro Model

the smallness of ε is validated in the appendix using data based on first principle170

calculations.171

2. Models and Main Results172

In this paper, we study the one-dimensional form of the generalized PN model173

recently developed for the inter-layer dislocations in a bilayer system (see the related174

bilayer graphene model in [13]). That is, the dislocation is straight and the structure175

of the bilayer system is uniform in the direction of the dislocation. We focus on an176

edge dislocation between a planar bilayer system and neglect the buckling effect177

[13]. This is a reasonably simplified scenario, for instance, when the bilayer is178

bonded by a substrate such that the buckling is limited. In fact, comparing to in-179

plane displacement, the out-of-plane displacement affects only slightly the structure180

of an edge dislocation. As a result, we only study the displacement within the slip181

plane. The dislocation solutions are local minimizers of the total energy in the182

atomistic model and the PN model, respectively, subject to the constraint of the183

total Burgers vector. We will show that the dislocation solution of the PN model is184

an approximation of the dislocation solution using the atomistic model.185

2.1. Atomistic Model186

In the one-dimensional setting, the bilayer system atoms along the x axis. The187

two atomic layers are located at y = ± 1
2

d, respectively, where d is the distance188

between two layers. For a perfect bilayer system without dislocation, the atoms are189

located at Γ ±
a = {x±

i = (x±
i ,± 1

2
d) : i ∈ Z}, where x+

i = ia − 1
2

a, x−
i = ia, and190

a is the lattice constant, see Fig. 1a. This perfect lattice is the reference state of the191

dislocation to be described below.192

Suppose that there is a dislocation centered at the origin (0, 0) with Burgers193

vector b = (a, 0). This dislocation is an edge dislocation. The dislocation structure194

is described by using the perfect lattice above as the reference state, and the atomic195

sites are Γ ±
a = {x′±

i = (x ′±
i ,± 1

2
d) : i ∈ Z}, where x ′+

i = x+
i +u+

i = ia− 1
2

a+u+
i196

and x ′−
i = x−

i + u−
i = ia + u−

i . The displacement field u = {u+
i , u−

i }i∈Z of this197

edge dislocation satisfies the boundary conditions at ±∞:198

lim
i→−∞

(u+
i − u−

i ) = 0, lim
i→+∞

(u+
i − u−

i ) = a. (1)199

To fix the center of the dislocation at (0, 0), we also assume200

u+
0 − u−

0 = a/2. (2)201

See the atomic configuration of this dislocation shown in Fig. 1b. Here we only202

consider the horizontal displacement, and the vertical displacement that is normal203

to the bilayer is neglected due to the non-buckling case.204

Suppose that the system is described by pairwise potentials. The interaction is205

V

(

|x′±
j −x′±

i |
a

)

= V

(

x ′±
j −x ′±

i

a

)

for atoms x′±
j and x′±

i in the same layer; while it is206
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(a)

(b)

Fig. 1. a Perfect lattice. b Configuration of an edge dislocation (compared with the reference
state)

Vinter

(

|x′+
j −x′−

i |
a

)

for atoms x′+
j and x′−

i from different layers. When the distance207

d between two layers is fixed, we have |x′+
j − x′−

i | =
√

(x ′+
j − x ′−

i )2 + d2 and the208

interlayer potential only depends on the horizontal distance |x ′+
j − x ′−

i |. We define209

Vd

(

x ′+
j − x ′−

i

a

)

:= Vinter

(

|x′+
j − x′−

i |
a

)

= Vinter

⎛

⎝

√

(x ′+
j − x ′−

i )2 + d2

a

⎞

⎠ .210

(3)211

The total energy of the atomistic model is given by212

Ea[u] =
1

2

∑

i∈Z

∑

s∈Z∗

{[

V

(

x ′+
i+s − x ′+

i

a

)

− V (s)

]

213

+
[

V

(

x ′−
i+s − x ′−

i

a

)

− V (s)

]}

214

+
∑

i∈Z

∑

s∈Z

[

Vd

(

x ′+
i+s − x ′−

i

a

)

− Vd

(

s −
1

2

)

]

215
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From Atomistic Model to Peierls–Nabarro Model

=
1

2

∑

i∈Z

∑

s∈Z∗

[

V

(

s +
u+

i+s − u+
i

a

)

+ V

(

s +
u−

i+s − u−
i

a

)

− 2V (s)

]

216

+
∑

i∈Z

∑

s∈Z

[

Vd

(

s −
1

2
+

u+
i+s − u−

i

a

)

− Vd

(

s −
1

2

)

]

. (4)217

Recall that the state of perfect lattice is used as the reference state.218

The atomic sites of the edge dislocation is determined by minimizing the total219

energy in Eq. (4) subject to the displacement conditions in Eqs. (1) and (2).220

2.2. Peierls–Nabarro (PN) Model221

In the PN model, we consider an edge dislocation with Burgers vector b = (a, 0)222

centered at the origin of the xy plane in the bilayer system Γ +
PN ∪ Γ −

PN, where223

Γ ±
PN =

{

x± = (x ′±,± 1
2

d) : x ′± = x + u±(x), x ∈ R
}

. As in the atomistic model,224

we only consider the displacement within its own layer (i.e., the x direction), and225

call it the horizontal displacement. The vertical displacement that is normal to the226

bilayer is neglected. Here u+(x) and u−(x) are the horizontal displacements along227

the two layers Γ +
PN and Γ −

PN, respectively.228

As in the classical PN model [45,52], the disregistry (relative displacement)229

φ(x) between the two layers is230

φ(x) = u+(x) − u−(x). (5)231

The disregistry φ(x) of this edge dislocation satisfies the boundary conditions232

lim
x→−∞

φ(x) = 0, lim
x→+∞

φ(x) = a. (6)233

We also assume that234

φ(0) = a/2 (7)235

In order to fix the center of the dislocation at x = 0. Note that the horizontal236

displacement is not continuous in the y direction, and the discontinuity is described237

by the disregistry function φ(x). The disregistry function φ(x) also describes the238

structure of the dislocation; more precisely, φ(x) is the distribution of the Burgers239

vector.240

In the framework of the PN model [45,52] with γ -surface [59], the total energy241

of the bilayer system is divided into two parts: an elastic energy due to the intra-242

layer elastic interaction and a misfit energy due to the nonlinear interaction between243

the two layers, which is244

EPN[u] = Eelas[u] + Emis[φ]. (8)245

Here Eelas[u] is the elastic energy due to the intra-layer elastic interaction in the246

two layers247

Eelas[u] =
∫

R

(

1

2
α|∇u+|2 +

1

2
α|∇u−|2

)

dx, (9)248
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where α is the elastic modulus. Note that in each layer, the elastic energy density is249

1
2
α|∇u±|2. The energy Emis[φ] is the misfit energy due to the nonlinear interaction250

between the two layers251

Emis[φ] =
∫

R

γ (φ) dx, (10)252

where the density of this misfit energy γ (φ) is the γ -surface (or the generalized253

stacking fault energy) [59] that is defined as the energy increment per unit length254

when there is a uniform shift of φ between the two layers. Especially, when φ = ia,255

i ∈ Z, the shifted system still has the perfect lattice structure, and γ (φ) = 0. In256

summary, the energy density of the PN model is257

WPN

(

φ,∇u+,∇u−)

=
1

2
α|∇u+|2 +

1

2
α|∇u−|2 + γ (φ) . (11)258

The γ -surface γ (φ) accounts for the nonlinear interaction between the two259

layers with displacement discontinuity φ between them. Using its definition, the260

γ -surface can be calculated from the atomistic model in Sect. 2.1 by261

γ (φ) =
1

a

∑

s∈Z

[

Vd

(

s −
1

2
+

φ

a

)

− Vd

(

s −
1

2

)]

. (12)262

The constant α in the elastic energy in Eq. (9) can also be calculated from the263

atomistic model in Sect. 2.1 by264

α =
1

2a

∑

s∈Z∗
V ′′(s)|s|2. (13)265

The purpose of this paper is to establish the convergence from the atomistic model266

in Sect. 2.1 to the PN model in Eqs. (8)–(10). As a result, the decomposition of267

the total energy into the elastic energy and misfit energy (expressed in terms of268

the γ -surface) in the framework of the PN models is rigorously justified based269

on the atomistic model. Especially, here the γ -surface in Eq. (12) is calculated270

from the atomistic model following the definition introduced by Vitek [59], and we271

rigorously prove its convergence to the continuum form. Recall that the sinusoidal272

potential in the classical PN model [45,52] and some other simplified forms of273

multi-well potentials in later generalization and analysis (such as the piecewise274

quadratic potential) only reflect the lattice periodicity across the slip plane in a275

phenomenological way.276

This PN model for the bilayer material contains the essential features of the PN277

models with γ -surface. That is, the system is considered as two elastic continua278

connected by a misfit energy expressed in terms of the γ -surface that accounts279

for the nonlinear interaction between the two elastic continua. Note that for a280

dislocation in R
3, as in the classical PN model [45,52] with the γ -surface [59] and281

later generalizations as reviewed in the introduction section, the three-dimensional282

space is divided by the slip plane of the dislocation into two half-space elastic283

continua, and they are connected by a misfit energy expressed in terms of the284

γ -surface across the slip plane. The total energy is EPN = Eelas + Emis, where285

205 1257
Jour. No Ms. No.

B
Dispatch: 7/5/2018
Total pages: 47

Disk Received

Disk Used

Journal: ARMA
Not Used

Corrupted

Mismatch

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

From Atomistic Model to Peierls–Nabarro Model

Eelas =
∫

R3\{z=0}
∑3

i, j=1
1
2
σi jǫi j dxdydz and Emis =

∫

R2 γ (φ(x, y))dxdy. Here286

the xy plane is the slip plane of the dislocation, and 1
2
σi jǫi j is the (linear) elastic287

energy density, σi j and ǫi j are the stress and strain tensors, respectively, and γ (φ)288

is the γ -surface. Generalization can also be made to replace the energy of linear289

elasticity in the PN model by the energy of Cauchy–Born nonlinear elasticity.290

2.3. Weak Interlayer Interaction and Rescaling291

For a bilayer system, the van der Waals-like interaction between the two layers292

is weak compared to the strong interlayer covalent-bond interaction in each layer293

[13]. That is, Vd ≪ V in the atomistic model. We write the relationship as294

Vd = O(ε2)V, (14)295

where ε is some dimensionless small parameter to be defined below. Recall that in296

the PN model for the bilayer system, the elastic energy Eelas is due to the interlayer297

interaction and the misfit energy Emis comes from the interaction between the two298

layers. The dimensionless small parameter ε is defined based on the PN model as299

follows.300

For most parts of the system, the atoms are away from the dislocation, and their301

atomistic structure is close to that of the stable perfect lattice. For example, when302

φ/a ≪ 1 in the PN model in Sect. 2.3, which happens on the negative part of the303

x axis away from the origin, the energy density in the PN model in Eq. (11) is304

approximated well by a quadratic form:305

WPN

(

φ,∇u+,∇u−)

≈
1

2
α|∇u+|2 +

1

2
α|∇u−|2 +

1

2
γ ′′(0)φ2 (15)306

=
1

2
α|∇u+|2 +

1

2
α|∇u−|2 +

1

2
a2γ ′′(0)

(

φ

a

)2

. (16)307

In fact, when φ/a ≪ 1, γ (φ) should reduce to the elastic energy density per308

unit length in the linear elasticity theory ([32] Sect. 1–2), which gives γ ′′(0) =309

(a/d)µ > 0, where µ is the shear modulus of the crystal. We remark that a similar310

quadratic form works for the positive part, with the last term in Eq. (16) replaced311

by 1
2

a2γ ′′(0)
(

φ−a
a

)2
.312

The ratio of the coefficients
a2γ ′′(0)

α
is a dimensionless constant that character-313

izes the relative strength of the inter-layer interaction versus the intra-layer interac-314

tion. Recall that the parameter α is expressed in terms of quantities in the atomistic315

model as in Eq. (13). Using the atomistic expression of γ (φ) in Eq. (12), we have316

γ ′′(0) =
1

a3

∑

s∈Z

V ′′
d

(

s −
1

2

)

. (17)317

As suggested by Eqs. (13), (17) and (14), we define the dimensionless parameter318

ε =
√

a2γ ′′(0)
α

, (18)319
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and assume that320

ε ≪ 1. (19)321

A validation of this assumption based on values of atomistic and first principles322

calculations [13,70] is given in the Appendix.323

Using a/ε as the unit length for the spatial variable x and a as the unit length324

for the displacements in the PN model, we have the following rescaled quantities:325

x̃ =
εx

a
, ũ± =

u±

a
, φ̃ =

φ

a
. (20)326

Accordingly, the variables and functionals related to energy densities are rescaled327

to328

α̃ = aα, γ̃ (φ̃) = aγ (φ), (21)329

W̃PN(φ̃,∇x̃ ũ+,∇x̃ ũ−) = ε−1WPN(φ,∇u+,∇u−), (22)330

ẼPN[u] = ε−1 EPN[u], Ẽa[u] = ε−1 Ea[u]. (23)331

Using these rescaled variables, the total energy in the PN model can be written332

as333

ẼPN[u] =
∫

R

W̃PN(φ̃,∇x̃ ũ+,∇x̃ ũ−) dx̃334

=
∫

R

{

1

2
α̃|∇x̃ ũ+|2 +

1

2
α̃|∇x̃ ũ−|2 + γ̃ (φ̃)

}

dx̃, (24)335

where336

α̃ =
∑

s∈Z∗

1

2
V ′′(s)|s|2, (25)337

γ̃ (φ̃) =
∑

s∈Z

[

U

(

s −
1

2
+ u+ − u−

)

− U

(

s −
1

2

)]

. (26)338

Here, following Eq. (14), we define in the atomistic model that339

U = ε−2Vd , (27)340

so that U = O(1)V .341

Finally, using Eq. (27), the total energy in the atomistic model can be written342

as343

Ẽa[u] =
ε−1

2

∑

i∈Z

∑

s∈Z∗

[

V
(

s + (ũ+
i+s − ũ+

i )
)

+ V
(

s + (u−
i+s − u−

i )
)

− 2V (s)
]

344

+ε
∑

i∈Z

∑

s∈Z

[

U

(

s −
1

2
+ (u+

i+s − u−
i )

)

− U

(

s −
1

2

)]

. (28)345

For simplicity of notation, frow now on, we will use variables without ∼ in the346

PN model after the above rescaling.347

We remark that EPN[u] is independent of ε, and hence EPN[u] = O(1). The348

first and the second variations of atomistic and continuum models are denoted349

as δEa[u], δ2 Ea[u], δEPN[u], and δ2 EPN[u], respectively. Their explicit form are350

given in Proposition 11.351
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From Atomistic Model to Peierls–Nabarro Model

2.4. Assumptions and Notations352

For readers’ convenience, we first collect assumptions and fix notations.353

Assumption. Here is the collection of our assumptions which are physically rea-354

sonable and will be discussed in details later.355

A1 (weak inter-layer interaction) ε ≪ 1.356

A2 (symmetry) V (x) = V (−x) and U (x) = U (−x).357

A3 (regularity) V ∈ C4(R\{0}) and U ∈ C4(R).358

A4 (fast decay) there exist β > 0 and θ > 0, such that359

|V (k)(x)| ≤ β|x |−k−4−θ , |x | ≥ 1
2
, k = 0, 1, . . . , 4, (29)360

|U (k)(x)| ≤ β|x |−k−2−θ , |x | > 0, k = 0, 1, . . . , 4. (30)361

A5 (elasticity constant) α > 0.362

A6 (γ -surface) arg minφ∈R γ (φ) = Z and γ ′′(0) > 0.363

A7 (small stability gap) ∆ < 1
3
κ, where364

∆ = limε→0 sup‖ f ‖Xε =1

〈

δ2 EPN[0] f̄ , f̄
〉

0
−

〈

δ2 Ea[0] f, f
〉

ε
, (31)365

κ = inf‖ f ‖X0
=1〈δ2 EPN[v] f, f 〉0. (32)366

with v being the dislocation solution of the PN model (cf. Theorem 1). The367

operators and functional spaces here will be defined in Eqs. (34)–(47).368

We remark that in our bilayer system setting, A1–A7 are all satisfied. In partic-369

ular, a verification of Assumption A1 is provided in the Appendix, where we show370

that ε ≈ 0.0475 ≪ 1 based on the data from Refs. [13,70].371

In general, Assumptions A2–A4 are satisfied by most pair potentials, such372

as the Lennard–Jones potential, the Morse potential, etc.. The physical meaning373

of Assumptions A5–A6 is that the perfect lattice structure without defects is the374

unique global minimizer of the total energy and is strictly stable (cf. the discussion375

after Eq. (16)).376

For Assumption A7, we remark that ∆ ≥ 0 (cf. Proposition 7) characterizes377

the stability gap between atomistic model (δ2 Ea[0]) and PN model (δ2 EPN[0]) at378

perfect lattice, while κ > 0 (only depends on α, β, θ , and γ ′′(0), cf. Proposition 3)379

depicts the stability of the dislocation solution of the PN model. We also provide an380

explicit formula for ∆ (cf. Proposition 6). The following are two examples where381

A7 holds:382

Example 1. (nearest neighbor interaction) Let V be nearest neighbor interaction,383

i.e., V (s) = 0 for |s| ≥ 2. Then ∆ = 0 and Assumption A7 holds. (cf. Proposi-384

tion 8).385

Example 2. (Lennard–Jones potential) Let V be Lennard–Jones (m, n) potential,386

i.e.,387

V (x) = VLJ(x) = −
(

r0

|x |

)m

+
(

r0

|x |

)n

, 1 < m < n, x �= 0, (33)388

where r0 is some characteristic distance. Then ∆ = 0 and Assumption A7 holds.389

(cf. Proposition 10).390
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Notations. In the proofs, we do not intend to optimize the constants, and hence391

we frequently use C to be an ε-independent constant, which may be different from392

line to line.393

For convenience, we introduce the difference operators D±
s for f defined on394

εZ or R:395

D+
s f (x) =

f (x + εs) − f (x)

ε
, D−

s f (x) =
f (x) − f (x − εs)

ε
, s ∈ Z.396

(34)397

Moreover, we denote D f = D+
1 f and Dk f = (D+

1 )k f for k ∈ N. For function f398

defined on εZ, we denote399

fi = f (εi), i ∈ Z. (35)400

Next, we introduce discrete Sobolev spaces H k
ε = H k

ε (εZ) = { f : ‖ f ‖ε,k <401

∞}, k ∈ N, where the H k
ε norm is defined as follows:402

‖ f ‖2
ε,k = ε

∑

0≤ j≤k

∑

i∈Z

|D j fi |2. (36)403

Due to the convention, we denote L2
ε = H0

ε with norm ‖ · ‖ε = ‖ · ‖ε,0. We refer404

the readers to Lemma 4 for relations and properties of these spaces. For f, g ∈ L2
ε ,405

their inner products is given by406

( f, g)ε = ε
∑

i∈Z

fi gi . (37)407

If f ±, g± ∈ L2
ε , then we write f = ( f +, f −) ∈ L2

ε , Dk f = (Dk f +, Dk f −) and408

define409

‖ f ‖2
ε,k = ‖ f +‖2

ε,k + ‖ f −‖2
ε,k, (38)410

( f, g)ε = ( f +, g+)ε + ( f −, g−)ε. (39)411

Similarly, if f ±, g± ∈ L2, we write f = ( f +, f −) ∈ L2, ∇k f = (∇k f +,∇k f −)412

and define413

‖ f ‖2
H k = ‖ f +‖2

H k + ‖ f −‖2
H k , (40)414

( f, g)0 = ( f +, g+)0 + ( f −, g−)0. (41)415

We use the notation ‖ · ‖ and (·, ·)0 to denote the L2 norm and L2 inner product,416

respectively. The uniform norms on εZ is given by ‖ f ‖L∞
ε

= supi∈Z | fi |.417

If f = ( f +, f −) ∈ L2
ε , we define its linear interpolation f̄ = ( f̄ +, f̄ −) ∈ L2:418

f̄ ±(x) =
(i + 1)ε − x

ε
f ±
i +

x − iε

ε
f ±
i+1 for iε ≤ x < (i + 1)ε. (42)419

We define the jump of f = ( f +, f −) in y direction420

f ⊥(x) = f +(x) − f −(x) and f ⊥
i = f +

i − f −
i . (43)421
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From Atomistic Model to Peierls–Nabarro Model

Note that the jump u⊥ = φ is the disregistry for the displacement of the PN model.422

Throughout this paper, the evaluations f ±(0) are always in the trace sense. We423

define the following functional spaces for the analysis of both models:424

X0 =
{

f = ( f +, f −) : ‖ f ‖X0 < ∞, f ±(0) = 0
}

, (44)425

Xε =
{

f = ( f +, f −) : ‖ f ‖Xε < ∞, f ±
0 = 0

}

, (45)426

where ‖ f ‖X0 = ( f, f )
1/2
X0

and ‖ f ‖Xε = ( f, f )
1/2
Xε

with the following inner prod-427

ucts428

( f, g)X0 = (∇ f +,∇g+)0 + (∇ f −,∇g−)0 + ( f ⊥, g⊥)0, (46)429

( f, g)Xε = (D f +, Dg+)ε + (D f −, Dg−)ε + ( f ⊥, g⊥)ε. (47)430

It is easy to check that X0 and Xε are both Hilbert spaces with respect to inner431

products (·, ·)X0 and (·, ·)Xε . We remark that ‖ f ‖2
X0

= ‖∇ f ‖2 + ‖ f ⊥‖2 and432

‖ f ‖2
Xε

= ‖D f ‖2
ε + ‖ f ⊥‖2

ε . We use notations 〈·, ·〉0 and 〈·, ·〉ε for pairings on433

X∗
0 × X0 and X∗

ε × Xε, respectively. The following linear subspace of Xε will be434

useful in the proofs:435

Mε = { f = ( f +, f −) ∈ Xε : f +
i = − f −

i = − f +
−i , i ∈ Z}. (48)436

Let u0 = (u0+, u0−) and uε = (uε+, uε−), where437

u0+(x) =

⎧

⎨

⎩

0, x < − 1
4
,

x + 1
4
, − 1

4
≤ x ≤ 1

4
,

1
2
, x > 1

4

(49)438

u0−(x) = −u0+(x), x ∈ R, (50)439

uε±
i = u0±(εi), i ∈ Z. (51)440

Then we define the lifts of X0 and Xε, i.e., the affine space over X0 and Xε, as441

follows:442

X̄0 =
{

u = (u+, u−) : u − u0 ∈ X0

}

, (52)443

X̄ε =
{

u = (u+, u−) : u − uε ∈ Xε

}

. (53)444

Finally, we define solution spaces for our problems as follows:445

S0 =
{

u = (u+, u−) ∈ X̄0 : lim
x→−∞

u⊥(x) = 0, lim
x→+∞

u⊥(x) = 1

}

, (54)446

Sε =
{

u = (u+, u−) ∈ X̄ε : lim
i→−∞

u⊥
i = 0, lim

i→+∞
u⊥

i = 1

}

. (55)447
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2.5. Main Results448

For the PN model, we solve the minimization problem for v = (v+, v−) ∈ S0:449

inf
u∈S0

EPN[u]. (56)450

The Euler–Lagrange equation of this minimization problem reads as451

{

δEPN[u] = 0,

limx→−∞ u⊥(x) = 0, limx→+∞ u⊥(x) = 1, u±(0) = ± 1
4
.

(57)452

For the atomistic model, we solve the minimization problem forvε = (vε,+, vε,−) ∈453

Sε:454

inf
u∈Sε

Ea[u]. (58)455

The Euler–Lagrange equation of this minimization problem reads as456

{

δEa[u] = 0,

limi→−∞ u⊥
i = 0, limi→+∞ u⊥

i = 1, u±
0 = ± 1

4
.

(59)457

We extend the domain of Ea[·] (respectively, EPN[·]) to X̄ε (respectively, X̄0). Thus458

Ea[u] = +∞ is allowed. Actually, this corresponds to the case that two atoms have459

the same location.460

The main results of this paper are461

Theorem 1. (Existence for PN model) If Assumptions A1–A6 in Sect. 2.4 hold, then462

the PN problem (57) has a unique solution v = (v+, v−) and v ∈ S0 is the X0-463

global minimizer of the energy functional (24). Moreover, v+(x) = −v−(x) for all464

x ∈ R, and v+(·) is strictly increasing and smooth (at least C5) with ‖v‖W 5,∞ ≤ C465

and ‖∇v‖W 4,1 ≤ C.466

Theorem 2. (Existence for atomistic model; Convergence) If Assumptions A1–A7467

in Sect. 2.4 hold, then there exists an ε0 > 0 such that for any 0 < ε < ε0, the468

atomistic problem (59) has a solution vε = (vε,+, vε,−) and vε ∈ Sε is a Xε-local469

minimizer of the energy functional (28). Furthermore, ‖vε − v‖Xε ≤ Cε2, where470

v is the dislocation solution of the PN model in Theorem 1.471

A constant C in these theorems may depend on α, β, θ , ∆, and γ ′′(0), but472

it is independent of ε. Thanks to the convergence of displacement, we have the473

following important corollary for convergence of energy:474

Corollary 1. (Convergence of energy) If Assumptions A1–A7 hold, then there exists475

an ε0 > 0 such that for any 0 < ε < ε0 we have476

∣

∣EPN[v] − Ea[vε]
∣

∣ ≤ Cε2, (60)477

where v and vε are the solutions of the PN model and the atomistic model, respec-478

tively, in Theorems 1 and 2.479

Note that EPN is of order O(1) in this corollary, and hence the relative error is of480

order O(ε2). Before the rescaling, EPN is of order O(ε) and the relative error is481

still of order O(ε2).482
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From Atomistic Model to Peierls–Nabarro Model

3. Preliminaries483

We provide some preliminary results in this section, including some lemmas484

characterizing the properties of pair potentials and γ -surface. For simplicity of485

notation, we set, for k = 0, 1, 2, . . .486

Vk,s = ess sup
|ξ−s|≤ 1

2 |s|
|∇k V (ξ)|, s ∈ Z

∗ (61)487

Uk,s = ess sup
|ξ−s+ 1

2 |≤1

|∇kU (ξ)|, s ∈ Z, (62)488

vk,s,i = ess sup
ε(i−|s|)≤x≤ε(i+|s|)

∣

∣

∣∇kv+(x)

∣

∣

∣ , i, s ∈ Z. (63)489

Roughly speaking, Vk,s (or Uk,s , respectively) is a bound for ∇k V (ξ) (or ∇kU (ξ),490

respectively) nearby ξ = s, and vk,s,i is a bound for ∇v in ε|s|-neighbor nearby491

x = εi . These quantities may appear in proofs from time to time.492

First, we study the regularity of γ -surface and summability of pair potentials493

in our models.494

Lemma 1. (fast decay and summability) Suppose that Assumptions A3–A4 hold.495

Then there exists a constant C = C(β, θ) satisfying the summability conditions496

∑

s∈Z∗ |s|k+3Vk,s ≤ C, k = 0, 1, . . . , 4, (64)497

∑

s∈Z
|s|k+1Uk,s ≤ C, k = 0, 1, . . . , 4. (65)498

Proof. By defintion Eq. (61) and Assumption A4, we have Vk,s ≤ C( 1
2
|s|)−k−4−θ .499

Therefore, for k = 0, 1, . . . , 4500

∑

s∈Z∗
|s|k+3Vk,s ≤

∑

s∈Z∗
2k+4+θC |s|−1−θ ≤ C.501

It is similar to show these properties for U . ⊓⊔502

Lemma 2. (regularity of γ -surface) Suppose that Assumptions A3–A4 hold. Then503

there exist C = C(β, θ) and ε0 = ε0(β, θ) such that for any 0 < ε < ε0, we have504

γ ∈ C4(R) and ‖∇kγ ‖L∞ ≤ C for k = 0, 1, · · · , 4. (66)505

Proof. Assumption A3 with Lemma 1 implies that γ ∈ C4(R) and506

∇kγ (ξ) =
∑

s∈Z

U (k)

(

s −
1

2
+ ξ

)

, k = 1, 2, · · · , 4. (67)507

Let n be the nearest integer of ξ . By Lemma 1 again, we have |∇kγ (ξ)| ≤508
∑

s∈Z
Uk,s+n ≤ C. If k = 0, then |γ (ξ)| ≤

∑

s∈Z
(U0,s+n + U0,s) ≤ C . ⊓⊔509

Remark 1. This regularity of γ -surface is indispensable and it essentially relies on510

the regularity and summability of the pair potential Vd (or U ). Consequently, a511

smooth dislocation solution depends on the regularity of Vd (or U ).512

205 1257
Jour. No Ms. No.

B
Dispatch: 7/5/2018
Total pages: 47

Disk Received

Disk Used

Journal: ARMA
Not Used

Corrupted

Mismatch

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Tao Luo, Pingbing Ming & Yang Xiang

Lemma 3. (symmetry and local stability of γ -surface) Suppose that Assumptions513

A2–A4 and A6 hold. Then we have the following properties of the γ -surface514

(periodicity) γ (ξ + 1) = γ (ξ), ξ ∈ R,

(symmetry) γ (ξ) = γ (−ξ), ξ ∈ R,

(local stability) γ (ξ) ≥ 1
4
γ ′′(0)ξ2, |ξ | ≤ C,

(68)515

for some constant C = C(β, θ, γ ′′(0)).516

Proof. By the proof of Lemma 2, the series in the definition γ (ξ) =
∑

s∈Z
[U (s −517

1
2
+ξ)−U (s− 1

2
)] is absolutely summable and its sum is irrelevant to the summation518

order. In particular, we have
∑

s∈Z
[U (s + 1

2
+ ξ) − U (s)] =

∑

s∈Z
[U (s − 1

2
+519

ξ) − U (s)]. That is γ (ξ + 1) = γ (ξ).520

Next, the symmetry γ (ξ) = γ (−ξ) follows immediately from Assumption A2.521

The Taylor expansion of γ near 0 leads to γ (ξ) = γ (0)+γ ′(0)ξ + 1
2
γ ′′(ξ1)ξ

2,522

where ξ1 is between 0 and ξ . Note that γ (0) = 0. The symmetry and the fact523

that γ ∈ C4 imply that γ ′(0) = 0. By the assumption γ ′′(0) > 0 in A6 and the524

continuity of γ ′′, we have γ (ξ) = 1
2
γ ′′(ξ1)ξ

2 ≥ 1
4
γ ′′(0)ξ2 for sufficiently small ξ .525

⊓⊔526

Remark 2. Recall that the γ -surface γ (φ) is defined in Eq. (12) from the atomistic527

model following the definition of Vitek [59]. The sinusoidal interplanar potential528

function in the classical PN model: γcl-PN(φ) = µb2

4π2d

(

1 − cos
2πφ

b

)

, where d is529

the interplanar distance, b is the length of the Burgers vector and µ is the shear530

modulus, is a phenomenological potential that satisfies the main features of a γ -531

surface summarized in Eq. (68).532

4. Existence and Stability of the PN Model533

In this section, we study the dislocation solution of the PN model, in particular,534

its existence and stability.535

For the existence, we rewrite our one-step minimization problem (56) into a536

two-step minimization problem: first minimizing u = (u+, u−) with fixed u⊥ = φ,537

then minimizing the energy with respect to φ. This two-step procedure becomes538

a routine since the original works of Peierls and Nabarro [45,52], however, the539

equivalence lacks a rigorous proof. Here we provide a detailed discussion on the540

relation of these two minimization problems. We use our bilayer system setting in541

order to be consistent with this work. The equivalence result and its proof can both542

be straightforwardly extended to the general PN model (e.g., in three dimension543

and for curved dislocations).544

We define the function space for disregistry φ:545

Φ0 =
{

φ : φ − φ0 ∈ H1, limx→−∞ φ(x) = 0, limx→+∞ φ(x) = 1, φ(0) = 1
2

}

, (69)546

φ0(x) =

⎧

⎪

⎨

⎪

⎩

0, x < − 1
4 ,

2x + 1
2 , − 1

4 ≤ x ≤ 1
4 ,

1, x > 1
4 .

(70)547
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From Atomistic Model to Peierls–Nabarro Model

It is easy to check that for any u ∈ S0, we have φ := u⊥ ∈ Φ0. In particular,548

φ0 = u0,⊥ ∈ Φ0.549

In our bilayer system, the two-step minimization reads as:550

(i) given φ ∈ Φ0, find uφ = (u+
φ , u−

φ ) ∈ S0 with u⊥
φ = φ such that551

Eelas[uφ] = inf
u∈S0, u⊥=φ

Eelas[u], (71)552

and denote E I I
elas[φ] = infu∈S0, u⊥=φ Eelas[u];553

(ii) find φ∗ ∈ Φ0 such that554

E I I
PN[φ∗] = inf

φ∈Φ0

E I I
PN[φ], (72)555

where the total energy functional in this two-step minimization problem is defined556

as557

E I I
PN[φ] = E I I

elas[φ] + Emis[φ]. (73)558

To make it clear, we list the relationship between the various functionals in559

these minimization problems. The one-step minimization problem (56) reads as:560

inf
u∈S0

EPN[u] = inf
u∈S0,u⊥=φ

{Eelas[u] + Emis[φ]} ;561

the two-step minimization problem (71)–(72) reads as:562

inf
φ∈Φ0

E I I
PN[φ] = inf

φ∈Φ0

{

E I I
elas[φ] + Emis[φ]

}

563

= inf
φ∈Φ0

{(

inf
u∈S0,u⊥=φ

Eelas[u]
)

+ Emis[φ]
}

.564

We remark that, in general (PN models), E I I
elas[φ] always exists, even if the optimal565

displacement u may not exist (in S0) for some given disregistry φ with the consis-566

tency condition u⊥ = φ. In many applications such as the original PN model, there567

is an explicit solution for the step (i) problem (71). It follows that one simply needs568

to solve the step (ii) problem (72). This is a great advantage to use this two-step569

minimization model.570

The following proposition establishes the equivalence between these minimiza-571

tion problems:572

Proposition 1. (equivalence between two minimization problems) We suppose that573

EPN[u0] < +∞. Then the two-step minimization problem (71)–(72) is equivalent574

to the one-step minimization problem (56) in the following senses:575

1. m I = m I I , where m I = infu∈S0 EPN[u] and m I I = infφ∈Φ0 E I I
PN[φ].576

2. Given any minimizing sequence {ui }∞i=1 of problem (56), then {φi := ui,⊥}∞i=1577

is a minimizing sequence of problem (72). Conversely, given any minimizing578

sequence {φi }∞i=1 of problem (72), there exists a sequence {ui }∞i=1 with ui,⊥ =579

φi , i ∈ N such that {ui }∞i=1 is a minimizing sequence of problem (56).580
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3. If u∗ is a minimizer of problem (56), φ∗ := u∗,⊥ is a minimizer of problem (72).581

Conversely, if φ∗ is a minimizer of problem (72) and u∗ solves582

Eelas[u∗] = inf
u∈S0, u⊥=φ∗

Eelas[u], (74)583

then u∗ is a minimizer of problem (56). In particular, if the minimizer u∗ in (74)584

is unique, then u∗ and φ∗ has a one-to-one correspondence.585

Remark 3. Condition (74) means Eelas[u∗] = E I I
elas[φ∗]. For most applications,586

including our case Eelas[u] =
∫

R

1
2
α(|∇u+|2 +|∇u−|2)dx , the minimizer u∗ ∈ S0587

satisfying Eq. (74) exists, and it is unique.588

Proof. By Assumption A6, γ (x) ≥ γ (0) = 0 for all x ∈ R. Thus Emis[φ] ≥ 0.589

Obviously, Eelas[u] ≥ 0 and E I I
elas[φ] ≥ 0 for any u ∈ S0 and φ ∈ Φ0, respectively.590

Hence m I and m I I are bounded below by 0. In addition, they are prevented from591

being +∞ due to the assumption EPN[u0] < +∞.592

1. If {ui }∞i=1 is a minimizing sequence of problem (56), then limi→+∞ EPN[ui ] =593

m I . For all i ,594

m I I ≤ E I I
PN[ui,⊥] ≤ EPN[ui ]. (75)595

Taking the limit i → +∞, we obtain m I I ≤ m I .596

Conversely, if {φi }∞i=1 a minimizing sequence of problem (72), then we have597

limi→+∞ E I I
PN[φi ] = m I I . For any i , there exist ui ∈ S0 with ui,⊥ = φi such598

that Eelas[ui ] ≤ i−1 + E I I
elas[φi ]. Then599

m I ≤ EPN[ui ] ≤ i−1 + E I I
PN[φi ]. (76)600

Taking the limit i → +∞, we obtain m I ≤ m I I . Hence m I = m I I .601

2. If {ui }∞i=1 is a minimizing sequence of problem (56), then we set φi = ui,⊥ for602

all i ∈ N. Thus limi→ E I I
PN[φi ] = m I I follows from Eq. (75) and m I = m I I .603

Conversely, if {φi }∞i=1 a minimizing sequence of problem (72), then we choose604

ui ∈ S0 with ui,⊥ = φi such that Eelas[ui ] ≤ i−1 + E I I
elas[φi ]. Thus605

limi→+∞ EPN[ui ] = m I follows from Eq. (76) and m I = m I I .606

3. If EPN[u∗] = m I , then E I I
PN[u∗,⊥] ≤ EPN[u∗] = m I = m I I . Conversely, if607

E I I
PN[φ∗] = m I I and Eelas[u∗] = infu∈S0, u⊥=φ∗ Eelas[u], then608

EPN[u∗] = Eelas[u∗] + Emis[u∗,⊥] = E I I
elas[φ∗] + Emis[φ∗] = E I I

PN[φ∗] = m I .609

⊓⊔610

Now we prove Theorem 1 by solving the two-step minimization. The first step611

is explicitly solvable. Next, we prove the existence and other properties of the612

minimizer φ.613
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From Atomistic Model to Peierls–Nabarro Model

Proof of Theorem 1.614

1. Two-step minimization problem. Recall that Eelas[u] =
∫

R

1
2
α

(

|∇u+|2615

+|∇u−|2
)

dx . For any φ ∈ Φ0, we have616

arg min
u∈S0,u⊥=φ

Eelas[u] = arg min
u∈S0

∫

R

1

2
α

(

|∇u+|2 + |∇u+ − ∇φ|2
)

dx617

=
(

1

2
φ,−

1

2
φ

)

.618

Moreover, E I I
elas[φ] = Eelas[( 1

2
φ,− 1

2
φ)] = 1

4

∫

R
α|∇φ|2dx . By Proposition 1, we619

only need to minimize the following energy E I I
PN[φ] in terms of disregistry φ ∈ Φ0:620

E I I
PN[φ] =

∫

R

(

1

4
α|∇φ|2 + γ (φ)

)

dx . (77)621

2. Existence, uniqueness, and symmetry. Define Γ (ξ) =
∫ ξ

0

√
αγ (η)dη for ξ ∈ R.622

Recall that γ (·) is nonnegative, bounded, and continuous. Hence Γ (ξ) is well-623

defined and ∇Γ (ξ) =
√

αγ (ξ). Note that Γ (0) = 0 and Γ (1) =
∫ 1

0

√
αγ (η)dη.624

Applying the AM-GM inequality to Eq. (77), we have625

E I I
PN[φ] ≥

∫

R

|∇φ(x)|
√

αγ (φ(x))dx626

=
∫

R

|∇Γ (φ(x))|dx627

≥ lim
x→+∞

Γ (φ(x)) − lim
x→−∞

Γ (φ(x))628

=
∫ 1

0

√

αγ (η)dη.629

For the first step, the equality holds if and only if 1
2

√
α|∇φ| =

√
γ ◦ φ. Therefore630

infφ∈Φ0 E I I
PN[φ] =

∫ 1
0

√
αγ (η)dη. Moreover, φ∗ ∈ Φ0 is a minimizer if and only631

if 1
2

√
α|∇φ(x)| =

√
γ (φ(x)) for a.e. x ∈ R and ∇φ(x) does not change sign for632

a.e. x ∈ R. Obviously, ∇φ(x) ≥ 0 for a.e. x ∈ R. Thus the minimizer φ∗ ∈ Φ0 is633

the solution of the differential equation634

∇φ(x) =
2

√
α

√

γ (φ(x)), φ(0) =
1

2
, (78)635

with boundary conditions limx→−∞ φ∗(x) = 0, and limx→+∞ φ∗(x) = 1. Note636

that
√

γ (x) is uniformly Lipschitz due to the fact that γ behaves quadratically637

near Z (because γ attains its minimum value 0 at integer values). The initial value638

problem (78) has a unique classical (differentiable) solution on R. We denote this639

solution as φ∗(x), x ∈ R. It will be checked that φ∗ ∈ Φ0 in the next step. Therefore640

the minimization problem (24) has a unique global minimizer. Recall that γ ∈ C4
641

(cf. Lemma 2). Thus φ∗ is C5 by Eq. (78). Moreover, it is the unique solution of642

the Euler–Lagrange equation643

−
1

2
α∇2φ∗ − γ ′(φ∗) = 0. (79)644
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3. Strictly increasing, boundary conditions, and exponential decay. We claim645

that φ∗(x) �∈ Z for all x ∈ R. Indeed, if φ∗(x0) = n for some x0 ∈ R and646

n ∈ Z, then ∇(φ∗ − n) = 2√
α

√
γ (φ∗ − n) due to Lemma 3 and Eq. (78). Using647

the Lipschitz property of
√

γ , |∇(φ∗ − n)| ≤ C |φ∗ − n|. Gronwall’s inequality648

with φ∗(x0) − n = 0 implies that φ∗(x) = n for all x ∈ R. This contradicts with649

φ∗(0) = 1
2

. Thus φ∗(x) �∈ Z for all x ∈ R. As a result, we obtain that 0 < φ∗(x) < 1650

and ∇φ∗(x) > 0 for all x ∈ R.651

Next, we prove that the boundary conditions are satisfied. Since φ∗ strictly652

increasing and bounded, the limit M := limx→+∞ φ∗(x) exists. Obviously, M ≤ 1.653

If M < 1, we have m′ := minξ∈[ 1
2 ,M]

2√
α

√
γ (ξ) > 0 due to Assumption A6. Thus654

∇φ∗(x) ≥ m′ > 0 for all x ≥ 0. This leads to limx→+∞ φ∗(x) = +∞ which655

contradicts with the boundedness ofφ∗. Therefore we must have limx→+∞ φ∗(x) =656

1. Similarly, we have limx→−∞ φ∗(x) = 0.657

By Lemma 3, we have γ (1−φ∗(x)) ≥ 1
4
γ ′′(0)(1−φ∗(x))2 for φ∗(x) ≥ 1−c0,658

where c0 = c0(β, θ, γ ′′(0)). Since limx→+∞ φ∗(x) = 1, there exists a constant659

K > 0 such that φ∗(x) ≥ 1 − c0 for x > K . These with Eq. (78) leads to660

∇(1 − φ∗(x)) = −
2

α

√

γ (1 − φ∗(x)) ≤ −
2

α

√

1

4
γ ′′(0)(1 − φ∗(x))2

661

≤ −C(1 − φ∗(x))662

for all x > K and some C > 0. By Gronwall’s inequality, we have for x ≥ K663

1 − φ∗(x) ≤ (1 − φ∗(K )) exp(−C(x − K )) ≤ C ′ exp(−Cx).664

By choosing a larger constant C ′, the exponential decay estimate holds for all665

x ≥ 0: 1 − φ∗(x) ≤ C ′ exp(−C |x |). Similarly, we have φ∗(x) ≤ C ′ exp(−C |x |)666

for x ≤ 0.667

4. Regularity. Note that ‖φ∗‖L∞ ≤ 1 and ‖∇φ∗‖L∞ = 2√
α
‖√γ ‖L∞ < ∞. Since668

∇φ∗ > 0, we have ‖∇φ∗‖L1 =
∫ ∞
−∞ ∇φ∗(x) = 1. Next ∇2φ∗ = − 2

α
γ ′(φ∗). Thus669

∇2φ∗ ∈ L∞ by Lemma 2. Note that |γ ′(φ∗)| ≤ |γ ′(0) + γ ′′(ξ)φ∗| ≤ C |φ∗| and670

|γ ′(φ∗)| ≤ |γ ′(1) + γ ′′(ξ)(φ∗ − 1)| ≤ C |1 − φ∗|. Then671

‖∇2φ∗‖L1 ≤
2

α

∫ ∞

−∞
|γ ′(φ∗(x))|dx672

≤ C

∫ 0

−∞
|φ∗(x)|dx + C

∫ ∞

0

|1 − φ∗(x)|dx < C,673

where the last inequality is due to the exponential decay property of φ∗(x). By674

direct calculations, we have675

∇3φ∗ = −
2

α
γ ′′(φ∗)∇φ∗,676

∇4φ∗ = −
2

α

[

γ ′′′(φ∗)(∇φ∗)2 + γ ′′(φ∗)∇2φ∗
]

,677

∇5φ∗ = −
2

α

[

γ (4)(φ∗)(∇φ∗)3 + 3γ ′′′(φ∗)∇φ∗∇2φ∗ + γ ′′(φ∗)∇3φ∗
]

.678
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From Atomistic Model to Peierls–Nabarro Model

Here we are implicitly using (79) and the chain rule, which is permissible since679

γ ∈ C4. Recall that γ (k) ∈ L∞ for k = 2, 3, 4 (cf. Lemma 2). This with ∇φ∗ ∈ L∞
680

and ∇2φ∗ ∈ L∞ leads to ∇kφ∗ ∈ L∞ for k = 3, 4, 5, successively. Then the681

boundedness γ (k) ∈ L∞, k = 2, 3, 4 with ∇φ∗ ∈ L1 and ∇φ∗ ∈ L∞ leads to682

∇kφ∗ ∈ L1 for k = 3, 4, 5, successively.683

5. Dislocation solution v. Now we summarize the above properties of φ∗. The684

dislocation solution v = ( 1
2
φ∗,− 1

2
φ∗) is the unique solution of the PN problem685

(57) and v ∈ S0 is the unique X0-global minimizer of the energy functional (24).686

Moreover, v is symmetric v+(x) = −v−(x) for all x ∈ R and v+(·) ∈ C5 is strictly687

increasing with ‖v‖W 5,∞ ≤ C and ‖∇v‖W 4,1 ≤ C . ⊓⊔688

A corollary of Theorem 1 shows the symmetry property of v±.689

Corollary 2. Let v = (v+, v−) be the dislocation solution of the PN model in690

Theorem 1. Then v has the symmetry with respect to x: v+(x) + v+(−x) = 1
2

and691

v−(x) + v−(−x) = − 1
2

, x ∈ R.692

Proof. By the symmetry and periodicity of γ -surface (cf. Lemma 3), we have693

γ ( 1
2

+ ξ) = γ (ξ − 1
2
) = γ ( 1

2
− ξ) for all ξ ∈ R. Recall that

√
γ (x) is uniformly694

Lipschitz due to the fact that γ behaves quadratically near Z. Then it is easy to695

see the solution of the differential equation ∇φ∗ =
√

4
α
γ (φ∗) with initial value696

φ∗(0) = 1
2

satisties φ∗(x) − 1
2

= 1
2

− φ∗(−x) for x ≥ 0. This with the fact that697

v = ( 1
2
φ∗,− 1

2
φ∗) completes the proof. ⊓⊔698

Due to the translation invariance, the second variation of energy at the disloca-699

tion solution δ2 EPN[v] has a zero eigenvalue. The following proposition guarantees700

that this zero eigenvalue is simple (in other words, the eigenfunctions corresponding701

to zero eigenvalue form a one-dimension linear space):702

Proposition 2. (zero eigenvalue is simple) Suppose that Assumptions A1–A6 hold.703

Let v be the dislocation solution of the PN model in Theorem 1. If f ∈ C2 ∩ X0704

and f solves δ2 EPN[v] f = 0, then f = A∇v for some constant A.705

Proof. Let g = ∇v. Thus we have706

−α∇2 f ± ± γ ′′(v⊥)( f + − f −) = 0,707

−α∇2g± ± γ ′′(v⊥)(g+ − g−) = ∇
[

−α∇2v± ± γ ′(v⊥)
]

= 0.708

The first equation implies ∇2 f +(x) = −∇2 f −(x) for all x ∈ R. Thus, for all709

x ∈ R, ∇ f +(x) + ∇ f −(x) = limx→+∞[∇ f +(x) + ∇ f −(x)] = 0 because f ∈710

C2∩X0. Then for all x ∈ R, we have f +(x)+ f −(x) = f +(0)+ f −(0) = 0 where711

the last equality is also due to f ∈ X0. Now we have f + − f − = 2 f + = −2 f −
712

and713

−α∇2 f ± + 2γ ′′(v⊥) f ± = 0, (80)714

−α∇2g± + 2γ ′′(v⊥)g± = 0. (81)715
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Eliminating the γ ′′(v⊥) term leads to716

−αg±∇2 f ± + α f ±∇2g± = 0 or α∇
(

g±∇ f ± − f ±∇g±)

= 0.717

Thus g±∇ f ± − f ±∇g± is a constant. From the proof of Theorem 1, we know718

that ‖g‖L∞ ≤ C and ‖∇g‖L∞ ≤ C . Recall that f ∈ C2 ∩ X0 and f + = − f −.719

We obtain that g±(x)∇ f ±(x) − f ±(x)∇g±(x) = limx→+∞[g±(x)∇ f ±(x) −720

f ±(x)∇g±(x)] = 0 for all x ∈ R. By strictly monotonicity of v± (cf. Theorem721

1), we have g± = ∇v± �= 0. Thus (g±)2∇
(

f ±

g±

)

= g±∇ f ± − f ±∇g± = 0.722

Therefore f = Ag = A∇v for some constant A. ⊓⊔723

Remark 4. The physical meaning of Proposition 2 is that the dislocation solution v,724

satisfying the boundary conditions but not the center condition, is invariant under725

translation. Indeed, let us consider an infinitesimal translation dx of the dislocation726

solution. The translated displacement field is v(x + dx) and hence the perturbation727

is v(x +dx)−v(x) = (∇v)dx . This perturbation mode is exactly the eigenfunction,728

in the previous proposition, corresponding to the zero eigenvalue.729

Now we are ready to obtain the stability result of the PN model. Later (cf.730

Proposition 9 in Sect. 6), we will see that the stability of the atomistic model can731

be achieved by this PN stability with the small stability gap Assumption A7.732

Proposition 3. (stability of PN model) Suppose that Assumptions A1–A6 hold. Let733

v be the dislocation solution of the PN model in Theorem 1. There exists a constant734

κ = κ(α, β, θ, γ ′′(0)) > 0 such that for f ∈ X0, we have735

〈

δ2 EPN[v] f, f
〉

0
≥ κ‖ f ‖2

X0
. (82)736

Proof. We prove the statement by contradiction. Suppose there exists a sequence737

{ f n}∞n=1 satisfying the following conditions:738

‖ f n‖X0 = 1 and 1
n
‖ f n‖2

X0
>

〈

δ2 EPN[v] f n, f n
〉

0
= I [ f n], (83)739

where the functional I [ f ] =
∫

R

{

α|∇ f +|2 + α|∇ f −|2 + γ ′′(v⊥)( f ⊥)2
}

dx .740

From the proof of the Theorem 1, we know that v⊥ = φ∗ is strictly increasing741

on R with limx→−∞ φ∗(x) = 0 and limx→+∞ φ∗(x) = 1. This with Assumption742

A6 and Lemma 3 implies that γ ′′(v⊥(x)) ≥ 1
2
γ ′′(0) > 0 on R\(−K , K ) for some743

K < ∞. Define744

IK [ f ] :=
∫ K

−K

{α|∇ f +|2 + α|∇ f −|2 + γ ′′(v⊥)( f ⊥)2}dx745

IK c [ f ] :=
∫

R\(−K ,K )

{α|∇ f +|2 + α|∇ f −|2 + γ ′′(v⊥)( f ⊥)2}dx .746

The uniformly boundedness ‖ f n‖X0 = 1 implies that there exists a subsequence747

(still denoted as { f n}∞n=1) with f ∗ ∈ X0 satisfying (1) ∇ f n,± → ∇ f ∗,± weakly748

in L2, (2) f n,⊥ → f ∗,⊥ weakly in L2(R), and (3) f n,⊥ → f ∗,⊥ strongly in749

L2((−K , K )). The statements (1) and (3) imply that the functional IK [ f ] is weak750
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From Atomistic Model to Peierls–Nabarro Model

lower semi-continuous: lim infn→∞ IK [ f n] ≥ IK [ f ] for any f n → f weakly in751

H1((−K , K )). For x ∈ R\(−K , K ), the integrand γ ′′(v⊥)( f ⊥)2 in IK c [ f ] is con-752

vex since γ ′′(v⊥(x)) > 0. By convexity, the functional IK c [ f ] is weak lower semi-753

continuous. Therefore I [ f ] = IK [ f ] + IK c [ f ] is weak lower semi-continuous.754

By weak lower semi-continuity, 0 = 1
n
‖ f n‖2

X0
≥ lim infn→+∞ I [ f n] ≥ I [ f ∗].755

Since v minimizes the energy EPN, we have I [ f ∗] ≥ 0. Thus f ∗ minimizes the756

functional I [ f ] and hence solves Euler–Lagrange equation in the weak sense757

−α∇2 f ∗,± ± γ ′′(v⊥) f ∗,⊥ = 0.758

Note that γ ′′(v⊥) is continuous by Lemma 2 and Theorem 1. We apply the Schauder759

estimate and obtain f ∗,± ∈ C
2,δ
loc (R) [29]. Proposition 2 implies f ∗ = A∇v. Note760

that A∇v⊥(0) = f ∗,⊥(0) = 0 and ∇v⊥(0) �= 0. Then A = 0 and f ∗,± ≡ 0.761

Notice that H1(R) can be embedded in C0, 1
2 (R). Utilizing Arzela–Ascoli theorem,762

we obtain f n,⊥ → f ∗,⊥ ≡ 0 uniformly on (−K , K ). Therefore763

lim
n→∞

I [ f n] ≥ − sup
x∈R

|γ ′′(v⊥(x))| lim
n→∞

∫ K

−K

( f n,⊥)2dx764

+α lim
n→∞

∫

R

{

|∇ f n,+|2 + |∇ f n,−|2
}

dx765

+ lim
n→∞

∫

R\(−K ,K )

γ ′′(v⊥)( f n,⊥)2dx766

≥ min

{

α,
1

2
γ ′′(0)

}

767

· lim
n→∞

{∫

R

(

|∇ f n,+|2 + |∇ f n,−|2
)

dx +
∫

R\(−K ,K )

( f n,⊥)2dx

}

768

= min

{

α,
1

2
γ ′′(0)

}

> 0.769

This is in contradiction with limn→∞ I [ f n] ≤ limn→∞
1
n
‖ f n‖2

X0
= 0. Hence the770

original statement holds. ⊓⊔771

5. Consistency of the PN Model772

In this section, the force consistency is obtained at the dislocation solution of773

the PN model. More precisely, the force in the atomistic model is O(ε2)-close to774

its counterpart in the PN model, provided that the displacement of the atomistic775

model is exactly the dislocation solution in Theorem 1. This asymptotic analysis is776

not only formal but also rigorous in the sense that we estimate the truncation error777

in Xε norm.778

Here we first provide several lemmas connecting the discrete Sobolev spaces.779

Lemma 4. (property of discrete Sobolev norms) For k ∈ N, we have780

‖ f ‖ε ≤ ‖ f ‖ε,k ≤ 2k+1 max{1, ε−k}‖ f ‖ε. (84)781
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Proof. By definition, we have ‖ f ‖2
ε ≤ ‖ f ‖2

ε,k and782

‖D j f ‖2
ε ≤ 4ε−2‖D j−1 f ‖2

ε ≤ 22 jε−2 j‖ f ‖2
ε783

for j = 1, · · · , k. Then ‖ f ‖2
ε,k ≤

∑k
j=0 22 jε−2 j‖ f ‖2

ε ≤ 22k+2 max{1, ε−2k}784

‖ f ‖2
ε . ⊓⊔785

Lemma 5. (property of Mε) The linear space Mε is a Hilbert space with inner786

product (·, ·)Xε . Moreover, we have Mε ⊂ H1
ε and for f ∈ Mε787

‖ f ‖2
ε,1 ≤ ‖ f ‖2

Xε
≤ 2‖ f ‖2

ε,1. (85)788

Proof. The Hilbert space is easy to check. And Eq. (85) follows from ‖ f ⊥‖2
ε =789

2‖ f ‖2
ε for f ∈ Mε. ⊓⊔790

Lemma 6. (property of finite difference operator D±
s ) If s ∈ Z

∗ and f ∈ L2
ε , then791

‖D±
s f ‖ε ≤ |s|‖D f ‖ε. (86)792

Proof. Without loss of generality, we suppose s > 0 and prove the result for D+
s f .793

By the Cauchy–Schwarz inequality, we have794

(D+
s f ±

i )2 =

⎛

⎝

i+s−1
∑

j=i

D f ±
j

⎞

⎠

2

≤ s

i+s−1
∑

j=i

(D f ±
j )2.795

Then ‖D+
s f ‖2

ε ≤ s2‖D f ‖2
ε follows from this. ⊓⊔796

The following summability lemma is quite helpful in estimating the truncation797

errors (cf. Proposition 4):798

Lemma 7. (summability of v) Let v be the dislocation solution of the PN model in799

Theorem 1. Given k = 1, 2, · · · , 4 and s ∈ Z
∗, ε ≤ 1, we have800

ε
∑

i∈Z

vk,s,i ≤ C |s| and ‖vk,s‖2
ε ≤ C |s|, (87)801

where C = C(‖∇v‖W k,1 , ‖v‖W k,∞) is independent of s. (cf. Eq. (63) for the defini-802

tion of vk,s,i .)803

Proof. Without loss of generality, we suppose that s > 0. For each i ∈ Z, there804

exists some ξi with ε(i−s) ≤ ξi ≤ ε(i+s) satisfying vk,s,i = |∇kv+(ξi )|. Note that805

∑

i∈Z
vk,s,i =

∑2s−1
j=0

∑

n∈Z
vk,s,2ns+ j . Then for each j ∈ {0, 1, 2, · · · , 2s − 1},806

we have807

2sε
∑

n∈Z

vk,s,2ns+ j ≤
∑

n∈Z

∫ ε(2ns+ j)

ε(2(n−1)s+ j)

|∇kv+(ξ2ns+ j ) − ∇kv+(x)|808

+|∇kv+(x)|dx809
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From Atomistic Model to Peierls–Nabarro Model

≤
∑

n∈Z

∫ ε(2ns+ j)

ε(2(n−1)s+ j)

(∫ ξ2ns+ j

x

|∇k+1v+(ξ)|dξ

)

dx810

+‖∇kv+‖L1811

≤ 2sε‖∇k+1v+‖L1 + ‖∇kv+‖L1 .812

Recall that ‖v+‖W 5,∞ ≤ C and ‖∇v+‖W 4,1 ≤ C from Theorem 1. Hence we813

have ε
∑

i∈Z
vk,s,i ≤ 2sε‖∇k+1v+‖L1 + ‖∇kv+‖L1 ≤ 2s‖∇v+‖W k,1 ≤ C |s|.814

Obviously, we have ess supi∈Z vk,s,i ≤ ‖v+‖W k,∞ ≤ C |s|. Equation (87) follows815

from this. ⊓⊔816

Proposition 4. (consistency of PN model) Suppose that Assumptions A1–A6 hold.817

Let v be the dislocation solution of the PN model in Theorem 1, then there exist C818

and ε0 such that for 0 < ε < ε0 and f ∈ Mε we have819

|〈δEa[v], f 〉ε| ≤ Cε2‖ f ‖Xε . (88)820

Here C and ε0 depend on α, β, θ , and γ ′′(0).821

Proof. 1. Since v is the solution of the PN model and f +
i = − f −

i , we have822

0 =
∑

±
{−α∇2v±

i ± γ ′(v+
i − v−

i )} f ±
i823

= −
∑

s∈Z∗

∑

±

1

2
V ′′(s)s2∇2v±

i f ±
i824

+
∑

s∈Z

U ′
(

s −
1

2
+ v+

i − v−
i

)

( f +
i − f −

i ).825

From the proof of Lemma 7, we have −α∇2v± ∈ L2
ε and hence γ ′(v+ −v−) ∈826

L2
ε . Note that f ± ∈ L2

ε . The series in
∑

±{−α∇2v±
i ± γ ′(v+

i − v−
i )} f ±

i is827

absolutely summable. Thus, we can rewrite that 〈δEa[v], f 〉ε = Relas + Rmis,828

where829

Relas = −
∑

i∈Z

∑

s∈Z∗

∑

±

1

2

{

D−
s [V ′(s + εD+

s v±
i )] − εV ′′(s)s2∇2v±

i

}

f ±
i ,830

Rmis = ε
∑

i∈Z

∑

s∈Z

[

U ′
(

s −
1

2
+ v+

i+s − v−
i

)

( f +
i+s − f −

i )831

− U ′
(

s −
1

2
+ v+

i − v−
i

)

( f +
i − f −

i )

]

832

= ε
∑

i∈Z

∑

s∈Z

1

2

[

U ′
(

s −
1

2
+ v+

i+s − v−
i

)

( f +
i+s − f −

i )833

+ U ′
(

s −
1

2
+ v+

i − v−
i−s

)

( f +
i − f −

i−s)834

− 2U ′
(

s −
1

2
+ v+

i − v−
i

)

( f +
i − f −

i )

]

.835
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2. Estimate |Relas|. Rewrite Relas as836

Relas = − ε−1
∑

i∈Z

∑

s∈Z∗

1

2

{

εD−
s [V ′(s + εD+

s v+
i )] − εD−

s [V ′(s − εD+
s v+

i )]837

−2ε2V ′′(s)s2∇2v+
i

}

f +
i ,838

839

where we have used the fact that ∇2v+
i f +

i = ∇2v−
i f −

i . This is because v+ =840

−v− and f +
i = − f −

i . Using the Taylor expansion for V ′(·) at V ′(s), we have841

εD−
s [V ′(s + εD+

s v+
i )] − εD−

s [V ′(s − εD+
s v+

i )]842

= V ′(s + v+
i+s − v+

i ) − V ′(s + v+
i − v+

i−s) − V ′(s − v+
i+s + v+

i )843

+V ′(s − v+
i + v+

i−s)844

= 2(εD+
s v+

i + εD+
−sv

+
i )V ′′(s) + ε3[(D+

s v+
i )3 + (D+

−sv
+
i )3]V (4)(ξ)845

for some ξ . Note that εD+
s v+

i +εD+
−sv

+
i = v+

i+s +v+
i−s −2v+

i . Thus |εD+
s v+

i +846

εD+
−sv

+
i − ε2s2∇2v+

i | ≤ 1
12

ε4s4v4,s,i and847

ε3|(D+
s v+

i )3 + (D+
−sv

+
i )3| ≤ ε3|D+

s v+
i + D+

−sv
+
i | · 3s2‖∇v‖2

L∞848

≤ 3ε4s4v2,s,i‖∇v‖2
L∞ ,849

where we have used the identity a3 + b3 = (a + b)(a2 − ab + b2) and the fact850

that |D+
±sv

+
i | ≤ |s|‖∇v‖L∞ . Hence851

∣

∣

∣εD−
s [V ′(s + εD+

s v+
i )] − εD−

s [V ′(s − εD+
s v+

i )] − 2ε2V ′′(s)s2∇2v+
i

∣

∣

∣852

≤ 3(1 + ‖∇v‖2
L∞)(v2,s,i + v4,s,i )ε

4(s4V2,s + s4V4,s).853

Therefore854

|Relas| ≤ ε2 3

2
(1 + ‖∇v‖2

L∞)
∑

s∈Z∗
(s4V2,s + s4V4,s)ε

∑

i∈Z

(v2,s,i + v4,s,i )| f +
i |855

≤ Cε2
∑

s∈Z∗
(|s|5V2,s + |s|5V4,s)‖ f ‖Xε856

≤ Cε2‖ f ‖Xε ,857

where the second and the third inequalities are due to Lemmas 7 and 1, respec-858

tively.859

3. Estimate |Rmis|. Rewrite Rmis = Rmis,1 + Rmis,2, where860

Rmis,1 = ε
∑

i∈Z

∑

s∈Z

1

2

[

U ′
(

s −
1

2
+ v+

i+s − v−
i

)

+ U ′
(

s −
1

2
+ v+

i − v−
i−s

)

861

−2U ′
(

s −
1

2
+ v+

i − v−
i

)]

( f +
i − f −

i ),862
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Rmis,2 = ε
∑

i∈Z

∑

s∈Z

1

2

[

U ′
(

s −
1

2
+ v+

i+s − v−
i

)

( f +
i+s − f +

i )863

+ U ′
(

s −
1

2
+ v+

i − v−
i−s

)

( f −
i − f −

i−s)

]

.864

Since f ∈ Mε, we have f + = − f − and865

Rmis,2 = ε
∑

i∈Z

∑

s∈Z

1

2

[

U ′
(

s −
1

2
+ v+

i+s − v−
i

)

( f +
i+s − f +

i + f −
i+s − f −

i )

]

866

= 0.867

Thanks to the symmetry of v, we have U ′(s − 1
2

+ v+
i − v−

i−s) = U ′(s − 1
2

+868

v+
i−s − v−

i ). Applying Taylor expansion, we have869

∣

∣

∣

∣

U ′
(

s −
1

2
+ v+

i+s − v−
i

)

+ U ′
(

s −
1

2
+ v+

i−s − v−
i

)

870

−2U ′
(

s −
1

2
+ v+

i − v−
i

)∣

∣

∣

∣

871

≤ |v+
i+s + v+

i−s − 2v+
i |

∣

∣

∣

∣

U ′′
(

s −
1

2
+ v+

i − v−
i

)∣

∣

∣

∣

872

+
1

2
(|v+

i+s − v+
i |2 + |v+

i−s − v+
i |2)U3,s873

≤ ε2s2U2,sv2,s,i + ε2‖∇v‖L∞s2U3,sv1,s,i ,874

where in the last inequality we have used |v+
i±s − v+

i |2 = ε2|D+
±sv

+
i |2 ≤875

ε2s2‖∇v‖L∞v1,s,i . Thus by Lemmas 1 and 7, we obtain876

|Rmis| = |Rmis,1| ≤ ε2(1 + ‖∇v‖L∞)
∑

s∈Z

(

s2U2,s + s2U3,s

)

ε877

×
∑

i∈Z

(v2,s,i + v1,s,i )| f +
i |878

≤ Cε2
∑

s∈Z

(

|s|3U2,s + |s|3U3,s

)

‖ f ‖Xε879

≤ Cε2‖ f ‖Xε .880

⊓⊔881

6. Stability of the Atomistic Model882

In this section, the linear stability analysis is applied to the atomistic model.883

We will first study this stability at the dislocation solution of the PN model v, then884

extend it to displacement field u which is sufficient close to v.885

We start with the following key observation: with or without a dislocation, the886

stability gap between the atomistic and PN models remains the same, up to an O(ε)887

truncation error.888
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Proposition 5. (stability gap with/without dislocation) Suppose that Assumptions889

A1–A6 hold. Let v be the dislocation solution of the PN model in Theorem 1. Then890

there exists an ε0 > 0 such that for 0 < ε < ε0 and f ∈ Xε we have891

〈

δ2 Ea[v] f, f
〉

ε
−

〈

δ2 EPN[v] f̄ , f̄
〉

0
=

〈

δ2 Ea[0] f, f
〉

ε
−

〈

δ2 EPN[0] f̄ , f̄
〉

0
892

+O(ε)‖ f ‖2
Xε

. (89)893

Proof. 1. Recall second variations (116) at continuum dislocation solution v894

〈

δ2 Ea[v] f, f
〉

ε
= ε

∑

i∈Z

∑

s∈Z∗

∑

±

1

2
V ′′(s + εD+

s v±
i )

(

D+
s f ±

i

)2
895

+ε
∑

i∈Z

∑

s∈Z

U ′′
(

s −
1

2
+ v+

i+s − v−
i

)

( f +
i+s − f −

i )2,896

〈

δ2 Ea[0] f, f
〉

ε
= ε

∑

i∈Z

∑

s∈Z∗

∑

±

1

2
V ′′(s)

(

D+
s f ±

i

)2
897

+ε
∑

i∈Z

∑

s∈Z

U ′′
(

s −
1

2

)

( f +
i+s − f −

i )2,898

〈

δ2 EPN[v] f̄ , f̄
〉

0
=

∑

i∈Z

∫ ε(i+1)

εi

{

α|∇ f̄ +|2 + α|∇ f̄ −|2899

+γ ′′(v+ − v−)( f̄ ⊥)2
}

dx,900

〈

δ2 EPN[0] f̄ , f̄
〉

0
=

∑

i∈Z

∫ ε(i+1)

εi

{

α|∇ f̄ +|2 + α|∇ f̄ −|2 + γ ′′(0)( f̄ ⊥)2
}

dx,901

where α =
∑

s∈Z∗
1
2

V ′′(s)s2 and γ ′′(ξ) =
∑

s∈Z
U ′′(s − 1

2
+ ξ). Then902

〈

δ2 Ea[v] f, f
〉

ε
−

〈

δ2 Ea[0] f, f
〉

ε
−

〈

δ2 EPN[v] f̄ , f̄
〉

0
+

〈

δ2 EPN[0] f̄ , f̄
〉

0
903

=
5

∑

k=1

Rk,904

where905

R1 = ε
∑

i∈Z

∑

s∈Z∗

∑

±

1

2

[

V ′′(s + εD+
s v±

i ) − V ′′(s)
]

(D+
s f ±

i )2,906

R2 = ε
∑

i∈Z

∑

s∈Z

[

U ′′
(

s −
1

2
+ v+

i+s − v−
i

)

− U ′′
(

s −
1

2
+ v+

i − v−
i

)]

907

×( f +
i+s − f −

i )2,908

R3 = ε
∑

i∈Z

∑

s∈Z

[

U ′′
(

s −
1

2
+ v+

i − v−
i

)

− U ′′
(

s −
1

2

)]

909

×
[

( f +
i+s − f −

i )2 − ( f +
i − f −

i )2
]

,910
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From Atomistic Model to Peierls–Nabarro Model

R4 =
∑

i∈Z

∫ ε(i+1)

εi

∑

s∈Z

[

U ′′
(

s −
1

2
+ v+

i − v−
i

)

911

−U ′′
(

s −
1

2
+ v+ − v−

)]

( f +
i − f −

i )2dx,912

R5 =
∑

i∈Z

∫ ε(i+1)

εi

∑

s∈Z

[

U ′′
(

s −
1

2
+ v+ − v−

)

− U ′′
(

s −
1

2

)]

913

·
[

( f +
i − f −

i )2 − ( f̄ + − f̄ −)2
]

dx .914

Here v± = v±(x). It remains to show Ri = O(ε)‖ f ‖2
Xε

for i = 1, 2, · · · , 5.915

916

2. We estimate Ri , i = 1, 2, · · · , 5.917

(1) For sufficiently small ε, we have |V ′′(s + εD+
s v±

i )− V ′′(s)| ≤ V3,s |v±
i+s −918

v±
i | ≤ ε‖∇v‖L∞ V3,s |s|. Using Lemmas 6 and 1, we have919

|R1| ≤
1

2
ε‖∇v‖L∞

∑

s∈Z∗
V3,s |s|‖D+

s f ‖2
ε920

≤
1

2
ε‖∇v‖L∞‖D f ‖2

ε

∑

s∈Z∗
V3,s |s|3 ≤ O(ε)‖ f ‖2

Xε
.921

(2) Next, ( f +
i+s − f −

i )2 ≤ 2( f +
i+s − f +

i )2 +2( f ⊥
i )2 = 2ε2(D+

s f +
i )2 +2( f ⊥

i )2.922

Thus by Lemma 6,923

∑

i∈Z

( f +
i+s − f −

i )2 ≤ 2εs2‖D f +‖2
ε + 2ε−1‖ f ⊥‖2

ε ≤ ε−1(2s2 + 2)‖ f ‖2
Xε

.924

Note that925

∣

∣

∣

∣

U ′′
(

s −
1

2
+ v+

i+s − v−
i

)

− U ′′
(

s −
1

2
+ v+

i − v−
i

)∣

∣

∣

∣

926

≤ U3,s |v+
i+s − v+

i |927

≤ ε‖∇v+‖L∞U3,s |s|.928

Therefore929

|R2| ≤ ε2‖∇v+‖L∞
∑

s∈Z

U3,s |s|
∑

i∈Z

( f +
i+s − f −

i )2
930

≤ ε‖∇v+‖L∞‖ f ‖2
Xε

∑

s∈Z

U3,s |s|(2s2 + 2) ≤ O(ε)‖ f ‖2
Xε

.931

(3) Next, we have for ε ≤ 1932

∑

i∈Z

|( f +
i+s − f −

i )2 − ( f +
i − f −

i )2|933

≤
∑

i∈Z

( f +
i+s − f +

i )2 +
∑

i∈Z

2| f +
i+s − f +

i | · | f +
i − f −

i |934
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≤ ε2
∑

i∈Z

|D+
s f +

i |2 + ε
∑

i∈Z

|D+
s f +

i |2 + ε
∑

i∈Z

| f ⊥
i |2935

≤ (ε + 1)s2‖D f +‖2
ε + ‖ f ⊥‖2

ε936

≤ (2s2 + 1)‖ f ‖2
Xε

, (90)937

where we have used Lemma 6. Note that |U ′′(s − 1
2

+ v+
i − v−

i ) − U ′′(s −938

1
2
)| ≤ ‖v⊥‖L∞U3,s . Therefore939

|R3| ≤ ε‖v⊥‖L∞
∑

s∈Z

U3,s

∑

i∈Z

|( f +
i+s − f −

i )2 − ( f +
i − f −

i )2|940

≤ ε‖v⊥‖L∞‖ f ‖2
Xε

∑

s∈Z

U3,s(2s2 + 1) ≤ O(ε)‖ f ‖2
Xε

.941

(4) We have |U ′′(s − 1
2
+v+

i −v−
i )−U ′′(s − 1

2
+v+ −v−)| ≤ 2ε‖∇v‖L∞U3,s942

for iε ≤ x < (i + 1)ε. Note that
∑

i∈Z

∫ ε(i+1)

εi
( f +

i − f −
i )2dx = ‖ f ⊥‖2

ε .943

Thus944

|R4| ≤ 2ε‖∇v‖L∞‖ f ⊥‖2
ε

∑

s∈Z

U3,s ≤ O(ε)‖ f ‖2
Xε

.945

(5) Finally, we have |U ′′(s − 1
2

+ v+
i − v−

i ) − U ′′(s − 1
2
)| ≤ ‖v⊥‖L∞U3,s .946

Note that | f ⊥
i − f̄ ⊥| = x−iε

ε
| f ⊥

i+1 − f ⊥
i | = (x − iε)|D f +

i − D f −
i | ≤947

(x −iε)·(|D f +
i |+|D f −

i |) and | f̄ ⊥| ≤ | f ⊥
i |+| f ⊥

i+1| for iε ≤ x < (i +1)ε.948

Hence949

|( f ⊥
i )2 − ( f̄ ⊥)2| ≤ | f ⊥

i − f̄ ⊥| · (| f ⊥
i | + | f̄ ⊥|)950

≤ 2(x − iε)(|D f +
i | + |D f −

i |) · (| f ⊥
i | + | f ⊥

i+1|).951

Then952

∑

i∈Z

∫ ε(i+1)

εi

|( f ⊥
i )2 − ( f̄ ⊥)2|dx953

≤ ε2
∑

i∈Z

(|D f +
i | + |D f −

i |) · (| f ⊥
i | + | f ⊥

i+1|)954

≤ ε(‖D f +‖ε + ‖D f −‖ε)‖ f ⊥‖ε955

≤ 2ε‖ f ‖2
Xε

. (91)956

Therefore,957

|R5| ≤ 2ε‖v⊥‖L∞‖ f ‖2
Xε

∑

s∈Z

U3,s ≤ O(ε)‖ f ‖2
Xε

.958

⊓⊔959

The next lemma reveals the relation between a function in Xε and its extension.960

961
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From Atomistic Model to Peierls–Nabarro Model

Lemma 8. (linear interpolation) If f ∈ Xε, then its extension f̄ ∈ X0 (cf. Eq. (42)).962

Moreover, we have963

‖D f ‖2
ε + 1

3
‖ f ⊥‖2

ε ≤ ‖ f̄ ‖2
X0

≤ ‖ f ‖2
Xε

. (92)964

Proof. By definition, we have ∇ f̄ ±(x) = D f ±
i for iε ≤ x < (i + 1)ε, and965

hence ‖∇ f̄ ‖2 = ‖D f ‖2
ε . Direct calculation leads to ‖ f̄ ⊥‖2 = ε

∑

i∈Z

1
3
[( f ⊥

i )2 +966

f ⊥
i f ⊥

i+1 + ( f ⊥
i+1)

2]. Thus 1
3
‖ f ⊥‖2

ε ≤ ‖ f̄ ⊥‖2 ≤ ‖ f ⊥‖2
ε . Equation (92) follows967

these immediately. ⊓⊔968

Proposition 6. (explicit formula for ∆) Suppose that Assumptions A1–A6 hold. Let969

v be the dislocation solution of the PN model in Theorem 1. Then there exists an970

ε0 > 0 such that for 0 < ε < ε0 and f ∈ Xε we have971

〈

δ2 Ea[0] f, f
〉

ε
−

〈

δ2 EPN[0] f̄ , f̄
〉

0
≥ −∆‖ f ‖2

Xε
+ O(ε)‖ f ‖2

Xε
. (93)972

Moreover, ∆ can be calculated by973

∆ = sup
‖ f ‖Xε =1

⎧

⎨

⎩

ε
∑

i∈Z

∑

s≥2

∑

±
V ′′(s)

[

(

D+
s f ±

i

)2 − s2(D f ±
i )2

]

⎫

⎬

⎭

. (94)974

Proof. By direct calculations, we have975

〈

δ2 Ea[0] f, f
〉

ε
−

〈

δ2 EPN[0] f̄ , f̄
〉

0
976

= ε
∑

i∈Z

[

∑

±

∑

s∈Z∗

1

2
V ′′(s)

(

D+
s f ±

i

)2 +
∑

s∈Z

U ′′
(

s −
1

2

)

( f +
i+s − f −

i )2

]

977

−
∑

i∈Z

∫ ε(i+1)

εi

[

∑

±

∑

s∈Z∗

1

2
V ′′(s)s2|∇ f̄ ±|2 −

∑

s∈Z

U ′′
(

s −
1

2

)

( f̄ ⊥)2

]

dx .978

Let979

R̃1 = ε
∑

i∈Z

∑

s∈Z

U ′′
(

s −
1

2

)

[

( f +
i+s − f −

i )2 − ( f +
i − f −

i )2
]

,980

R̃2 =
∑

i∈Z

∫ ε(i+1)

εi

∑

s∈Z

U ′′
(

s −
1

2

)

[

( f ⊥
i )2 − ( f̄ ⊥)2

]

dx .981

Recalling Eqs. (90) and (91), we have982

|R̃1| ≤ ε‖ f ‖2
Xε

∑

s∈Z

U2,s(2s2 + 1) ≤ O(ε)‖ f ‖2
Xε

,983

|R̃2| ≤ 2ε‖ f ‖2
Xε

∑

s∈Z

U2,s ≤ O(ε)‖ f ‖2
Xε

.984
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Note that ∇ f̄ ±(x) = D f ±
i for iε ≤ x < (i + 1)ε. Recall the definition (31).985

Therefore,986

∆ = lim
ε→0

sup
‖ f ‖Xε =1

〈

δ2 EPN[0] f̄ , f̄
〉

0
−

〈

δ2 Ea[0] f, f
〉

ε
987

= lim
ε→0

sup
‖ f ‖Xε =1

{

ε
∑

i∈Z

∑

s∈Z∗

∑

±

1

2
V ′′(s)

[

(

D+
s f ±

i

)2 − s2(D f ±
i )2

]

− R̃1 − R̃2

}

988

= sup
‖ f ‖Xε =1

ε
∑

i∈Z

∑

s≥2

∑

±
V ′′(s)

[

(

D+
s f ±

i

)2 − s2(D f ±
i )2

]

,989

where we have used the symmetry of V (Assumption A2) in the last step. ⊓⊔990

Proposition 7. (∆ ≥ 0) The stability gap (94) is non-negative: ∆ ≥ 0.991

Proof. By Lemma 1, we have
∑

s≥2 |V ′′(s)|s2 ≤
∑

s∈Z∗ V2,ss2 < C . Then for992

any M ∈ N
∗, there exists a t ∈ N

∗ such that
∑

s≥t+1 |V ′′(s)|s2 < 1
M

. For s ≥ 2,993

by the Cauchy–Schwarz inequality, we obtain994

∑

i∈Z

(D+
s f ±

i )2 ≤
∑

i∈Z

s

i+s−1
∑

j=i

(D f ±
j )2 = s2

∑

i∈Z

(D f ±
i )2. (95)995

We define g as follows: gi = (2εMt)−1/2 for 1 ≤ i ≤ Mt and gi = 0 otherwise.996

Obviously, ‖g‖2
ε = 1

2
. Note that if we define D f ± = g, then ‖ f ‖Xε = ‖D f ‖ε = 1.997

Therefore998

∆ ≥ ε
∑

i∈Z

∑

s≥2

2V ′′(s)
[

(gi + · · · + gi+s−1)
2 − s2g2

i

]

.999

If 2 ≤ s ≤ t , then (gi + · · · + gi+s−1)
2 − s2g2

i = 0 for i �∈ T , where T =1000

{−s + 2,−s + 2, · · · , 0} ∪ {Mt − s + 2, Mt − s + 3, · · · , Mt}. For i ∈ T ,1001

we have |(gi + · · · + gi+s−1)
2 − s2g2

i | ≤ s2(2εMt)−1. Note that |T | = 2(s −1002

1). Thus for any 2 ≤ s ≤ t , we have ε
∑

i∈Z

[

(gi + · · · + gi+s−1)
2 − s2g2

i

]

≥1003

−ε2(s − 1)s2(2εMt)−1 ≥ − s3

Mt
≥ − s2

M
. If s ≥ t + 1, Eq. (95) implies that1004

ε
∑

i∈Z
[(gi + · · · + gi+s−1)

2 − s2g2
i ] ≥ −ε

∑

i∈Z
s2g2

i = − s2

2
.1005

Therefore,1006

∆ ≥ ε
∑

i∈Z

{

t
∑

s=2

+
∞

∑

s=t+1

}

2V ′′(s)
[

(gi + · · · + gi+s−1)
2 − s2g2

i

]

1007

≥ −
t

∑

s=2

2|V ′′(s)|
s2

M
−

∞
∑

s=t+1

2|V ′′(s)|
s2

2
1008

≥ −
1 + 2C

M
.1009

Letting M go to infinity, we obtain ∆ ≥ 0. ⊓⊔1010
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From Atomistic Model to Peierls–Nabarro Model

Proposition 8. Suppose that Assumptions A1–A6 hold. If V ′′(s) ≤ 0 for all |s| ≥ 2,1011

then∆ = 0, and thenceκ > 3∆. In particular, if V (·) is a nearest neighbor potential1012

then κ > 3∆ = 0.1013

Proof. Equation (95) and V ′′(s) ≤ 0 imply that V ′′(s)
∑

i∈Z

[

(

D+
s f ±

i

)2
1014

−s2(D f ±
i )2

]

≤ 0 for |s| ≥ 2. Hence ∆ ≤ 0. According to Proposition 7, we1015

have ∆ = 0. ⊓⊔1016

Proposition 9. (stability of atomistic model) Suppose that Assumptions A1–A71017

hold. Let v be the dislocation solution of the PN model in Theorem 1. There exist1018

C and ε0 such that for 0 < ε < ε0 and f ∈ Xε we have1019

〈

δ2 Ea[v] f, f
〉

ε
≥ C‖ f ‖2

Xε
. (96)1020

Here C and ε0 depend on α, β, θ , γ ′′(0), and ∆.1021

Proof. By Proposition 3 and Lemma 8, we have
〈

δ2 EPN[v] f̄ , f̄
〉

0
≥ κ‖ f̄ ‖2

X0
≥1022

1
3
κ‖ f ‖2

Xε
. Therefore, by Propositions 5 and 6, we have1023

〈

δ2 Ea[v] f, f
〉

ε
=

〈

δ2 EPN[v] f̄ , f̄
〉

0
+

〈

δ2 Ea[0] f, f
〉

ε
1024

−
〈

δ2 EPN[0] f̄ , f̄
〉

0
+ O(ε)‖ f ‖2

Xε
1025

≥ 1
3
κ‖ f ‖2

Xε
− ∆‖ f ‖2

Xε
+ O(ε)‖ f ‖2

Xε
1026

≥ C‖ f ‖2
Xε

1027

for sufficiently small ε. Here we have utilized the Assumption A7: ∆ < 1
3
κ . ⊓⊔1028

We finish this section with a detailed verification on the stability condition of1029

Lennard–Jones (m, n) potential. The commonly used case is (m, n) = (6, 12).1030

Proposition 10. Let V (·) be Lennard–Jones (m, n) potential, i.e.,1031

V (x) = VLJ(x) = −
(

r0

|x |

)m

+
(

r0

|x |

)n

, 1 < m < n, x �= 0, (97)1032

where r0 is some characteristic distance. Then ∆ = 0, provided ε is sufficiently1033

small.1034

Proof. We first remark that r0 is not arbitrary but related to the minimal distance1035

s0 = 1 (the rescaled lattice constant). Note that s0 = 1 solves1036

∂

∂s0

(

∑

k∈Z∗
V (ks0) +

∑

k∈Z

Vd

(

ks0 −
1

2
s0

)

)

= 0. (98)1037

Recall that Vd = ε2U . Thus1038

∑

k∈Z∗
kV ′(k) + ε2

∑

k∈Z

(

k −
1

2

)

U ′
(

k −
1

2

)

= 0. (99)1039
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By Lemma 1, we have |
∑

k∈Z
(k − 1

2
)U ′(k − 1

2
)| ≤

∑

s∈Z
(|s|+ 1)U1,s ≤ C . Then1040

0 =
∑

k∈Z∗
kV ′(k) + O(ε2) =

∑

k∈Z∗

[

m
rm

0

km
− n

rn
0

kn

]

+ O(ε2)1041

= 2mζ(m)rm
0 − 2nζ(n)rn

0 + O(ε2),1042

where the zeta function ζ(t) =
∑∞

k=1 k−t , t > 1. Therefore, for sufficient small ε,1043

we have1044

rn−m
0 =

mζ(m)

nζ(n)
+ O(ε2).1045

For s ≥ 2, we have1046

V ′′(s) = m(m + 1)
rm

0

sm+2

[

−1 +
n(n + 1)rn−m

0

m(m + 1)sn−m

]

1047

≤ m(m + 1)
rm

0

sm+2

[

−1 +
n(n + 1)

m(m + 1)
·

mζ(m)
nζ(n)

+ O(ε2)

2n−m

]

.1048

It can be shown that
(n+1)ζ(m)
(m+1)ζ(n)

< 2n−m . Hence V ′′(s) ≤ 0, s ≥ 2 for sufficiently1049

small ε. By Proposition 8, we obtain ∆ = 0. ⊓⊔1050

7. Existence of the Atomistic Model and Convergence1051

In this section, we show that the atomistic model has a solution vε which is1052

O(ε2) away from the PN solution v in terms of the metric induced by Xε norm.1053

Let us first provide the following lemma which makes use of the continuity of1054

〈δ2 Ea[·] f, g〉ε at v:1055

Lemma 9. Suppose that Assumptions A1–A6 hold. Let v be the dislocation solution1056

of the PN model in Theorem 1. There exist constants ε0 and C such that for 0 <1057

ε < ε0 and u, u′ ∈ X̄ε satisfying ‖u − v‖Xε ≤ ε and ‖u′ − v‖Xε ≤ ε we have1058

|
〈(

δ2 Ea[u] − δ2 Ea[u′]
)

f, g
〉

ε
| ≤ Cε−1/2‖u − u′‖Xε‖ f ‖Xε‖g‖Xε (100)1059

for all f, g ∈ Xε. Here ε0 and C depend on α, β, θ , γ ′′(0), and ∆.1060

Proof. Note that ‖D+
s (u − v)‖L∞

ε
≤ |s|‖D(u − v)‖L∞

ε
≤ |s|ε−1/2‖u − v‖Xε ≤1061

|s|ε1/2. This with ‖D+
s v‖L∞

ε
≤ |s|‖∇v‖L∞ ≤ C |s| implies that ‖D+

s u‖L∞
ε

≤ C |s|.1062

Similarly, we have ‖D+
s (u′ − v)‖L∞

ε
≤ |s|ε−1/2‖u′ − v‖Xε ≤ |s|ε1/2, ‖D+

s (u′ −1063

u)‖L∞
ε

≤ |s|ε−1/2‖u′ − u‖Xε ≤ |s|ε1/2, and ‖D+
s u′‖L∞

ε
≤ C |s|. For sufficiently1064

small ε, we have1065

|V ′′(s + εD+
s u±

i ) − V ′′(s + εD+
s u′±

i )| = |V (3)(ξ)||εD+
s (u′±

i − u±
i )|1066

≤ V3,s |s|ε1/2‖u′ − u‖Xε ,1067
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From Atomistic Model to Peierls–Nabarro Model

where |ξ − s| ≤ max{|εD+
s u±

i |, |εD+
s u′±

i |} ≤ Cε|s| ≤ 1
2
|s|.1068

Note that ‖u⊥ − v⊥‖L∞
ε

≤ ε−1/2‖u − v‖Xε ≤ ε1/2. This with ‖v⊥‖L∞
ε

≤ 11069

implies that ‖u⊥‖L∞
ε

≤ 1 + ε1/2 ≤ 2. Similarly, we have ‖u′⊥ − v⊥‖L∞
ε

≤1070

ε−1/2‖u′ − v‖Xε ≤ ε1/2, ‖u′⊥ − u⊥‖L∞
ε

≤ 2ε−1/2‖u′ − u‖Xε ≤ 2ε1/2, and1071

‖u′⊥‖L∞
ε

≤ 2. For sufficiently small ε, we have1072

∣

∣

∣

∣

U ′′
(

s −
1

2
+ u+

i+s − u−
i

)

− U ′′
(

s −
1

2
+ u′+

i+s − u′−
i

)∣

∣

∣

∣

1073

≤ |U (3)(ξ)||εD+
s (u′+

i − u+
i ) + (u′⊥

i − u⊥
i )|1074

≤
(

∑|s|+2

j=−|s|−2
U3,s+ j

)

(|s| + 2)ε−1/2‖u′ − u‖Xε ,1075

where we have used that |ξ−(s− 1
2
)| ≤ max{|εD+

s u′+
i |+|u′⊥

i |, |εD+
s u+

i |+|u⊥
i |} ≤1076

|s| + 2 and that sup|ξ−(s− 1
2 )|≤|s|+2 |U (3)(ξ)| ≤

∑|s|+2
j=−|s|−2 U3,s+ j .1077

Recall Eq. (116) and hence we have1078

|
〈(

δ2 Ea[u] − δ2 Ea[u′]
)

f, g
〉

ε
|1079

≤ ε1/2‖u − u′‖Xε ·
ε

2

∑

±

∑

i∈Z

∑

s∈Z∗
V3,s |s|

∣

∣D+
s f ±

i

∣

∣ ·
∣

∣D+
s g±

i

∣

∣

1080

+ ε−1/2‖u − u′‖Xε · ε
∑

i∈Z

∑

s∈Z

(

∑|s|+2

j=−|s|−2
U3,s+ j

)

(|s| + 2)
∣

∣ f +
i+s − f −

i

∣

∣

1081

·
∣

∣g+
i+s − g−

i

∣

∣ .1082

Utilizing Lemmas 1 and 6, we obtain1083

ε

2

∑

s∈Z∗
V3,s |s|

∑

i∈Z

∣

∣D+
s f ±

i

∣

∣ ·
∣

∣D+
s g±

i

∣

∣ ≤
1

2

∑

s∈Z∗
V3,s |s|3‖D f ±‖ε‖Dg±‖ε1084

≤ C‖ f ‖Xε‖g‖Xε ,1085

ε
∑

s∈Z

(

∑|s|+2

j=−|s|−2
U3,s+ j

)

(|s| + 2)
∑

i∈Z

∣

∣ f +
i+s + f −

i

∣

∣ ·
∣

∣g+
i+s + g−

i

∣

∣

1086

≤ C‖ f ‖Xε‖g‖Xε .1087

Finally, Eq. (100) is obtained by collecting these inequalities. ⊓⊔1088

Lemma 10. Suppose that Assumptions A1–A7 hold. Let v be the dislocation solu-1089

tion of the PN model in Theorem 1. There exist constants ε0 and C such that for1090

0 < ε < ε0 and u ∈ X̄ε satisfying ‖u − v‖Xε ≤ ε we have1091

〈

δ2 Ea[u] f, f
〉

ε
≥ C‖ f ‖2

Xε
(101)1092

for all f ∈ Xε. Here ε0 and C depend on α, β, θ , γ ′′(0), and ∆.1093

Proof. Thanks to Proposition 9, we know
〈

δ2 Ea[v] f, f
〉

ε
≥ C‖ f ‖2

Xε
for all f ∈1094

Xε. It is sufficient to show that |
〈

δ2 Ea[v] f, f
〉

ε
−

〈

δ2 Ea[u] f, f
〉

ε
| ≤ 1

2
C‖ f ‖2

Xε
.1095

The latter can be obtained by setting v = u′ in Lemma 9. ⊓⊔1096
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As all preparations are complete, we provide a proof of our main theorem.1097

Proof of Theorem 2. By Theorem 1, we have v ∈ C5 and ‖∇v‖W 4,1 ≤ C indepen-1098

dent of ε. Define a closed ball B of Mε as follows:1099

B =
{

w ∈ Mε : ‖w‖Xε ≤ CBε2
}

, (102)1100

where the constant CB can be chosen properly later. Given w ∈ B, we define1101

operator Aw : Mε → Mε as follows:1102

(Aw f, g)Xε =
∫ 1

0

〈δ2 Ea[ut ] f, g〉εdt, f, g ∈ Mε, (103)1103

where ut = v+tw for t ∈ [0, 1]. It is easy to check that this operator is well-defined1104

and self-adjoint, i.e., (Aw f, g)Xε = ( f, Awg)Xε . Next, we have ‖ut − v‖Xε =1105

t‖w‖Xε ≤ C0ε
2. Then by Lemma 10, we have 〈δ2 Ea[ut ] f, f 〉ε ≥ C‖ f ‖2

Xε
for1106

t ∈ [0, 1] and f ∈ Mε ⊂ Xε. Thus (Aw f, f )Xε ≥ C‖ f ‖2
Xε

and Aw is invertible.1107

By Taylor’s theorem with a remainder, we have, for all ψ ∈ Mε,1108

〈δEa[v + w], ψ〉ε = 〈δEa[v], ψ〉ε +
∫ 1

0

〈δ2 Ea[ut ]w,ψ〉εdt1109

= 〈δEa[v], ψ〉ε + (Aww,ψ)Xε , (104)1110

where w ∈ B and ut = v + tw for t ∈ [0, 1].1111

To solve the atomistic model, it is sufficient to find w ∈ B solving1112

(Aww,ψ)Xε = −〈δEa[v], ψ〉ε for all ψ ∈ Mε.1113

Define a map G : B → Mε for w ∈ B as1114

(AwG(w), ψ)Xε = −〈δEa[v], ψ〉ε for all ψ ∈ Mε. (105)1115

Next, we check that G(B) ⊂ B for properly chosen CB . Indeed, by Lemma 101116

and the consistency (Proposition 4), we have1117

C‖G(w)‖2
Xε

≤ (AwG(w), G(w))Xε1118

≤ |〈δEa[v], G(w)〉ε|1119

≤ O(ε2)‖G(w)‖Xε .1120

Thus we can choose a constant CB such that ‖G(w)‖Xε ≤ CBε2 and G(B) ⊂ B.1121

We are going to apply the contraction mapping theorem to G. Obviously, B is a1122

non-empty complete metric space with metric d(u, v) = ‖u − v‖Xε . To guarantee1123

the existence (and uniqueness) of a fixed point in B, it remains to show that G :1124

B → B is a contraction mapping, i.e., ‖G(w) − G(w′)‖Xε ≤ L‖w − w′‖Xε for1125

any w,w′ ∈ B and for some Lipschitz constant L < 1.1126

Note that (G(w), ψ)Xε = −〈δEa[v], A−1
w ψ〉ε and (G(w′), ψ)Xε = −〈δEa[v],1127

A−1
w′ ψ〉ε for all ψ ∈ Mε. Thus by Proposition 4, we have1128
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From Atomistic Model to Peierls–Nabarro Model

‖G(w) − G(w′)‖2
Xε

=
∣

∣

∣
〈δEa[v], (A−1

w − A−1
w′ )(G(w) − G(w′))〉ε

∣

∣

∣
1129

= O(ε2)

∥

∥

∥(A−1
w − A−1

w′ )(G(w) − G(w′))
∥

∥

∥

Xε

1130

= O(ε2)

∥

∥

∥A−1
w (Aw − Aw′)A−1

w′ (G(w) − G(w′))
∥

∥

∥

Xε

1131

≤ O(ε2)‖A−1
w ‖op · ‖Aw − Aw′‖op · ‖A−1

w′ ‖op1132

·‖G(w) − G(w′)‖Xε ,1133

where the operator norms are defined as follows:1134

‖A−1
w ‖op := sup

f ∈Mε, f �=0

‖A−1
w f ‖Xε

‖ f ‖Xε

,1135

‖Aw − Aw′‖op := sup
f ∈Mε, f �=0

‖(Aw − Aw′) f ‖Xε

‖ f ‖Xε

,1136

‖A−1
w′ ‖op := sup

f ∈Mε, f �=0

‖A−1
w′ f ‖Xε

‖ f ‖Xε

.1137

For f ∈ Mε, f �= 0 and w ∈ B, we have1138

C‖A−1
w f ‖Xε ≤

〈Aw A−1
w f, A−1

w f 〉ε
‖A−1

w f ‖Xε

≤ ‖ f ‖Xε .1139

Hence1140

‖A−1
w ‖op ≤ C, ‖A−1

w′ ‖op ≤ C.1141

By Lemma 9, we have1142

‖(Aw − Aw′) f ‖2
Xε

=
∫ 1

0

〈(δ2 Ea[v + tw] − δ2 Ea[v + tw′]) f, (Aw − Aw′) f 〉εdt1143

≤
∫ 1

0

Cε−1/2‖tw − tw′‖Xε‖ f ‖Xε‖(Aw − Aw′) f ‖Xε dt1144

≤ Cε−1/2‖w − w′‖Xε‖ f ‖Xε‖(Aw − Aw′) f ‖Xε .1145

Hence1146

‖Aw − Aw′‖op ≤ Cε−1/2‖w − w′‖Xε .1147

Collecting these estimates, we obtain1148

‖G(w) − G(w′)‖Xε ≤ Cε−1/2‖w − w′‖Xε Cε2 ≤ L‖w − w′‖Xε , (106)1149

where L < 1 for sufficiently small ε. Therefore, G is a contraction mapping.1150

Consequently, there exists a unique fixed point wε solving (Awεwε, ψ)Xε =1151

−〈δEa[v], ψ〉ε for all ψ ∈ Mε. Let vε = v + wε. Thus vε is a local minimizer of1152
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Ea in Xε norm. Indeed, for any w ∈ Xε with ‖w‖Xε ≤ CBε2, we apply Lemma 101153

and obtain1154

Ea[vε + w] − Ea[vε] =
∫ 1

0

(1 − t)〈δ2 Ea[vε + tw]w,w〉εdt ≥ C‖w‖2
Xε

> 0.1155

Therefore taking vε the Euler–Lagrange equation of the atomistic model satisfies1156

‖vε − v‖Xε ≤ Cε2. ⊓⊔1157

Proof of Corollary 1. 1. We suppose, without loss of generality, that ε ≤ 1. Since1158

v+ = −v−, the total energy of the PN model at v reads as1159

EPN[v] =
∫

R

[

α|∇v+|2 + γ (2v+)
]

dx . (107)1160

Using trapezoidal rule, we have the numerical approximation of this energy1161

E
app
PN [v] = ε

∑

i∈Z

[

α|∇v+
i |2 + γ (2v+

i )
]

. (108)1162

It is sufficient to show that
∣

∣Ea[vε] − E
app
PN [v]

∣

∣ ≤ Cε2 and
∣

∣E
app
PN [v] − EPN[v]

∣

∣ ≤1163

Cε2.1164

2. Estimate |Ea[vε]− E
app
PN [v]|. Recall Eqs. (25) and (26). Let Ea[vε]− E

app
PN [v] =1165

Relas + Rmis, where1166

Relas =
ε−1

2

∑

i∈Z

∑

s∈Z∗

[

V (s + εD+
s v

ε,+
i ) + V (s − εD+

s v
ε,+
i ) − 2V (s)1167

−ε2V ′′(s)s2(∇v+
i )2

]

,1168

Rmis = ε
∑

i∈Z

∑

s∈Z

[

U

(

s −
1

2
+ v

ε,+
i+s + v

ε,+
i

)

− U

(

s −
1

2
+ 2v+

i

)]

.1169

Let w = vε − v on εZ. Thanks to Theorem 2, we have w ∈ Mε and1170

‖w‖Xε ≤ Cε2. This implies that vε,+ = −vε,−, ‖Dw‖L∞
ε

≤ Cε
3
2 , and1171

‖Dw‖ε ≤ Cε2. Using Lemmas 6 and 7, we have ‖D+
s w‖ε ≤ |s|‖Dw‖ε ≤1172

C |s|ε2 and ‖D+
s v‖ε ≤ |s|‖Dv‖ε ≤ |s|‖v1,1‖ε ≤ C |s|. Also notice that1173

‖D+
s v‖L∞

ε
≤ |s|‖∇v‖L∞ ≤ C |s| and ‖D+

s w‖L∞
ε

≤ |s|‖Dw‖L∞
ε

≤ C |s|ε 3
2 .1174

Thus1175

‖D+
s vε‖ε ≤ ‖D+

s v‖ε + ‖D+
s w‖ε ≤ C |s|, (109)1176

‖D+
s vε‖L∞

ε
≤ ‖D+

s v‖L∞
ε

+ ‖D+
s w‖L∞

ε
≤ C |s|. (110)1177

Since ‖D+
s w‖ε ≤ C |s|ε2, we have ‖D−

s D+
s w‖ε ≤ |s|‖DD+

s w‖ε ≤1178

Cε−1|s|‖D+
s w‖ε ≤ Cs2ε. Note that ‖D−

s D+
s v‖ε ≤ s2‖v2,1‖ε ≤ Cs2. Thus1179

‖D−
s D+

s vε‖ε ≤ ‖D−
s D+

s w‖ε + ‖D−
s D+

s v‖ε ≤ Cs2.1180
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From Atomistic Model to Peierls–Nabarro Model

To estimate the elastic part, we apply Taylor theorem:1181

|Relas| ≤
∣

∣

∣

∣

∣

ε

2

∑

s∈Z∗
V ′′(s)

∑

i∈Z

[

(D+
s v

ε,+
i )2 − (s∇v+

i )2
]

∣

∣

∣

∣

∣

1182

+
ε3

24

∑

s∈Z∗
V4,s

∑

i∈Z

|D+
s v

ε,+
i |4. (111)1183

For the second term on the right hand side of (111), we have1184

ε3

24

∑

s∈Z∗
V4,s

∑

i∈Z

|D+
s v

ε,+
i |4 ≤ Cε2

∑

s∈Z∗
V4,ss2‖D+

s vε‖2
ε1185

≤ Cε2
∑

s∈Z∗
V4,ss4 ≤ Cε2, (112)1186

where we have used Eqs. (109) and (110). We notice that D+
s v

ε,+
i − s∇v+

i =1187

D+
s wi + D+

s v+
i − s∇v+

i and |D+
s v+

i − s∇v+
i − 1

2
εs2∇2v+

i | ≤ 1
6
ε2|s|3v3,s,i1188

(Recall Eq. (63)). Using Lemma 7, we have ‖v3,s‖ε ≤ C |s|1/2 and ‖∇kv‖ε ≤1189

‖vk,1‖ε ≤ C , k = 1, 2. For the first term on the right hand side of Eq. (111),1190

we have1191

∣

∣

∣

∣

∣

ε

2

∑

s∈Z∗
V ′′(s)

∑

i∈Z

[

(D+
s v

ε,+
i )2 − (s∇v+

i )2
]

∣

∣

∣

∣

∣

1192

≤
∣

∣

∣

∣

∣

ε

2

∑

s∈Z∗
V ′′(s)

∑

i∈Z

(D+
s wi + D+

s v+
i − s∇v+

i )(D+
s v

ε,+
i + s∇v+

i )

∣

∣

∣

∣

∣

1193

≤
1

2

∑

s∈Z∗
V2,s

(

‖D+
s w‖ε +

1

6
ε2|s|3‖v3,s‖ε

)

(‖D+
s vε‖ε + |s|‖∇v‖ε)1194

+
∣

∣

∣

∣

∣

ε

2

∑

s∈Z∗
V ′′(s)

∑

i∈Z

(

1

2
εs2∇2v+

i

)

D+
s v

ε,+
i

∣

∣

∣

∣

∣

1195

+

∣

∣

∣

∣

∣

ε

2

∑

s∈Z∗
V ′′(s)

∑

i∈Z

(

1

2
εs2∇2v+

i

)

∇v+
i

∣

∣

∣

∣

∣

1196

≤ Cε2
∑

s∈Z∗
V2,s |s|5 + Cε2

∑

s∈Z∗
V2,ss4 + 0 ≤ Cε2. (113)1197

We have used the facts that1198

∑

i∈Z

∇2v+
i ∇v+

i =
1

2

∑

i∈Z

(∇2v+
i ∇v+

i + ∇2v+
−i∇v+

−i ) = 0,1199

∑

s∈Z∗
V ′′(s)s2 D+

s v
ε,+
i =

1

2

∑

s∈Z∗
V ′′(s)s2(D+

s v
ε,+
i + D+

−sv
ε,+
i )1200

=
ε

2

∑

s∈Z∗
V ′′(s)s2(D−

s D+
s v

ε,+
i ),1201

205 1257
Jour. No Ms. No.

B
Dispatch: 7/5/2018
Total pages: 47

Disk Received

Disk Used

Journal: ARMA
Not Used

Corrupted

Mismatch

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Tao Luo, Pingbing Ming & Yang Xiang

and1202

∣

∣

∣

∣

∣

ε

2

∑

s∈Z∗
V ′′(s)

∑

i∈Z

(

1

2
εs2∇2v+

i

)

D+
s v

ε,+
i

∣

∣

∣

∣

∣

1203

≤
∣

∣

∣

∣

∣

ε3

8

∑

s∈Z∗
V ′′(s)s2

∑

i∈Z

∇2v+
i D−

s D+
s v

ε,+
i

∣

∣

∣

∣

∣

1204

≤ Cε2
∑

s∈Z∗
V2,ss4.1205

Next, we estimate the misfit part. Thanks to Lemma 5, we have ‖w+‖ε ≤1206

‖w‖Xε ≤ Cε2. Also recall that ‖v+‖ε ≤ C . Note that v
ε,+
i+s + v

ε,+
i − 2v+

i =1207

w+
i+s +w+

i + εD+
s v+

i and v
ε,+
i+s +v

ε,+
i − 2v+

i+s = w+
i+s +w+

i − εD+
s v+

i . Since1208

∑

s∈Z
U ′(s − 1

2
) = 0 and the series that follows are absolutely summable, we1209

have1210

∑

i∈Z

∑

s∈Z

U ′
(

s −
1

2

)

(w+
i+s + w+

i ) = 2
∑

i∈Z

w+
i

∑

s∈Z

U ′
(

s −
1

2

)

= 0.1211

Now repeatedly applying the Taylor theorem to U leads to1212

|2Rmis| =

∣

∣

∣

∣

∣

ε
∑

i∈Z

∑

s∈Z

[

2U

(

s −
1

2
+ v

ε,+
i+s + v

ε,+
i

)

− U

(

s −
1

2
+ 2v+

i

)

1213

−U

(

s −
1

2
+ 2v+

i+s

)]∣

∣

∣

∣

1214

≤
∣

∣

∣

∣

∣

ε
∑

i∈Z

∑

s∈Z

[

U ′
(

s −
1

2
+ 2v+

i

)

+ U ′
(

s −
1

2
+ 2v+

i+s

)]

1215

×(w+
i+s + w+

i )
∣

∣

1216

+
∣

∣

∣

∣

∣

ε
∑

i∈Z

∑

s∈Z

[

U ′
(

s −
1

2
+ 2v+

i

)

1217

−U ′
(

s −
1

2
+ 2v+

i+s

)]

εD+
s v+

i

∣

∣

∣

∣

1218

+
∣

∣

∣

∣

∣

ε
∑

i∈Z

∑

s∈Z

1

2
U2,s

[

(w+
i+s + w+

i + εD+
s v+

i )2
1219

+(w+
i+s + w+

i − εD+
s v+

i )2
]∣

∣

∣
1220

≤
∣

∣

∣

∣

∣

ε
∑

i∈Z

∑

s∈Z

2U ′
(

s −
1

2

)

(w+
i+s + w+

i )

∣

∣

∣

∣

∣

1221

+

∣

∣

∣

∣

∣

ε
∑

i∈Z

∑

s∈Z

U2,s(2v+
i + 2v+

i+s)(w
+
i+s + w+

i )

∣

∣

∣

∣

∣

1222
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+ε
∑

i∈Z

∑

s∈Z

2U2,s |εD+
s v+

i |2 + Cε2
1223

≤ 0 + Cε2 + Cε2 + Cε2 ≤ Cε2. (114)1224

Combining Eqs. (111), (112), (113) and (114), we obtain1225

|Ea[vε] − E
app
PN [v]| ≤ Cε2.1226

3. Estimate
∣

∣E
app
PN [v] − EPN[v]

∣

∣. Let g(x) = α(∇v+(x))2+γ (2v+(x)) for x ∈ R.1227

Then g ∈ C4 and1228

g′(x) = 2α∇v+∇2v+ + 2γ ′(2v+)∇v+,1229

g′′(x) = 2α(∇2v+)2 + 2α∇v+∇3v+ + 4γ ′′(2v+)(∇v+)2 + 2γ ′(2v+)∇2v+.1230

By Lemma 2, we have ‖γ (k)‖L∞ ≤ C , k = 1, 2. Thus1231

max
(i−1/2)ε≤ξ≤(i+1/2)ε

|g′′(ξ)| ≤ C
{

(v2,1,i )
2 + v1,1,iv3,1,i + (v1,1,i )

2 + v2,1,i

}

.1232

Finally, we apply Lemma 7 to get1233

∣

∣E
app
PN [v] − EPN[v]

∣

∣ ≤
∑

i∈Z

∣

∣

∣

∣

∣

∫ (i+1)ε

(i−1)ε

g(x)dx − εg(iε)

∣

∣

∣

∣

∣

1234

≤
ε3

3

∑

i∈Z

max
(i−1/2)ε≤ξ≤(i+1/2)ε

|g′′(ξ)|1235

≤ Cε3
∑

i∈Z

{

(v2,1,i )
2 + v1,1,iv3,1,i + (v1,1,i )

2 + v2,1,i

}

1236

≤ Cε2.1237

⊓⊔1238
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Appendix A: Variations of Energies1246

In this appendix, we list the explicit expressions of the variations for both models.1247

Note that δEa[u] ∈ X∗
ε and δ2 Ea[u] f ∈ X∗

ε for u ∈ Sε and f ∈ Xε. In 〈δEa[u], f 〉ε1248

for f ∈ Xε, 〈·, ·〉ε is a pairing on X∗
ε × Xε.1249
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Proposition 11. (variations of energies) Suppose that Assumptions A1–A6 hold.1250

1. For u ∈ Sε and f, g ∈ Xε, we have1251

〈δEa[u], f 〉ε =
∑

i∈Z

∑

s∈Z∗

1

2

[

V ′(s + εD+
s u+

i )(D+
s f +

i )1252

+V ′(s + εD+
s u−

i )(D+
s f −

i )
]

1253

+ε
∑

i∈Z

∑

s∈Z

[

U ′
(

s −
1

2
+ u+

i+s − u−
i

)

( f +
i+s − f −

i )

]

, (115)1254

〈

δ2 Ea[u] f, g
〉

ε
= ε

∑

i∈Z

∑

s∈Z∗

1

2
[V ′′(s + εD+

s u+
i )(D+

s f +
i )(D+

s g+
i )1255

+V ′′(s + εD+
s u−

i )(D+
s f −

i )(D+
s g−

i )]1256

+ε
∑

i∈Z

∑

s∈Z

[

U ′′
(

s −
1

2
+ u+

i+s − u−
i

)

1257

×( f +
i+s − f −

i )(g+
i+s − g−

i )
]

. (116)1258

The series in (116) is absolutely summable in the following sense for sufficiently1259

small ε:1260

ε
∑

i∈Z

∑

s∈Z∗

∑

±

1

2

∣

∣V ′′(s + εD+
s u±

i )(D+
s f ±

i )(D+
s g±

i )
∣

∣

1261

+ε
∑

i∈Z

∑

s∈Z

∣

∣

∣

∣

U ′′
(

s −
1

2
+ u+

i+s − u−
i

)

( f +
i+s − f −

i )(g+
i+s − g−

i )

∣

∣

∣

∣

1262

< ∞. (117)1263

If f ∈ Mε and u = v is the PN solution of Theorem 1, then the series in (115)1264

is absolutely summable in the following sense for sufficiently small ε:1265

∑

i∈Z

∣

∣

∣

∣

∣

∑

s∈Z∗

1

2
[V ′(s + εD+

s u+
i )(D+

s f +
i ) + V ′(s + εD+

s u−
i )(D+

s f −
i )]

∣

∣

∣

∣

∣

1266

+ε
∑

i∈Z

∣

∣

∣

∣

∣

∑

s∈Z

[

U ′
(

s −
1

2
+ u+

i+s − u−
i

)

( f +
i+s − f −

i )

]

∣

∣

∣

∣

∣

< ∞. (118)1267

2. For u ∈ S0 and f, g ∈ X0, we have1268

〈δEPN[u], f 〉0 =
∫

R

{

α∇u+∇ f + + α∇u−∇ f − + γ ′(u⊥) f ⊥
}

dx, (119)1269

〈

δ2 EPN[u] f, g
〉

0
=

∫

R

{

α∇ f +∇g+ + α∇ f −∇g− + γ ′′(u⊥) f ⊥g⊥
}

dx .1270

(120)1271

Proof. Using difference operators, the atomistic energy reads as1272
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Ea[u] = ε−1
∑

i∈Z

∑

s∈Z∗

1

2

[

V
(

s + εD+
s u+

i

)

+ V
(

s + εD+
s u−

i

)

− 2V (s)
]

1273

+ε
∑

i∈Z

∑

s∈Z

[

U

(

s −
1

2
+ (u+

i+s − u−
i )

)

− U

(

s −
1

2

)]

.1274

Then Eqs. (115), (116), (119) and (120) are obtained via direct calculations.1275

For sufficiently small ε, we have1276

left hand side of (117) ≤ ε
∑

i∈Z

∑

s∈Z∗

∑

±

1

2
V2,s |D+

s f ±
i ||D+

s g±
i |1277

+ε
∑

i∈Z

∑

s∈Z

U2,s | f +
i+s − f −

i ||g+
i+s − g−

i |1278

≤ C,1279

where the first term is bounded by 1
2

∑

s∈Z∗ V2,ss2‖D f ‖ε‖Dg‖ε1280

≤ C‖ f ‖Xε‖g‖Xε ≤ C and the second term is bounded similarly because of Lem-1281

mas 1 and 6.1282

If f ∈ Mε and u = v is the PN solution of Theorem 1, then the absolutely1283

summability of the series in (118) is essentially shown in the proof of Proposition 41284

(See the estimates of |Relas| and |Rmis|). ⊓⊔1285

We remark that the order of the double summation
∑

i and
∑

s can not be changed1286

in Eq. (118); while the order of the double summation
∑

i and
∑

s is changeable1287

in Eq. (117). We also remark that, at the perfect lattice (corresponding to u ≡ 01288

which is not in S0 or Sε), the second variation δ2 Ea[0] and δ2 EPN[0] can also be1289

defined and satisfy the same formulas in Proposition 11.1290

Appendix B: Small Parameter ε Calculated by Atomistic and First Principles1291

Calculations1292

An example of the bilayer systems is bilayer graphene. In this appendix, we cal-1293

culate the small parameter ε defined in Eq. (18) in Sect. 2.3 that characterizes the1294

strength of the weak van der Waals interlayer interaction v.s. the strong covalent-1295

bond intralayer interaction in the bilayer graphene, using the data of atomistic and1296

first principles calculations [13,70].1297

In the PN model for bilayer graphene in Ref. [13], the two dimensional γ -surface1298

was fitted by a truncated trigonometric series as1299

γ2d(φ,ψ) = c0 + c1

[

cos
2π

a

(

φ +
ψ
√

3

)

+ cos
2π

a

(

φ −
ψ
√

3

)

+ cos
4πψ
√

3a

]

1300

+c2

[

cos
2π

a

(

φ +
√

3ψ
)

+ cos
2π

a

(

φ −
√

3ψ
)

+ cos
4πφ

a

]

1301

+c3

[

cos
2π

a

(

2φ +
2ψ
√

3

)

+ cos
2π

a

(

2φ −
2ψ
√

3

)

+ cos
8πψ
√

3a

]

1302
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+c4

[

sin
2π

a

(

φ −
ψ
√

3

)

− sin
2π

a

(

φ +
ψ
√

3

)

+ sin
4πψ
√

3a

]

1303

+c5

[

sin
2π

a

(

2φ −
2ψ
√

3

)

− sin
2π

a

(

2φ +
2ψ
√

3

)

+ sin
8πψ
√

3a

]

,1304

where {ci }5
i=1 are constants obtained by fitting the data of first principles calcula-1305

tions [70] as1306

c0 = 21.336 × 10−3, c1 = −6.127 × 10−3, c2 = −1.128 × 10−3,1307

c3 = 0.143 × 10−3, c4 =
√

3c1, c5 = −
√

3c3,1308

where the units are J/m2. On the other hand, the elasticity constants of each mono-1309

layer graphene, in the unit of J/m2, are [13]1310

C11 = 312.67, C12 = 91.66, C44 = 110.40.1311

In our one-dimensional case, γ (φ) = γ2d(φ, 0) and α = C11. Using the above1312

values and Eq. (18) in Sect. 2.3, we have1313

ε =

√

√

√

√

a2 ∂2γ2d(0,0)

∂φ2

C11
≈ 0.0475.1314

Thus it is reasonable to set ε as a small parameter.1315
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